

SCLK

Revisions

April 12, 1999

The document differs from the previous version of April 20, 1992 in that it documents the new
capability of the SCLK software to convert between ET and continuous ticks. Examples
involving Mars Observer have been updated to refer to Mars Global Surveyor. The quotation
style has been changed from British to American. The program example showing use of the
SCLK system together with the CK reader CKGP has been corrected. Miscellaneous minor
changes of wording have been made throughout the text.

Introduction

The spacecraft clock is the onboard time-keeping mechanism that triggers most spacecraft
events, such as shuttering of a camera. Since telemetry data are down-linked with this clock's
time attached to it, spacecraft clock time (SCLK--pronounced ``s-clock'') is the fundamental time
measurement for referencing many spacecraft activities.

It is natural, then, that SCLK have an important role in the SPICE system. In fact, all C-kernel
pointing data are referenced to SCLK. SPICELIB contains routines to convert between SCLK
and other standard time systems, such as Ephemeris Time (ET) and Universal Time Coordinated
(UTC).

References

1. SFOC SIS ``SFOC-2-SYS-Any-TimeForms,'' 02/06/90.

Supported Missions

The set of missions for which NAIF currently supports SCLK time conversions includes, but is
not limited to, the following:

-- Cassini

-- Galileo

-- Mars Climate Orbiter

-- Mars Global Surveyor

-- Mars Polar Lander

-- Near Earth Asteroid Rendezvous

-- Stardust

-- Voyager I and II

The suite of SCLK routines has been designed to easily accommodate future missions. A later
section describes how the system might be easily expanded to incorporate new spacecraft clocks.

The Basics

In this section, we present a minimal subset of facts about the SPICE SCLK system that you can
get by with and still use the system successfully.

SCLK rates

Most of the complexity of dealing with SCLK time values arises from the fact that the rate at
which any spacecraft clock runs varies over time. As a consequence, the relationship between
SCLK and ET or UTC is not accurately described by a linear function; usually, a piecewise
linear function is used to model this relationship.

The mapping that models the relationship between SCLK and other time systems is updated as a
mission progresses. While the change in the relationship between SCLK and other systems will
usually be small, you should be aware that it exists; it may be a cause of discrepancies between
results produced by different sets of software.

SCLK kernels

To use any of the SCLK conversion routines, your program must first load a SCLK kernel file.
The code fragment

 CALL LDPOOL (<name of the SCLK kernel file goes here>)
accomplishes this. You must supply the actual name of the kernel file you want to load.

In addition, you will usually need to load a leapseconds kernel. For some missions, conversions
between SCLK and ET will require that both an SCLK and a leapseconds kernel be loaded. The
code fragment

 CALL LDPOOL (<name of the LEAPSECONDS kernel file goes here>)
loads a leapseconds kernel. Leapseconds kernels are described in the TIME required reading
document.

Normally, you will load these kernels at just one point in your application program, prior to
using any time conversion routines.

Details concerning the kernel pool are covered in the KERNEL required reading document.

Partitions, briefly

The lifetime of each mission is divided into intervals called ``partitions.'' Partitions are time
intervals during which the spacecraft clock advances continuously. Every time that a

discontinuity in a spacecraft clock's readout values occurs, a new partition is started.
Discontinuities may consist of positive jumps, in which the spacecraft clock's readout ``skips''
ahead, or negative jumps, in which the spacecraft clock regresses.

The fact that a spacecraft clock may regress raises the possibility that the clock may give the
same reading at two or more different times. For this reason, SCLK strings in SPICELIB are
prefaced with partition numbers.

The partition number is a positive integer followed by a forward slash, for example

 4 /
Any number of blanks are allowed on either side of the slash.

An example of a Galileo SCLK string with a partition number is

 1/100007:76:1
Partition numbers serve to ensure that spacecraft clock readings can be interpreted
unambiguously.

Converting between SCLK strings and ET or UTC

The time known as ``spacecraft event time'' (SCET) is usually UTC. You must verify that this is
the case for your spacecraft.

To convert a SCLK string to a double precision ET value, you can use the subroutine call

 CALL SCS2E (SC, CLKSTR, ET)
To convert a SCLK string to a UTC string, you can use the code fragment

 CALL SCS2E (SC, CLKSTR, ET)
 CALL TIMOUT (ET, PICTUR, UTC)
where
SC

is the NAIF spacecraft ID code for your spacecraft.
CLKSTR

is a SCLK string.
ET

is an ET time.

PICTUR

is a format picture for TIMOUT.
UTC

is the UTC time equivalent to SCLK.
See these routines for details concerning their arguments.

The inverse conversion is performed by the code fragment

 CALL STR2ET (UTC, ET)
 CALL SCE2S (SC, ET, CLKSTR)

Using encoded SCLK

The SPICELIB C kernel (CK) system tags CK data with SCLK times. Within the CK system,
these time tags are encoded as double precision numbers. To look up CK data, you will need to
supply encoded SCLK time tags to the CK reader routines.

You can obtain encoded SCLK values from SCLK strings via the routine SCENCD. The code
fragment

 CALL SCENCD (SC, CLKSTR, SCLKDP)
encodes the SCLK string CLKSTR as the double precision value SCLKDP.

Encoded SCLK values can be converted to strings using the code fragment

 CALL SCDECD (SC, SCLKDP, CLKSTR)
You can obtain continuous encoded SCLK values from ET via the routine SCE2C. The code
fragment

 CALL SCE2C (SC, ET, SCLKDP)
encodes the ephemeris time ET as the double precision value SCLKDP. SCLKDP need not be
integral; even though non-integral tick values do not represent SCLK readings, they are
permitted to avoid truncation error when representing ET as encoded SCLK.

