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Introduction  

 

 
 
The "P" in ``SPICE'' has two sub-components: PCK kernels, which contain planetary attitude 
and body shape information, and SPK kernels, which contain planetary ephemerides. The PCK 
kernel includes orientation and shape information pertaining to extended solar system bodies 
such as the Sun, the planets, the natural satellites of the planets, comets, and asteroids.  

The functionality of the PCK kernel is supplied by data files called ``PCK kernel files'' and by 
SPICELIB subroutines that can read and interpret the data in these files. Historically, there was 
only one kind of PCK kernel file, the PCK text kernel file (called the "P\_constants kernel.") 
This kind of PCK kernel file contains constants which allow calculation of solar system body 
orientation and shape. These ASCII files can be easily reviewed and modified. Now, in addition 
to these text PCK kernels, another format, the binary PCK kernel, has been developed. These 
files allow higher accuracy calculations of body orientation. They contain shorter-term, but more 
precise information in binary format where large amounts of data can be stored and accessed 
quickly. The only bodies for which this higher accuracy type of data is available are the moon, 
the Earth and the asteroid Eros.  

The purpose of the PCK kernels and associated software is to provide SPICE users with a 
convenient mechanism for supplying planetary physical constants to application programs. 
SPICELIB's PCK software is able to read files conforming to these formats and return to a 
calling application program both the data contained in such files and a small number of 
commonly used numeric quantities derived from the kernel data.  



This document specifies both the SPICELIB PCK formats and the interfaces of the SPICELIB 
subroutines that read or return data from PCKs. Examples of PCK file contents and code 
examples demonstrating use of the SPICELIB PCK subroutines are included.  

 

Prerequisites  

 

 
 
This section covers some preliminary information required for understanding the subsequent 
discussion of the contents of PCK files and SPICELIB's PCK software.  

 

Body Codes  

 
 
Within the NAIF Toolkit software, a system of integer codes is used to conveniently represent 
both celestial bodies and spacecraft. This system is described in detail in ``NAIF IDS Required 
Reading'' [218].  

In this document, the following features of the code system will be relied on:  

-- The code for the barycenter of the nth planetary system is n. The count starts at 1, 
which stands for Mercury. (The code for the Sun is 10.)  

-- The code for the nth planet's mass center is n99; for example, the code for the Earth is 
399.  

-- Natural satellites of the nth planet have codes of the form nxx; for example, the code 
for the Earth's moon is 301.  

 

Epochs and Reference Frames  

 
 
Some constants that frequently appear in PCK files are associated with a particular epoch and 
with a particular reference frame. For example, PCK files released by NAIF typically contain 
constants that define the axes of various body-fixed planetocentric coordinate systems, given 



relative to a specified inertial reference frame, as a function of time. In this sort of definition, the 
independent variable---time---is measured relative to a specified reference epoch.  

Typical choices of reference frames associated with PCK constants would be J2000 or B1950. 
Typical choices of reference epochs would be the J2000 epoch (JED 24515145.0) or the J1950 
epoch (JED 2433282.5).  

Within SPICELIB, reference frames are usually indicated by short character strings, such as 
'J2000'. However, SPICELIB also has a system of integer codes that are used by some routines to 
name reference frames. This coding system is described in detail in [219]. An example of the 
correspondence of codes and names is show below:  

 
   Code    Name       Description 
   -----   --------   ------------------------------------------- 
     1     J2000      Earth mean equator, dynamical equinox of J2000 
     2     B1950      Earth mean equator, dynamical equinox of B1950 
In PCK files, these integer codes are used to name reference frames associated with constants.  

 

Planetocentric Coordinates  

 
 
The body-fixed ``Planetocentric'' coordinate system referred to in this document is defined for 
solar system bodies as follows:  

-- The x-axis of the Planetocentric coordinate system for a specified body lies both in the 
body's equatorial plane and in the plane containing the body's prime meridian.  

-- The z-axis is parallel to the body's mean axis of rotation and points North of the 
invariable plane of the solar system (regardless of the body's spin direction). The north 
pole is this pole of rotation.  

-- The y-axis is defined as the cross product of the z and x axes, in that order. Thus, the 
frame is right-handed.  

The above definition implies that the axes of a planetocentric system are time-varying. Thus a 
complete specification of the axes requires identification of an epoch as well as the body. This 
frame is relative to J2000.  

 

The Two Formats of PCK files  

 



 
 
There are two general forms for PCK files, text and binary files. Text files are ASCII and can be 
created and modified with an editor. Therefore, they are easily changed and read. Binary files are 
created via SPICELIB programs and have a particular format and architecture. They cannot be 
examined or changed with an editor. These files require SPICELIB software for their 
manipulation. Binary files can contain more data and are faster to use. In the PCK case, the 
binary files contain higher precision data than the text files.  

 

Text PCK Files  

 
 
Text PCK files express data as ``assignments''; in text PCKs, values are associated with name 
strings using a ``keyword = value'' format. These name strings, together with their associated 
values, are called ``kernel variables.'' The SPICELIB routines that access text PCK data at run 
time use these associations established by loaded text PCK files to reference desired data values; 
these routines look up data ``by name.'' Therefore, programmers writing applications that use text 
PCKs must coordinate use of kernel variable names between their software and the text PCK 
files used by their software.  

 

Binary PCK Files  

 
 
The binary PCK file format is built upon the SPICELIB system's DAF (Double precision Array 
File) architecture. Readers who are not familiar with this architecture are referred to [167] which 
describes the common aspects of all DAF formats, as well as a collection of SPICELIB 
subroutines that support the DAF architecture. Those users who only intend to read binary PCK 
files need not read [167].  

 

Using the PCK System: Overview  

 

 
 
This section describes how PCK files and software are used in application programs.  

Using PCK data in an application program requires three steps:  



1. Selecting the appropriate PCK file(s) for the application.  

2. Reading the PCK data into the program.  

3. Accessing the data within the program.  

Step 1 is not necessarily trivial since there may be no single set of ``best values'' for physical 
constants of interest; the values that are ``best'' - if such exist - depend on the application. The 
user's judgement, supported by comments and usage notes in the PCK file, is required for this 
step.  

Step 2 is referred to as ``loading'' a PCK file. Text PCK files are loaded by calling the SPICELIB 
subroutine LDPOOL and supplying the name of the PCK file to load as the input argument. All 
of the data in a text PCK file is read into memory when the file is loaded by an application 
program at run-time. Binary PCK files are loaded by calling the SPICELIB subroutine PCKLOF. 
This data will be accessible throughout the rest of the program run, unless it is deliberately 
overwritten or unloaded. Multiple text and multiple binary PCK kernels can be used 
simultaneously.  

Binary PCK files take precedence over text PCK files. If data for a requested planetary constant 
and time period is covered by a loaded binary PCK file, the binary data will be returned and 
used. If multiple binary PCK files are loaded, the most recently loaded file takes precedence, 
down to the binary file loaded earliest. Only if no binary PCK data is available will the text PCK 
file be used.  

Step 3, accessing loaded PCK data, is accomplished via calls to SPICELIB routines. At the 
lowest level, these access routines allow the calling program to retrieve specified data that has 
been read from one or more PCK files. Higher-level access routines can return quantities derived 
from PCK data that has been loaded; the most commonly used such quantity is a matrix that 
transforms vectors from inertial to body-fixed planetocentric coordinates. The SPICELIB 
subroutine TIPBOD calculates this transformation. The subroutine BODVAR retrieves 
information on body orientation and body shape by calling RTPOOL to fetch it from the text 
PCK kernels loaded into the kernel pool.  

For text PCK files, the PCK software can be thought of as ``buffering'' all of the data in the PCK 
files that have been loaded: all of the data from these files is retained in memory. Therefore, 
repeated calls to the PCK access routines do not incur the inefficiency of re-reading data from 
files. For binary PCK file, like the case of the SPK and CK readers, only a portion of the most 
recently used information is buffered.  

The data structure used by SPICELIB to maintain associations of text kernel variable names and 
values is called the ``kernel pool.'' Data loaded into memory via LDPOOL is referred to as 
``being present in the kernel pool.'' There is no analog to the kernel pool for binary PCK files.  

 



Porting PCK Files Between Computers  

 

 
 
A NAIF Toolkit utility program (SPACIT) is used to convert binary PCK files to NAIF transfer 
files for porting to another type of computer; on the new host the SPACIT utility is used to 
convert the NAIF transfer file to the native binary format. Text format PCK files may be moved 
between computers using normal file transfer methods such as ftp (text mode), COPY or e-mail.  

 

Orientation Models used by PCK Software  

 

 
 
The orientation models used by SPICELIB PCK access routines all express the direction of the 
pole and location of the prime meridian of a body with respect to an inertial reference frame, as a 
function of time. This information defines the coordinate axes of the ``Body Equator and Prime 
Meridian'' system.  

The orientation models use three Euler angles to describe the pole and prime meridian location: 
the first two angles, in order, are the right ascension and declination (henceforth ra and DEC) of 
the north pole of a body as a function of time. The third angle is the prime meridian location 
(represented by `W'), which is expressed as a rotation about the north pole, also a function of 
time. The coordinate transformation defined by the Euler angles is represented by the matrix 
product  

 
   [ W ]    [ Pi/2 - Dec ]    [ Pi/2 + RA ] 
        3                 1                3 
where  
 
   [ omega ] 
            i 
denotes the matrix that rotates vectors by --omega about the ith coordinate axis, using the right 
hand rule. (This notation is explained in detail in [214]).  

In PCK files, the time arguments of functions that define orientation always refer to Barycentric 
Dynamical Time (TDB), measured in centuries or days past a specified epoch such as J2000, 
which is Julian ephemeris date 2451545.0. The time units expected by the SPICELIB software 
are ephemeris days for prime meridian motion and ephemeris centuries for motion of the pole.  



 

NAIF Text Kernel Format  

 

 
 
Text PCK files conform to a flexible format called ``NAIF text kernel'' format. (A number of 
SPICELIB kernels other than text PCKs use this NAIF text kernel format is described in detail in 
[218]. For the reader's convenience, an overview of the format is provided here.  

