C- Kernd Files

October 14, 1999

This October 1999 version of the document differs from the previous version of November 1992
inthefollowing arees.

Code examples showing cdls to the routine DAFONW now show calsto CKOPN in its place,
and code examples showing calls to the routine SCE2T now show callsto SCE2C instead.

All satements referring to the base frame of a C-matrix or quaternion have been modified so as
not to indicate that the base frame isinertid.

The source-code-leve discussion of the implementation of the high level CK readers has been
removed. The implementation is not part of the C-kernd software interface and is not guaranteed
to remain unchanged. The data selection agorithms used by the readers ARE part of the
interface, and the descriptions of the agorithms have been retained.

In addition, some minor changes have been made to smplify maintenance of both the Fortran
and C versons of this document.

References

All references are to NAIF documents. The notation [Dn] refers to NAITF document number.

1. [167] Double Precison Array Files Required Reading. (DAF)

2. [222] Spacecraft Clock Time Required Reading. (SCLK)
3. [214] Rotations Required Reading. (ROTATIONS)

4. [211] SPC Required Reading: Commentsin SPK and CK Files. (SPC)

| ntroduction

In the SPICE system, pointing data for science ingruments are sored in the C-kernd, the "C" in
SPICE. The pointing of an instrument is often expressed in terms of atransformation matrix

from some standard base reference frame to alocad, instrument-fixed frame. In the pagt, the
ingtrument was often a camera, and the transformation was thus dubbed the " C-matrix"; hence
the choice of C as the name for the pointing kerndl.

The data contained in C-kernd files can be accessed and manipulated by a collection of
FORTRAN 77 subroutines which are part of the SPICELIB library. These subroutines can be
integrated into user gpplication programs. The purpose of this document is to describe both the
C-kernd file structure and the associated SPICELIB software to the level of detail necessary for
the user to program dmost any application.

With few exceptions, dl subroutines and functions gppearing in this document are part of
SPICELIB. The exceptions are placeholders for user-supplied routines which appear in some of
the code examples. Each SPICELIB routineis prefaced with a complete SPICEL IB header which
describes inputs, outputs, restrictions and context, and provides examples of usage. The
authoritative documentation for any subroutine is its header, which should be consulted before
using the routine in any program. A summary of the CK subroutines presented in this document
isincluded as Appendix A.

Praiminaries

In this chapter we discuss four concepts that are essentid to using the C-kernd: specification of
gpacecraft and instruments, C-matrices, angular velocity vectors, and spacecraft clock time.

Specifying Spacecraft and Instruments

C-kernd files and software use integer codes to refer to instruments and the spacecraft on which
they are mounted. Y ou will use these insgrument numbers with C-kernd readers to request
pointing data.

In order to avoid confusion, NAIF, in cooperation with the science teams from each flight
project, will assgn instrument codes using the following scheme.

If you're familiar with SPICE S- and P-kernels, you know that NAIF codes for spacecraft are
negativeintegers -31 for Voyager 1, -32 for Voyager 2, -94 for Mars Globa Surveyor, and so
on. We borrow from this convention in defining instrument codes.

For example, the Voyager 2 instruments could have been given these IDs.

-32000

Instrument Scan Platform
-32001

ISSNA (Imaging science narrow angle camera)
-32002

ISSWA (Imaging science wide angle camera)
-32003

PPS (Photopolarimeter)
-32004

UVSAG (Ultraviolet Spectrometer, Airglow port)
-32005

UV SOCC (Ultraviolet Spectrometer, Occultation port)
-32006

IRIS (Infrared Interferometer Spectrometer and Radiometer)
The smple coding formulaiis

SPICE s/c instrunent code = (s/c code)*(1000) - instrument nunber
which dlows for 999 instruments on board any one spacecraft.

Theterm “instrument” is used loosdly throughout this document since the concept of orientation
is gpplicable to Structures other than just science instruments. For example, some of the Galileo
instruments are in afixed pogtion relative to the scan platform. It might therefore be prudent to
have asingle file containing the oriertation of the scan platform, and then produce the pointing
for each of the scan platform science instruments by gpplying instrument offset angles obtained
from the I-kerndl.

C-Matrices

A C-matrix isa 3x3 matrix that transforms Cartesian coordinates referenced to a " base frame" to
coordinates in an instrument-fixed reference frame. In earlier versons of SPICELIB, the base
frame was required to be inertid; this restriction has been removed.

The C-matrix transforms coordinates as follows: if avector v has coordinates (x, y, z) in some
base reference frame (like J2000), then v has coordinates (X', ', Z') in ingrument-fixed
coordinates, where

[1 [
| CGmatrix | |
11

] [
| = |
[] [

N < X
N < X

"]
"
"1
The trangpose of a C-matrix rotates vectors from the insrument-fixed frame to the base frame:

[1T [
| Cmatrix | |
[1

Therefore, if the coordinates of an instrument in the instrument fixed frame are known, then the
trangpose of the C-matrix can be used to determine the corresponding coordinatesin a base
reference frame. This information can be used to help answer questions such as, " What isthe
latitude and longitude of the point on the planet that the camerawas pointing at when it shuttered
this picture?"

'] [
o=
'] [

N < X
N < X

]
I
]

Thehigh-level CK file reader CKGP (Get Pointing) returns a C-matrix that specifiesthe
pointing of a pacecraft structure at a particular time. An example program isincluded in

Appendix B, which solves the longitude and latitude problem presented above usng CKGP and
other SPICELIB subroutines.

Angular Velocity Vectors

In the C-kernd an angular velocity vector is a vector with respect to a base frame whose
direction gives the right- handed axis about which an insrument-fixed reference frame is rotating,
and whose magnitude is equd to the magnitude of the rotation velocity, in radians per second.

Angular rate information may be important for certain types of science andyss. For ingtance,
investigators for imaging instruments might use angular rates to determine how much smear to
expect in thelr images.

CK filesare capable of storing angular velocity data for instruments, athough the presence of

such datais optiond. The CK reader CKGPAV (Get Pointing and Angular Ve ocity) returns an
angular velocity vector in addition to a C-matrix.

Spacecr aft Clock Time

Each piece of data within the C-kerndl is associated with a spacecraft clock time (SCLK). Thisis
because the spacecraft clock time istypicaly appended to the telemetry data that is the source for
pointing informetion.

Within the SPICE system, SCLK is represented as an encoded double precision number. Y ou
will need this form when using CK reader routines to read from CK files,

SPICELIB includes routines to convert between character SCLK format and the double precision
encoding. There are dso routines to convert between SCLK and standard time systems such as
ET and UTC.

The SCLK Required Reading contains afull description of SCLK including the clock formats for
individua spacecraft. Y ou should read that document before writing any C-kerndl programs. A

brief description of SCLK isincluded here because many of the subroutines presented require a
clock time as an input argumen.

Encoded SCLK

Encoded SCLK vaues may be discrete or continuous.

Discrete encoded SCLK values have units of " ticks'; ticks represent the least significant counts
representable by a clock. Continuous encoded SCLK supports non-integral tick vaues. This
enables tranlation of other time systems to encoded SCLK without rounding.

Throughout this document, encoded SCLK should be assumed to be continuous unless otherwise
specified.

To convert from a character string representation of SCLK to its double precision encoding, use
the routine SCENCD (Encode SCLK):

CALL SCENCD (SC, SCLKCH, SCLKDP)
Use SCDECD (Decode SCLK) to recover the character representation from its double precison
encoding.

CALL SCDECD (SC, SCLKDP, SCLKCH)
The firgt argument to both routines, SC, isthe NAIF integer ID for the spacecraft whose clock
count is being encoded or decoded (for example, - 77 for Galileo).

Each spacecraft may have adifferent format for its clock counts, so the encoding scheme may be
different for each. The SCLK Required Reading indicates the expected clock string formats for
esch misson.

To convert from ET to continuous encoded SCLK, use SCE2C (ET to continuous SCLK):
CALL SCE2C (SC, SCLKCH, SCLKDP)

To convert continuous encoded SCLK to ET, use SCT2E (Ticksto ET):

CALL SCT2E (SC, SCLKDP, ET)

Ticks and Partitions

The units of encoded SCLK are "ticks since clock start at launch," where a "tick” is defined to
be the shortest time increment expressible by a particular spacecraft clock.

The problem of encoding SCLK is complicated by the fact that spacecraft clocks do not aways
advance continuoudy. A discontinuity may occur if aclock resetsto adifferent vaue. This
occurs when a clock reaches its maximum value, but it can aso happen due to other reasons
which will not be discussed here. Anytime this occurs, we say that the clock has entered a new

“partition.”

SCLK strings should normdly include a partition number prefixed to the rest of the clock count
with a™/". The partition number uniquely separates a count from identica counts in other
partitions.

The presence of the partition number is not required. If it is missng, SCENCD will assumethe
partition to be the earliest possible one containing the clock string.

SCLK and other time systems

SPICELIB contains subroutines that convert between both the encoded and character form of
gpacecraft clock time and two other time systems.

Thefirg is ephemeristime (ET), which is specified as some number of ephemeris seconds past a
reference epoch. Within the SPICE system, state vectors of spacecraft and target bodies are
referenced to ET seconds past the J2000 epoch.

The other is Coordinated Universd Time (UTC), which isadso caled Greenwich Mean Time.
Two subroutine calls are necessary to convert between UTC and SCLK. One routine converts
from SCLK to ET, and another from ET to UTC.

See Appendix A for aligt of high level subroutines involved in spacecraft clock time
conversions.

The SCLK kernd file

Before cdling any of the SCLK conversion routines mentioned above, you have to load the
contents of the SCLK kernd fileinto the kernel pool, using the routine LDPOOL (Load kerndl

pool).

The SCLK kernd file contains spacecraft specific parameters needed to perform the conversions.
Included are such things as clock format definitions, partition start and stop times, and time
interpolation congtants. Y ou should make sure that the kernd file you are using contains
information for the particular spacecraft you are working with.

