Text Kernds

Revisions

October 5, 1999

This document differs from the previous verson of March 25, 1992 in that it documents new
features added to the kernel pool routines. The principa ones are:

- - Kernd files containing string values are now supported. Thereisanew character fetch
routine GCPOOL.

- - Numeric kernel variables may be fetched as integers or double precison numbersvia
the new fetch routines GIPOOL and GDPOOL.

The routines GDPOOL, and GIPOOL supersede the routine RTPOOL, which is now
deprecated.

- - Thereisanew routine DTPOOL which alows an gpplication to determine whether a
variable specified by nameis present in the kernel poal, and if so, to retrieve the
variable's dimension and data type.

- - There are now three new routines PCPOOL, PDPOOL and PIPOOL which support
direct insertion of datainto the kernd pool without reading an externd file.

- - Thereisanew interface routine LMPOOL that dlows SPICE programs to load text
kernds directly from memory ingtead of requiring atext file.

- - Thereisanew routine SZPOOL which returns kernel pool definition parameters.

- - Thereisanew routine DVPOOL which dlowsthe removad of avariable from the
kernd pool.

- - Thereisanew routine GNPOOL which alows an application to obtain the names of
the variables present in the kerndl pool.

This document now describes the kerndl pool as an abstract data structure, rather than
emphasizing the view of the kernd system as a reading mechanism for text kernds.

In addition some minor edits were performed to improve clarity.

Also, the quoting style was changed from British to American.

| ntr oduction

This document describes the SPICELIB ™~ kernel pool" system, which provides arobug, flexible
way to load datainto memory in a SPICE based program, either from SPICE text kernd files or
viaa subroutine interface.

A variety of SPICE text kernels that are read into and accessed through the kernd pool. These
incdlude

- Text PCK kernels

- Leapseconds kernels
- SCLK kernels

- | kernds

- Framekernels

Do not confuse SPICE text kernelswith text ““transfer” versions of SPK, CK, PCK or DAF files
produced by the utilities SPACIT or TOXFR. The text transfer files are not intended to be used
with the kerndl pool and do not conform to the SPICE text kernd format.

The kerndl poal system interface is composed of two parts: atext file format and kerndl pool
access software. The software includes routines that read files conforming to the format, routines
that alow direct insertion of datainto the pool via subroutine calls, routines that fetch data from

the kernd pool, routines that return information about the current state of the pool, and utilities
that manipulate various aspects of the pool.

The SPICE text kernd format hasa ™ name = value" structure smilar to the format used to assign
vauesto varigblesin languages such as C and FORTRAN. Details of the format are described
below.

The kernel pool may be viewed abstractly as arepostory of associative arrays which map names
to lists of numeric or giring values. The kerndl pool alows SPICELIB-based programs to read
data from SPICE text kernd files while maintaining the ""name = vaue" associations established
inthefiles. Alternatively, associative arrays may be inserted into the kernel pool via the pool's
programming interface.

Once name-va ue associations have been stored in the kernd pool, you may access the stored

data through kernel pool 1ook-up routines. These look-up routines use the names as keys to find
the associated values. The look-up and other access routines are described in detail below.

The SPICE text kernd file format

Asthe name implies, SPICE text kernd files contain only ASCII text. An additiona restriction
on the contents of SPICE text kernd filesisthat they contain no non-printing characters, such as
tabs or formfeeds.

Weillugrate this format by way of example usng an excerpt from a SPICE text planetary
congtants kernd (PCK) file. The format description given below gppliesto al SPICE text
kernels; the specific data names shown below gpply only to text PCK files.

Pl anets first. Each has quadratic expressions for the direction
(RA, Dec) of the north pole and the rotation of the prinme meridian.
Pl anets with satellites (except Pluto) also have |linear expressions
for the auxiliary (phase) angles used in the nutation and |ibration
expressions of their satellites.

\ begi ndat a

BODY399_POLE_RA = (0. -0.64061614 -0.00008386)
BODY399_POLE_DEC = (+90. -0.55675303 +0.00011851)
BODY399_PM = (10.21 +360.98562970 +0.)
BODY399_LONG _AXI S = (0.)
BODY3_NUT_PREC ANGLES = (125.045 -1935. 53

249. 390 -3871. 06

196. 694 -475263.
176. 630 +487269. 65
358. 219 - 36000.)