A parallel routine SCE2T converts ET to encoded SCLK, rounding the result to the nearest
integral tick.

The inverse conversion is provided by the routine SCT2E, which is called as follows:

 CALL SCT2E (SC, SCLKDP, ET)
SCT2E handles integral or continuous tick values as inputs.

There is a special routine that is used for encoding ``tolerance'' values for the CK readers. (See
the CK Required Reading document for a discussion of the CK readers.)

The code fragment

 CALL SCTIKS (SC, CLKSTR, TICKS)
produces an encoded tolerance value. SCTIKS takes SCLK strings WITHOUT partition numbers
as inputs; this is because the strings indicate a delta time rather than an absolute time.

All of the concepts used in this section are discussed in greater detail in the following sections of
this document.

Encoded SCLK

The fundamental representation of SCLK in the SPICE system is a double precision numeric
encoding of each multi-component count. Encoding SCLK provides the following advantages:

-- Encoding makes for a more compact representation. Direct (un-encoded)
representation of spacecraft clock counts usually requires multiple numbers for the
separate components making up the SCLK count.

-- Having a single numeric equivalent for each count makes it much easier to compare
SCLK times (Is time t1 greater than time t2? Is time t1 closer to time t2 than time t3?
And so on.)

For these reasons, encoded SCLK is the time representation that is associated with pointing data
in the C-kernel. Encoded SCLK is the basis by which conversions are made from SCLK to other
time systems.

To convert a character representation of an SCLK count SCLKCH to its double precision
encoding SCLKDP, use the routine SCENCD (Encode SCLK):

 CALL SCENCD (SC, SCLKCH, SCLKDP)
The routine SCDECD (Decode SCLK) recovers the character representation of spacecraft clock
from its double precision encoding.

 CALL SCDECD (SC, SCLKDP, SCLKCH)
The first argument to both routines, SC, is the NAIF integer ID for the spacecraft whose clock
count is being encoded or decoded (for example, --32 for Voyager 2). Each spacecraft may have
a different format for its clock counts, so the encoding scheme may be different for each.

Later chapters describing clock types give complete details on clock string formats for spacecraft
clocks supported by the SPICE Toolkit.

Ticks

The units of encoded SCLK are ``ticks since spacecraft clock start,'' where a ``tick'' is defined to
be the shortest time increment expressible by a particular spacecraft's clock.

An analogy can be drawn with a standard wall clock, showing hours, minutes, and seconds. One
tick for a wall clock would be one second. And a wall clock time of

 10:05:50
would represent

 10(3600) + 5(60) + 50 = 36350
ticks.

As in the case of the wall clock, the length of time associated with a tick varies as the clock rate
varies.

Since not all spacecraft clocks are the same, the particular time value for one tick varies from
spacecraft to spacecraft. For Mars Global Surveyor, for instance, one tick is equivalent to
approximately four milliseconds. For Galileo, it's about 8 1/3 milliseconds.

In addition to representing spacecraft clock readings, ticks can be used to represent arbitrary
epochs. In order to minimize discretization error, ``continuous'' (non-integral) tick values are
supported: ephemeris times may be converted to non-integral ticks via the routine SCE2C.

Conversion of spacecraft clock strings to ticks always produces integral tick values.

Partitions

One desirable feature of encoded SCLK is that it increases continuously throughout the course of

the mission. Unfortunately, real spacecraft clocks do not always behave so nicely. A clock may
reset to a lower value, rendering certain counts ambiguous. This might happen if the clock has
reached its maximum expression, or because of a power surge. A clock may also jump ahead.

Any time one of these discontinuities occurs, we say that SCLK time has entered a new partition.
The partitions must be accounted for when encoding and decoding SCLK.

To continue our analogy, say our wall clock was being used to keep time throughout an entire
day. Then 10:05:50 is ambiguous, because we don't know if it falls in the morning or evening
``partition.'' So we append the indicators ``a.m.''\ or ``p.m.''\ to be clear.

We handle SCLK similarly. Instead of just converting a clock count to ticks (10:05:50 to 36350),
we take into account the partition that the count falls in, and compute the number of ticks since
clock start (10:05:50 a.m. to 36350; 10:05:50 p.m. to 36350 + 12(60)(60) = 79550).

When you pass a SCLK string to SCENCD, it is normally prefixed with a number indicating the
partition in which the count falls. Sample SCLK strings for Voyager 2, including partition
numbers, are given in an example program later in this document.

The presence of the partition number is not always required. If it is missing, SCENCD will
assume the partition to be the earliest one possible that contains the clock string being encoded.
It's good practice to always include the partition number in SCLK strings.

To convert to ticks since clock start, SCENCD processes the partition number. It has to know
how many ticks were in all preceding partitions, and what the start and stop clock values were
for each. This information is stored in a SCLK kernel file for that spacecraft. The SCLK kernel
file is described in detail in a later section.

New partitions may occur at any time throughout the course of active missions. The responsible
mission operations team must update the SCLK kernel file to include new partitions as they
occur.

In converting encoded SCLK back to an equivalent clock string, SCDECD must also use the
SCLK kernel file. Note, however, that you only have to load the SCLK kernel file once in your
program, no matter how many calls to SCENCD and SCDECD are made afterwards. See the
KERNEL required reading file for information about ``loading'' miscellaneous kernel files into
the kernel pool.