Y ou aso have to load the legpseconds kernd fileinto the kernel poal if you are going to convert
between ET and UTC.

Basics

This chapter will present the easiest way to use C-kernd software to obtain pointing datafrom a
CK filefor aparticular ingtrument. The mechanism for doing so isa " reader,” a subroutine
which reads data from the C-kerndl. The highest level readers will be discussed here; one that
returns the C-matrix, and another that returns the C-mairix and angular velocity vector.

A later chapter will present lower leve subroutines that alow the programmer to exert the
highest amount of control in reading CK files.

Appendix B contains an example showing how some of the routines presented in this chapter fit
together in atypical application program.

The CK File Reader CKGP

Below is a code fragment illugrating the use of the C-kernd file reader CKGP (Get Pointing).
The example finds the C-matrix for the Voyager 2 narrow angle cameraat a particular epoch
during the Jupiter encounter. The C-matrix returned is a transformation from the J2000 frame to
ingrument-fixed coordinates.

Each of the subroutines used is briefly described below. Seethe individua subroutine headers
for acomplete description.

A complete description of how CKGP searches for pointing is provided in the " Details' chapter
of this document.

| NTEGER SC
| NTEGER | NST
| NTEGER HANDL E
DOUBLE PRECI SI ON SCLKDP
DOUBLE PRECI SI ON TOL
DOUBLE PRECI SI ON CLKOUT
DOUBLE PRECI SI ON CVAT (3 3)
CHARACTER* (10) REF
LOG CAL FOUND
C
C NAIF I D nunbers for the
C
C 1. Voyager 2 spacecraft
C 2. Voyager 2 narrow angl e canera
C
SC =-32
I NST = -32001
C
C The C-matrix should transform from J2000 to camera-fixed
C coor di nat es.
C
REF = 'J2000'
C
C Load the spacecraft clock partition kernel file into the
C kernel pool, for SCLK encodi ng and decodi ng.
C
CALL LDPOOL ('wvgr2_sclk.tsc')
C
C Load the C-kernel pointing file.
C

CALL CKLPF ("vgr2_jup_inbound. bc', HANDLE)

We want pointing at a spacecraft clock time appearing in
the third spacecraft clock partition

CALL SCENCD (SC, '3/20556:17:768', SCLKDP)

The Voyager 2 clock is of the form xxxxx yy ww, where
yy is a nodulus 60 counter. Pictures were not shuttered
at intervals smaller than one nod 60 count. Therefore,
use this as the tolerance. (Notice that no partition
nunber is used when specifying a tol erance)

O0O00000 0000

CALL SCTIKS (SC, '0:01:000", TOL)

Cet the pointing for the narrow angl e canera.

OO0

CALL CKGP(INST, SCLKDP, TOL, REF, CMAT, CLKOUT, FOUND)

LDPOOL

LDPOOL loads the kernd pool with the contents of the specified file, which, in this caseisthe
SCLK kernel file. (LDPOOL isnot used to load S- and P-kernd files or C-kerne files)

SCENCD (below) and SCDECD require the contents of the SCLK kerndl filein order to
properly encode and decode clock values. (See section on Spacecraft Clock Time).

CKLPF

CKLPF loads a CK filefor processng by other CK routines. It takes as input the name of the C-
kernd file to be used, in this example

'vgr2_jup_inbound. bc'
It returns an integer caled a "handle" which is used much like alogica unit number in
FORTRAN. All CK routines use handles instead of file namesto refer to a specific file because
handles contain implicit information about how afile may be accessed. Y ou would need to use
the handle to close the file, for example, or for use with some of the other DAF routines. But
after loading you will not have to refer to the file, by name or handle, in your calsto CKGP.

Once loaded, afileisready for any number of reads, S0 it needs to be loaded only once, typicaly
in the initidization section of your program. Among other things, CKLPF opensthe file with all
the gppropriate options, relieving you of that responsibility.

SCENCD and SCE2C

SCENCD encodes a character representation of spacecraft clock time such as

' 3/ 20556: 17: 768"
into a double precison number (SCLKDP). The vaue returned by SCENCD is adiscrete tick
count. When garting with an ET vaue, a continuous tick count may be obtained by caling
SCE2C.

Y ou must use encoded SCLK when cdling CK reader routines.

SCTIKS

SCTIKS converts a clock string without partition number to units of “ticks," which are the units
of encoded SCLK returned by SCENCD.

The digtinction between SCENCD and SCTIKS isimportant. The result of caling SCENCD isa
relative measurement: ticks snce the gart of the clock at launch. The result of calling SCTIKS s
an absolute measurement: ticks. It's like the difference between the times 3:55 p.m. (a specific
time of the day) and 3:55 (three hours and fifty-five minutes - alength of time).

CKGP

CKGP looks through files loaded by CKLPF to find the data needed to compute the C-matrix for
a specified spacecraft instrument at a particular time. It uses the following inputs and outputs.

Inputs are:

INST

The NAIF insrument ID. In this example, we want pointing for the Voyager 2 narrow
angle camera (NAIF code -32001).
SCLKDP

Encoded SCLK time. Unitsare "“ticks since clock start at launch" May be discrete or
continuous.
TOL

SCLK timetolerance. TOL is measured in units of " ticks."
The pointing returned by CKGP will befor atimewithin TOL ticks of SCLKDP. In
generd, TOL should be smdler than the typica spacecraft clock time interval between
ingrument observations.

REF

The NAIF mnemonic for the base reference frame. The output C-matrix, if found, will be
atrandformation from REF to insrument-fixed coordinates.
See the FRAMES Required Reading for alist of those frames supported by the SPICE
system, aong with the accepted mnemonics for those frames.

Outputs are:

CMAT

The C-matrix. CMAT is atransformation matrix from the base frame REF to the
ingrument-fixed frame at thetime CLKOUT.
CLKOUT

Continuous encoded spacecraft clock time for which CMAT isvalid. Thiswill bewithin
TOL ticks of SCLKDP.
FOUND

Found flag. FOUND will betrue if it was possble to return a C-matrix for INST for a
timewithin TOL ticks of SCLKDP. FOUND will be fase otherwise.

The CK File Reader CKGPAV

CKGPAV (Get Pointing and Angular Ve ocity) isadmost identical to CKGP, except that it
returns an angular velocity vector in addition to a C-matrix.

The calling sequence for CKGPAV is.

CALL CKGPAV (INST, SCLKDP, TOL, REF, CMAT, AV, CLKOUT, FOUND)
The angular velocity vector AV isadouble precison array of size three. The components of AV
are given relative to the base reference frame REF-.

All of the other arguments are identicd to those of CKGP. And, just as with CKGP, you must
load a CK file by calling CKLPF before calling CKGPAV.

The behavior of CKGPAYV is, however, dightly different from that of CKGP, and these
differences will be explained in the " Details" chapter of this document.

Multiple Filesand the C-kernel

There will probably be occasions when you will want to access pointing thet is contained in more
than one CK file. For ingtance, you may have severd files describing pointing for severd digoint
time periods, or for different ingruments. Or you may have onefile contaning apartidly

updated version of another file's pointing.

In both cases, you would like to be able to get the pointing you want without having to run your
gpplication on each file separately. C-kernel software alows you to do this through thefile
loading and unloading process.

Thefile loading routine CKLPF was introduced in the last section. It was mentioned that you
have to load the CK file before you try to accessit, that you have to load it only once during
program execution, and that in subsequent cdlsto CKGP, you don't have to refer to thefile at
al.

What was not mentioned was that multiple pointing files may be loaded and that CK GP will
automaticaly search through as many of thefiles as necessary to satisfy the request.

If you have multiple files describing pointing for different time periods or different insruments,
you can Smply load them dl a the beginning of your program, and then forget about which file
covered what period or instrument. There is a hierarchy for searching, however, that you need to
understand in case you happen to load files that have redundant coverage.

A request for pointing is satisfied by searching through the last loaded filesfirst. Thusif weran

CALL CKLPF ('ckfile_1.bc', HANDL1)
CALL CKLPF ('ckfile_2.bc', HANDL2)
CALL CKLPF ('ckfile_3.bc', HANDL3)

and then later made a request for pointing, the software would search through ckfile 3 firg,
ckfile 2 second, and ckfile 1 last.

This scheme is conggtent with the fact that within an individud file, the data that were inserted
last supersede those before them. In essence, loaded files are treated like one big file.

What if you have files representing different versons of the same pointing? Thisisalikedy
scenario consdering there are tools (such as NAIF's C-amithing program) to update and
“improve" pointing results.

For example, suppose you have one file containing predicted pointing values, and another
containing improved, updated values. One approach would be to load the filesin the following
order:

CALL CKLPF ('predict.bc', HANDL1)
CALL CKLPF ('update.bc', HANDL2)

Thisway, the “better" (updated) pointing file dways gets searched firdt.

If, on the other hand, you want to be explicit about which file to search, you need away of
tdling C-kernd software to stop looking in one file, and start looking in another. CKLPF
accomplishes the latter by loading afile for processing. To tell C-kernel software to stop looking
through afile, then, you need to unload it, with CKUPF (unload pointing file):

| NTEGER HANDL 1
I NTEGER HANDL 2

Load the first version

o000

CALL CKLPF ('predict.bc', HANDL1)

process pointing fromfirst file.

Unl oad the first version.

OO0

CALL CKUPF (HANDL1)

Load the second version.

o000

CALL CKLPF ('update.bc', HANDL2)

process pointing fromthe second file.

Notice that to unloéd thefile, you need to use that file's handle, as returned by CKLPF, and not
the filés name.

Detalls

In the previous chapter, we introduced the two CK readers, CKGP and CKGPAV, which return
C-matrices and angular velocity vectors from CK files.

In this chapter we introduce the concept of a CK file segment, and explain how these segments
are organized into CK files. We then show exactly how CKGP and CKGPAV go about searching
through files and segments to obtain the data that they need.