NAIF text kernels are, first of all, ASCII files. As such, they are human readable and can be 
easily modified by text editors. In addition, NAIF text kernels can be readily ported between 
computer systems, even when the systems in question have different file systems and file 
formats.  

The NAIF text kernel format provides for representation of data in a ``keyword = value'' syntax. 
The format also provides for the inclusion of free-form comment blocks.  

There are two kinds of data that can be placed in NAIF text kernel files: double precision 
numbers and UTC time strings.  

According to the text kernel format, a text kernel nominally consists of a series of sets of 
contiguous lines (or ``blocks'') of comments, alternating with blocks of data. Comment blocks 
are started with the string (called a ``control sequence'')  

 
   \begintext 
alone on a line, as shown here. Comment blocks are ended by the control sequence  
 
   \begindata 
alone on a line. In a text kernel file, the lines preceding the first  
 
   \begindata 
control sequence are considered to constitute a comment block; the  
 
   \begintext control sequence is optional for this comment 
block.  

Comment blocks can contain arbitrary text, except for non-printing characters or lines that can be 
interpreted as control sequences. On the other hand, data must be organized according to a very 
specific format: all of the data in a text kernel must appear in the form of an ``assignment'' such 
as  

 
   NAME = ( VALUE1, VALUE2, ... ) 



where name is a string no longer than 32 characters, and the values on the right hand side are 
double precision numbers. A specific example is shown below:  
 
   BODY399_RADII     = (  6378.140  6378.140  6356.75  ) 
Some variations on the form shown here are allowed: commas between data values are optional, 
the right hand side of the assignment can be continued over multiple lines, and the numbers can 
be expressed as integers or reals without causing the PCK software to fail. Assignments of 
scalars do not require the value on the right hand side to be enclosed in parentheses, but that 
notation is frequently used as a visual cue. Blank lines within or between assignments are 
ignored by the SPICELIB software that reads text kernels.  

In addition to numbers, UTC strings can be assigned to variables. The ``@'' character is used to 
identify the strings as time strings. The strings are stored internally as double precision numbers 
representing ``UTC seconds past J2000.'' An example is the assignment:  

 
   SCLK_KERNEL_ID            = ( @01-MAY-1991/16:25 ) 
See [218] for a complete discussion of the allowed form of assignments.  

The effect of an assignment in a text PCK file is to associate values with a name. The name is 
referred to as a ``kernel variable.'' When a text PCK file is loaded by an application, the 
associations of names and values established by the PCK are maintained: the values associated 
with a given name can be retrieved at any time.  

 

Text PCK Contents  

 

 
 
Other than the limitations imposed by the PCK kernel formats, there are no absolute restrictions 
on the names or values of the variables used in PCK files. However, the SPICELIB kernel 
concept calls for the contents of PCK files to be limited to physical and cartographic constants 
describing extended solar system bodies: radii of bodies, constants defining orientation models, 
masses or values of GM are examples of data appropriate for inclusion in PCKs.  

SPICELIB provides a text PCK access routine (RTPOOL) that can return the values of any 
variable defined in a text PCK file. There are also more specialized PCK access routines 
(BODEUL, BODMAT, TIPBOD, TISBOD, BODVAR) that can recognize and make use of a 
specific set of of kernel variables. These access routines return Euler angles and coordinate and 
state transformation matrices that are used to convert position and state vectors from inertial to 
body-fixed, planetocentric coordinates. In this document, the formulas defining time-varying 
coordinate transformation matrices and Euler angles are referred to as ``orientation models'' since 
they define the orientation of an extended body with respect to specific inertial frames.  



Because PCK access routines that deal with orientation models are used extensively in 
SPICELIB and applications that use the Toolkit, the kernel variables that these routines rely on 
will be discussed in detail.  

The functions that define the Euler angles are characterized by a set of parameters. The specific 
values of the parameters are values assigned to kernel variables in PCK files. The functions 
themselves are implemented by code within SPICELIB routines. The general form of the 
functions is that used in the latest IAU/IAG/COSPAR report. Values shown in this document 
reflect the 1991 report, [306]. For the latest PCK values, check with NAIF.  

In a text PCK file, the variables (Euler angles)  

 
   RA,  DEC,  W 
for the Earth are represented by the names  
 
   BODY399_POLE_RA 
   BODY399_POLE_DEC 
   BODY399_POLE_PM 
The equations above are expressed in a text PCK file by the kernel variable assignments (Values 
taken from [306].)  
 
   BODY399_POLE_RA        = (    0.      -0.641         0. ) 
   BODY399_POLE_DEC       = (  +90.      -0.557         0. ) 
   BODY399_PM             = (  190.16  +360.9856235     0. ) 
Note that the string ``PM'' is used in place of ``W'' for the kernel variable associated with the 
prime meridian.  

If you examine a PCK file produced by NAIF, you'll see an additional symbol grouped with the 
ones listed here; it is  

 
   BODY399_LONG_AXIS 
This term is currently zero for all bodies except Mars. It represents the offset between the longest 
axis of the triaxial ellipsoid used to model a body and the prime meridian of the body.  

 

Text PCK Kernel Variable Names  

 
 
Text PCK kernel variables recognized by SPICELIB PCK access routines have names that 
follow a simple pattern: variables related to a body whose NAIF integer code is nnn have names 
of the form  

 
   BODYnnn_<item name> 
where  



 
   <item name> 
is a short string that identifies the type of quantity the kernel variable represents. For example, 
the variable containing quadratic polynomial coefficients for the right ascension of the Earth's 
north pole is  
 
   BODY399_POLE_RA 
Note the number ``399'' appearing in the kernel variable names; this is the NAIF integer code for 
the Earth.  

The specific item names that are recognized by PCK access routines are specified in the 
following sections.  

 

Restrictions on the Form of Orientation Models in Text PCK Kernels  

 
 
Orientation models that are usable by SPICE's text PCK access routines are not available for all 
solar system bodies. For example, Saturn's moon Hyperion is ``tumbling'' and does not admit a 
description of its motion by the sort of models used in text PCK kernels.  

To date, no PCK files containing models for the rotation of comets have been produced or 
collected by NAIF. Models for the rotation of comets, as well as for the rotation of asteroids and 
the natural satellites of planets, can be accommodated by the PCK system only if the models 
have the form described in the section ``Models for the Sun, Planets, and Asteroids'' or in 
``Models for Satellites'' or if binary PCK data is available.  

 

Models for the Sun, Planets, and Asteroids in Text PCK Kernels  

 
 
For the Sun, planets, and asteroids, the expressions used in text PCK files for the north pole 
direction and prime meridian location are always quadratic polynomials, where the independent 
variable is time. Some coefficients may be zero.  

Let RA and DEC represent the right ascension and declination of a body's north pole, and let W 
be the prime meridian location, measured in the counterclockwise direction, from the cross 
product of the Earth's ``mean'' North pole at the J2000 epoch (as used in defining the J2000 
frame) and BODY's North pole at et, to BODY's prime meridian at et.  

The variables RA, DEC, and W constitute sufficient information to compute the transformation 
from a specified inertial frame to body-fixed, planetocentric coordinates for the body to which 
they apply, at a specified time.  



The angles RA, DEC, and W are defined as follows:  

 
                                   2 
                              RA2*t 
   RA  =  RA0  +  RA1*t/T  +  ------ 
                                 2 
                                T 
  
                                    2 
                              DEC2*t 
   DEC =  DEC0 + DEC1*t/T  +  ------- 
                                 2 
                                T 
  
                                  2 
                              W2*t 
   W   =  W0   + W1*t/d    +  ----- 
                                 2 
                                d 
  
where  
 
   d = seconds/day 
   T = seconds/Julian century 
   t = ephemeris time, expressed as seconds past the reference epoch 
       for this body or planetary system 
Below is an example showing actual values of the parameters used to define the latest IAU 
model for orientation of the Earth. Here, the motions of both the pole and the prime meridian are 
given by linear polynomials; the quadratic terms are all zero. The values shown here are taken 
from [306]. In that document, the names  
 
   alpha 
        0 
and  
 
   delta 
        0 
are used in place of the names RA and DEC used here.  
 
   alpha   =   0.00 - 0.641 T 
        0 
  
   delta   =  90.0  - 0.557 T 
        0 
  
   W       =  190.16 + 360.9856235 d 
  
   T represents centuries past J2000 (TDB), 
  
   d represents days past J2000 (TDB). 
 

Models for Satellites in Text PCK Kernels  



 
 
Orientation models for natural satellites of planets are a little more complicated; in addition to 
polynomial terms, the RA, DEC, and W expressions include trigonometric terms. The arguments 
of the trigonometric terms are linear polynomials. These arguments are usually called ``phase 
angles.'' However, within SPICELIB internal documentation, these quantities are called 
``nutation precession angles''; for consistency with the SPICELIB software, we'll use this 
terminology in the following discussion.  

Expressions for the right ascension and declination of the north pole and the location of the 
prime meridian for any satellite of a given planet are as follows:  

 
                                2      ____ 
                           RA2*t       \ 
   RA  = RA0  + RA1*t/T  + ------   +  /     a  sin theta 
                              2        ----   i          i 
                             T           i 
  
                                 2     ____ 
                           DEC2*t      \ 
   DEC = DEC0 + DEC1*t/T + -------  +  /    d  cos theta 
                               2       ----  i          i 
                              T          i 
  
                               2       ____ 
                           W2*t        \ 
   W   = W0   + W1*t/d   + -----    +  /     w  sin theta 
                              2        ----   i          i 
                             d           i 
where  
 
   d = seconds/day 
   T = seconds/Julian century 
   t = ephemeris time, expressed as seconds past a reference epoch 
RA0, RA1, DEC0, DEC1, W0, and W1 are constants specific to each satellite.  

The nutation precession angles  

 
   theta 
        i 
are specific to each planet. The coefficients  
 
   a ,  d ,  and w 
    i    i        i 
are specific to each satellite.  