SCDECD always returns a clock string prefixed by a partition number and the '/' character, for
example

 2/2000:83:12
If you want to read partition start and stop times for yourself, use the routine SCPART:

 CALL SCPART (SC, NPARTS, PSTART, PSTOP)

SCLK Conversion Routines

In order to correlate data obtained from different components of the SPICE system, for example
pointing and ephemeris data, it is necessary to be able to convert between SCLK time and
representations of time in other systems, such as UTC and ephemeris time (also referred to as
``ET,'' ``barycentric dynamical time,'' and ``TDB'').

SPICELIB contains the following subroutines to convert between encoded and character SCLK,
ET and UTC. Note that the names of the the routines involving SCLK are all prefixed with SC,
for Spacecraft Clock.

ET2UTC

UTC2ET

SCENCD

SCDECD

SCT2E (SC, SCLKDP, ET) (Convert encoded SCLK ticks to ET)

SCS2E (SC, SCLKCH, ET) (Convert SCLK string to ET)

SCE2C (SC, ET, SCLKDP) (Convert ET to continuous ticks)

SCE2T (SC, ET, SCLKDP) (Convert ET to encoded SCLK ticks)

SCE2S (SC, ET, SCLKCH) (Convert ET to SCLK string)

It takes at most two subroutine calls to convert between any two of the four representations.

SPICELIB also contains two routines that can encode and decode relative, or ``delta'' SCLK
times. These are SCLK strings without partition numbers that represent time increments rather
than total time since clock start. Such strings are encoded as tick counts. The routines are:

SCTIKS

SCFMT (SC, TICKS, CLKSTR) (Convert ticks to delta SCLK)

Distinguishing Between Different Clocks

The algorithms used to encode and decode SCLK, and convert between SCLK and other time
systems are are not necessarily the same for each spacecraft.

The differences are handled by the SCLK software at two levels: High level differences are
managed in the code itself through ``clock types.'' More detailed spacecraft-specific differences
are handled using parameters in a SCLK kernel.

Clock Types

A clock type is a general clock description which may encompass several separate spacecraft
clocks. Each clock type is identified in the SCLK subroutines by an integer code. At the release
date of the current revision of this document, all supported missions use spacecraft clock type 1.

A spacecraft clock data type has two components: a format defining the set of acceptable
spacecraft clock (SCLK) strings, and a method of converting SCLK strings to a standard time
representation, such as ephemeris or UTC seconds past J2000.

For example, a type 1 clock consists of some number of cascading integer counters. An
individual counter can increment only when the immediately preceding counter reaches its
maximum expression and ``rolls over.'' Our wall clock is an example: the counters are hours,
minutes and seconds. One tick for a type 1 clock is defined to be the value of the least-significant
component increment. Clock type 1 uses a piecewise-linear interpolation process to convert
between SCLK and other time systems.

The chapter ``SLCK01'' describes clock type 1 in detail. It includes the specific SCLK string
formats for each of the type 1 spacecraft clocks supported by the SPICE Toolkit.

SCLK routines determine the clock type for a particular spacecraft from the SCLK kernel file
(described in the next section).

Clock type-specific routines

Each clock type is supported in the encoding and decoding process by the routine SCcc, where
cc is the number of the clock type. SCcc contains two entry points:

SCTKcc

SCFMcc

SCTKcc and SCFMcc do not process any partition information; that work is handled at a higher
level by SCENCD and SCDECD, and is the same for all spacecraft clocks.

SCTKcc and SCFMcc are called by SCTIKS and SCFMT, respectively.

Each clock type is supported in the time conversion process by two routines:

SCTEcc

SCECcc

Spacecraft-Specific Parameters

Once the clock type has been determined, SCLK routines need parameters that uniquely
distinguish each spacecraft within the same SCLK type. For instance, for type 1, they need to
know: How many components make up this particular clock? What are the modulus values for
each of the components? What are the coefficients defining the mapping from SCLK to a
``parallel'' time system, such as ET? Spacecraft-specific parameters such as these are read from
the SCLK kernel file at run-time (see below).

The SCLK Kernel File

NAIF SCLK kernel files supply SPICELIB SCLK conversion routines with information required
to convert between SCLK values and other representations of time. Typically, a NAIF SCLK
kernel will describe the clock of a single spacecraft.

Before calling any of the routines to encode or decode SCLK, or convert between SCLK and
other time systems, an application program must load the contents of the SCLK kernel file into
the kernel pool, using the subroutine LDPOOL (load pool):

 CALL LDPOOL ('name_of_SCLK_kernel_file')
An application must also load the leapseconds kernel file if there are any conversions to be
performed between ET and UTC. This is typically done in the initialization section of your
program.

The SCLK kernel file you use should contain values for the particular spacecraft you are dealing
with. The variables expected to be found in the file are all prefixed with the string

 SCLK_
These variables include partition boundaries, clock type, and several other parameters associated
with the clock type. These are described below.

Partition boundaries

The tick values for the beginning and end of each partition are given by:

 SCLK_PARTITION_START_ss = (.....

 )

 SCLK_PARTITION_END_ss = (.....

 )
where --ss is the spacecraft ID code. These variables are arrays containing one element per
partition. The nth element of

 SCLK_PARTITITION_END_ss
is considered to be the ``first tick'' of the (n+1)st partition. Mathematically speaking, partitions
may be thought of as intervals that are closed on the left and open on the right.

Clock type assignment

If --ss is the NAIF ID code of a spacecraft, the associated clock type for that spacecraft is given
by the assignment

 SCLK_DATA_TYPE_ss = (cc)
where cc is the clock type. New clock types will be developed as needed.

Note that multiple spacecraft ID codes can be associated with the type 1 SCLK data type at one
time. Since the spacecraft codes are included in the SCLK variable names, there will be no
naming conflicts. (We don't expect this feature to be used much, if at all, but it's there should you
need it.)