File Structure and | mplementation

Each C-kernd file is made up of a number of ~"segments.” A segment isa set of logica records
containing double precison numbers. When evauated, each record gives a C-matrix and
optiondly, an angular velocity vector, of some spacecraft structure for some time within an
interva. The segmentsin afile are ordered from beginning to end, with new segments added to
the end of afile. The C-kernel readers use this ordering to check segments at the end of thefile
fird.

Notice that the definition of a segment does not specify what type of record it contains. This
vaguenessis intentiona. One of the primary feetures of the C-kernel isto provide a framework
in which to sore pointing dataiin any form, without users having to worry about that form when
reading the data. Thus, different segments may contain different implementations of discrete or
continuous data, but the same high-level readers are used to access dl types.

In fact, there are only a couple of routines that are concerned with the interna data type of a
segment. Other routines obtain al the information they need about a segment from two fidds
which precede each segment: ~descriptors' and “identifiers." Their formats are identical from
segment to segment, and provide important information about the data contained inside.

Segment Descriptors

The C-kernd reader subroutines begin addressing the question, *Can the request for pointing be
satisfied by this segment?' by looking at the descriptor.

A destriptor tells what instrument’s pointing is being described, the interval of time for which the
segment is valid, the reference frame of the internaly stored data, and the segment data type.

Each segment descriptor contains two double precision components (DCD) and six integer
components (ICD).

ICD(2) | Reference |

ICD(3) | Data type I
|CD(4) | Rates Flag |
ICD(5) | Begin Address |
icD(6) | End Address |

poco(y,

DCD(2)

Theinitid and find encoded spacecraft clock times for the segment.
ICD(2)

The integer code of the instrument whose pointing is being described.
ICD(2)

The NAIF integer 1D of the base reference frame for the segment data. (For example,
J2000, B1950, and so on --- to see which ID represents which coordinate system, see the
Frames Required Reading.)

|CD(3)

The data type of the segment. Thisindicates how the datais stored internaly. The reader
subroutines will use it to evauate the data records. Typicaly, users will not have to know
this code.

ICD(4)

The angular rates flag. This indicates whether or not the segment is cagpable of producing
angular velocity data. If ICD(4) = 0, then the segment contains pointing data only. If
ICD(4) = 1, then the segment contains angular velocity data as well.

ICD(5),

ICD(6)

Initid and final addresses of the segment data within the file. Users will typicaly not

want or need to know about these addresses. They tell the readers where to go withina

file to get the records needed to satisfy a particular request.
The descriptor is stored as a double precison array, with pairs of integer components
equivalenced to double precison numbers. We say that the descriptor is " packed” into a double
precison array. The Sze of a packed descriptor isfive double precison numbers.

Inthe “"Looking at Descriptors' section, you will be shown how to get a descriptor from a

particular ssgment and ~ unpack” it into its double precision and integer components. Y ou can
then view the individua components.

Segment I dentifiers

Theidea behind a segment identifier isto provide a character field which dlows a user to
determine the exact origin of the segment.

For the most part, it will be up to the indtitution that crestes a particular C-kernel segment to
determine what goes in this free-format 40 character memory cell. However, it should be
possible for usersto look at a segment identifier and determine who knows the details about the
creation of the segment.

For example, if aparticular identifier looked like

NAI F CSM THI NG RET LOGA151
then a user should be able to contact NAIF to locate the right people to give the history of that
segment: ephemerides used, source of pointing, assumptions, constraints, and so on.

Forty charactersis not enough space to store al source information for every segment that might
be built. Instead, the ideaisto provide a pointer to the people or documents that will have dl of
the details about the source of the data.

Comment Area

In addition to segment identifiers, every binary CK file hasa ™ Comment Ared’ for storing free-
format textud information about the pointing datain thefile. Idedly, each CK file will contain
internal documentation thet describes al of the details about the source of the data, its
recommended use, and any other pertinent information. For example, the beginning and ending
epochs for thefile, the names and NAIF integer codes of the instruments included, an accuracy
estimate, the date the file was produced, the names of the ephemerisfiles used, and any
assumptions or congtraints could be included. Comments about a particular segment in thefile
could refer to the segment by itsidentifier.

SPICELIB provides afamily of subroutines for handling this Comment Area. The name of each
routine in this family begins with the letters " SPC" which stand for " SPk and Ck" because this
feature is common to both types of files. The SPC software provides the ability to add, extract,
and delete comments and convert commented files from binary format to SPICE transfer format
and back to binary again.

The SPC routines and their functions are described in detall in the SPC Required Reading.

A CK fileisa DAF

Each CK fileis one implementation of a NAIF construct called a Double Precision Array File
(DAF). DAFs are described in detail in reference [1]. Each CK segment is an instance of the
DAF double precison aray. The descriptor is an ingance of a DAF ““summary”; the identifier is
an ingance of a DAF “"name."

DAF routines are used at the lowest level to open, close, read, write and search CK files. As
such, they dlow for maximum flexibility in, for instance, examining a particular number within a
segment, or searching for a particular segment within afile. Therefore, if the CK routines
presented in this document do not alow you the control you want in looking through files, the
DAF routines certainly will.

How the CK ReadersWork

There are basically two steps to reading data from the C-kernd: locating the segment gpplicable
to the request made, and evauating the data contained ingde the segment to return the C- matrix
and angular velocity vector. In this section you'll see how these steps are implemented by CKGP
and CKGPAV.

The General Search Algorithm

The CK readers search through files loaded by CKLPF to satisfy a pointing request. Thefilesare
searched in the reverse order from which they were loaded. Thus the last-1oaded file is searched
firg, then the second to lagt, and so forth. The contents of individua files are dso searched in
backwards order, giving priority to segments that were added to afile later than the others.

The search ends when a segment is found that can give pointing for the specified insrument at a
time faling within the specified tolerance on either Sde of the request time. Within that segment,
the instance closest to the input time is located and returned.

The time for which pointing is being returned is not aways the closest to the request timein
of the loaded files. The returned time is actudly the closest time within the tolerance of the
request time from the first segment that can satisfy the request. The agorithm works like this

because it assumes that the last |oaded files contain the highest qudity pointing. Because
segments are prioritized in thisway users should not make their tolerance argument larger than
the minimum spacing between the datain the files they are reading.

The following example illustrates this search procedure. Segments A and B are in the samefile,

with segment A located closer to the end of thefile than segment B. Both segments A and B
contain discrete pointing data.

SCLKDP TOL

\ /
||
[/ \
Request 1 [---+---]
Segnment A (0------;---;---;--0 -------- 0--0----- 0)
Segnment B (-0--0--0--0--0--0--0--0--0--0--0--0--0)
N

CK reader returns this instance
SCLKDP

Request 2 [--+--]
Segnment A (0------------;--;-0; ------- 0--0----- 0)

CK reader returns this instance
Segnent B (0-0--0--0--0--0--0--0--0--0--0--0--0-0)

Segments that contain continuous pointing data are searched in the same manner as discrete
segments. For request times that fal within the bounds of continuousintervas, the CK reader
will return pointing at the request time. When the request time does not fall within an interva,
then atime a an endpoint of an interval may be returned if it is the closest time in the segment to
the user request time and aso within the tolerance.

In the following examples segment A contains discrete pointing data and segment C contains
continuous data. Segment A is located closer to the end of the file than segment C.

SCLKDP
\ TAL

Request 3 [--+
Segment A Y SR 0--0----- 0)
Segn’Ent C (--[:::::-:::-:::-::] ---[:::: ______ [:] __)

CK reader returns this instance

In the next example assume that the order of segment A and C in file are reversed.

SCLKDP

Request 4 [--+--]
Segnent C (- - [::::::::::::.:] - - - [.:::: [:] - -)

CK reader returns this instance

Segment A (0----mmmm e - - 0-------- 0--0----- 0)

The next few sections will go into greater detail about how CKGP and CKGPAYV search through
segments.

The Difference Between CKGP and CK GPAV

The only sgnificant difference between the search agorithms of CKGP and CKGPAYV isin
which segments they search through to satisfy arequest for pointing data. Recdl that ssgmentsin
aCK file only optiondly contain angular velocity data. Since CKGP does not return an angular
veocity vector, it isfree to condder dl segments when satisfying a request, because dl segments
will contain the data for constructing C-matrices. CKGPAV, on the other hand, will consider
only those segments which aso contain angular velocity data.

Because of this difference, it is possible that on the exact same set of inputs, CKGP and
CKGPAV could return different values for the C-matrix. This could occur if aCK file contained
two segments covering the same time period for the same ingrument, one with angular rates and
one without. CKGP might use the C-matrix only segment, whereas CKGPAV would ignore that
segment and use the one containing angular velocity data.

To avoid this Stuation, NAIF advises users not to place segments with and without angular
velocity datain the samefile.

L ocating the Applicable Segment

Within CKGP and CKGPAYV, finding the right sesgment isthe job of CKBSS (Begin a Search for
a Segment), and CKSNS (Select the Next Segment).

CKBSS and CKSNS are both entry points to the routine CKBSR (Buffer Segments for Readers).

CKBSS establishes a search for segments. It records the desired instrument (INST), SCLK time
(SCLKDP), and SCLK tolerance (TOL) for the search. It aso records the need for angular
velocity --- NEEDAYV istrueif angular velocity data is being requested, false otherwise,

CKSNS then uses DAF routines to search through loaded files to find a segment matching the
criteria established in the cdll to CKBSS. Last-loaded files get searched firgt, and within asingle
file, segments get checked starting from the end of the file and going backwards.

When an gpplicable segment is found, the descriptor and identifier for that segment, and the
handle of the file containing the segment, are returned, and the readers output logical flag
FOUND is st to true. If no applicable segment isfound, FOUND isfase,

If asegment isfound, but is subsequently found to be inadequate, CKSNS can be called again to
find the next applicable segment using the searching order described above.