As an example, the nutation precession angles for Earth given by [252] are shown below. That 
document uses the variable names E1---E5 in place of  

 



   theta  --- theta 
        1          5 
in the equations above.  
 
   E1 = 125.045 -  0.052992 d 
   E2 = 250.090 -  0.105984 d 
   E3 = 260.008 + 13.012001 d 
   E4 = 176.625 + 13.340716 d 
   E5 = 357.529 +  0.985600 d 
  
   Here d represents days past J2000 (TDB) 
Because the NAIF Toolkit software expects the time units for the angles to be centuries (as in the 
IAU models for most bodies---the Earth is an exception), the linear coefficients are scaled by 
36525.0 for use in the kernel variable assignments:  
 
   BODY3_NUT_PREC_ANGLES  = (  125.045    -1935.5328 
                               250.090    -3871.0656 
                               260.008   475263.3 
                               176.625   487269.6519 
                               357.529    35999.04     ) 
In this assignment, the constant and linear polynomial coefficients for each nutation precession 
angle are listed together: the numbers 125.045 and -1935.5328 are the constant and linear terms 
for the angle ``E1,'' and so on.  

Note the body number 3 in the kernel variable name above; this number designates the Earth-
Moon barycenter. The PCK access routines expect nutation precession angles to be associated 
with the barycenters of planetary systems.  

Here are the expressions for the right ascension and declination of the moon, also taken from 
[252]:  

 
   alpha   =  270.000 +  0.003 T -  3.878 sin(E1)  -  0.120 sin(E2) 
        0 
                          +  0.070 sin(E3)  -  0.017 sin(E4) 
  
  
   delta   =  66.541  + 0.013 T  +  1.543 cos(E1)  +  0.024 cos(E2) 
        0 
                       -  0.028 cos(E3)  +  0.007 cos(E4) 
  
  
   W       =  38.317   + 13.1763582 d    +  3.558 sin(E1) 
  
                       +  0.121 sin(E2) 
  
                       -  0.064 sin(E3) 
  
                       +  0.016 sin(E4) 
  
                       +  0.025 sin(E5) 
  
   Here d represents days past J2000 (TDB), 



   and T represents Julian centuries past J2000 (TDB). 
   E1--E5 are the nutation precession angles. 
The polynomial terms are assigned to symbols by the statements  
 
   BODY301_POLE_RA        = (  270.000    0.003        0. ) 
   BODY301_POLE_DEC       = (  +66.541    0.013        0. ) 
   BODY301_PM             = (   38.317  +13.1763582    0. ) 
The coefficients of the trigonometric terms are assigned to symbols by the statements  
 
   BODY301_NUT_PREC_RA  = (  -3.878  -0.120  +0.070  -0.017   0.    ) 
   BODY301_NUT_PREC_DEC = (  +1.543  +0.024  -0.028  +0.007   0.    ) 
   BODY301_NUT_PREC_PM  = (  +3.558  +0.121  -0.064  +0.016  +0.025 ) 
Note that for the RA and PM (prime meridian) assignments, the ith term is the coefficient of 
sin(Ei) in the expression used in the IAU model, while for the DEC assignment, the ith term is 
the coefficient of cos(Ei) in the expression used in the IAU model.  

SPICELIB software for text PCK kernels expects the models for satellite orientation to follow 
the form of the model shown here: the polynomial terms in the RA, DEC, and W expressions are 
expected to be quadratic, the trigonometric terms for RA and W (satellite prime meridian) are 
expected to be sums of sines of nutation precession angles, and the trigonometric terms for DEC 
are expected to be sums of cosines of nutation precession angles. The nutation precession angles 
themselves are defined by linear polynomial functions of time.  

Note that the number of values defining the nutation precession angles for a planetary system 
must be be consistent with the number of trigonometric terms used in the expressions for the RA, 
DEC and W angles for the satellites of that system. See ``Creating and Modifying Text PCKs 
Kernels'' for details.  

 

Epoch and Frame Specifications in Text PCK Kernels  

 
 
The constants used in PCK files to define an orientation model for a specified body are assumed 
by default to define a time-dependent rotation R(t) that converts vectors from J2000 coordinates 
to body-fixed, planetocentric coordinates at the epoch t seconds past J2000, TDB (JED 
2451545.0). We say that the constants are ``referenced to the J2000 epoch and J2000 frame.'' 
However, these default values for the epoch and frame of the constants may be overridden: it is 
possible to use constants that are referenced to the B1950 frame and to the J1950 epoch, for 
example.  

The default constants and frame for a body are overridden by setting the values of the kernel 
variables  

 
   BODY<id code>_CONSTANTS_REF_FRAME 
and  
 



   BODY<id code>_CONSTANTS_JED_EPOCH 
Here  
 
   <id code> 
is:  

-- for planets and their satellites: the NAIF integer code of the corresponding planetary 
system's barycenter.  

-- for other bodies: the NAIF integer code of the body itself.  

The values of the frame specifier variable  
 
   BODY<id code>_CONSTANTS_REF_FRAME 
are the codes returned by the SPICELIB routine IRFNUM. Some of the commonly used codes 
and the corresponding frames are:  
 
   Code        Frame 
   ----        ----- 
     1         J2000 
  
     2         B1950 
  
     3         FK4 (used in CSPICE for `EME50') 
For example, to use constants referenced to the FK4 or EME50 frame for the asteroid Gaspra (ID 
code = 9511010), the PCK file containing the constants should include the assignment  
 
   BODY9511010_CONSTANTS_REF_FRAME   =   (  3  ) 
The values of the epoch specifier variable  
 
   BODY<id code>_CONSTANTS_JED_EPOCH 
are Julian ephemeris dates. To use constants for Gaspra that are referenced to the J1950 epoch, 
the PCK file containing the constants should include the assignment  
 
   BODY9511010_CONSTANTS_JED_EPOCH   =   (  2433282.5D0 ) 
The creator of a PCK file can set the frame and epoch of the constants on a body-by-body basis, 
except in the case of planets and their (natural) satellites, where a single choice of frame and 
epoch must be used for each planetary system. For example, to use constants referenced to the 
B1950 frame and J1950 epoch for the Earth and Moon, you would make the assignments  
 
   BODY3_CONSTANTS_REF_FRAME   =   (  2           ) 
   BODY3_CONSTANTS_JED_EPOCH   =   (  2433282.5D0 ) 
The ID code `3' designates the Earth-Moon barycenter.  

Note: the assignment  

 
   BODY399_CONSTANTS_REF_FRAME   =   (  2           ) 
   BODY399_CONSTANTS_JED_EPOCH   =   (  2433282.5D0 ) 
would be ignored by the PCK reader routines; you cannot assign a frame or epoch using the ID 
code of a planet or satellite.  



Using constants that are referenced to frames or epochs other than J2000 does not affect the 
definitions of the inputs or outputs of any of the PCK access routines. These routines make the 
necessary transformations internally to take into account the reference frame and epoch of the 
orientation constants in the kernel pool. Thus the PCK access routine BODMAT, which has the 
argument list  

 
   BODMAT ( BODY, ET, TIPM ) 
returns the J2000-to-body-fixed transformation matrix for ephemeris time expressed as ``ET'' 
seconds past the J2000 epoch (JED 2451545.0), regardless of the epoch or frame of the 
orientation constants used to compute TIPM.  

 

Shape models in Text PCK Kernels  

 
 
SPICELIB contains a number of geometry routines that make use of triaxial ellipsoidal models 
of extended solar system bodies. Although SPICELIB currently contains no routines that directly 
use the specific PCK variables that define these models, text PCK files typically contain radii of 
solar system bodies, since these values can be looked up by low-level text PCK access routines 
and subsequently used by SPICELIB geometry routines.  

In text PCK files produced by NAIF, the radius values for body nnn are assigned to the variable  

 
   BODYnnn_RADII 
Three radius values are always assigned for each instance of this variable. The data are ordered 
as in [306]: the equatorial radii are listed with the largest axis, often called the ``a'' axis, 
appearing first; the polar radius is last. Spheroids and spheres are obtained when two or all three 
radii are equal.  

Example: Radii of the Earth.  

 
   BODY399_RADII     = (     6378.140    6378.140     6356.75   ) 
 

Summary of PCK Variables used in Text PCK Kernels by SPICE  

 
 
In order to compute transformations for the Sun, a planet, or an asteroid (say body number ppp), 
the PCK access routines require that one or more PCK files containing values for the following 
variables be loaded:  



 
   BODYppp_POLE_RA 
   BODYppp_POLE_DEC 
   BODYppp_PM 
For a satellite (say body number sss), one or more PCK files containing values for the following 
variables must be loaded:  
 
   BODYsss_POLE_RA 
   BODYsss_POLE_DEC 
   BODYsss_PM 
   BODYsss_NUT_PREC_RA 
   BODYsss_NUT_PREC_DEC 
   BODYsss_NUT_PREC_PM 
   BODYbbb_NUT_PREC_ANGLES 
where the code bbb embedded in the last name above is that of the barycenter of the planetary 
system to which the satellite belongs.  

The triaxial ellipsoidal model for body nnn is expressed by the assignment  

 
   BODYnnn_RADII = ( <larger equatorial radius>, 
                     <smaller  equatorial radius>, 
                     <polar radius> ) 
 

Creating and Modifying Text PCKs  

 

 
 
The PCK file text format allows NAIF Toolkit users to easily modify existing text PCKs and to 
create their own files containing values of their choosing. Any text editor capable of working 
with ASCII files can be used to edit text PCK files.  

Although the text PCK format makes it easy to modify text PCK files, NAIF recommends that 
application programmers avoid software designs that call for special-purpose, user-created text 
PCK files. The opportunities for confusion and errors increase with the number of available 
versions of a text PCK file (or any data file).  

NAIF recommends that you take the following precautions when modifying a text PCK file:  

-- Change the name of the updated file.  

-- Document the changes by adding appropriate comments to the file. Each text PCK file 
should contain sufficient information to allow a human reader to find out who was 
responsible for creating the current version of the file and what the source was for each 
data value in the file. If the file is an update, the reason for the update and a summary of 
the differences from the previous version should be included.  