\ begi nt ext

Each satellite has simlar quadratic expressions for the pole and
prime nmeridian. In addition, some satellites have nonzero nutation
and libration anplitudes. (The nunmber of anplitudes matches the
nunber of auxiliary phase angles of the primary.)

\ begi ndat a

BODY301_POLE_RA
BODY301_POLE_DEC
BODY301_PM

270. 000 -0.64061614 -0.00008386
+66. 534 -0.55675303 +0.00011851
38.314 +13.1763581 0.

o
A~ AN SN~
— N

BODY301_LONG AXI S 0.

BODY301_NUT PREC RA = (-3.878 -0.120 +0.070 -0.017 O.)

BODY301_NUT_PREC DEC = (+1.543 +0.024 -0.028 +0.007 O.)
= (

BODY301_NUT_PREC PM +3.558 +0.121 -0.064 +0.016 +0.025)
\ begi nt ext

Finally, we include the radii of the satellites and pl anets.

\ begi ndat a
BODY399_ RADI | = (6378. 140 6378. 140 6356. 755)
BODY301_RADI | = (1738. 1738. 1738.)

In this example are several comment blocks. All are introduce by the control word:

\ begi nt ext
A comment block may contain any number of comment lines. Once a comment block has begun,
no specid characters are required to introduce subsequent lines of comments within that block. A
comment block is terminated by the control word

\ begi ndat a
This control word aso serves to introduce a block of data that will be stored in the kernel pool.
Each of these control words must appear on aline by itslf.

Each variable definition conssts of three components:
1. A vaiable name.

2. Anassgnment directive. Thismust be =" (direct assgnment) or ~+=" (incrementd
assgnment).

3. A scdar or vector value.

Direct assgnments supersede previous assgnments, whereas incrementa assignments are added
to previous assgnments. For example, the series of assgnments

BODY301_NUT_PREC RA = -3.878
BODY301_NUT_PREC RA += -0. 120
BODY301_NUT_PREC RA += +0. 070
BODY301_NUT_PREC RA += -0.017
BODY301_NUT_PREC RA += 0.

has the same effect as the Sngle assgnment

BODY301_NUT_PREC RA = (-3.878 -0.120 +0.070 -0.017 0)
Dates, e.g.,

FOOBAR_CALI BRATI ON_DATES = (@1-JAN- 1987,
@/ 4/ 87,
@arch-7-1987-3:10: 39. 221)

may be entered in awide variety of formats. There are two restrictions regarding the format of
dates. They may not contain embedded blanks, and they must begin with the character

@
Internally, dates are converted to TDB seconds past J2000 asthey are read. As aresult, dates, are

treated as numeric datain the pool.

Strings may be supplied by quating the gtring vaue.

M SSION_UNITS = (' KI LOVETERS',
' SECONDS' ,
" KI LOVETERS/ SECOND')

If you need to include a quote in the string value, use the FORTRAN convention of "doubling”
the quote.

MESSAGE = ('You can''t always get what you want.')
The types of values assgned to akernd pool variable must dl be the same. If you attempt to
make an assgnment such as the one shown here:

ERROR_EXAMPLE = (1, 2, 'THREE', 4, 'FIVE)
The kernel pool reader will regard the assgnment as erroneous and reject it and any subsequent
kernel pool assgnments that appear in the text kerndl.

Managing Kernels

The generic kernel loader FURNSH

For the SPICE system to use kernd files, the files must be made known to the system and

opened at run time. This activity iscdled “loading” kernds. SPICELIB providesasmple
subroutine interface for this purpose. The principa kernel loading subroutine is called FURNSH
(pronounced "“furnish”). The kernel system aso provides asmall set of routines that enable an
gpplication to find the names and attributes of kerndls that have been loaded via FURNSH. These
routines are dl entry points of the subroutine KEEPER.