CKSNS can be cdled any number of times after a search has been started by CKBSS, and will
just return afase vaue for FOUND whenever gpplicable segments have run out.

Because CKSNSis cdled every time aregquest is made, an internal buffer of segment descriptors
ismaintained by CKBSR to keep from performing superfluous file reads. Y ou can adjust the size
of the buffer by changing the parameter STSIZE in CKBSR.

L ooking at Descriptors

The descriptor and handle returned by CKSNS are used by other CK routines to locate and
evaluate the pointing records. In order to do o, those routines have to unpack a descriptor into
its double precison and integer parts, usng the DAF routine DAFUS (Unpack Summary).

Evaluating the Records --- the Reader CKPFS

After locating an gppropriate segment via CKSNS, CKGP and CKGPAV evauate pointing
records with acal to CKPFS (Pointing From Segment), alow level CK reader.

CKPFStakes asinput the handle and descriptor of the gpplicable file and segment, dong with
the time specifications and angular velocity flag.

CKPFS returns the C-matrix and, if requested, the angular velocity vector for the timein the
segment closest to SCLKDP and within TOL ticks of it. If CKPFS can't locate atime close
enough in the segment, then FOUND is st to false. (If FOUND isfase, then CKGP and
CKGPAYV will try another segment by calling CKSNS again, then CKPFS again, and so on.)

The output data are referenced to the base frame indicated by the descriptor. In other words, at
this point, CMAT is atransformation from the base frame specified by 1CD(2) to instrument-
fixed coordinates, and the coordinates of AV liein that same base frame.

Transforming the Results

The find task performed by CKGP and CKGPAYV isto transform the returned data from their
stored reference frame to that requested by the caling program.

Firg, the routines compare the NAIF 1D for the requested frame with that of the stored frame. If
the requested frame matches the segment frame, there is nothing to be done. Otherwise, the C-
matrix and angular velocity vector have to be transformed.

Recdl that the C-matrix returned by CKPFS is arotation matrix from a base frame (cdl it
REFSEG) to indrument-fixed coordinates:

[] 1-fixed
I I
| CMAT |
I I
[] REFSEG
What we want is a rotation matrix from the requested frame (cdl it REFREQ) to instrument-

fixed coordinates.

[] I-fixed
| |

| CWVAT |
|
[] REFREQ
So dl we have to do is multiply the returned C-matrix by arotation matrix, cal it RMAT, from

the requested frame to the one specified in the segment:

REFSEG

] I-fixed] I-fixed
I I
I I

CMVAT CMVAT

[[[
=			

[] REFREQ [] REFSEG [REFREQ
Once you have RMAT, it isatrivia maiter to transform the angular velocity vector. Its

coordinates, upon return from CKPFS, are in the frame REFSEG.

]|
RVAT |
I
]

Data Types

The C-kernel framework for providing pointing data has been designed for flexibility. Different
methods of storing and evauating the data can be implemented independently of the high-leved
routines used to reaed the data. The only redl redtriction isthat each segment must be stored asan
array of double precison numbers.

Each method of storing and evauating the data contained in a segment defines a different ~data
type." The data type of a segment is specified by the third integer component of the the segment
descriptor. Theinteger code for adatatype is equal to the number of that type. For example, a
segment of datatype 1 would have the third integer component of its descriptor equa to 1. A
data type need not accommodate angular velocity data If it can't, all segments of that data type
would have the value of the fourth integer component of the descriptor set equa to zero, which
indicates that the segment does not contain angular velocity data.

The CK reader that makes a digtinction between segments of different datatypesisthe low level
reader CKPFS. The main body of CKPFS consists of a case statement of the form:

| F (TYPE .EQ 1) THEN

ELSE |IF (TYPE .EQ 2) THEN

ELSE |IF (TYPE .EQ N) THEN

ELSE

CALL SETMS@E ' The data type # is not currently supported.')
CALL ERRINT('#', TYPE)
CALL SI GERR(' SPI CE(CKUNKNOWNDATATYPE) ')

END I F
Once CKPFS determines the data type of a segment, two type-specific routines are called. The
first, CKRXxX, reads a segment of type xx and returns the information from the segment necessary
to evaluae pointing at a particular time. The second routine CKExx evauates the information
returned by CKRxx, producing a C-matrix, and if requested, an angular velocity vector.

There are currently three supported CK data typesin SPICELIB and they are described in detall
in the sections that follow.

Data Type 1

The following method of storing and evauating discrete pointing and angular rate vaues defines
C-kernd datatype 1.

Each pointing indance is stored as afour-tuple caled a ™" quaternion.” Quaternions are widely
used to represent rotation matrices. They require less than haf the space of 3x3 matrices and
finding the rotation meatrix given by a quaternion isfaster and esder than finding it from, say,
RA, Dec, and Twid. In addition, other computations involving rotations, such asfinding the
rotation representing two successive rotations, may be performed on the quaternions directly.

The four numbers of a quaternion represent a unit vector and an angle. The vector represents the
axis of arotation, and the angle represents the magnitude of that rotation. If the vector isU = (ul,
u2, u3), and the angleis T, then the quaternion Q is given by:

Q=1(g0, g1, g2, g3)
= (cos(T/2), sin(T/2)*ul, sin(T/2)*u2, sin(T/2)*u3)

The details of quaternion representations of rotations, and the derivations of those
representations are documented in the SPICEL IB Required Reading file ROTATIONS.

Datatype 1 provides the option of including angular velocity data. If such dataiisincluded, the
angular velocity vector A = (al, a2, a3) corresponding to each pointing instance will be stored as

itsdlf. The coordinates of the vector will be in the same base reference frame as that of the C-
metrix quaternions.

A type 1 pointing record consists of either four or seven double precison numbers; four for the
C-matrix quaternion, and, optionaly, three for the angular velocity vector.

Fommmama - Fommmama - Fommmama - Fommmama - Fommmama - Fommmama - Fommmama - +
I q I q I q I q I a I a I a I
| o | 1 2 | 3 | 1 2 | 3 |
Fom e a oo Fom e a oo Fom e a oo Fom e a oo Fom e a oo Fom e a oo Fom e a oo +
Every type 1 segment has four partstoit:
s +
I I
I I
| Poi nti ng |
I I
I I
U +

The fina component, NPREC, gives the total number of pointing instances described by the
segment.

Preceding it, starting from the top, are NPREC pointing records, ordered with respect to time,
each congsting of the four or seven double precision numbers described above.

Following the pointing section are the NPREC encoded spacecraft clock times corresponding to
the pointing records. These must be in drictly increasng order.

Following the SCLK timesisavery smple SCLK directory. The directory contains INT(
(NPREC-1) / 100) entries. The Ith directory entry contains the midpoint of the (1* 100)th and the
(I*100 + 1)st SCLK time. Thus,

Directory(1) (SCLKDP(100) + SCLKDP(101)) /[2

Directory(2)
and so on.

(SCLKDP(200) + SCLKDP(201)) [/ 2

If there are 100 or fewer entries, there is no directory. The directory is used to narrow down
searches for pointing records to groups of 100 or less. Midpoints of adjacent times are used o
that if an input time fals on one sde of the directory time, then the group represented by that
sdeis guaranteed to contain the time closest to the input time.

Type 1 subroutines

There are several CK subroutines that support datatype 1. Their names and functions are:

CKWwWO01

writes atype 1 segment to afile.
CKRO1

reads a pointing record from atype 1 segment that satisfies arequest for pointing at a
giventime,
CKEO1

evaluates the record supplied by CKRO1.
CKNRO1

gives the number of pointing indancesin atype 1 sesgment.
CKGRO1

gets the Ith pointing instance from atype 1 segment.

Data Type 2

The following method of storing and eva uating continuous pointing deta for a Spacecraft
gructure defines C-kernel data type 2.

A type 2 segment consgts of digoint intervas of time during which the angular velocity of the
gpacecraft is congtant. Thus, throughout an interval, the spacecraft structure rotates from its
initid podition aout a fixed right-handed axis defined by the direction of the angular velocity
vector at a constant rate equd to the magnitude of that vector.

A type 2 CK segment contains the following information for each interval:

1. The encoded spacecraft clock START and STOP times for theinterval.
2. The quaternion representing the C-matrix associated with the start time of the interva.
3. The congtant angular velocity vector, in radians per second, for theinterval.

4. A factor which relates seconds and encoded SCLK ticks. Thisis necessary to convert
the difference between the requested and interval start times from SCLK to seconds.

The orientation of a gpacecraft structure may be determined from the above information at any
time that is within the bounds of one of theintervas.

Every type 2 segment is organized into four parts.

o
=3
S
—
S
Q

e e e e e e e e e e e e e e m -
I I
I I
| SCLK stop tines |
I I
I I
e e e e o o +
I I
| SCLK directory |
I I
T I +

The first part of a segment contains pointing records which are ordered with respect to their
corresponding interval start times. A type 2 pointing record contains eight double precision
numbersin the following form:

The firg four eements are the components of the quaternion Q = (90,q1,02,03) that is used to
represent the C-matrix associated with the start time of the interval. Next are the three
components of the angular velocity vector A = (al,a2,a3) which are given with respect to the
base reference frame specified in the segment descriptor.

The last dement is arate which converts the difference between the requested and interval sart
time from encoded SCLK ticks to seconds.

For segments containing predict data, this factor will be equa to the nomind amount of time
represented by onetick of the particular spacecraft's clock. The nomind rate is given here for
severa spacecraft.

spacecraft seconds / tick (sec)
Galileo 1/ 120

Mars G obal Surveyor 1/ 256

Voyager | and 11 0. 06

For segments based on redl rather than predicted pointing, the rate at which the spacecraft clock
runs relative to ephemeris time will deviate from the nomind reate. The creator of the segment
will need to determine an average vaue for this rate over the time period of theinterva.

