Double Precision Array Files (DAF)

Pur pose

This document describes the Double Precison Array File, DAF, an architecture for files that
store arrays of double precision numbers. The SPICE SP-kernd and C-kernd files use the DAF
architecture and associated software. The Required Reading files for these two SPICE kernels
refer to this document for detalls.

Revisions

July 12, 1994

The document differs from the previous version of September 1991 in that it includes
the addition of new routines that should be used instead of existing SPICELIB routines.
DAFONW replaces DAFOPN, DAFTB replaces DAFA2B and DAFT2B, and DAFBT
replaces DAFB2A and DAFBZT. Also, the term to describe the non-binary DAF file,
text, has been replaced with a more accurate term, transfer, indicating thet the files are
written in aformat suitable for transfer from one platform to ancother.

Intended Audience

This document isintended for users that require detailed knowledge of DAF-based file formats,
such as the SP- and C-kerned formats dready mentioned. It is aso intended for users of the
SPICELIB library who wish to create their own DAF-based file formats.

Most users of DAF-based formats will not generdly need to understand the materia presented in
this document. For example, users of NAIF SP- and C-kernedl files who wish to read state vectors
and pointing angles from those files will normally do so using only subroutines and programs
designed specificdly for those formats. These subroutines are documented in the NAIF SPK and

CK Required Reading files.

Related Documents

The following NAIF documents contain materid thet is closdy related to the subject of this
document.

1. SPK Required Reading

This document describes how the DAF structure is used in making the SPICE SP-
kernel (SPK) file containing trgjectory and ephemeris data.

2. CK Required Reading

This document describes how the DAF structure is used in making the SPICE C-
kernd (CK) file containing spacecraft or instrument orientation (pointing).

3. COMMNT User's Guide

This document describes how labels, descriptive text and other comments may be
added to or removed from a DAF-based SPK or CK file.

I ntroduction

DAF---which stlands for "Double precison Array File---is afile architecture that provides the
advantages of arrays and direct access files without incurring the disadvantages of either one.

Thisarchitecture is supported by a set of Fortran-77 subroutines, part of the NAIF Toolkit
software library, SPICELIB.

DAF is cdled an architecture instead of aformat because it includes an extengble family of file
formats, each of which is characterized by a pair of parameters. A file that conformsto any one
of theseformatsis cdled an "array file.

An array file can contain any number of double precision arrays. Each of these arrays can

contain an arbitrary number of eements. Because DAF files are intended to be portable, the DAF
design requires that the array elements must be “pure’ double precison numbers. That is, they
may not contain equivaenced or encoded integer or character values.

The DAF subroutines in SPICEL 1B support the following operations:

1. Create, open, or close an array file.
2. Add anew aray to afile.

3. Locae an array within afile, ether by index or by using descriptive information about
the array.

4. Access---that is, retrieve or update---any contiguous set of dementsin an aray.

5. Convert abinary (direct access) array file to an equivaent SPICE trandfer file, suitable
for trandfer to an environment using aform of binary representation different from that of
the source CPU.

6. Convert an aray filein SPICE trandfer format into an equivaent binary file.

The last two functions make array files portable to any environment that supports ANSl Standard
Fortran-77.

DAF-based Formats

The DAF architevture has been designed with the intention that each array contained in a
particular DAF possess a “descriptive summary' of itself. The information making up the
summary and the organization of the summary should be the same for each array in the DAF.
The descriptive summary is composed of double precison and integer components. The number
of double precison components, ND, and the number of integer components, NI, making up the
the array summaries, determine a particular formeat within the DAF architecture.

Vauesfor ND and NI arefixed at thetime an array fileis creasted. Any two array files that have
the same values for ND and NI can be thought of as having the same “format’. (This does not
guarantee that the arrays in the files contain the same kinds of information, only that they could
be stored in the samefile) The values sdected for ND and NI must satisfy the following
inequaities

(NI + 1) (Note that this is
ND + -------- <= 125 i nt eger divi sion.
2 That is, (NI + 1)/2

is rounded down to
t he nearest integer.)

0 <= ND <= 124

2 <= N <= 250
Each array stored in an array fileis "described’, in part, by ND double precision numbers and NI
integer numbers, which are sored separately from the array. Mot of the details of this
“description'---how many numbers are needed, and what they contain---are | ft to the designer of
aspecific DAF format.

The double precison numbers could include limits (the smdlest and largest vauesin an array), a
range of epochs throughout which the eements may be used, or satistics (the mean, median, and
gtandard deviation of the eements).

The integer numbers could include contextua information (case number, identification codes for
related objects or arrays) and conditional information (flags to indicate whether the array is
unsorted, sorted by increasing or decreasing magnitude, or marked for deletion). Some integer
numbers are used to keep track of the location of the array within thefile.

Each array in an array fileisisfurther described by NC characters of dphanumeric information.
Examples of this dphanumeric information are producer names, archive codes, historical
information, or anything esethat is not easily encoded as double precison or integer numbers.