In earlier versons of SPICELIB, kernels were loaded via routines specific to various SPICEL B
subsystems: SPK, CK, PCK, EK, kernd pool. The binary kernel systems aso supported
unloading kernels. All of the old loaders and unloaders are till provided in SPICELIB, but these
routines should no longer be caled directly. FURNSH should be called instead.

NAIF now recommends that instead of caling various kernedl loaders, gpplications load kernds

usnga metakernd." A metakernd is a SPICE text kernd that lists the names of the kernelsto

be loaded. At run time, the application supplies the name of the metakerned as an input argument
to FURNSH. For example, instead of loading kernels using the code fragment

CALL LDPOCOL ('l eapseconds. ker')
CALL LDPOOL ('nmps.tsc')
CALL SPKLEF ('generic. bsp', HANDLEL)
CALL CKLPF ('ngs.bc', HANDLE2)
CALL PCKLOF ('earth. bpc', HANDLE3)
CALL EKLEF ('nys.bes', HANDLE4)

one now may write

CALL FURNSH ('kernels.txt')
where thefile kernelsitxt is a SPICE text kernd containing the lines

\ begi ndat a

KERNELS TO LOAD = ('l eapseconds. ker"',
'nmgs. tsc',
‘generic. bsp',
'ngs. bc',
"earth. bpc',
' ngs. bes')

This technique has the advantage of enabling a user to change the set of kernelsloaded by the
application without modifying source code.

It also possible to use FURNSH to load kerndsin the older SPICELIB style: the names of
kernelsto load can be supplied as input arguments to FURNSH. For example, instead of using
the series of loader calls shown earlier, one now may write

| NTEGER FI LEN
PARAMETER (FILEN = 255)

| NTEGER NKER

PARAMETER (NKER =5)

| NTEGER I

CHARACTER* FI LEN KERNLS (NKER)

DATA KERNLS / ' eapseconds. ker',
'ngs.tsc',
'generic. bsp',
"earth. bpc',
' ngs. bes’ /

DOl =1, NKER

CALL FURNSH (KERNLS(1))
END DO

Kernel priority

The older SPICELIB loaders dlow usersto prioritize kernd files viaload order: kernelsloaded
later have higher priority than kernels loaded earlier. FURNSH follows the same convention.
When kernds are listed in a metakernd, those gppearing later in the list have higher priority. The
old prioritization scheme aso gpplies to kernels supplied directly as arguments to FURNSH.

Path symbols

Insde ametakernd, it is sometimes necessary to qudify file names with their pathnames. To
reduce both typing and the need to continue file names over multiple lines, metakernds dlow
users to define symbols for paths. Thisis done using the kernd variables

PATH_NAMES
PATH_SYMBOLS

To create symbols for path names, one assgns an array of path namesto the variable
PATH_NAMES. Next, one assigns an array of corresponding symbol names to the varigble
PATH_SYMBOLS. The nth symbol in the second array represents the nth path name in the fird.

Findly, one prefixes with path symbols the kerndl names specified in the
KERNELS TO_LOAD vaiable. Each symboal is prefixed with adollar sgn to indicate that it is
infact asymbol.

Suppose in our example above that the MGS kernelsresdein the path

/flight_projects/ngs/SPI CE_kernel s
and the other kernels resde in the path

/ generic/ SPI CE_kernel s
Then we can add paths to our metakernd asfollows:

\ begi ndat a
PATH_NAMES = ("/flight_projects/ngs/SPI CE kernels',

'/ generic/ SPI CE_kernel s’)
PATH_SYMBOLS = (' MGS',

"GEN)

KERNELS_TO LOAD = (' $GEN/ | eapseconds. ker ',
' $MGS/ ngs. tsc',
' $GEN generi c. bsp',
' $MGS/ ngs. be',
' $GEN earth. bpc',
' $MGS/ nys. bes')

It is not required that paths be abbreviated using path symbols; it's smply a convenience.

Note the symbols defined here are not related to the symbols supported by a host shell or any
other operating system interface.

Finding out what's loaded

SPICEL I B-based gpplications may need to determine at run time which files have been |oaded.
Applications may need to find the DAF or DAS handles of loaded binary kerndls so that the
kernels may be searched. Some gpplications may need to unload kernels to make room for
others, or change the priority of loaded kernels at run time.