Located after the pointing data are the interva START times followed by the STOP times.

The START and STOP times should be ordered and in encoded SCLK form. The intervals
should be digoint except for possibly at the endpoints. If an input request time falson an
overlapping endpoint then the interva used will be the one corresponding to the start time.
Degenerate intervas in which the STOP time equas the START time are not alowed.

Following the STOP times is a very smple directory of spacecraft clock times containing INT/(
(NPREC-1)/100) entries, where NPREC is the number of pointing intervas. The Ith directory
entry contains the midpoint of the (I* 100)th STOP and the (1*100 + 1)st START SCLK time.

Thus,

Directory(1l)

(STOP(100) + START(101)) [/ 2

Directory(2) (STOP(200) + START(201)) / 2

If thére are 100 or fewer entries then thereis no directory. The directory is used to narrow down
searches for pointing records to groups of 100 or less.

Type 2 subroutines

There are severd CK subroutines that support datatype 2. Their names and functions are;

CKWO02

writes atype 2 segment to afile.
CKR02

reads a pointing record from atype 2 segment that satisfies arequest for pointing at a
giventime
CKEO02

eval uates the record supplied by CKRO2.
CKNRO2

gives the number of pointing records in atype 2 segment.
CKGRO02

gets the Ith pointing record from a type 2 segment.

Data Type 3

The following method of storing and evauating discrete pointing data for a spacecraft structure
defines C-kernd data type 3.

A type 3 ssgment congsts of discrete pointing instances that are partitioned into groups within
which linear interpolation between adjacent pointing indancesis vaid. Since the pointing
instances in a segment are ordered with respect to time, these groups can be thought of as
representing intervas of time over which the pointing of a spacecraft sructureis given
continuoudy. Therefore, in the description that follows, these groups of pointing ingtances will
be referred to asinterpolation intervals.

All of the pointing instances in the segment must be ordered by encoded spacecraft clock time

and must belong to one and only oneinterpolation interva. The intervals must begin and end &

times for which there are pointing instances in the segment. The CK software that evauates the
datain the segment does not extrapolate pointing past the bounds of the intervas.

A user'sview of the time coverage provided by atype 3 segment can be viewed pictoridly as
folows

poi nting instances: 0-0-0-0-0----0-0-0-0-0-----0------0-0-0-0

I I I I I I I

i nterval bounds: BEG | BEG | BEG BEG |
END END END END

In the above picture, the zeros indicate the times associated with the discrete pointing instances
and the vertical bars show the bounds of the interpolation intervas that they are partitioned into.
Note that the intervals begin and end at times associated with pointing indtances. Also note that

intervals consagting of just asingle pointing ingtance are alowed.

When pointing is desired for atime that is within the bounds of one of theintervals, the CK
reader routines return interpolated pointing at the request time. In the example below, the
pointing request timeis indicated by SCLKDP and the user supplied tolerance is given by TOL.

In this example the tolerance argument of the CK readers could be set to zero and pointing would
gill be returned.

\ /
| |
[/ \
[---+--]
poi nting instances: 0-0-0-0-0----0-0-0-0-0-----0------0-0-0-0
I I | I I I I
i nterval bounds: BEG | BEG | | BEG BEG
END | END END END

CK reader returns interpolated pointing at this tinme.
When arequest timefalsin a gap between intervas, no extrapolation is performed. Instead,
pointing is returned for the interva endpoint closest to the request time, provided that timeis
within the user supplied tolerance. In this example if the tolerance were set to zero no pointing
would be returned.

SCLKDP
\ TOL
| /
[7\
[---+--]
poi nting instances: 0-0-0-0-0----0-0-0-0-0-----0------0-0-0-0
| | | | | | |
i nterval bounds: BEG | BEG | BEG BEG
END END END END
AN

CK reader returns this instance.
The physica structure of the data stored in atype 3 segment is asfollows:

|
|
| Poi nti ng
|
|

I I
| Number of pointing |
| i nstances |
I I

In the discussion that follows let NPREC be the number of pointing ingtances in the segment and
let NUMINT be the number of intervasinto which the pointing instances are partitioned.

Thefirg part of asegment contains NPREC pointing records which are ordered with respect to
increasing time. Depending on whether or not the segment contains angular velocity data, atype
3 pointing record contains either four or seven double precison numbersin the following form:

Thefirgt four elements are the components of the quaternion Q = (q0,q1,92,g3) that is used to
represent the pointing of the instrument or spacecraft structure to which the segment applies.
Next are the three components of the angular velocity vector AV = (al,a2,a3) which are given
with respect to the base reference frame specified in the segment descriptor. These components
are optiona and are present only if the segment contains angular velocity data as specified by the
fourth integer component of the segment descriptor.

Following the pointing data are the NPREC times associated with the pointing instances. These
times are in encoded SCLK form and should be strictly increasing.

Immediately following the last timeisavery Smple directory of the SCLK times. The directory
contains INT((NPREC-1) / 100) entries. The Ith directory entry contains the (1* 100)th SCLK
time. Thus,

Directory(1) SCLKDP(100)

Directory(2)

SCLKDP(200)

If thére are 100 or fewer entries, there is no directory. The directory is used to narrow down
searches for pointing records to groups of 100 or less.

Next arethe NUMINT dart times of the intervals that the pointing instances are partitioned into.
These times are given in encoded spacecraft clock and must be srictly increasing. They must
aso be equd to times for which there are pointing instances in the segment. Note that the
interva stop times are not stored in the segment. They are not needed because the stop time of
the Ith interva is Imply the time associated with the pointing instance that precedes the sart
time of the (I+1)th interva.

Following the interva gart timesisadirectory of these times. This directory is condructed in a

form samilar to the directory for the times associated with the pointing instances. The Sart times
directory contains INT ((NUMINT-1) / 100) entries and contains every 100th tart time. Thus.

Directory(1)

START(100)

Directory(2)

START(200)

Fmé ly, the last two words in the ssgment give the total number of interpolation intervals
(NUMINT) and the tota number of pointing instances (NPREC) in the segment.

A segment writer routine is provided which callsthe low level DAF routines necessary to write a
type 3 segment to a C-kernel. However, the creator of the segment is responsible for determining
whether or not it is valid to interpol ate between adjacent pointing instances, and thus how they
should be partitioned into intervals. See the header of the routine CKWO03 for a complete
description of the inputs required to write a ssgment.

Linear Interpolation Algorithm

The linear interpolation performed between adjacent pointing instances by the CK software is
defined by the following dgorithm:

1. Lett bethetimefor which pointing is desired and let CMAT1 and CMAT2 be C-
matrices associated with times t1 and t2 such that:

tl <=t <=1t2, where tl < t2.
2. Assume that the spacecraft frame rotates about afixed axis at a constant angular rate
from time t1 to time t2. Then the rotation axis and angle can be derived from the rotation
matrix ROT12 where:

CMAT2 = ROT12 * CMVAT1

or
T
ROT12 = CMAT2 * CMVAT1

3. Obtain the axis and angle of the rotation from the matrix ROT12. Let the axis vector
of the rotation be AXI1S and the rotation angle be ANGLE.

4. To obtain pointing information at time t, rotate the spacecraft frame about the vector
AXISfrom its orientation & time t1 by the angle THETA where:

THETA = ANGLE * -<-scoo-ie-
(t2-1t1)
5. Thusif ROT1t isthe matrix that rotates vectors by the angle THETA about the vector
AXIS, then the desired C-marix isgiven by:

T T
CMAT = ROT1t * CMVAT1

T
CVAT = CMAT1 * ROT 1t

6. Theangular velocity istreated independently of the C-matrix. If it is requested, then
the AV a timet isthe weighted average of the angular velocity vectors at time t1 and
timet2:

AV = (1- W) * A/l + W* AR

Type 3 subroutines

There are severd CK subroutines that support datatype 3. Their names and function are:

CKWO03

writes atype 3 segment to afile.
CKRO03

reads a pointing record from atype 3 segment that satisfies arequest for pointing at a
giventime,
CKEO3

eval uates the record supplied by CKRO3.
CKNRO3

gives the number of pointing ingtances in atype 3 segment.
CKGRO03

getsthe Ith pointing ingtance from a type 3 segment.

Appendix A --- Summary of C-kernel
Subroutines

Summary of Mnemonics

Each C-kernd subroutine name congsts of a mnemonic which trandaesinto ashort description
of the routine's purpose. Those beginning with " CK" are names of routines that ded soldly with
C-kernd files. The other routines provide support that is not necessarily C-kernd specific.

Many of the routines listed below are entry points to another subroutine. If they are, the parent
routineg's name will be listed insde brackets preceding the mnemonic trandation.