Clock type-specific parameters

Each spacecraft clock type has its own set of parameters that the SPICELIB SCLK routines
require in order to convert SCLK values of that type. A complete list and description of these
parameters, and their variable names for the kernel pool, is given for type 1 in the chapter
``SCLK01.''

Expanding the system: What NAIF must do

Accommodating new spacecraft clocks may involve no code changes to the SCLK subroutines
whatsoever.

If a new clock fits into the framework of clock type 1, then the clock can be accommodated
simply by producing a new kernel file for that spacecraft clock. For the new clock, a new set of
kernel variables corresponding to those described above, and those in the chapter ``SCLK01,''
could be added to an existing SCLK kernel file. Alternatively, an entirely new SCLK kernel file
containing the new parameters could be created --- this is the more likely approach. Once this is
done, all existing SCLK routines will work without modfication with the new spacecraft ID.

If a new clock does not fit into the clock type 1 framework, then NAIF will design a new clock
type. This will involve writing new versions of the four clock type-specific routines described
earlier:

 SCTKcc
 SCFMcc
 SCTEcc
 SCECcc
where cc is the new clock type number.

New cases will have to be added to the code of the following higher-level SCxxx conversion
routines to call the new, type-specific routines:

 SCFMT
 SCTIKS
 SCT2E
 SCS2E
 SCE2C
 SCE2T
 SCE2S
It will probably be necessary to design new SCLK kernel file variables to accommodate the new
type, and augment the standard variables described above.

Adding a new clock type does not change the calling sequence of any of the high level
conversion routines. Thus, once you've learned how to use the SCLK conversion routines, you
won't have to re-learn just because a new spacecraft clock has been introduced.

An Example Using SCLK Routines

The following example shows how some of the SCLK routines might be used in a typical
application program. This one reads pointing data from a C-kernel file. In this example, a set of
four input clock times are hard-coded in the program for the purpose of demonstration: A real
application written by you would likely get input times from some external source, such as a file
or through interactive user input.

 C
 C Request pointing from a C-kernel file for a sequence of
 C pictures obtained from the Voyager 2 narrow angle camera.
 C Use an array of character spacecraft clock counts as input.
 C
 C Decode the output clock counts and print the input and
 C output clock strings. Also print the equivalent UTC time
 C for each output clock time.
 C
 C Note that the SCLK kernel file must contain VGR 2 clock
 C information.

 C
 INTEGER NPICS
 PARAMETER (NPICS = 4)

 CHARACTER*(80) CK
 CHARACTER*(80) SCLKKR
 CHARACTER*(80) LSK
 CHARACTER*(25) SCLKIN (NPICS)
 CHARACTER*(25) SCLKOUT
 CHARACTER*(25) CLKTOL
 CHARACTER*(25) UTC
 CHARACTER*(25) REF

 DOUBLE PRECISION CMAT (3, 3)
 DOUBLE PRECISION ET
 DOUBLE PRECISION TIMEIN
 DOUBLE PRECISION TIMOUT
 DOUBLE PRECISION TOL

 INTEGER HANDLE
 INTEGER I
 INTEGER INST
 INTEGER SC

 LOGICAL FOUND

 DATA CK / 'VGR2NA.BC' /
 DATA LSK / 'LSK.KER' /
 DATA SCLKKR / 'SCLK.KER' /

 DATA SCLKIN / '2/20538:39:768',
 . '2/20543:21:768',
 . '2/20550:37',
 . '2/20564:19' /

 DATA CLKTOL / ' 0:01:001' /

 C
 C The instrument we want pointing for is the Voyager 2
 C narrow angle camera. The reference frame we want is
 C J2000. The spacecraft is Voyager 2.
 C
 INST = -32001
 REF = 'J2000'
 SC = -32

 C
 C Load the appropriate files. We need
 C
 C 1) A CK file containing pointing data.
 C 2) The SCLK kernel file, for the SCLK conversion routines.
 C 3) A leapseconds kernel, for ET-UTC conversions.
 C
 CALL CKLPF (CK, HANDLE)
 CALL LDPOOL (SCLKKR)
 CALL LDPOOL (LSK)

 C
 C Convert the tolerance string to ticks.
 C
 CALL SCTIKS (SC, CLKTOL, TOL)

 DO I = 1, NPICS

 CALL SCENCD (SC, SCLKIN(I), TIMEIN)

 CALL CKGP (INST, TIMEIN, TOL, REF, CMAT, TIMOUT,
 . FOUND)

 IF (FOUND) THEN

 CALL SCDECD (SC, TIMOUT, SCLKOUT)
 CALL SCT2E (SC, TIMOUT, ET)
 CALL ET2UTC (ET, 'D', 3, UTC)

 WRITE (*,*)
 WRITE (*,*) 'Input s/c clock count: ', SCLKIN (I)
 WRITE (*,*) 'Output s/c clock count: ', SCLKOUT
 WRITE (*,*) 'Output UTC: ', UTC
 WRITE (*,*) 'Output C-Matrix: ', CMAT
 WRITE (*,*)

 ELSE

 WRITE (*,*) 'Input s/c clock count: ', SCLKIN (I)
 WRITE (*,*) 'No pointing found.'