SPICELIB provides kernel access routines to support these needs. For every loaded kerndl, an

gpplication can find the name of kernel, the kernel type (text or one of SPK, CK, PCK, or EK),
the kernd's DAF or DAS handle if applicable, and the name of the metakernd used to load the

kernd, again if applicable.

The routine KTOTAL returns the count of loaded kernels of a given type. The routine KDATA
returns information on the nth kernel of a given type. The two routines are normaly used
together. Following is an example of how an goplication could retrieve summary information on
the currently loaded SPK files:

CALL KTOTAL ('SPK', COUNT)

IF (COUNT .EQ 0O) THEN

WRITE (*,*) 'There are no SPK files |oaded at this tine.’
ELSE

WRI TE (*,*) 'The | oaded SPK files are:

WRI TE (*,*)
END | F

DO WHI CH = 1, COUNT
CALL KDATA(WHICH, 'SPK', FILE, FILTYP,
HANDLE, SOURCE, FOUND)

WRI TE (*,*) FILE

END DO
Above, the input argument 'SPK" is akernd type specifier. The dlowed et of vauesis

SPK --- Al SPK files are counted in the total.

CK --- All CKfiles are counted in the total.

PCK --- Al binary PCK files are counted in the
total.

EK --- Al EKfiles are counted in the total.

TEXT --- All text kernels that are not neta-text
kernels are included in the total.

META --- All neta-text kernels are counted in the
total.

ALL --- Every type of kernel is counted in the
total .

Inthisexample, FILTY P isadring indicating the type of kernd. HANDLE isthe file handle if
thefileisabinary SPICE kernd. SOURCE is the name of the metakernel used to load thefile, if
gpplicable. FOUND indicates whether afile having the specified type and index was found.

SPICELIB aso contains the routine KINFO which returns summary information about afile
whose nameis dready known. KINFO is caled as follows:

CALL KINFO (FILE, FILTYP, SOURCE, HANDLE, FOUND)

Unloading kernels

SPICEL IB-based applications may need to remove |oaded kernels. Possible reasons for this are:
- - To make room to load other kernels.
- - To change the priority of loaded kerndl data.

- - To change the set of kernel data visble to SPICELIB.

The routine UNLOAD "“removes' kernds from a SPICE gpplication. For binary kernds, the
meaning of thisisample: thefileis closed, and SPICELIB data structures referring to the file's
contents are adjusted to reflect the absence of thefile.

Text kernds and metakernels may be unloaded as well. Unloading a metakernd involves
unloading the files referenced by the metakernel. Text kerndls are unloaded by clearing the
kernel pool and then reloading the other text kernels not designated for removal.

Note that unloading text kernels has the side effect of wiping out kernd variables that have been
st viathe kernd pooal's subroutine write access interface. It isimportant to consider whether this
sde effect is acceptable when writing code that may unload text kernels or metakernels.

The routine used to unload kerndsis UNLOAD. UNLOAD iscdled asfollows:

CALL UNLOAD (KERNEL)

Fetching data from the kernel pool

The values of variables stored in the kernel pool may be retrieved using the subroutines:
GCPOOL

Used to fetch character data from the kerndl pool.
GDPOOL

Used to fetch double precision data from the kernel pool.
GIPOOL

Used to fetch integer data from the kernel pool. Note that interndly, al numeric datais
stored as double precison values. Thisinterface is provided as a convenience so that
users may retrieve integer data directly from the kernd pool without having worry about
converting from double precison valuesto integers.

The calling sequences have the same appearance and meaning for dl three routines.

CALL GCPOOL(NAME, FIRST, ROOM NVALUES, VALUES, FOUND)
CALL GDPOOL(NAME, FIRST, ROOM NVALUES, VALUES, FOUND)
CALL G POOL(NAME, FIRST, ROOM NVALUES, VALUES, FOUND)

where
NAME

isthe name of the item to retrieve
FIRST

istheindex of thefirs item to retrieve from the array of vaues associated with NAME.