C-kernel Routines
CKBSS [CKBSR] (C-kernel, begin search for segnent)
CKCLS (C-kernel, close a pointing file)
CKEO1 (C-kernel, evaluate pointing record, data type 1)
CKEO2 (C-kernel, evaluate pointing record, data type 2)
CKEO3 (C-kernel, evaluate pointing record, data type 3)
CKGP (C-kernel, get pointing)
CKGPAV (C-kernel, get pointing and angul ar vel ocity)
CKGRO1 (C-kernel, get record, data type 1)
CKGR02 (C-kernel, get record, data type 2)
CKGR03 (C-kernel, get record, data type 3)
CKLPF [CKBSR] (C-kernel, load pointing file)
CKNRO1 (C-kernel, number of records, data type 1)
CKNRO2 (C-kernel, nunmber of records, data type 2)
CKNRO3 (C-kernel, number of records, data type 3)
CKOPN (C-kernel, open a new pointing file)
CKPFS (C-kernel, pointing from segment)
CKRO1 (C-kernel, read pointing record, data type 1)
CKR02 (C-kernel, read pointing record, data type 2)
CKRO3 (C-kernel, read pointing record, data type 3)
CKSNS [CKBSR] (C-kernel, select next segnent)
CKUPF [CKBSR] (C-kernel, unload pointing file)
CKW1 (Ckernel, wite segnment to C-kernel, data type 1)
CKVWD2 (Ckernel, wite segment to C-kernel, data type 2)
CKVWO3 (Ckernel, wite segment to C-kernel, data type 3)
SCLK conversion routines
SCDECD (Decode spacecraft clock)
SCENCD (Encode spacecraft clock)
SCPART (Spacecraft clock partitions)
SCFMT (Spacecraft clock format)
SCTI KS (Spacecraft clock ticks)
SCT2E (Convert encoded SCLK Ticks to ET)
SCS2E (Convert SCLK String to ET)
SCE2C (Convert ET to continuous SCLK Ticks)
SCE2T (Convert ET to encoded SCLK Ticks)
SCE2S (Convert ET to SCLK String)
UTC2ET (UTC to Epheneris Tine)
ET2UTC (Epheneris Time to UTC)
Ref erence frane routines
| RFROT [CHG RF] (Inertial reference frame, rotate)
| RFNUM [CHG RF] (Inertial reference frame nunber)
| RFNAM [CHGI RF] (Inertial reference frane nane)
| RFDEF [CHG RF] (Inertial reference franme, default)

Summary of Calling Sequences

CKLPF
CKUPF
CKBSS
CKSNS
CKGP
CKGPAV

CKPFS

CKOPN
CKCLS
CKRO1
CKEO1
CKW1

CKNRO1
CKGRO1
CKR02
CKEO2
CKW2

CKNRO2
CKGRO2
CKRO3
CKEO3
CKW3

CKNRO3
CKGRO3

SCDECD
SCENCD
SCPART
SCFMT
SCTI KS
SCT2E
SCS2E
SCE2C
SCE2T
SCE2S

UTC2ET
ET2UTC

C- ker nel

(
(
(
(
(
(

—~

AN AN AN S AN AN AN AN S

AN AN AN S

FNANME,

| NST,
HANDLE,
I NST,

I NST,
FOUND
HANDLE,
CLKQOUT,
FNANME,
HANDLE
HANDLE,
NEEDAV,
HANDLE,
NPREC,
HANDLE,
HANDLE,
HANDLE,
NEEDAV,
HANDLE,
START,
HANDLE,
HANDLE,
HANDLE,
NEEDAV,
HANDLE,
NPREC,
HANDLE,
HANDLE,

Rout i nes

HANDLE
HANDLE
SCLKDP,
DESCR,

SCLKDP,
SCLKDP,

DESCR,
FOUND
I FNANE,

DESCR,
RECORD,
BEGTI M
SCLKDP,
DESCR,
DESCR,
DESCR,
RECORD,
BEGTI M
STOP,
DESCR,
DESCR,
DESCR,
RECORD,
BEGIT M
SCLKDP,
DESCR,
DESCR,

TOL,
SEG D,
TOL,
TOL,

SCLKDP,
NCOMCH,

SCLKDP,
CMVAT,
ENDTI M
QUATS,
NPREC
RECNO,
SCLKDP,
CMAT,
ENDTI M
QUATS,
NPREC
RECNO,
SCLKDP,
CMAT,
ENDTI M
QUATS,
NPREC
RECNO,

SCLK conversion routines

ANAN AN AN AN AN AN AN SN

(
(

SC,
SC,
SC,
SC,
SC,
SC,
SC,
SC,
SC,
SC,

UTCSTR,
ET,

SCLKDP,
SCLKCH,
NPARTS,
TI CKS,
CLKSTR,
SCLKDP,
SCLKCH,
ET,

ET,

ET,

ET
FORMAT,

SCLKCH
SCLKDP
PSTART,
CLKSTR
TI CKS
ET

ET
SCLKDP
SCLKDP
SCLKCH

PREC,

NEEDAV
FOUND
REF,
REF,

T,
HANDLE

TOL,
AV,

I NST,
AWS

RECORD
TOL,

AV,

I NST,
AVWVS,

RECORD
TAL,

AV,

I NST,
AVWVS,

RECORD

PSTOP

N N N N N N N N N N

UTCSTR)

CIVAT,
CIVAT,

NEEDAV,

NEEDAV,
CLKOUT
REF,

RECORD,
CLKOUT

REF,

RATES

NEEDAV,
CLKOUT
REF,

NI NTS,

CLKQUT,
AV,

CMVAT,

RECORD,

AVFLAG,

FOUND

SEG D,

RECORD,

AVFLAG,
STARTS

FOUND
CLKQUT,

AV,

FOUND

SEG D,

NPREC,

FOUND

SEG D,

— N N N N — N N N N N N N

— N

Ref erence frane routines

| RFROT (REFA, REFB, ROTAB)

| RFNUM (NAME, | NDEX)
| RFNAM (| NDEX, NAME)
| RFDEF (| NDEX)

Appendix B --- Example Program
PLANET POINT

The following program shows how C-kernd subroutines fit together with other SPICELIB
routines to solve atypicd problem requiring pointing data.

All of the subroutines used here are part of SPICELIB.

PROGRAM PLANET_PO NT
I MPLI CI' T NONE

Comput e the planetocentric latitude, |ongitude and radius
coordi nates of the point at which the optic axis of an

i nstrument intersects the surface of a target planet.
Assunme that the axis of the instrunent is along the Z-axis
of the instrument fixed reference frane.

The following files are required:

1) Kernel file containing planetary constants.

2) Kernel file containing spacecraft clock (SCLK) data.

3) SPK file containing planetary and spacecraft
epheneris data

4) CK file containing instrument pointing data.

The followi ng quantities are required:

1) NAIF integer spacecraft ID
2) NAIF integer planet ID

3) NAIF integer instrunent ID
4) SCLK time string

5) SCLK tol erance.

The following steps are taken to |ocate the desired point:

O000000000000000000000O0000

1)

2)

3)

4)

5)

6)

7)

of

QOOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOO

The inertial pointing (VPNT) of the instrument at
the input SCLK tinme is read fromthe CK file.

The apparent position (VTARG is conputed for the
center of the target body as seen fromthe spacecraft,
at the epheneris tinme (ET) corresponding to SCLK

The one-way light tine (TAU) fromthe target to the
spacecraft is also conputed.

The transformation (TIBF) frominertial to body-fixed
coordi nates is conputed for the epoch ET-TAU, using
quantities fromthe planetary constants kernel

The radii (R) of the tri-axial ellipsoid used to nodel
the target body are extracted fromthe planetary
constants kernel

The position of the observer, in body-fixed coordinates
is conputed using VTARG and TI BF

VPNT is converted to body-fixed coordi nates using TIBF.
The routine SURFPT conmputes the point of intersection,

gi ven the two body-fixed positions, and tri-axia
ellipsoid radii

Particul ars

1) The instrunent boresight is assunmed to define the z-axis

the instrunent-fixed reference frane. This is refl ected

in the choice of (0, 0, 1) as the boresight pointing
vector (VPNT) in instrunent-fixed coordi nates.

Decl ar ati ons

| NTEGER FI LEN
PARAVETER (FILEN = 128)
| NTEGER TI MLEN
PARAVETER (TIMEN = 30)
| NTEGER FRMLEN
PARAVETER (FRMLEN = 20)
CHARACTER* (FI LEN) FI LE

CHARACTER* (TI MLEN) SCLKCH
CHARACTER* (TI MLEN) TOLCH

CHARACTER* (FRVLEN) REF

| NTEGER HANDL 1
| NTEGER HANDL 2
| NTEGER sC

| NTEGER | NST

| NTEGER TARG

| NTEGER N

OO0 000

O00O0

OO0

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

LOG CAL

Initial

The ine

DATA

The boresi ght vector

PRECI S
PRECI S
PRECI S
PRECI S
PRECI S
PRECI S
PRECI S
PRECI S
PRECI S
PRECI S

0999929999

PRECI SI ON
PRECI SI ON
PRECI SI ON

val ues

SCLKDP
ET
TOL
CMAT (3, 3)
CLKOUT

VTARG (6)
TAU
TI BF

w
~

VPOS
VSURF
VPNT
RADI US
LONG
LAT

—~N A~~~
WwWwwww
N N N N

FOUND

rtial reference franme for all output.

REF /

'J2000" /

instrunent-fixed frane.

DATA

CGet al

WRI TE (*, *)

VPNT

/ 0.D0, 0.DO, 1.DO /

of the files, and | oad them

"Ent er
. pl anetary constants:'
READ (*, FMI=' (A)') FILE

t he nanme of the kerne

CALL LDPOOL (FILE)

WRI TE (*, *)

WRI TE (*, *)

" Ent er

the name of the kerne

' SCLK coefficients:'

'READ (*, FMI=' (A)') FILE

CALL LDPOOL (FILE)

WRI TE (*, *)

WRI TE (*, *)

CALL SPKLEF (FILE, HANDL1)

is assuned to define the z-axis of the

file containing //

file containing' //

"Enter the name of the SPK file containing //
. pl anetary and spacecraft ephenerides:’
READ (*, FMr=' (A)') FILE

o000

OO0

OO0

O0o0

OO0 o000

VRI TE (*, *)

WRITE (*,*) 'Enter the name of the CK file containing //

i nstrunent

"READ (*, FMI=' (A)') FILE

pointing:'

CALL CKLPF (FILE, HANDL2)

Get the I D codes for spacecraft, instrunent, and target body.

WRI TE (*, *)

WRI TE (*,*) 'Enter NAIF
READ (*,*) SC

WRI TE (*, *)

WRI TE (*,*) 'Enter NAIF
READ (*,*) INST

WRI TE (*, *)

WRITE (*,*) 'Enter NAIF
READ (*,*) TARG

i nteger spacecraft ID:'

i nteger instrunment 1D’

integer ID for the target body:'

Det erm ne the i nput epoch.

WRI TE (*, *)
WRI TE (*,*) 'Enter SCLK

string (blank line to quit):'

READ (*, FMI=' (A)') SCLKCH

DO WHI LE (SCLKCH . NE.