 END IF

 END DO
 END
The output from this program looks like this:

 Input s/c clock count: 2 / 20538:39:768
 Output s/c clock count: 2/20538.39.768
 Output UTC: 79-186/21:50:23.000
 Output C-Matrix: <first C-matrix>

 Input s/c clock count: 2 / 20543:21:768
 Output s/c clock count: 2/20543.22.768
 Output UTC: 79-187/01:35:57.774
 Output C-Matrix: <second C-matrix>

 Input s/c clock count: 2 / 20550:37
 Output s/c clock count: 2/20550.36.768
 Output UTC: 79-187/07:23:57.774
 Output C-Matrix: <third C-matrix>

 Input s/c clock count: 2 / 20564:19
 Output s/c clock count: 2/20564.19.768
 Output UTC: 79-187/18:22:21.774
 Output C-Matrix: <fourth C-matrix>

SCLK01

This chapter describes the type 1 SCLK format and conversion algorithms in detail. Also, the
SCLK formats for supported spacecraft whose clocks conform to the type 1 specification are
described.

Conforming spacecraft clocks

The following spacecraft have SCLK formats that conform to the type 1 specification:

-- Cassini

-- Galileo Orbiter

-- Mars Global Surveyor

-- Mars Climate Orbiter

-- Mars Polar Lander

-- NEAR

-- Stardust

-- Voyager 1

-- Voyager 2

The spacecraft clock encoding and conversion functionality described in this document is fully
supported by the SPICE Toolkit for these spacecraft.

Type 1 SCLK format

The first standard NAIF spacecraft clock data type has two components: a format defining the set
of acceptable spacecraft clock (SCLK) strings, and a method of converting SCLK strings to any
of a set of standard time systems such as UTC or ET.

Type 1 SCLK strings have the form

 pp/<time string>
where pp is a partition number, and

 <time string>
is a time representation that conforms to the type 1 SCLK format. The partition specification
(number and slash character) is optional; SCLK strings without partition numbers are assumed to
refer to times in the first partition in which the specified clock count occurred. It's good practice
to always include the partition number.

An example of a type 1 SCLK string (for Galileo) is

 3 / 10110007:09:6:1
The number ``3'' is the partition number, the slash is a delimiter, and the rest of the string is a
``time string.'' With this example in hand, we're ready to define the type 1 SCLK format.

The partition number is a positive integer followed by a forward slash, for example

 4 /
Zero or more blanks are allowed on either side of the slash.

A type 1 SCLK time string consists of a series of one or more fields, each of which contains an
integer. All fields but the leftmost are optional. The fields of a time string represent modular
counts of time units. (A ``mod n'' count increments from zero to n-1, and then cycles back to
zero.) The values for a given field may be offset by some fixed integer, so that they range from
m to m+n, where m is non-negative. The moduli of the various fields are not necessarily the
same. The time unit associated with a given field, multiplied by the modulus for that field, gives
the time unit for next field to the left.

For each field but the first, values may exceed the modulus for the field. For example, the
modulus of the fourth field of a Galileo SCLK string is 8, but the digit ``9'' is allowed in that
field. So

 0:0:0:9
is a valid Galileo SCLK string and represents the same time as

 0:0:1:1
On input to SPICELIB routines, the fields of a type 1 SCLK string may be separated by any of
the delimiter characters

 - . , : <blank>
On output from SPICELIB routines, the delimiter characters will be those defined by a parameter
in the SCLK kernel, described later.

Consecutive delimiters containing no intervening digits are treated as if they delimit zero values.

Note that all fields in time strings represent integers, not decimal fractions. So, the strings

 11000687:9

 11000687:90
do not represent the same time value: in the former, the second field indicates a count of 9; in the
latter, 90.

Galileo SCLK format

An example of a valid time string (without a partition number) for the Galileo spacecraft clock
is:

 16777214:90:9:7
Numbering the fields from left to right, the time units and moduli of the fields are:

 Field Time unit Modulus
 ----- --------------------------- --------
 1 60 2/3 sec. 16777215
 2 2/3 sec. (666 2/3 ms) 91
 3 1/15 sec. (66 2/3 ms) 10
 4 1/120 sec. (8 1/3 ms) 8
Fields 1--4 are known as: ``Real time image count'' (RIM), ``mod 91 count,'' ``mod 10 count'' or
``real time interrupt count'' (RTI), and ``mod 8 count.'' The values in all fields normally range
from zero to the modulus of the field, minus one.

The maximum time value that the Galileo spacecraft clock can represent (16777214:90:9:7) is
approximately 32 years.

Mars Global Surveyor SCLK format

An example of a valid time string (without a partition number) for the Mars Global Surveyor
spacecraft clock is:

 4294967295.255
Numbering the fields from left to right, the time units and moduli of the fields are:

 Field Time unit Modulus
 ----- ---------------------- ----------
 1 approximately 1 sec. 4294967296
 2 1/256 sec. 256
Field 1 is known as the ``sclk_secs count.'' Field 2 is known as the ``sclk_fine word.'' The values
in the first and second fields normally range from zero to the modulus of the field, minus 1.

The maximum time value that the Mars Global Surveyor spacecraft clock can represent
(4294967295.255) is approximately 136 years.

Voyager SCLK clock format

An example of a valid time string (without a partition number) for both the Voyager 1 and
Voyager 2 spacecraft clocks is:

 65535.59.800
Numbering the fields from left to right, the time units and moduli of the fields are:

 Field Time unit Modulus
 ----- ------------------ ---------
 1 2880 sec. 65536
 2 48 sec. 60
 3 0.06 sec. 800
Fields 1--3 are known as: ``Mod 16 count'' (actually mod 2**16), ``mod 60 count,'' and ``mod
800 count.'' The values in the first and second fields normally range from zero to the modulus of
the field, minus 1. The range of the third field is from 1 to 800. The ``offset'' for the third field is
1, so values in this field normally range from 1 to 800 rather than from 0 to 799; values above
800 are allowed and treated as described above.