NC isafunction of ND and NI. The relationship between NC and user-specified ND and NI was
chosen to alowing a reasonable amount of pace for storing the a phanumeric information for an
array. NC is defined below:

(NI + 1)
NC = 8* (ND+ --------) (Note that this is
2 i nt eger division.)
The double precison and integer numbers that describe each array are “packed, or equivalenced,
into an auxiliary double precison array before they are sored in thefile. Thisauxiliary array is
cdled the 'summary’ of the associated array. The individua (unpacked) numbers are caled the
“components of the summary.

(Thefirsdt ND eements of the summary contain the double precision components of the
summary. Each of the remaining eements contains a pair of integer components. If NI isodd,
thefind dement of the summary contains asingle integer component.)

The NC dphanumeric characters that further describe each array are stored in a single character
gring, cdled the ‘name of the array.

Array Addresses

Thelocation of each array in an array file is defined by apair of numbers, caled the “initia
address and “final address of the array.

The term "address refersto aparticular way of looking a an array file. Every array fileis
actually a standard Fortran-77 direct accessfile, with a particdar record length. (Every array file
has the same record length.) Each record is capable of storing up to 128 double precision
numbers.

It is convenient, however, to think of an array file as anumbered collection of dots named
‘words. Each word islarge enough to hold one double precision number. Words 1 through 128
are located in the first record of the file; words 129 through 256 are located in the second record,;
and so on. The number of each word is caled the “address of the word within thefile.

Any pair of addresses defines a contiguous set of words, which may fal within asingle physica
record or span a number of records. The eements of each array in an array file are sored in just
such aset. The address of the first array element isthe “initid address of the array. The address
of thefind array dement isthe “find address of the array.

Theinitid and find addresses of an array are dways the vaues of the find two integer
components of the summary for the array.

Array Filesand Linked Lists

It isasmplification, but a useful one, to say that the arrays in an array file form a doubly-linked
list. Each new array added to afileis placed at the tall of thislist.

Because the ligt is doubly- linked, the head and tail of the list can be located immediady. The
arrays can be located by moving a pointer through the lis, in elther direction, one array at atime.

At any time, the summary and name of the array a which the pointer is currently pointing can be
retrieved and examined to determine whether the array is of interest. If it is, theinitid and find
addresses (the final two integer components of the summary) may be used to access---retrieve or
update---the entire array, or any contiguous set of eements therein.

For example, if BEGIN and END aretheinitia and find addresses of an array, thefird ten
elements of the array can be retrieved by asking for the elements stored in addresses BEGIN
through BEGIN+9. If the array contains an odd number of elements, the middle element can be
retrieved by asking for the el ement stored in address (BEGIN+END)/2.

Read and Write Access

Array files may be opened for two kinds of access: read and write. A file opened for read access
cannot be changed, either by adding a new array or by updating an existing one. Unless one of
these operations must be performed, files should be opened for read access. The protection
provided to files opened for read access isindependent of any particular operating system.

A program may open only one array file at atime for write access. When a program attempts to
open afile for write access, an error issgndled if another fileis aready open for write access,
or if thefileis aready open for read access. An error isaso Sgnalled if a program attempts to
open afile for read access if the file is aready open for write access. (Errors are sgndled
through the sandard SPICELIB error handling mechaniam.)

FileHandles

When afileis opened for ether kind of access, it is assigned an integer "handl€. A mapping
between handles and Fortran logical unitsis maintained internaly by the DAF subroutines.

Asameans of ng files, handles have two advantages over logicd unit numbers.

1. They reduce the possibility that two or more program units of the same program will
interfere with each other when both need to access the same array file. When a program
opens an aray file for thefirg time, the fileis connected to alogicd unit, and the unit is
mapped to ahandle. If the program attempts to open the samefile again, the handleis
returned immediately, and a counter isincremented. The fileis not disconnected from the
logicd unit until it has been dosed as many times as it has been opened. (Thisis
anaogous to the creation of multiple links to asingle file under the UNIX operdting
system.) Any one program unit is prevented from rdleasing afile that is ill being used
by other program units.

2. They dlow the SPICELIB subroutines to prevent files opened for read access from
being modified. (Positive handles are assigned to files opened for read access, negative
handles to files opened for write access. Any attempt to modify afile with a postive
handle Sgnals an error.) Note that this scheme isindependent of any file protection
provided by the host operating system.

DAF Family of Subroutines

SPICELIB contains afamily of subroutines that can be used to creste, populate, and manipulate
array files. The name of each routine begins with the letters "DAF, followed by atwo- or three-
character mnemonic. For example, the routine that begins aforward search of an array fileis
named DAFBFS, pronounced "DAF-B-F-S. A complete list of mnemonics, trandations, and
caling sequences can be found at the end of this document.

Each subroutine is prefaced by a complete SPICELIB module header that describes inputs,
outputs, redtrictions, and exceptions, discusses the context in which the subroutine should be
used, and shows typica examples of its use. Any discussion of the subroutinesin this article is
intended as an introduction: the final documentation for any subroutine is its module header.