")

Convert the input clock string to ticks.

CALL SCENCD (SC, SCLKCH, SCLKDP)

Determ ne the tinme tol erance.

WRI TE (*,*) "Enter the tolerance as a SCLK string'
READ (*,FMI='(A)') TOLCH

Convert the tol erance to ticks.

CALL SCTIKS (SC, TOLCH, TOL)

Search the CK file for pointing data at the tinme SCLKDP.

CALL CKGP (INST, SCLKDP, TOL, REF, CMAT, CLKOUT, FOUND)

IF (.NOT. FOUND) THEN

WRI TE (*, *)

WRI TE (*,*) 'The C-kernel file does not contain ' //
‘"data for that tinme.'

STOP
END | F

Comput e the inerti al

poi nting vector for the instrunent

O000000000 OO0 0000 O00000

OO0 O0O0O0000

o000

bor esi ght .

The C-matrix is a transformation frominertial to
i nstrunment -fi xed coordi nates. The transpose rotates
the other way --- what we want.

CALL MTXV (CMAT, VPNT, VPNT)

For all other conputations,
to the input SCLK.

CALL SCT2E (SC, SCLKDP, ET

use the ET tine corresponding

)

Conpute the target state vector (position and velocity).

CALL SPKEZ (TARG, ET, REF,

Get TIBF matrix and radii of

We need TIBF for the target

"LT+S', SC, VTARG, TAU)

target ellipsoid nodel.

as it appeared when the

i nstrument took its nmeasurenent at time ET. The target
was at its apparent |ocation TAU seconds earlier.

BODMAT and BODVAR wi || read
constants kernel file.

CALL BODMAT (TARG, ET-TAU,
CALL BODVAR (TARG, 'RADII',

The position of the observer
position part of the spacecr

constants fromthe planetary

TI BF)
N R)

is just the negative of the
aft-target vector, VTARG

Note that this is NOT the sane as the apparent position of

the spacecraft as seen from

CALL VM NUS (VTARG, VPCS)

the target.

Put both vectors in body-fixed coordinates.

CALL MXV (TIBF, VPGS, VPCS)
CALL MXV (TIBF, VPNT, VPNT)

Comput e the point of intersection, if any.

CALL SURFPT (VPOS, VPNT, R(

IF (.NOT. FOUND) THEN
WRI TE (*,*)
WRITE (*,*) ' The line-of-
"does not int

1), R(2), R(3), VSURF, FOUND)

si ght pointing vector ' /1
ersect the target '

WRITE (*,*) '"at this epoch.’

ELSE

C
C Convert intersection point fromrectangular to lat-Ion-
C radi us coordi nates.
C
CALL RECLAT (VSURF, RADIUS, LONG, LAT)
WRI TE (*,*)
WRI TE (*,*) ' Radius: ', RADI US
WRITE (*,*) 'Longitude: ', LONG
WRI TE (*,*) 'Latitude: ', LAT
END | F
C
C I nput next epoch.
C

WRITE (*,*)
WRITE (*,*) 'Enter SCLK string (blank line to quit):"’
READ (*, FMI=' (A)') SCLKCH

END DO

END

Appendix C --- An Example of Writing a
Type 1l CK Segment

The following example shows how one might write a program to create or add to a C-kerne file.

The program crestes asingle type 1 segment for the scan platform of the Galileo spacecraft.
Assume that C-matrices, angular velocity vectors, and the associated SCLK time strings are
contained in time-ordered arrays assumed to have been initidized e sewhere (by the subroutine
GET_GLL_PNT --- not part of SPICELIB). The program provides the option of adding the
segment to an exidting file, or cregting anew file.

PROGRAM WRTCK1
I MPLI CI' T NONE

| NTEGER FI LEN

O000

O0O000

oo

PARAMETER (FILEN = 128)

| NTEGER TI MLEN
PARAVETER (TIMEN = 30)

| NTEGER SI DLEN

PARAVETER (SIDLEN = 40)

| NTEGER FRMLEN

PARAVETER (FRMLEN = 20)

| NTEGER MAXREC

PARAVETER (MAXREC = 10000)
DOUBLE PRECI SI ON CMATS (3, 3, MAXREC)
DOUBLE PRECI SI ON QUATS (4, MAXREC)
DOUBLE PRECI SI ON AWS (3, MAXREC)
DOUBLE PRECI SI ON SCLKDP MAXREC)
DOUBLE PRECI SI ON BEGTI M

DOUBLE PRECI SI ON ENDTI M

CHARACTER* (TI MLEN) SCLKCH MAXREC)
CHARACTER* (SI DLEN) SEG D

CHARACTER* (FI LEN) FILE

CHARACTER* (1) ANSWR

CHARACTER* (FRVLEN) REF

| NTEGER | NST

| NTEGER NPREC

| NTEGER HANDL E

LOGI CAL AVFLAG

Can either add to an existing CK file or create a brand
new one.

VWRI TE (*,*)

WRITE (*,*) 'You may either add to an existing CK file, or'//
. create a new one.'

WRI TE (*,*) '"Enter the nane of the file:'

READ (*, FMI=' (A)"') FILE

WRI TE (*,*)
WRITE (*,*) '"Is this an existing or new file? (Type E or N):'
READ (*, FMI=' (A)') ANSWR

To convert SCLK tines fromclock string to encoded SCLK,
we need to load the Galileo spacecraft clock kernel file into
the kernel pool. Assune that the file is called GLL_SCLK. TSC

CALL LDPOOL ('GLL_SCLK. TSC)

To open a new file use CKOPN, and for an existing file use

O0000

O0000000

O000 o000 o000 O00000

OO0

DAFOPW

For a new file, set the internal file name (2nd argument in
CKOPN) equal to the file nane.

IF (ANSWR .EQ 'N) THEN

CALL CKOPN (FILE, FILE, 0, HANDLE)
ELSE IF (ANSWR .EQ 'E) THEN

CALL DAFOPW (FILE, HANDLE)

END | F

Get the pointing information to go in the C-kernel segment.
1) Nunber of pointing instances returned
2) Array of SCLK tines
3) Array of C-matrices
4) Array of angular velocity vectors

CALL GET_GLL_PNT (NPREC, SCLKCH, CMATS, AWS)

Enter the information to go in the segnent descriptor.

The NAIF instrunment ID code for the Galileo scan platform
is -77001.

I NST = -77001

The inertial reference franme i s B1950.

REF = ' B1950'

This segnent will contain angular velocity.

AVFLAG = . TRUE

The segment identifier provides a 40 character |abel for
t he segment.

SEG D = 'G.LL SCAN PLT - NAIF - 18-NOvV-90'

Now convert the tines to encoded SCLK

DOl = 1, NPREC
CALL SCENCD (-77, SCLKCH(1), SCLKDP(I))
END DO

O0000 O0o0

OO0

OO0

Set the segnent boundaries equal to the first and | ast
time in the segment.

BEGTI M = SCLKDP(1)
ENDTI M = SCLKDP(NPREC)

The C-matrices are represented by quaternions in a type 1 CK
segnment. The SPICELIB routine M2Q converts C-matrices to
guat er ni ons.

DOl =1, NPREC

CALL M2Q (CMATS(1,1,1), QUATS(1,1))
END DO

That is all the information that we need. Wite the segnent.
CALL CKW1 (HANDLE, BEGTIM ENDTIM |NST, REF, AVFLAG,

SEG D, NPREC, SCLKDP, QUATS, AWS)
Close the file.

CALL CKCLS (HANDLE)

END

Appendix D --- An Example of Writing a
Type 2 CK Segment

This example program creates asingle type 2 segment of predict pointing for the scan platform
of the Galileo spacecraft.

This program will use data type 2 to store pointing information for time intervals during which

the pointing of the scan platform is congtant. It is assumed that a routine called
GLL_CONST_PNT will provide ordered arrays of C-matrices and interval start and stop times.
The Ith C-matrix represents the fixed platform pointing during the Ith interva. Assume that the
dart and stop times are given in Galileo clock string form so that they must be converted into
encoded SCLK for usein the C-kerndl.

PROGRAM WRTCK2
I MPLI CI' T NONE

OO0

O000

| NTEGER FI LEN

PARAVETER (FILEN = 128)

| NTEGER TI MLEN

PARAVETER (TIMEN = 30)

| NTEGER SI DLEN

PARAVETER (SIDLEN = 40)

| NTEGER FRMLEN

PARAVETER (FRMLEN = 20)

| NTEGER MAXREC

PARAVETER (MAXREC = 10000)
DOUBLE PRECI SI ON CMATS (3, 3, MAXREC)
DOUBLE PRECI SI ON QUATS 4, MAXREC)
DOUBLE PRECI SI ON AWS 3, MAXREC)
DOUBLE PRECI SI ON START (MAXREC)
DOUBLE PRECI SI ON STOP MAXREC)
DOUBLE PRECI SI ON RATES (MAXREC)
DOUBLE PRECI SI ON BEGTI M

DOUBLE PRECI SI ON ENDTI M

DOUBLE PRECI SI ON SECTI K

CHARACTER* (SI DLEN) SEG D

CHARACTER* (TI MLEN) BEGCH (MAXREC)
CHARACTER* (TI MLEN) ENDCH (MAXREC)
CHARACTER* (FI LEN) FILE

CHARACTER* (1) ANSWR

CHARACTER* (FRVLEN) REF

| NTEGER | NST

| NTEGER NPREC

| NTEGER HANDL E

Can either add to an existing CK file or create a brand
new one.

WRI TE (*,*)

WRITE (*,*) 'You may either add to an existing CK file, or'//
. ' create a new one.'