ROOM

is the number of vaues that may be stored in the output array VALUES.
NVALUES

is the number of items sored in VALUES
VALUES

isthe output array of values associated with NAME. The datatype of VALUES depends

upon the routine: for GCPOOL, VALUES isan array of strings, for GDPOOL, VALUES

isan array of double precison numbers, for GIPOOL, VALUES isan array of integers.
FOUND

indicates whether or not the requested dataiisis available in the kernd pooal.
See the headers of these subroutines for a more extensive discussion of their arguments and use.

I nformational routines

Four routines are provided for retrieving genera information about the contents of the kerne
pool.

DTPOOL

Returns information about the existence, dimension and type of kernd pool variables.
EXPOOL

Returns information on the existence of akernd pool variable.
GNPOOL

Allows retrievd of names of kernd pool variables that match a string pattern.
SZPOOL

Returns information about the Size of various structures used in the implementation of the
kernd pooal.
These routines are discussed a length in their respective headers.

Changing Kernel Pool Contents

The main way in which you change the contents of the kernel pool isby ““loading” a SPICE text

kernel with the routine FURNSH. However, the kernd pool also provides a severa other
routines that alow you to change the contents of the pooal.

CLPOOL

clears (initidizes) the kernd poal, ddeting dl the variables in the poal.
LMPOOL

Similar in effect loading atext kernd via FURNSH, but the text kerndl isstored in an
aray of sringsingead of an externd file,
PCPOOL

Allowsthe insertion of a character variable directly into the kernel pool without
supplying atext kerndl.
PDPOOL

Allows the insertion of adouble precison variable directly into the kernd pool without
supplying atext kernel.
PCPOOL

Allows the insartion of an integer variable directly into the kerne pool without supplying
atext kerndl.
DVPOOL

alows ddetion of a specific variable from the kernd pool. (CLPOOL ddetes dl variables
from the kernel poal.)
The following code fragment shows how the data normaly provided in alegpseconds kerndl
could be loaded viaLMPOOL. See the headers of the other routines for specific details regarding
their use.

Below, BUFFER isacharacter array and N is the size of the array.

| NTEGER LNSI ZE
PARAMETER (LNSIZE = 80)

CHARACTER* (LNSI ZE) TEXT (27)

TEXT(1) = 'DELTET/DELTA T A = 32.184'

TEXT(2) = 'DELTET/K = 1.657D 3'

TEXT(3) = ' DELTET/EB = 1. 671D 2'

TEXT(4) = 'DELTET/M = (6.239996D0 1.99096871D-7)"
TEXT(5) = 'DELTET/ DELTA AT = (10, @972- JAN-1'
TEXT(6) = 11, @972-JUL-1'
TEXT(7) = 12, @973- JAN-1'
TEXT(8) = 13, @974- JAN-1'
TEXT(9) = 14, @975- JAN-1'
TEXT(10) = 15, @976- JAN-1'
TEXT(11) = 16, @977- JAN-1'
TEXT(12) = 17, @978- JAN-1'
TEXT(13) = 18, @979- JAN-1'

TEXT(14) = 19, @980- JAN-1'
TEXT(15) = 20, @981-JUL-1'
TEXT(16) = 21, @982-JUL-1'
TEXT(17) = 22, @983-JUL-1'
TEXT(18) = 23, @985-JUL-1'
TEXT(19) = 24, @988- JAN-1'
TEXT(20) = 25, @990- JAN- 1'
TEXT(21) = 26, @991- JAN-1'
TEXT(22) = 27, @992-JUL-1'
TEXT(23) = 28, @993-JUL-1'
TEXT(24) = 29, @994-JUL-1'
TEXT(25) = 30, @996- JAN-1'
TEXT(26) = 31, @997-JUL-1'
TEXT(27) = 32, @999- JAN-1)"

CALL LMPOOL (TEXT, 27)

Detecting Changesin the Kernel Poal.

Since loading SPICE text kernels tends to happen only at program initidization, aroutine that
relies on datain the kernel pool may run more efficiently if it can store aloca copy of the values
needed and update these only when a change occurs in the kernel pool. Two routines are
available that allow aquick test to see whether kernel pool variables have been updated.