The maximum time value that the Voyager 1 and Voyager 2 spacecraft clocks can represent
(65535:59:800) is approximately six years.

Type 1 SCLK conversion

SPICELIB contains subroutines that convert between type 1 clock strings and the following
representations of time:

-- ET

-- encoded SCLK

The routines that carry out these conversions are described above in the chapter ``SCLK
Conversion Routines.''

Since SPICELIB also contains subroutines that convert between any of a variety of standard time
systems, including ET, UTC, Terrestrial Dynamical Time (TDT), TAI, TDB Julian date, TDT
Julian Date, and UTC Julian Date, conversion between SCLK strings and any other time system
supported by SPICELIB requires at most two subroutine calls.

Conversion algorithms

For every type 1 spacecraft clock, encoded SCLK values are converted to ephemeris time as
follows: first, encoded SCLK values are mapped to equivalent time values in a standard time
system such as ET or TDT. If the standard time system is not ET, values from this system are
mapped to ET.

The standard time system used for the conversion is referred to here and in the SPICELIB SCLK
routines as the ``parallel'' time system. Normally, the SPICE Toolkit will use only one parallel
time system for any given spacecraft clock.

Conversion from ET to encoded SCLK follows the reverse path: first, ET values are converted, if
necessary, to equivalent values in the parallel time system; next, those parallel time values are
converted to encoded SCLK.

For each type 1 spacecraft clock, encoded SCLK is related to the parallel time system for that
clock by a piecewise linear function. The function is defined by a set of pairs of encoded SCLK
values and corresponding values in the parallel time system, and by a set of ``rate'' values that
apply to the intervals between the pairs of time values. The rate values give the rate at which
``parallel time'' increases with respect to encoded SCLK time during the interval over which the
rate applies.

The specific method by which pairs of time values and rates are used to map encoded SCLK to
parallel time values is explained in detail below. In the following discussion, for simplicity, we'll
assume that the parallel time system is ET. We'll also assume that the rate units are ephemeris
seconds per the number of ticks in the ``most significant SCLK count.'' In general, the rates in a
type 1 SCLK kernel will be in units of

 parallel time units

 most significant clock count
For example, for the GLL orbiter spacecraft clock, the rate unit is ``ephemeris seconds per RIM.''

We can represent the data that define the SCLK-to-ET mapping as a set of ordered triples of
encoded SCLK values (in units of ticks since spacecraft clock start), their equivalents in
ephemeris time, and the rates corresponding to each pair of times:

 (s/c_clock(1), et(1), rate(1))
 .
 .
 .
 (s/c_clock(n), et(n), rate(n))
The mapping of SCLK values to ephemeris times is carried out as follows: If the sclk time clock
satisfies

 sclk(i) < clock < sclk(i+1)
 -
then the corresponding ephemeris time is

 et(i) + rate(i) * (clock - sclk(i))
If

 clock > clock(n)
 -
the formula still applies, with i = n.

To convert ephemeris time values to SCLK, we use an analogous method. If ``time'' is the value
to be converted, and

 et(i) < time < et(i+1)
 _
then the corresponding continuous encoded SCLK value is

 time - et(i)
 sclk(i) + -------------
 rate(i)
If

 time > et(n)
 -

the formula still applies, with i = n.

Note that this method will not handle rate values of 0 seconds per tick.

When the function described by the pairs of time values and rates is continuous, then all rates
except for the last one are redundant, since

 et(i+1) - et(i)
 rate(i) = ----------------------
 sclk(i+1) - sclk(i)
If the mapping from encoded SCLK to the parallel time system is not continuous, then the
mapping will not be strictly invertible: mapping an encoded SCLK value to a parallel time value,
then mapping that parallel time value to encoded SCLK may not yield the original encoded
SCLK value. However, the capability of supporting non-continuous mappings is provided in case
it is needed to implement the mapping provided by a flight project.

In order for SPICELIB SCLK conversion routines to work, the information represented by the
ordered triples described above must be loaded via the kernel pool. See the section ``The
spacecraft clock kernel file'' below for details.

Type 1 SCLK routines

Type 1 SCLK routines are normally called by the higher-level SCLK routines SCENCD,
SCDECD, SCS2E, SCT2E, SCE2C, SCE2T, SCE2S, SCTIKS, and SCFMT; you should not
need to call these routines directly, though direct calls to these routines are not prohibited.

The type 1 SCLK routines are

SCFM01

SCTK01

SCEC01

SCET01

SCTE01

SCLD01

SCLI01

SCLU01

SC01 (SC, CLKSTR, TICKS, (SCLK conversion, type

The last two routines SC01 and SCLU01 are ``umbrella'' routines which exist for the purpose of
allowing their entry points to share data. These routines should not be called directly.

The type 1 SCLK kernel file

Before any SPICELIB routines that make use of type 1 SCLK values can be used, a SCLK
kernel file must be loaded into the kernel pool. Regardless of the clock type, an SCLK kernel
assigns values to variables that define:

-- The clock type for a spacecraft

-- The format of SCLK strings, for one or more spacecraft.

-- The mapping between encoded SCLK values and a parallel time system.

Variables that are used for all clock types have names that start with the string

 SCLK_
Variables that are applicable only to type 1 spacecraft clocks start with the string

 SCLK01_
An SCLK kernel file makes the following assignments for each spacecraft whose clock values
are to be treated as ``type 1'' by the SPICELIB SCLK routines:

Kernel ID assignment

Each SCLK kernel must assign a identifier to the kernel variable

 SCLK_KERNEL_ID

This identifier is normally a UTC time string, preceded by the character '@', for example,

 @04-SEP-1990
If you have loaded multiple SCLK kernels into the kernel pool, the identifiers for these kernels
should be distinct.