WRITE (*,*) 'Enter the name of the file:'

READ (*, FMI=' (A)') FILE

WRI TE (*,*)
WRITE (*,*) 'Is this an existing or new file? (Type E or N):'
READ (*, FMI=' (A)') ANSWR

es fromclock strings to encoded SCLK,
we need to load the Galileo spacecraft clock kernel file into
t he kernel pool. Assune that the file is called GLL_SCLK. TSC

O

O000000

O0O0000 OO0 O0O000000

o000

ONONONQ)

CALL LDPOOL ('GLL_SCLK.TSC)
To open a new file use CKOPN, and for an existing file use
DAFOPW

For a new file, set the internal file nane (2nd argunent in
CKOPN) equal to the file nane.

IF (ANSWR .EQ 'N) THEN

CALL CKOPN (FILE, FILE, 0, HANDLE)
ELSE IF (ANSWVR .EQ 'E) THEN

CALL DAFOPW (FI LE, HANDLE)

END | F

Cet the pointing information to go in the C-kernel segnment.

1) Nunber of pointing intervals returned

2) Interval start tines in clock string form
3) Interval stop tinmes in clock string form
4) Array of C-matrices

CALL GLL_CONST_PNT (NPREC, BEGCH, ENDCH, CMATS)

Need to convert the tinmes to encoded SCLK.
DO 1 =1, NPREC
CALL SCENCD (-77, BEGCH(1), START(Il))
CALL SCENCD (-77, ENDCH(1), STOP (I))
END DO

Determne the information to go in the segnent descriptor.

The NAIF instrunent ID code for the Galileo scan platform
is -77001.

I NST = -77001

The inertial reference frane is B1950.

REF = ' B1950'

Set the segnent boundaries equal to the START tinme of the
first interval and the STOP tinme of the last interval.

BEGTI M
ENDTI M

START(1)
STOP (NPREC)

The segment identifier provides a 40 character |abel for the
segment .

OO0

SEG D = 'GLL SCAN PLT - NAIF - TYPE 2 PREDI CT '

C
C The C-matrices are represented by quaternions in a type 2 CK
C segnment. The SPI CELIB routine M2Q converts C-matrices to
Cc guat er ni ons.
C
DO | =1, NPREC
CALL M2Q (CMATS(1,1,1), QUATS(1,1))
END DO
C
C Since the pointing is constant over each interval the angul ar
C vel ocity vector is always zero.
C
DOl =1, NPREC
CALL CLEARD (3, AWS(1,1))
END DO
C
C Since this is a predict segnent the nunber of seconds
C represented by one tick during each of the intervals wll
C be set equal to the nom nal amount of tine represented by
C the least significant field of the Galileo clock: 1/120 sec.
C
SECTIK = 1.D0 / 120. D0
DO I =1, NPREC
RATES(1) = SECTIK
END DO
C
C That is all the information that we need. Wite the segnent.
C
CALL CKW2 (HANDLE, BEGTIM ENDTIM |INST, REF, SEG D,
NPREC, START, STOP, QUATS, AWS, RATES)
C
C Close the file.
C

CALL CKCLS (HANDLE)

END

Appendix E --- An Example of Writing a
Type 3 CK Segment

The following example program shows how one might write atype 3 C-kernel segment to anew

file.

The program crestes a sSingle type 3 segment for atwo hour time period for the Mars Global
Surveyor spacecraft bus. The program caculates the pointing ingtances directly from the
gpacecraft and planet (SPK) ephemerisfile.

The names of the input ephemeris, leapseconds, spacecraft clock, and planetary constants kernel
filesarefictitious.

O000 00000

OO0 OO0

o000

PROGRAM MGS_TYPEO3
I MPLI CI' T NONE

This programcreates a predict type 3 CK segnent for the
Mars G obal Surveyor spacecraft when it is in orbit around
Mar s.

Assign the NAIF body id codes for the Mars G obal Surveyor
spacecraft and Mars.

| NTEGER MGS
PARAVETER (MGS = -94)
| NTEGER MARS
PARAVETER (MARS = 499)

The reference frame of the segment is J2000.

CHARACTER* (10) REF

PARAMETER (REF = 'J2000")

We will need about 2000 pointing instances.
| NTEGER MAXREC

PARAMETER (MAXREC = 2000)

Vari abl es

CHARACTER* (30) UTCBEG

CHARACTER* (30) UTCEND

CHARACTER* (60) CKFI LE

OO0 OO0 0000

OO0

CHARACTER* (60) | NFNAM

CHARACTER* (40) SEG D

CHARACTER"* (5) CONT

DOUBLE PRECI SI ON ETBEG

DOUBLE PRECI SI ON ETEND

DOUBLE PRECI SI ON EPOCH

DOUBLE PRECI SI ON BEGTI M

DOUBLE PRECI SI ON ENDTI M

DOUBLE PRECI SI ON SCBEG

DOUBLE PRECI SI ON SCEND

DOUBLE PRECI SI ON SCLK

DOUBLE PRECI SI ON CMAT (3, 3)
DOUBLE PRECI SI ON DCMAT (3, 3)
DOUBLE PRECI SI ON OMEGA (3, 3)
DOUBLE PRECI SI ON SCLKDP MAXREC)
DOUBLE PRECI SI ON QUAT (4, MAXREC)
DOUBLE PRECI SI ON AV (3, MAXREC)
DOUBLE PRECI SI ON START (MAXREC)
| NTEGER HANDLE

| NTEGER NREC

| NTEGER NI NT

| NTEGER | NST

| NTEGER |

LOGI CAL AVFLAG

Load the binary SPK file that provides states for MES with
respect to Mars for the time period of interest.

CALL SPKLEF ('naf0000c. bsp', HANDLE)

Load the text |eapseconds, spacecraft clock (sclk), and
pl anetary constants (pck) files into the kernel pool

CALL LDPOOL ('leap.tls")
CALL LDPOOL (' nms.sc’)
CALL LDPOOL ('ngs.pck')
The segment begin and end tines.

UTCBEG
UTCEND

1994 JAN 21 00: 00: 00'
'1994 JAN 21 02:00: 00'

CALL UTC2ET (UTCBEG, ETBEG)
CALL UTC2ET (UTCEND, ETEND)

CALL SCE2C (MGS, ETBEG, SCBEG)
CALL SCE2C (MGS, ETEND, SCEND)

Cal cul ate the quaternions and angul ar vel ocity vectors at
roughly four second intervals fromthe segnent start tine

O000

O0000000

O00000000000000000000000000000O0

until the end.
I =1
SCLK = SCBEG

DO WHI LE ((SCLK .LE. SCEND) .AND. (|

.LE. MAXREC))

The tinmes stored in the C-kernel are always in encoded
spacecraft clock form SPK takes ET as the input tinme.

SCLKDP(1) = SCLK

CALL SCT2E (MGS, SCLK, EPOCH)

Find the C-matrix using the MGSSPI CE routine LOCVRT_M
LOCVRT _Mreturns the 3x3 matrix that transfornms vectors
froma specified inertial reference frame to the "Loca
Vertical Frame' for a specified observer and target body.
For Mars G obal Surveyor, this frane is also known as the
"A-frame" and the "Orbital Reference Coordi nate Systent

CALL LOCVRT_M (MARS, MGS, EPOCH, REF,
CALL M2Q (CMAT, QUAT(1,1))

Cal cul ate the angul ar velocity vector
formul a:

' NONE', CMAT)

using the follow ng

Let the angul ar velocity vector be AV = (al, a2, a3)

and |l et the matri x OVEGA be:

OVEGA * C = ---=n--

Thus, given a Cmatrix and its derivative, the angul ar

velocity can be cal culated from

OO0

OO0 OO0

O000000000000000000

O0000

CGET _DERVRT is a non SPICELIB routine that will cal cul ate
the derivative of the C-matrix cal cul ated by LOCVRT_M

CALL GET_DERVRT (EPOCH, DCMAT)

CALL MTXM (DCMAT, CMAT, OMEGA)

AV(1,1) = OMEGA (3,2)
AV(2,1) = OMEGA (1,3)
AV(3,1) = OMEGA (2,1)

I ncrease the counter and encoded SCLK tine for the next
poi nting instance.

I =1 +1
SCLK = SCLK + 1024. DO
END DO

NREC = | - 1

Unl oad the SPK file.

CALL SPKUEF (HANDLE)

The process of determ ning how to partition the pointing
i nstances into interpolation intervals varies with respect
to the means by which the pointing instances are obtai ned.

For this exanple programit is acceptable to interpolate
between all of the adjacent pointing instances because:

1) The pointing was cal cul ated at every 4 seconds so there
are no gaps in the data.

2) The pointing was calculated directly fromthe spacecraft
and planetary epheneris so that the functions for the
spacecraft axis and angul ar velocity vectors will change
"slow y" and conti nuously.

Therefore there is only one interpolation interval for the
entire segnment.

NI NT =1

START (1) = SCLKDP (1)

Now t hat the pointing instances have been cal cul ated the
segnment can be witten to a C-kernel file.

Open a new file.

OO0 000 00000

OO0 O0000

o000

CKFI LE

' ngs_predict_ck. bc'
I NFNAM = "ngs_predict_ck. bc’

CALL DAFONW (CKFILE, 'CK', 2, 6, INFNAM 0, HANDLE)

Set the values of the conponents of the segnent descriptor.
The NAIF id code for the MGS spacecraft bus is:

I NST = -94000

Thi s segnent contains angul ar vel ocity data.

AVFLAG = . TRUE

The segment begins and ends with the first and | ast
poi nting instances.

BEGTI M
ENDTI M

SCLKDP (1)
SCLKDP (NREC)

The reference frame was specified above as J2000.
The segment identifier is:

SEG D = 'MSS PREDI CT TYPE 3 SEGVENT'

Wite the segment to the file attached to HANDLE

CALL CKW3 (HANDLE, BEGTIM ENDTIM | NST, REF, AVFLAG
SEG D, NREC, SCLKDP, QUAT, AV, NI NT,
START)

Close the file.

CALL DAFCLS (HANDLE)

END