SWPOOL
Sets up a"watcher" on avariable so that various "agents' can be notified when avariable
has been updated.

CVPOOL
I ndicates whether or not an agent's variable has been updated since the last time an agent

checked with the pool .
See the headers of these routines for details and examples of their use.

Saving the contents of the kernel pool

If you need to capture a persistent copy of the contents of the kernel pool. Use the routine
WRPOOL.

SPICE subsystemsthat rely on SPICE text kernels.

PCK-related routines

The PCK kernd is SPICELIB's source of the planetary constants needed to define the size,
shape, and orientation of planets and satellites. The PCK text file format and routines which
access PCK data are described in the PCK Required Reading.

Time conversion routines

Routines that retrieve leapseconds or SCLK data directly from the kernel pool are documented in
the TIME and SCLK Required reading files, respectively.

Frame transfor mation routines

See the FRAMES Required Reading for a discussion of frame definition kernels.,

Summary of Routines

Each kernd pool subroutine name congists of a mnemonic which trandaesinto a short
description of the routing's purpose.

Many of the routines listed below are entry points to another subroutine. If they are, the parent
routing's name will be listed insde brackets preceding the mnemonic trandation.

BODFND
BODVAR

CLPOOL [POOL]
CVPOOL [POOL]
DTPOOL [POOL]
DVPOOL [POOL]
EXPOOL [POOL]
FURNSH [KEEPER]
GCPOOL [POOL]
GDPOOL [POOL]

(Find values fromthe kernel pool)
(Return values fromthe kernel pool)
(Clear the pool of kernel variables)
(Check variable in the pool for update)
(Data for a kernel pool variable)
(Delete a variable fromthe kernel pool)
(Confirmthe existence of a pool kernel variable)
(Furnish a programwi th SPICE kernels)
(Get character data fromthe kernel pool)
(Get d.p. values fromthe kernel pool)
G POOL [POOL] (Get integers fromthe kernel pool)
GNPOOL [POOL] (Get names of kernel pool variables)
KDATA [KEEPER] (Kernel Data)
KINFO [KEEPER](Kernel Information)
KTOTAL [KEEPER] (Kernel Totals)
LDPOOL [POOL] (Load variables froma kernel file into the pool)
LMPOOL [POOL] (Load variables fromnenory into the pool)
PCPOOL [POOL] (Put character strings into the kernel pool)
PDPOOL [POOL] (Put d.p.'s into the kernel pool)
PIPOOL [POOL] (Put integers into the kernel pool)
STPOCOL [POOL] (String from pool)
SWPOOL [POOL] (Set watch on a pool variable)
SZPOOL [POOL] (Get size limtations of the kernel pool)
UNLOAD [KEEPER] (Unl oad a kernel)

Summary of Calling Sequences

BODFND (BODY, | TEM)

BODVAR (BODY, |TEM DIM VALUES)

CLPOOL ()

CVPOOL (AGENT, UPDATE)

DTPOOL (NAME, FOUND, N, TYPE)

DVPOOL (NAME)

EXPOOL (NAME, FOUND)

FURNSH (FILE)

GCPOOL (NAME, START, ROOM , CVALS, FOUND)
GDPOOL (NAME, START, ROOM , DVALS, FOUND)

(
(
(
(
(
%
G POOL (NAME, START, ROOM , | VALS, FOUND)
GNPOOL (NAME, START, ROOM , KVARS, FOUND)

(

(

(

(

(

(

(

(

(

z2Z222

KDATA (WHICH, KI ND, FILTYP, SOURCE, HANDLE, FOUND)
KINFO (FILE, FILTYP, SOURCE, HANDLE, FOUND)

KTOTAL (KIND, COUNT)

LDPOOL (NAME)
LMPOOL (CVALS, N)
PCPOOL N, CVALS)

PDPOOL (NAME, N DVALS)

PIPOOL (NAME, N | VALS)

STPOOL (ITEM NTH, CONTIN, STRING SIZE, FOUND)

NANME,

SWPOOL (AGENT, NNAMES, NAMES)
SZPOOL (NAME, N, FOUND)
UNLOAD (FILE)