-- Test the file using software that makes use of any values that you've added or 
modified.  

The reasons why a NAIF Toolkit user might wish to modify an existing text PCK are:  
-- Removing unneeded data or comments to speed up loading and simplify the file. 
Removal of data is much more important than removal of comments, as far as speeding 
up kernel loading is concerned.  

-- Adding data values for new bodies.  

-- Updating existing data values or substituting preferred data values.  

New kernel variables added to text PCK files should follow the naming conventions described in 
the ``Kernel Variable Names'' section. All text PCK variable names, whether or not they are 
recognized by SPICELIB software, should start with the prefix  
 
   BODYnnn_ 
where nnn is the NAIF integer code of the body the variable applies to.  

Kernel variables having names recognized by users' application software are a potential problem 
area: if the names used in the application don't match those in the text PCK file, the application 
will fail to obtain the data as intended. The most frequent cause of this type of failure is 
misspelling of variable names, but programmers who are considering changing names of PCK 
variables that are already in use should also keep this problem in mind.  

Modifying orientation models for satellites requires attention to the consistency between the 
number of nutation precession angles and the number of coefficients of trigonometric functions 
having the nutation precession angles as arguments. For any planetary system, there should be 
twice as many values for the nutation precession angles as the maximum number of 
trigonometric terms in the expressions for prime meridian location or right ascension or 
declination of the pole of any satellite in the system. This is because the nutation precession 
angles are defined by linear polynomials; each polynomial has two defining coefficients.  

For example, the 1991 IAU model for the Earth-Moon system uses the following values to 
determine the Moon's orientation:  

 
   BODY3_NUT_PREC_ANGLES  = (  125.045    -1935.5328 
                               250.090    -3871.0656 
                               260.008   475263.3 
                               176.625   487269.6519 
                               357.529    35999.04     ) 
  
   BODY301_POLE_RA        = (  270.000    0.003        0. ) 
   BODY301_POLE_DEC       = (  +66.541    0.013        0. ) 
   BODY301_PM             = (   38.317  +13.1763582    0. ) 
  
   BODY301_NUT_PREC_RA  = (  -3.878  -0.120  +0.070  -0.017   0.    ) 
   BODY301_NUT_PREC_DEC = (  +1.543  +0.024  -0.028  +0.007   0.    ) 
   BODY301_NUT_PREC_PM  = (  +3.558  +0.121  -0.064  +0.016  +0.025 ) 



Note that there are five nutation precession angles, with two coefficients defining each one. The 
trigonometric terms in the expressions for the right ascension, declination, and prime meridian 
location for the moon require five nutation precession angles.  

If a NAIF Toolkit user were to update this model with a new one that had, for example, only one 
nutation precession angle, then the variables  

 
   BODY301_NUT_PREC_RA 
   BODY301_NUT_PREC_DEC 
   BODY301_NUT_PREC_PM 
would each have to be assigned only one value. Failure to make this change would result in an 
error being signalled at run-time by any SPICELIB PCK access routine that uses these variables.  

 

Binary PCK Kernel Format  

 

 
 
 

Segments--The Fundamental PCK Building Blocks  

 
 
A binary PCK file contains one or more `segments'. Each segment contains data sufficient to 
compute the axes of a body-fixed planetary coordinate system, relative to a specified inertial 
reference frame, as a function of time.  

The data in each segment are stored as a single array. The summary for the array, called a 
`descriptor', has two double precision components:  

1. The initial epoch of the interval for which data are contained in the segment, in 
ephemeris seconds past Julian year 2000;  

2. The final epoch of the interval for which data are contained in the segment, in 
ephemeris seconds past Julian year 2000.  

The descriptor has five integer components:  
1. The NAIF integer code for the body;  

2. The NAIF integer code for the inertial reference frame;  



3. The integer code for the representation (type of PCK data). Only type 2 is presently 
supported;  

4. The initial address of the array;  

5. The final address of the array.  

The name of each array may contain up to 40 characters. This space may be used to store a 
`pedigree' for the data in the array. The pedigree of a segment should allow a user to determine 
the conditions under which the data in the segment were generated.  

 

The Comment Area  

 
 
Preceding the `segments', the Comment Area provides space in a binary PCK file for storing 
additional textual information besides what is written in the array names. Ideally, each binary 
PCK file would contain internal documentation that describes the origin, recommended use, and 
any other pertinent information about the data in that file. For example, the beginning and ending 
epochs for the file, the names and NAIF integer codes of the bodies included, an accuracy 
estimate, the date the file was produced, and the names of the source files used in making the 
binary PCK file could be included in the Comment Area.  

SPICELIB provides a family of subroutines for handling this Comment Area. This software 
provides the ability to add, extract, read, and delete comments and convert commented files from 
binary format to transfer format and back to binary again.  

 

Binary PCK Data Types  

 
 
The third integer component of the descriptor---the code for the representation, or `data type'---is 
the key to the binary PCK format. For purposes of determining the segment best suited to fulfill a 
particular request, all segments are treated equally. It is only when the data in a segment are to be 
evaluated that the type of data used to represent the data becomes important. Because this step is 
isolated within low-level readers, new data types can be added to the binary PCK format without 
affecting application programs that use the higher level readers.  

 

Supported Data Types  



 
 
Two representations, or data types, are currently supported by the binary PCK routines in 
SPICELIB. They are Chebyshev polynomials (Euler angles only), called "Type 2" and 
Chebyshev polynomials (Euler angles and their derivatives) for intervals of possibly varying 
lenghts, called "Type 3".  

 

Type 2: Chebyshev (Angles only)  

 
 
These are sets of Chebyshev polynomial coefficients for the Euler angles, defining right 
ascension and declination of the body's north pole, and its prime meridian rotation as a function 
of time. The rates of the angles are obtained by differentiation.  

Each segment contains an arbitrary number of logical records. Each record contains a set of 
Chebyshev coefficients valid throughout an interval of fixed length. The subroutine PCKE02 
contains the algorithm used to construct a set of Euler angles from a particular record and epoch.  

The records within a segment are ordered by increasing initial epoch. All records contain the 
same number of coefficients. A segment of this type is structured as follows:  

 
  
           +---------------+ 
           | Record 1      | 
           +---------------+ 
           | Record 2      | 
           +---------------+ 
             . 
             . 
             . 
           +---------------+ 
           | Record N      | 
           +---------------+ 
           | INIT          | 
           +---------------+ 
           | INTLEN        | 
           +---------------+ 
           | RSIZE         | 
           +---------------+ 
           | N             | 
           +---------------+ 
  
A four-number `directory' at the end of the segment contains the information needed to 
determine the location of the record corresponding to a particular epoch.  

1. INIT is the initial epoch of the first record, given in ephemeris seconds past 2000 Jan 
01 12:00:00, also known as J2000.  



2. INTLEN is the length of the interval covered by each record, in seconds.  

3. RSIZE is the total size of (number of array elements in) each record.  

4. N is the number of records contained in the segment.  

Each record is structured as follows:  
 
  
           +------------------+ 
           | MID              | 
           +------------------+ 
           | RADIUS           | 
           +------------------+ 
           | X  coefficients  | 
           +------------------+ 
           | Y  coefficients  | 
           +------------------+ 
           | Z  coefficients  | 
           +------------------+ 
  
The first two elements in the record, MID and RADIUS, are the midpoint and radius of the time 
interval covered by coefficients in the record. These are used as parameters to perform 
transformations between the domain of the record (from MID - RADIUS to MID + RADIUS) 
and the domain of Chebyshev polynomials (from -1 to 1 ).  

The same number of coefficients is always used for each component, and all records are the 
same size (RSIZE), so the degree of each polynomial is  

( RSIZE - 2 ) / 3 - 1  

 

Type 3: Chebyshev (Angles and derivatives of intervals of possibly varying 
lengths)  

 
 
These are sets of Chebyshev polynomial coefficients for the Euler angles, defining right 
ascension (RA) and declination (DEC) of the body's north pole, and its prime meridian rotation 
(W) as a function of time, and their derivatives. This data type was created for the attitude of the 
asteroid Eros.  

Each segment contains an arbitrary number of logical records. Each record contains a set of 
Chebyshev coefficients for angles and derivatives valid throughout an interval defined in the 
record. The lengths of these intervals may vary within a segment. The subroutine PCKE03 
contains the algorithm used to construct a set of Euler angles from a particular record and epoch. 
All records contain the same number of coefficients.  



A segment of this type is structured as follows:  

 
   ----------------------------------------------------- 
   | Record 1 | Record 2 | ... | Record N-1 | Record N | 
   ----------------------------------------------------- 
where each record has the following format:  
 
   --------------------------------------------------- 
   |  Midpoint of the approximation interval in TDB  | 
   --------------------------------------------------- 
   | Radius of the approximation interval in seconds | 
   --------------------------------------------------- 
   |        coefficients for the RA position         | 
   --------------------------------------------------- 
   |        coefficients for the DEC position        | 
   --------------------------------------------------- 
   |        coefficients for the W position          | 
   --------------------------------------------------- 
   |        coefficients for the RA velocity         | 
   --------------------------------------------------- 
   |        coefficients for the DEC velocity        | 
   --------------------------------------------------- 
   |        coefficients for the W velocity          | 
   --------------------------------------------------- 
TDB is time in ephemeris seconds past J2000, called et in the SPICELIB system.  

 

Creating Binary PCKs  

 

 
 
Only very knowledgeable users who need to incorporate new planetary/satellite orientation 
information in binary format should consider writing binary PCK files. Users who write binary 
PCK files must have a thorough understanding of the information they wish to place in a binary 
PCK file. They must also master the high level structure of the PCK files, and they must be sure 
to correctly package the data for the PCK writing subroutines provided in SPICE. We also 
strongly recommend that the writer of a PCK file include descriptive comments in the comment 
area. Normally, binary PCK files should be obtained from NAIF.  

To create files that are smaller and faster to load, the user should keep in mind that the PCK 
segments should be as large as possible.  