Parallel time system code assignment

If --ss is the NAIF ID code of a spacecraft, this ID is associated with a parallel time system by
the assignment

 SCLK01_TIME_SYSTEM_ss = (nnn)
where nnn is a numeric code designating the time system that the coefficients in the kernel map
encoded SCLK to. The time systems and codes currently in use are:
Barycentric dynamical time (TDB)

1
Terrestrial dynamical time (TDT)

2
This assignment is optional; if absent, the parallel time system is assumed to be barycentric
dynamical time.

SCLK type assignment

If --ss is the NAIF ID code of a spacecraft, this ID is associated with a SCLK type by the
assignment

 SCLK_DATA_TYPE_ss = (1)
Note that multiple mission ID codes can be associated with the type 1 SCLK data type at one
time. Since the mission codes are included in the SCLK variable names, there will be no naming
conflicts.

Format constant assignments

All of the format constants start with the string

 SCLK01
and end with the string

 _ss
where --ss is the NAIF mission ID code. This allows the type 1 SCLK routines to find the correct
constants for each mission ID associated with the first SCLK data type.

The format constants that must be assigned are

 SCLK01_N_FIELDS_ss
 SCLK01_MODULI_ss
 SCLK01_OFFSETS_ss
 SCLK01_OUTPUT_DELIM_ss
Here are sample assignments of values to the variables describing the format of type 1 SCLK
strings. The values shown apply to the Galileo SCLK format.

Number of fields:

 SCLK01_N_FIELDS_77 = (4)
Modulus of each field:

 SCLK01_MODULI_77 = (16777215 91 10 8)
Offsets for field values. Offsets are listed for each field in left-to-right order:

 SCLK01_OFFSETS_77 = (0 0 0 0)
Code for delimiter to be used in output strings. The codes and corresponding delimiters are:

 Code Delimiter

 1 .

 2 :

 3 -

 4 ,

 5 <space>
For Galileo, the code assignment would be:

 SCLK01_OUTPUT_DELIM_77 = (2)

Time coefficients

The data that define the mapping between SCLK and the parallel time system are called ``time
coefficients.'' This name is used because the data are coefficients of linear polynomials; as a set,
they define a piecewise linear function that maps SCLK to the parallel time system.

The time coefficients are assigned to the variable

 SCLK01_COEFFICIENTS_ss
where --ss is the spacecraft ID code. The assigned values are triplets of SCLK values,
corresponding parallel time values, and rates. The SCLK values are expressed in total ticks since
clock start. The parallel time values may be expressed in a variety of units. The rate values have
units that depend on the units used for the parallel time values: if we call these units
PARALLEL_TIME_UNITS, then the rate units are

 PARALLEL_TIME_UNITS

 most significant clock count
The term most ``significant clock count'' shown in the denominator refers to the length of time
associated with one count of the most significant (leftmost) field of the formatted spacecraft
clock string. For example, for Voyager 2, the most significant field of a formatted SCLK string is
the ``mod 16'' field. For Galileo, the most significant field is the ``RIM count.'' For Mars Global
Surveyor, the most significant field is the ``sclk_secs count.''

Partition boundaries

In order to convert between SCLK strings and their encoded form of ticks since spacecraft clock
start, it is necessary to know the initial and final SCLK readouts for each partition. These values
are given by:

 PARTITION_START_ss
 PARTITION_END_ss
where --ss is the spacecraft ID code. These variables are arrays containing one element per
partition.

Sample SCLK kernels

The following is a sample SCLK kernel for Galileo:

 \begindata
 SCLK_KERNEL_ID = (@04-SEP-1990//4:23:00)

 SCLK_DATA_TYPE_77 = (1)
 SCLK01_N_FIELDS_77 = (4)
 SCLK01_MODULI_77 = (16777215 91 10 8)
 SCLK01_OFFSETS_77 = (0 0 0 0)
 SCLK01_OUTPUT_DELIM_77 = (2)

 SCLK_PARTITION_START_77 = (0.0000000000000E+00
 2.5465440000000E+07
 7.2800001000000E+07
 1.3176800000000E+08)

 SCLK_PARTITION_END_77 = (2.5465440000000E+07
 7.2800000000000E+07
 1.3176800000000E+08
 1.2213812519900E+11)