The are generally three steps to creating a binary PCK file.  

1. Open the file.  



2. Begin the segment, add data to the segment and close the segment.  

3. Close the file.  

The subroutine PCKOPN is used to open a new binary PCK file. Below is an example for a call 
to PCKOPN. 'NAME' is the name of the file to be opened, IFNAME is the internal file name, 
HANDLE is the handle of the opened SPK file. We use I for the number of record to reserve for 
comments.  
 
         CALL PCKOPN ( FILE, IFNAME, I, HANDLE ) 
The method for beginning the segment, adding data to the segment and closing the segment 
differs with the PCK type.  

For segments of type 2, there is a segment writing routine called PCKW02 in SPICELIB. This 
routine takes as input arguments the handle of an PCK file that is open for writing, the 
information needed to construct the segment descriptor, and the data to be stored in the segment. 
The header of the subroutine provides a complete description of the input arguments and an 
example of its usage. Here's an example of a call to PCKW02:  

 
  
         CALL PCKW02 ( HANDLE,  BODY,  FRAME, FIRST, 
                         LAST,  SEGID, INTLEN,     N, 
                        POLYDG, CDATA,  BTIME          ) 
  
For type 3, there are three subroutines used in creating a binary PCK file. They are PCK03B, 
which begins a type 3 segment, PCK03A, which adds data to segment, and PCK03E, which ends 
a segment. The type 3 subroutines can be used in a loop, where PCK03A is called to add data to 
the segment. Here is a code fragment which begins a type 3 segment, writes data to that segment 
in a loop, and then closes the segment.  
 
      CALL PCK03B ( HANDLE, SEGID, BODY, FRAME, 
                    ETSTRT, ETSTOP, CHBDEG ) 
      DO WHILE ( <a condition> ) 
         ... 
         CALL PCK03A ( HANDLE, N, COEFFS, EPOCHS ) 
         ... 
      END DO 
  
      CALL PCKO3E ( HANDLE ) 
  
When a user is finished writing segments to an PCK file, the file must be closed with the 
subroutine PCKCLS.  
 
      CALL PCKCLS ( HANDLE ) 
 

PCK Software  

 



 
 
This section describes the specifications and proper use of the SPICELIB PCK software.  

 

Getting PCK Data into Your Program  

 
 
Because loading PCK files is usually time-consuming, it is good programming practice to have 
applications load PCK files during program initialization rather than throughout their main 
processing thread, especially if that processing thread is a loop.  

It is also wise to avoid designing data processing systems that effectively place PCK loading in a 
tight loop by requiring repeated runs of programs that expend a significant fraction of their run 
time on loading PCK files. If a program loads PCK files, it is preferable that it do all of its 
processing in a single run, or at least in a small number of runs, rather than carry out its 
processing by being re-run a large number of times: the former design will greatly reduce the 
ratio of the time the program spends loading PCKs to the time it spends on the rest of its data 
processing.  

 

Loading Text PCK Kernels  

 
 
As mentioned in the ``System Overview'' section, in order to use text PCK files in an application, 
the data in the files must be read into memory. This is accomplished by calling the SPICELIB 
routine LDPOOL. The name of the text PCK file to load is supplied as an input to LDPOOL, for 
example:  

 
   CALL LDPOOL ( 'P_CONSTANTS.KER' ) 
File names supplied to LDPOOL will generally be system-dependent. It is good programming 
practice to not use hard-coded file names in calls to LDPOOL. Instead, applications should 
obtain kernel file names by one of the following methods:  

-- Reading the kernel file names from a file containing the names. (This allows users to 
change the kernel files without re-compiling and re-linking the application.)  

-- Prompting the user for the file names at run-time.  

An application can load any number of text PCK files during a single program run. There are, 
however, parameterized limits on both the total number of kernel variables that can be stored and 
on the total number of data values assigned to those variables.  



Each time a text PCK is loaded, the assignments made in the file are maintained in the PCK 
software. In particular, if a kernel variable occurs in multiple PCKs that are loaded in a single 
run of a program, the value of the variable will be the one assigned in the following priority: last 
binary PCK file loaded, previously loaded binary PCK files, then last loaded text PCK files 
followed by previously loaded text PCK files. All binary PCK files take precedence over text 
PCK files. Within the binary and/or text file groups, the last loaded files takes precedence.  

 

Loading Binary PCK Kernels  

 
 
The routine PCKLOF maintains a database of loaded binary PCK files. The calling program 
indicates which files are to be used by passing their names to PCKLOF.  

 
      CALL PCKLOF ( 'example.pck', HANDLE) 
PCKLOF returns a DAF file handle for each file, which may be used to access the file directly 
using DAF subroutines. Once an PCK file has been loaded, it may be accessed by the PCK 
software. Each set of constants is computed from a distinct segment.  

An PCK file may contain any number of segments. In fact, the same file may contain 
overlapping segments: segments containing data for the same body over a common interval. 
When this happens, the latest segment in a file supersedes any competing segments earlier in the 
file. Similarly, the latest file loaded supersedes any earlier files. In effect, several loaded files 
become equivalent to one large file. Binary PCK files take precedence over text PCK files.  

 

Unloading Binary PCK Kernels  

 
 
It is possible, though unlikely, that a program would need to make use of many binary PCK files 
in the course of a single execution. On the other hand, the number of binary PCK files that may 
be open at any one time is limited, so such a program might need to unload some PCK files to 
make room for others. A binary PCK file may be unloaded by supplying its handle to subroutine 
PCKUOF. The call to this subroutine is shown below,  

 
      CALL PCKUOF ( HANDLE )     { Unload binary PCK file } 
 

High-Level Access Routines  



 
 
SPICELIB contains two basic categories of PCK access routines: those that return PCK data 
directly, and those that return quantities derived from PCK data. This section discusses the PCK 
access routines in the later category: these routines deal with coordinate and state 
transformations.  

All of the routines listed here make use of the orientation models discussed in the section titled 
``Orientation Models used by PCK Software.'' Note that in order to use these routines, an 
application must first load a PCK file (or files) containing sufficient data to define all of the 
required orientation models. If needed data has not been loaded, these routines will signal run-
time errors when called.  

To obtain the matrix that transforms vectors from a specified inertial reference frame to body-
fixed planetocentric coordinates for a specified body, at a specified ephemeris time, use the 
routine TIPBOD. The calling sequence is  

 
   CALL TIPBOD ( REF, BODY, ET, TIPM ) 
In the argument list for TIPBOD:  
REF  

is a character string that designates an inertial reference frame recognized by SPICELIB 
BODY  

is the NAIF integer code of the body defining the planetocentric coordinate system 
ET  

is the ephemeris time at which the orientation model given the basis vectors of the 
planetocentric frame is to be evaluated 

TIPM  

is the 3x3 transformation matrix that carries out the desired transformation. 
For example, let V50 be a vector specified relative to the B1950 inertial reference frame. The 
call  
 
   CALL TIPBOD ( 'B1950', 399, ET, TIPM ) 
returns a matrix TIPM such that left-multiplying V50 by TIPM--- accomplished in SPICELIB by 
the call  
 
   CALL MXM ( TIPM, V50, VBODFX ) 
will return the vector VBODFX specified relative to the Earth's (``body-fixed'') planetocentric 
frame at time ET.  

Note that many practical applications of TIPBOD require that a light-time corrected value of et 
be supplied as an input. See ``Computing the Sub-Observer Point'' in the ``Examples'' section 
below.  



The subroutine BODMAT is an older, less general version of TIPBOD that does not accept an 
input argument specifying an inertial reference frame. Instead, BODMAT assumes that the frame 
is J2000. The calling sequence is the same as that of TIPBOD, minus the argument ref:  

 
   CALL BODMAT ( BODY, ET, TIPM ) 
The fundamental quantities defined by PCK orientation models are actually Euler angles, not 
matrices. These Euler angles, which we call ``RA, DEC, and W,'' are related to the matrix TIPM 
shown above by the equation  
 
   TIPM = [ W ]   [ Pi/2 - DEC ]   [ Pi/2 + RA ] 
               3                1               3 
  
The units of these angles are radians. To retrieve these angles directly, the call  
 
   BODEUL ( BODY, ET, RA, DEC, W, LAMBDA ) 
can be used. The arguments BODY and ET have the same meanings as in the argument lists of 
TIPBOD and BODMAT. The arguments RA and DEC represent the right ascension and 
declination of the North pole of body at et with respect to the J2000 inertial reference frame. The 
argument W is the prime meridian location for BODY at ET, also measured with respect to the 
J2000 inertial reference frame.  

The output LAMBDA is the positive west longitude, measured from the prime meridian of body, 
of the longest axis of the triaxial ellipsoidal model for body given in a PCK file.  

Currently, the only body having a non-zero value of LAMBDA is Mars (see [195]). SPICELIB 
software does not currently make use of LAMBDA.  

SPICELIB provides a routine analogous to TIPBOD for transforming state vectors from inertial 
to planetocentric coordinates. This routine is called TISBOD; the calling sequence is  

 
   CALL TISBOD ( REF, BODY, ET, TSIPM ) 
The input arguments REF, BODY, and ET have the same meanings as in the argument list of 
TIPBOD. The output argument TSIPM is the 6x6 matrix required to transform state vectors from 
inertial to body-fixed coordinates. Left multiplication of a state vector by TSIPM will transform 
it from the frame specified by REF to body-fixed planetocentric coordinates for BODY at time 
ET.  

See ``Transforming a State to Body-Fixed Coordinates'' in the ``Examples'' section for further 
discussion of use of TISBOD.  

 

Low-Level Access to Text PCK Kernels  

 
 



WARNING: These low-level access routines for text PCK files only search the text kernel pool 
for these values. Values found in loaded binary PCK files will NOT be found by these routines. 
The values retrieved from a binary PCK file take precedence over the values found in the text 
PCK kernels. Therefore, if binary kernels have been loaded values returned by these low level 
routines may not be the same values used by higher level routines like TISBOD and TIPBOD. 
We recommend the user who loads binary PCK kernels NOT USE these low-level routines!  

The lowest-level SPICELIB PCK access routine is RTPOOL. RTPOOL is a general-purpose 
routine for retrieving any text kernel data loaded via LDPOOL. To obtain data from RTPOOL, 
use the calling sequence  

 
   CALL RTPOOL ( NAME, N, VALUES, FOUND ) 
The meanings of the arguments of RTPOOL are follows:  
NAME  

is the name of the kernel variable whose values are desired. This is the name used in a 
PCK file to make an assignment. 

N  

is the number of data values assigned to the kernel variable. 
VALUES  

is a double precision array of sufficient length to contain all of the data assigned to the 
kernel variable. Caution: if VALUES is declared with too short a length, RTPOOL will 
likely overwrite memory in the routine where VALUES is declared. 

FOUND  

is a logical flag indicating whether the kernel variable designated by name was actually 
loaded. 

RTPOOL is frequently used by other SPICELIB routines; however, SPICELIB users will 
generally be able to use the more convenient PCK access routine BODVAR, which is described 
below.  

In text PCK's produced by NAIF, PCK kernel variables will have names conforming to the 
naming convention used in SPICELIB, that is, the kernel variable names have the form  

 
   BODYnnn_<item name> 
The SPICELIB routine BODVAR can be used in place of RTPOOL to retrieve values for such 
variables; BODVAR accepts as inputs the NAIF integer code of the body and a string making up 
the portion of the item's name following the prefix.  
 
   BODVAR ( BODY, ITEM, DIM, VALUES ) 
   CALL BODVAR ( 399, 'RADII', DIM, VALUES ) 
which would return the dimension and values associated with the variable  
 
   BODY399_RADII 
namely  



 
   DIM      = 3 
   VALUE(1) = 6378.140 
   VALUE(2) = 6378.140 
   VALUE(3) = 6356.755 
It is possible to test whether a kernel variable has been loaded by calling the SPICELIB logical 
function BODFND, as long as the variables in question follow the SPICELIB naming 
convention. The calling sequence is  
 
   FOUND = BODFND ( BODY, ITEM ) 
where body is the NAIF integer code of the body, and ITEM is the string making up the portion 
of the item's name following the prefix  
 
   BODYnnn_ 
For example, to test whether values for Jupiter's radii have been loaded, the test  
 
   FOUND = BODFND ( 599, 'RADII' ) 
could be used. The variable FOUND would be returned as .TRUE. if a PCK file had been loaded 
containing an assignment of the variable  
 
   BODY599_RADII 
 

Examples  

 

 
 
This section illustrates some typical applications of SPICELIB PCK software.  

 

Computing the Sub-Observer Point  

 
 
In this example, we present a small program that solves a realistic science analysis geometry 
problem: finding the sub-observer point on an extended body at a specified time. We will assume 
that we have an SPK file available that contains ephemeris data for the observer and target body 
at the time of interest.  

 
  
  
         PROGRAM SUBOBS 
   C 
   C     Compute the planetocentric latitude and longitude of the 
   C     sub-observer point on an extended target body at a 



   C     specified UTC epoch.  The observer may be a spacecraft, 
   C     planet, or any body for which ephemeris data is available 
   C     in an SPK file. 
   C 
   C     This example uses text PCK kernels.  This program could 
   C     be modified to use binary PCK kernels by replacing the 
   C     LDPOOL call with a call to PCKLOF.  Both types of PCK 
   C     kernels could be used if a call to PCKLOF were added to 
   C     this program. 
   C 
  
   C 
   C     SPICELIB functions 
   C 
         DOUBLE PRECISION      DPR 
  
   C 
   C     Local parameters 
   C 
         INTEGER               FILEN 
         PARAMETER           ( FILEN = 128 ) 
  
   C 
   C     Local variables 
   C 
         CHARACTER*(FILEN)     LEAP 
         CHARACTER*(FILEN)     PCK 
         CHARACTER*(FILEN)     SPK 
         CHARACTER*(30)        UTC 
         CHARACTER*(5)         CORR 
  
         DOUBLE PRECISION      ALT 
         DOUBLE PRECISION      DIST 
         DOUBLE PRECISION      EPOCH 
         DOUBLE PRECISION      ET 
         DOUBLE PRECISION      LT 
         DOUBLE PRECISION      OBSPOS ( 3 ) 
         DOUBLE PRECISION      RADII  ( 3 ) 
         DOUBLE PRECISION      STATE  ( 6 ) 
         DOUBLE PRECISION      SUBLAT 
         DOUBLE PRECISION      SUBLON 
         DOUBLE PRECISION      SUBPT  ( 3 ) 
         DOUBLE PRECISION      TIPM   ( 3, 3 ) 
  
         INTEGER               HANDLE 
         INTEGER               N 
         INTEGER               OBSRVR 
         INTEGER               TARGET 
  
         LOGICAL               CONT 
  
         DATA CONT / .TRUE. / 
  
   C 
   C     Start out by prompting for the names of kernel files. 
   C     Load each kernel as the name is supplied. 
   C 



         WRITE (*,*) ' ' 
         WRITE (*,*) 'Enter name of SPK file' 
         READ  (*,FMT='(A)') SPK 
  
         CALL SPKLEF ( SPK, HANDLE ) 
  
         WRITE (*,*) 'Enter name of leapseconds kernel' 
         READ  (*,FMT='(A)') LEAP 
  
         CALL LDPOOL ( LEAP ) 
  
         WRITE (*,*) 'Enter name of text P_constants kernel' 
         READ  (*,FMT='(A)') PCK 
  
         CALL LDPOOL ( PCK ) 
  
  
         DO WHILE ( CONT ) 
  
            WRITE (*,*) ' ' 
            WRITE (*,*) 'Enter NAIF integer code of target body' 
            READ   *,    TARGET 
  
            WRITE (*,*) 'Enter NAIF integer code of observer body' 
            READ   *,    OBSRVR 
  
            WRITE (*,*) 'Enter UTC epoch of observation' 
            READ  (*,FMT='(A)') UTC 
  
            WRITE (*,*) 'Enter aberration correction to use:' 
            WRITE (*,*) 'NONE, LT, or LT+S' 
            READ  (*,FMT='(A)') CORR 
  
   C 
   C        Convert the UTC epoch to ET. 
   C 
            CALL UTC2ET ( UTC, ET ) 
  
   C 
   C        Find the state of the target as seen from the observer at 
   C        ET. 
   C 
            CALL SPKEZ ( TARGET, ET, 'J2000', CORR, OBSRVR, STATE, 
        .                LT                                        ) 
  
   C 
   C        The pure mathematical problem embedded in this application 
   C        is finding the nearest point on a triaxial ellipsoid to a 
   C        specified point.  The SPICELIB routine NEARPT solves this 
   C        problem.  NEARPT deals with an ellipsoid that is centered 
   C        at the origin and whose axes are lined up with the x, y, 
   C        and z coordinate axes.  So to use NEARPT, we'll have to 
   C        convert the problem at hand into a form that NEARPT can 
   C        accept. 
   C 
   C        The way to do this is to convert all of our vectors into 
   C        body equator and prime meridian coordinates.  The body 



   C        equator and prime meridian system is one in which the 
   C        coordinate axes are lined up with the body's geometric 
   C        axes (there may be a few exceptions to the rule--check the 
   C        PCK file to be sure about the body you're working with). 
   C 
  
   C 
   C        Find the epoch for which the inertial to body equator and 
   C        prime meridian transformation should be computed. 
   C 
            IF ( CORR .EQ. 'NONE' ) THEN 
               EPOCH = ET 
            ELSE 
               EPOCH = ET - LT 
            END IF 
  
   C 
   C        Find the transformation from inertial to body equator and 
   C        prime meridian coordinates at the appropriate epoch. 
   C 
            CALL TIPBOD ( 'J2000', TARGET, EPOCH, TIPM ) 
  
   C 
   C        Negate the observer-target vector and rotate the result 
   C        into body-fixed coordinates. 
   C 
            CALL VMINUS ( STATE, OBSPOS ) 
  
            CALL MXV    ( TIPM,  OBSPOS,  OBSPOS ) 
  
   C 
   C        Look up the radii of the target body from the PCK file. 
   C 
            CALL BODVAR ( TARGET, 'RADII', N, RADII ) 
  
   C 
   C        Find the nearest point on the body to the observer. 
   C 
            CALL NEARPT ( OBSPOS, RADII(1), RADII(2), RADII(3), 
        .                 SUBPT,  ALT                           ) 
  
   C 
   C        Find the latitude and longitude of the sub-observer point. 
   C 
            CALL RECLAT ( SUBPT,  DIST,  SUBLON,  SUBLAT ) 
  
   C 
   C        Write out the results, converting radians to degrees. 
   C 
            WRITE(*,*) ' ' 
            WRITE(*,*) 'Sub-observer longitude (deg) ', DPR() * SUBLON 
            WRITE(*,*) 'Sub-observer latitude  (deg) ', DPR() * SUBLAT 
            WRITE(*,*) ' ' 
  
            WRITE (*,*) 'Do you wish to continue? (T/F)' 
            READ   *,    CONT 
  



         END DO 
  
         END 
  
 

Transforming a State to Body-Fixed Coordinates  

 
 
Occasionally, it may be useful to transform a state vector into body-fixed coordinates. To 
perform the transformation correctly, it is necessary to take into account the time derivative of 
the inertial-to-body-fixed coordinate transformation. A discussion of the error made by ignoring 
this derivative term is given in [214].  

The following code fragment shows how to use the SPICELIB routine TISBOD to transform 
state vectors into body-fixed coordinates.  

In the following code fragment, TISBOD is used to transform a state in J2000 inertial 
coordinates to a state in body-fixed coordinates.  

The 6-vector STATE represents the inertial state (position and velocity) of an object with respect 
to the center of the body at time et. The matrix TSIPM is declared as a 6x6 double-precision 
matrix.  