 SCLK01_COEFFICIENTS_77 = (

 0.0000000000000E+00 -3.2287591517365E+08 6.0666283888000E+01
 7.2800000000000E+05 -3.2286984854565E+08 6.0666283888000E+01
 1.2365520000000E+06 -3.2286561063865E+08 6.0666283888000E+01
 1.2365600000000E+06 -3.2286558910065E+08 6.0697000438000E+01
 1.2368000000000E+06 -3.2286557090665E+08 6.0666283333000E+01
 1.2962400000000E+06 -3.2286507557565E+08 6.0666283333000E+01
 2.3296480000000E+07 -3.2286507491065E+08 6.0666300000000E+01
 2.3519280000000E+07 -3.2286321825465E+08 5.8238483608000E+02
 2.3519760000000E+07 -3.2286317985565E+08 6.0666272281000E+01
 2.4024000000000E+07 -3.2285897788265E+08 6.0666271175000E+01
 2.5378080000000E+07 -3.2284769395665E+08 6.0808150200000E+01
 2.5421760000000E+07 -3.2284732910765E+08 6.0666628073000E+01
 2.5465440000000E+07 -3.2284696510765E+08 6.0666628073000E+01
 3.6400000000000E+07 -3.2275584383265E+08 6.0666627957000E+01
 7.2800000000000E+07 -3.2245251069264E+08 6.0666628004000E+01
 1.0919999900000E+08 -3.2214917755262E+08 6.0666628004000E+01
 1.2769119900000E+08 -3.2199508431761E+08 6.0665620197000E+01
 1.3085799900000E+08 -3.2196869477261E+08 6.0666892494000E+01
 1.3176799900000E+08 -3.2196111141061E+08 6.0666722113000E+01
 1.3395199900000E+08 -3.2194291139361E+08 6.0666674091000E+01
 1.3613599900000E+08 -3.2192471139161E+08 6.0666590261000E+01
 1.4341599900000E+08 -3.2186404480160E+08 6.0666611658000E+01
 1.5069599900000E+08 -3.2180337818960E+08 6.0666611658000E+01
 1.7253599900000E+08 -3.2162137835458E+08 6.0666783566000E+01
 1.7515679900000E+08 -3.2159953831258E+08 6.0666629213000E+01
 1.7777759900000E+08 -3.2157769832557E+08 6.0666629213000E+01
 3.3451599900000E+08 -3.2027154579839E+08 6.0666505193000E+01
 3.3713679900000E+08 -3.2024970585638E+08 6.0666627480000E+01
 3.3975759900000E+08 -3.2022786587038E+08 6.0666627480000E+01
 5.6601999900000E+08 -3.1834234708794E+08 6.0666396876000E+01
 5.6733039900000E+08 -3.1833142713693E+08 6.0666626282000E+01
 5.6864079900000E+08 -3.1832050714393E+08 6.0666626282000E+01
 8.9797999900000E+08 -3.1557601563707E+08 5.9666626282000E+01
 8.9798727900000E+08 -3.1557595597007E+08 6.0666626282000E+01
 8.9799455900000E+08 -3.1557589430307E+08 6.0666626282000E+01)

 \begintext
Below is a sample SCLK kernel file for Mars Global Surveyor. Note that the text prior to the
first

 \begindata
directive is treated as a group of comment lines by the SPICELIB kernel readers. The labels
shown in this comment area are examples and should not be construed as a correct specification.

 KPL/SCLK

 Status

 This file is a SPICE spacecraft clock (SCLK) kernel containing
 information required for Mars Global Surveyor spacecraft
 on-board clock to ET conversion.

 Production/History of this SCLK files

 This file was generated by the NAIF utility program MAKCLK,
 version 3.3, from the most recent Mars Global Surveyor
 spacecraft SCLK SCET file.

 Usage

 This file must be loaded into the user's program by a call to
 the LDPOOL subroutine

 CALL LDPOOL('this_file_name')

 in order to use the SPICELIB SCLK family of subroutines to
 convert MGS spacecraft on-board clock to ET and vice versa and
 to use MGS frames defined below as reference frames for
 geometric quantities being returned by high-level SPK and
 CK subroutines.

 References

 1. SCLK Required Reading file, NAIF document number 222
 2. MAKCLK User's Guide, NAIF document number 267

 Inquiries

 If you have any questions regarding this file contact

 MGS Spacecraft Operations Team (SCOPS)
 Lockheed/Martin, Denver

 Boris Semenov - NAIF/JPL
 (818) 354-8136
 bsemenov@spice.jpl.nasa.gov

 SCLK DATA

 \begindata

 SCLK_KERNEL_ID = (@1999-02-07/03:51:29.00)

 SCLK_DATA_TYPE_94 = (1)
 SCLK01_TIME_SYSTEM_94 = (2)
 SCLK01_N_FIELDS_94 = (2)
 SCLK01_MODULI_94 = (4294967296 256)
 SCLK01_OFFSETS_94 = (0 0)
 SCLK01_OUTPUT_DELIM_94 = (1)

 SCLK_PARTITION_START_94 = (1.3611133440000E+11)

 SCLK_PARTITION_END_94 = (1.0995116277750E+12)

 SCLK01_COEFFICIENTS_94 = (

 0.0000000000000E+00 -9.9510252675000E+07 9.9999996301748E-01
 8.3066265600000E+08 -9.6265476795000E+07 9.9999994844682E-01
 1.9330583040000E+09 -9.1959244017000E+07 9.9999994927604E-01
 2.7708477440000E+09 -8.8686629183000E+07 9.9999994213351E-01
 4.0538009600000E+09 -8.3675093473000E+07 9.9999993609973E-01
 4.7829370880000E+09 -8.0826905655000E+07 9.9999993275158E-01
 5.2473643520000E+09 -7.9012736777000E+07 9.9999993064539E-01
 5.4909818880000E+09 -7.8061105843000E+07 9.9999992770059E-01
 6.7515176960000E+09 -7.3137138199000E+07 9.9999992410889E-01
 7.9017973760000E+09 -6.8643858540000E+07 9.9999992038548E-01
 8.9854187520000E+09 -6.4410962877000E+07 9.9999991689249E-01
 9.9588085760000E+09 -6.0608659193000E+07 9.9999991330346E-01
 1.1222619136000E+10 -5.5671899621000E+07 9.9999990916047E-01
 1.2448517120000E+10 -5.0883236056000E+07 9.9999990447344E-01
 1.3831336704000E+10 -4.5481597572000E+07 9.9999990051645E-01
 1.5223486464000E+10 -4.0043513113000E+07 9.9999989497162E-01
 1.7390367488000E+10 -3.1579135002000E+07 9.9999988993180E-01
 1.7567130624000E+10 -3.0888654078000E+07 9.9999989100000E-01)
 \begintext