This program loads both a text and a binary PCK file. The question of from which file is the data 
retieved is answered by the coverage of the files. If a particular requested time and body is 
covered by the loaded binary file, the binary data will be used. If not, the text data will be used.  

For example, say the binary file covers body 301 from 1985 through 1995. It the 
'ORIENT_BODY.PCK' file has body 301 during this time period, that data will be used. 
Otherwise the program will use the data from 'PLANETARY_CONSTANTS.KER.'  

 
  
   C 
   C     First load the kernel pool. 
   C 
         CALL LDPOOL ( 'PLANETARY_CONSTANTS.KER' ) 
  
   C 
   C     We can also load a binary PCK file.  The software 
   C     will use values from the binary PCK, if available, 
   C     and the text PCK above, if not. 
   C 
         CALL PCKLOF ( 'ORIENT_BODY.PCK', HANDLE ) 
  
   C 
   C     Next get the inertial to body-fixed transformation 
   C     and its derivative. 



   C 
         CALL TISBOD ( 'J2000', BODY, ET, TSIPM ) 
  
   C 
   C     Convert position and velocity to body-fixed coordinates. 
   C 
         CALL MXVG    ( TSIPM, STATE, 6, 6, BDSTAT ) 
  
 

Creating a type 03 PCK file.  

 

 
 
We assume that we are creating a new file for this example. In addition, we will make use of the 
fictitious subroutine GENREC to generate a type 03 PCK data record. This is for demonstrative 
purposes only, and is not intended to be a complete program.  

The following routines will be used in this example:  

-- PCKCLS -- Close a PCK file.  

-- PCKOPN -- Open a new PCK file.  

-- PCK03B -- Begin a type 03 PCK segment.  

-- PCK03A -- Add data to a type 03 PCK segment.  

-- PCK03E -- End a type 03 PCK segment.  

For the complete details of these routines, please see the appropriate source code files.  

Variable declarations for the example code fragment.  

 
   CHARACTER*(128)       FILE 
   CHARACTER*(60)        IFNAME 
   CHARACTER*(32)        FRAME 
   CHARACTER*(40)        SEGID 
  
   DOUBLE PRECISION      ET 
   DOUBLE PRECISION      ETSTRT 
   DOUBLE PRECISION      ETSTOP 
   DOUBLE PRECISION      RECORD(*) 
   DOUBLE PRECISION      STEP 
  
   INTEGER               BODY 
   INTEGER               CHBDEG 



   INTEGER               HANDLE 
 
   C     THIS IS A CODE FRAGMENT, NOT A PROGRAM! 
   C 
   C     Assign the name of the file to be created. 
   C 
         FILE   = 'new_pck.bpc' 
   C 
   C     Assign an internal filename for the file. 
   C 
         IFNAME = 'THIS IS A NEW PCK FILE' 
   C 
   C     Open the PCK file. 
   C 
         CALL PCKOPN ( FILE, IFNAME, 0, HANDLE ) 
   C 
   C     Set the identifier for the segment. This is a character 
   C     string of at most 40 printing ASCII characters. It may 
   C     be blank. 
   C 
         SEGID = 'This is a test. This is only a test.' 
   C 
   C     Set the body for the PCK segment. We will use the the 
   C     Moon, ID code 301. 
   C 
         BODY   = 301 
   C 
   C     We will be using the J2000 reference frame for the segment. 
   C 
         FRAME = 'J2000' 
   C 
   C     Set the degree of the Chebyshev polynomials used for the 
   C     segment. 
   C 
         CHBDEG = 10 
   C 
   C     Begin the PCK segment. 
   C 
         CALL PCK03B ( HANDLE, SEGID,  BODY,   FRAME, 
        .                      ETSTRT, ETSTOP, CHBDEG ) 
   C 
   C     We have a start time and a stop time available, ETSTRT 
   C     and ETSTOP, and we want to generate records for 
   C     sub-intervals of the interva (ETSTRT, ETSTOP). For 
   C     simplicity, we will assume equal width intervals and 
   C     that (ETSTOP-ETSTRT)/STEP is a positive integer. The 
   C     times are in ET, ephemeris seconds past J2000. 
   C 
   C     The time step will be one day, 86400 seconds. 
   C 
         STEP = 86400.0D0 
   C 
   C     Set the initial time. 
   C 
         ET  = ETSTRT 
   C 
   C     Loop until we have processed all of the time intervals, 



   c     i.e., when ET >= ETSTOP. 
   C 
         DO WHILE ( ET .LT. ETSTOP ) 
   C 
   C        Get a type 03 PCK record for the interval ET, ET+STEP 
   C 
            CALL GETREC ( ET, ET+STEP, RECORD ) 
   C 
   C        Add the record to the segment. 
   C 
            CALL PCK03A ( HANDLE, 1, RECORD, ET ) 
   C 
   C        Increment the time interval. 
   C 
            ET = ET + STEP 
  
         END DO 
   C 
   C     End the segment. 
   C 
         CALL PCK03E ( HANDLE ) 
   C 
   C     Close the PCK file. 
   C 
         CALL PCKCLS ( HANDLE ) 
  
 

Summary of Calling Sequences  

 

 
 
Loading files:  

 
   LDPOOL ( FILE )          for text PCK kernels 
   PCKLOF ( FILE, HANDLE )  for binary PCK kernels 
Unloading binary PCK files:  
 
   PCKUOF ( HANDLE )       for binary PCK kernels 
Searching binary PCK files for appropriate information:  
 
   PCKSFS ( BODY, TIME, HANDLE, DESCR, IDENT, FOUND ) 
Testing for the presence of variables in the text kernel pool:  
 
   BODFND ( BODY, ITEM ) 
Obtaining values associated with variables from the text kernel pool:  
 
   BODVAR ( NAME, BODY, N,      VALUES ) 
   RTPOOL ( NAME, N,    VALUES, FOUND  ) 
Obtaining Euler angles and their derivatives from a binary PCK file:  



 
   PCKEUL ( BODY, ET, FOUND, REF, EULANG ) 
Obtaining inertial-to-body-fixed coordinate transformation matrices:  
 
   TIPBOD ( REF, BODY, ET, TIPM ) 
   BODMAT (      BODY, ET, TIPM ) 
Obtaining Euler angles defining inertial-to-body-fixed coordinate transformations:  
 
Obtaining inertial-to-body-fixed state transformation matrices:  
 
   TISBOD ( REF, BODY, ET, TSIPM ) 
Opening a binary PCK file for writing:  
 
   PCKOPN ( NAME, IFNAME, NCOMCH, HANDLE ) 
Writing type 2 segment to a binary PCK file:  
 
   PCKW02 ( HANDLE, BODY,   FRAME,  FIRST, LAST, SEGID, INTLEN, 
            N,      POLYDG, CDATA,  BTIME ) 
Writing type 3 segment to a binary PCK file:  
 
   To begin a type 3 segment: 
   PCK03B ( HANDLE, SEGID, BODY, FRAME, FIRST,  LAST, CHBDEG ) 
  
   To add data to a type 3 sgement: 
   PCK03A ( HANDLE, NRECS, RECRDS, EPOCHS ) 
  
   To end a type 3 segment: 
   PCK03E ( HANDLE ) 
Close a binary PCK file after writing:  
 
   PCKCLS ( HANDLE ) 
Reading a type 2 segment from a binary PCK file:  
 
   PCKE02 ( ET, RECORD, EULANG ) 
Evaluating a type 2 segment from a binary PCK file:  
 
   PCKE02 ( ET, RECORD, EULANG ) 
Reading a type 3 segment from a binary PCK file:  
 
   PCKR03 ( HANDLE, DESCR, ET, RECORD ) 
Evaluating a type 3 segment from a binary PCK file:  
 
   PCKE03 ( ET, RECORD, ROTMAT ) 
 

Appendix A: Sample Text PCK file  
 

 
 



 
The file shown here is an example of a text PCK file. This file is intended only for use as an 
example; it should not be used as a source of data.  

The label set shown here is (as the comments in the PCK file indicate) a draft set. The label set is 
shown to complete the qualitative description of the PCK format; PCKs produced by NAIF will 
contain label sets, but the form and contents of those sets will differ from that of the label set 
shown below.  

 
   \beginlabel 
  
   ; ***********DRAFT**DRAFT**DRAFT**DRAFT**DRAFT***************** 
   ; This is a draft and incomplete prototype label set, for 
   ; discussion. 
   ; Do NOT write any code using this information or assuming the 
   ; structure used here. 
  
   ; PDS Labels 
   PDS_VERSION_ID                       = PDS3 
   RECORD_TYPE                          = STREAM 
   RECORD_BYTES                         = n/a 
   ^SPICE_KERNEL                        = "value" 
   MISSION_NAME                         = GALILEO 
   SPACECRAFT_NAME                      = GALILEO_ORBITER 
   DATA_SET_ID                          = "value" 
   KERNEL_TYPE_ID                       = PCK 
   PRODUCT_ID                           = "value" 
   ORIGINAL_FILE_NAME                   = "value" 
   PRODUCT_CREATION_TIME                = 1994-03-30T16:45:00 
   PRODUCER_ID                          = PDS_NAIF 
   MISSION_PHASE_NAME                   = value 
   MISSION_PHASE_TYPE                   = value 
   PRODUCT_VERSION_TYPE                 = value 
   PRODUCT_VERSION_ID                   = value 
   HARDWARE_MODEL_ID                    = "value" 
   SOFTWARE_VERSION_ID                  = "value" 
   PLATFORM_OR_MOUNTING_NAME            = n/a 
   FLIGHT_SEQUENCE_NAME                 = "value" 
   START_TIME                           = n/a 
   STOP_TIME                            = n/a 
   SPACECRAFT_CLOCK_START_COUNT         = n/a 
   SPACECRAFT_CLOCK_STOP_COUNT          = n/a 
   TARGET_NAME                          = n/a 
   INSTRUMENT_NAME                      = n/a 
   INSTRUMENT_ID                        = n/a 
   SOURCE_PRODUCT_ID                    = "value" 
   NOTE                                 = "value" 
   OBJECT                               = SPICE_KERNEL 
   INTERCHANGE_FORMAT                   = ASCII 
   KERNEL_TYPE                          = TARGET_CONSTANTS 
   DESCRIPTION                          = 1991 IAU cartgraphic values 
   END_OBJECT                           = SPICE_KERNEL 
   END 
  



   ; end PDS Labels 
  
   \endlabel 
  
  
  
   P_constants (PcK) SPICE kernel file 
   =================================================================== 
  
   Update by: Karen Zukor (NAIF)    1994 March 30 
  
        First draft of a PCK with internal labels included. 
        NOTE: some of the label keywords, values, syntax and overall 
        organization are likely to change. Do not write any code that 
        uses the above labels. 
  
  
   Organization 
   -------------------------------------------------------- 
  
        The sections of this file are as follows. 
  
        Introductory Information: 
  
            --   Version description 
  
            --   Disclaimer 
  
            --   Sources 
  
            --   Explanation of the PcK contents 
  
            --   Body numbers and names 
  
        Pck Data: 
  
            --   Orientation constants for the Sun and planets 
  
            --   Orientation constants for satellites 
  
            --   Radii for all bodies 
  
  
   Version description 
   -------------------------------------------------------- 
  
        This is a prototype PcK, for use in SPICE training and 
        constants evaluation only. 
  
        This file is based on the 1991 IAU report, 
        NAIF document [306]. 
  
  
   Disclaimer 
   -------------------------------------------------------- 
  
        This constants file may not contain the parameter values that 



        you prefer. Note that this file may be readily modified by 
        you or anyone else. NAIF suggests that you inspect this file 
        visually before proceeding with any critical or extended data 
        processing. 
  
        NAIF requests that you update the `by line' and date if 
        you modify the file. 
  
  
   Sources 
   -------------------------------------------------------- 
  
        The sources for the constants listed in this file are: 
  
            1.   ``Report of the IAU/IAG/COSPAR Working Group on 
                 Cartographic Coordinates and Rotational Elements of 
                 the Planets and Satellites: 1991,'' March 3, 1992. 
  
            2.   ``The Astronomical Almanac,'' 1990. 
  
            3.   ``Planetary Geodetic Control Using Satellite 
                 Imaging,'' Journal of Geophysical Research, Vol. 84, 
                 No. B3, March 10, 1979, by Thomas C. Duxbury. This 
                 paper is cataloged as NAIF document 190.0. 
  
            4.   Letter from Thomas C. Duxbury to Dr. Ephraim 
                 Lazeryevich Akim, Keldish Institute of Applied 
                 Mathematics, USSR Academy of Sciences, Moscow, 
                 USSR. This letter is catalogued as NAIF document 
                 number 195.0. 
  
            5.   Mars Observer Planetary Constants and Models, 
                 November 1990, Mars Observer Document No. 642-321, 
                 JPL Document No. D-3444. 
  
        Most values are from [1], and these are generally taken from 
        [1].  All exceptions are commented where they occur in this 
        file. The exceptions are: 
  
            --   The second nutation precession angle (M2) for Mars is 
                 represented by a quadratic polynomial in the 1991 
                 IAU report.   The SPICE subroutine BODEUL can not 
                 handle this term (which is extremely small), so we 
                 truncate the polynomial to a linear one. 
  
            --   The expression for the prime meridian of Deimos ( 
                 body 402 ) includes a cosine term, which BODEUL 
                 doesn't yet handle. The amplitude of the term is 
                 0.19 degrees. We simply ignore this term. 
  
  
  
   Body numbers and names 
   (Contains only information pertinent to Mars Observer) 
   ---------------------------------------------------------- 
  
      Barycenters: 



  
           3  Earth barycenter 
           4  Mars barycenter 
  
           While not relevant to the P_constants kernel, we note here 
           for completeness that 0 is used to represent the solar 
           system barycenter. 
  
  
      Mass centers: 
  
           399 Earth 
  
           401 Phobos 
           402 Deimos 
           499 Mars 
  
           10  Sun 
  
  
   Orientation constants for the Sun and planets 
   -------------------------------------------------------- 
  
  
   Sun 
  
           \begindata 
  
           BODY10_POLE_RA         = (  286.13       0.          0. ) 
           BODY10_POLE_DEC        = (   63.87       0.          0. ) 
           BODY10_PM              = (   84.10     +14.18440     0. ) 
           BODY10_LONG_AXIS       = (    0.                        ) 
  
  
           \begintext 
  
   Earth 
  
           \begindata 
  
           BODY399_POLE_RA        = (    0.      -0.641         0. ) 
           BODY399_POLE_DEC       = (  +90.      -0.557         0. ) 
           BODY399_PM             = (  190.16  +360.9856235     0. ) 
           BODY399_LONG_AXIS      = (    0.                        ) 
  
           \begintext 
  
           The linear terms before and after scaling: 
  
              -.052992   -->     -1935.5328 
              -.105984   -->     -3871.0656 
            -13.012      -->   -475263.3 
             13.340716   -->   +487269.6519 
              -.9856     -->    -35999.04 
  
           \begindata 
  



           BODY3_NUT_PREC_ANGLES  = (  125.045    -1935.5328 
                                       250.090    -3871.0656 
                                       260.008   475263.3 
                                       176.625   487269.6519 
                                       357.529    35999.04     ) 
  
  
           \begintext 
  
   Mars 
  
  
           \begindata 
  
           BODY499_POLE_RA          = (  317.681     -0.108       0. ) 
           BODY499_POLE_DEC         = (  +52.886     -0.061       0. ) 
           BODY499_PM               = (  176.868   +350.8919830   0. ) 
  
           \begintext 
  
        Source [3] specifies the following value for the lambda_a 
        term ( BODY4_LONG_AXIS ) for Mars. 
  
        This term is the POSITIVE WEST LONGITUDE, measured from the 
        prime meridian, of the longest axis of the ellipsoid 
        representing the `mean planet surface', as the article states. 
  
              body499_long_axis        = (  110.  ) 
  
        Source [4] specifies the lambda_a value 
  
              body499_long_axis        = (  104.9194  ) 
  
        We list these lambda_a values for completeness. [5] gives 
        equal values for both equatorial radii, so the lambda_a 
        offset does not apply. 
  
        The 1991 IAU report defines M2, the second nutation 
        precession angle, by: 
  
                                                   2 
           192.93  +  1128.4096700 d  +  8.864 T 
  
        We truncate the M2 series to a linear expression. 
  
        Again, the linear terms are scaled by 36525.0: 
  
            -0.4357640000000000      -->     -15916.28010000000 
              1128.409670000000      -->   41215163.19675000 
            -1.8151000000000000E-02  -->       -662.9652750000000 
  
           \begindata 
           BODY4_NUT_PREC_ANGLES  = (  169.51     -15916.2801 
                                       192.93  +41215163.19675 
                                        53.47       -662.965275  ) 
  
  



  
           \begintext 
  
  
   Orientation constants for the satellites 
   -------------------------------------------------------- 
  
  
   Satellites of Mars 
  
        Phobos: 
  
        The quadratic prime meridian term is scaled by 1/36525**2: 
  
           8.864000000000000   --->   6.6443009930565219E-09 
  
           \begindata 
  
  
           BODY401_POLE_RA      = (317.68    -0.108     0.           ) 
           BODY401_POLE_DEC     = (+52.90    -0.061     0.           ) 
           BODY401_PM           = ( 35.06 +1128.8445850 8.864        ) 
           BODY401_LONG_AXIS    = (  0.                              ) 
  
           BODY401_NUT_PREC_RA  = ( +1.79   0.    0.  ) 
           BODY401_NUT_PREC_DEC = ( -1.08   0.    0.  ) 
           BODY401_NUT_PREC_PM  = ( -1.42  -0.78  0.  ) 
  
  
           \begintext 
  
        Deimos: 
  
        There's a new wrinkle in the Deimos prime meridian 
        expression, which is: 
                                                     2 
              W = 79.41  +  285.1618970 d  -  0.520 T  -  2.58 sin M 
                                                                    3 
  
                                                       +  0.19 cos M . 
                                                                    3 
  
                                                              ^ 
                                                        (new wrinkle) 
  
  
        At the present time, the constants kernel software (the 
        routine bodeul_ in particular) cannot handle the cosine term; 
        we omit this term for the time being. The maximum error we 
        can make is 0.19 degrees. 
  
        The quadratic prime meridian term is scaled by 1/36525**2: 
  
            -0.5200000000000000  --->   -3.8978300049519307E-10 
  
           \begindata 
  



           BODY402_POLE_RA      = (316.65   -0.108      0.           ) 
           BODY402_POLE_DEC     = (+53.52   -0.061      0.           ) 
           BODY402_PM           = ( 79.41 +285.1618970 -3.897830D-10 ) 
           BODY402_LONG_AXIS    = (  0.                              ) 
  
           BODY402_NUT_PREC_RA  = (  0.   0.   +2.98  ) 
           BODY402_NUT_PREC_DEC = (  0.   0.   -1.78  ) 
           BODY402_NUT_PREC_PM  = (  0.   0.   -2.58  ) 
  
  
           \begintext 
  
  
   Radii of bodies 
   -------------------------------------------------------- 
  
  
   Sun 
  
        Value for the Sun is from the 1990 Almanac (page K7). 
  
           \begindata 
  
           BODY10_RADII      = (   696000.   696000.   696000.   ) 
  
           \begintext 
  
  
   Earth 
  
        Values for the Earth are unchanged in the 1991 IAU report. 
  
           \begindata 
  
           BODY399_RADII     = (   6378.140   6378.140    6356.75   ) 
  
           \begintext 
  
  
   Mars 
  
  
        Current values taken from [5]: 
  
           \begindata 
  
           BODY499_RADII       = (   3393.4     3393.4     3375.7   ) 
  
           \begintext 
  
  
  
   Satellites of Mars 
  
  
           \begindata 
  



           BODY401_RADII     = (       13.4        11.2        9.2   ) 
           BODY402_RADII     = (        7.5         6.1        5.2   ) 
  