In this document, whenever a subroutine gppears in an example, the trandation of the mnemonic
part of its name will appear to the right of the reference, in braces. For example,

CALL DAFBFS (HANDLE) { Begin forward search }
Examples will make use of the structured DO ... END DO and DO WHILE ... END DO
statements supported by the VAX/VMS Fortran compiler. These statements are easily converted
to the sandard equivdents

DO | abel var = el, e2, e3

st nt

| abel CONTI NUE

and
| abel I F (expr)
. THEN
st nt
GO TO | abel
END | F

Opening and Closing Array Files

An exiging array file can be opened by supplying the name of the file to DAFOPR (for read
access) or DAFOPW (for write access). Each routine returns a file handle, which must be used
for dl subsequent accessto thefile.

CALL DAFOPR (FNAME, HANDLE) { Open for read }
CALL DAFOPW (FNAME, HANDLE) { Open for wite }

Once opened, an array file can be closed by supplying its handleto DAFCLS.

CALL DAFCLS (HANDLE) { Close }

Creating Array Files

A new array file can be created by supplying the name of thefile, the type of datain thefile,
valuesfor ND and NI, an internd file name, and the number of records to be reserved. NI must
be greater than or equa to 2. (For more information about the bounds on NI and ND see the
subsection “Summary records.)

CALL DAFONW (FNAME, { Open new }
FTYPE,
ND,
NI,
| ENAVE,
RESV,
HANDLE)

Theinternd name of an array fileissmply a string of up to 60 characters, which may be used to
characterize the contents of the file. Its primary vadue is that, being internd to thefile, it remains
unchanged when the file is transferred between environments.

Any number of records may be reserved & the front of an array file. By definition, the contents
of these records are invisible to DAF subroutines, and may contain any information that the user
wishes to store in them.

Once created, anew array file remains open for write access until explicitly closed.

M odifying Reserved Records

When a DAF is created, the number of reserved records must be specified in the call to
DAFONW. Becauseit is not dways possible to know at the time thefile is created exactly how
many reserved records are needed, the reserved record area may need to be modified later. The
reserved record area can be modified in two ways: reserved records can be added or they can be
removed. DAFARR adds RESV number of reserved records to the end of the reserved record
area. DAFRRR removes RESV number of reserved records from the end of the reserved record
area.

CALL DAFARR (HANDLE, RESV) { Add reserved records }
CALL DAFRRR (HANDLE, RESV) { Renove reserved records }

Adding Arrays

A new array can be added to an existing array file by caling four routines: DAFPS, DAFBNA,
DAFADA, and DAFENA.

Firg, the summary is packed by DAFPS, which requires two arrays containing the double
precison and integer components of the summary. It aso requires the values of ND and NI for
thefile

CALL DAFPS (ND, NI, DC, IC, SUM) { Pack summary }
Thefind two integer components of the summary are dways used to sore the initia and find
addresses of the array imposing that NI be greater than or equd to two. These components are
filled in after the array has been stored: any vaues for these components supplied by the user are
ignored.

Next, the new array must be initidized by cadling DAFBNA. DAFBNA requires the handle of
the file (whichmust be open for write access), the array name, and the array summary.

CALL DAFBNA (HANDLE, SUM NAME) { Begin new array }
The elements of the array are added by DAFADA. The elements may be supplied in one shot,

CALL DAFADA (DATA, N) { Add data to array }
or in any number of ingdlments,

DO WHI LE (MORE)

CALL DAFADA (DATA, N) { Add data to array }
END DO

Oncethe entire array has been supplied, DAFENA makes the addition permanent.

CALL DAFENA { End new array }
If the processis aborted before DAFENA is called, the summary and name are not stored, and
the new array does not become a permanent member of the file. Space adlocated for eements of
the array cannot be removed from the file; however, it will be overwritten by the eements of the
next array added to thefile.

One way to abort the addition of an array to afileisto cal DAFBNA sart anew array in the
same file, without first ending the current array.

Adding Arraysto Multiple Array Files

It is possble add data to arraysin multiple files in an interleaved fashion: addition of datato an
aray in onefile can beinterrupted in order to add data to an array in another file. To accomplish

this, it is necessary to tell DAFADA and DAFENA which file to act upon. Thisfileis cdled the
“current file.

When DAFBNA is used to begin an array, the file pecified by the handle passed to DAFBNA
becomes the current file. Cdlsto DAFADA or DAFENA will add datato or end the last array
beguninthisfile. If DAFBNA is cdled again, thistime with a different handle, the file specified
by that handle becomes current. Filesthat are not current are not affected in any way by
beginning, adding data to, or ending arraysin the current file.

In any givenfile, an array that isin progress---that is, an array begun by DAFBNA but not yet
ended by DAFENA---is called the “current array’ for thet file. No file can have more than one
current array.

In order to continue or end an array in afilethat is no longer current, the filein question is
selected as the current file by acdl to DAFCAD:

CALL DAFCAD (HANDLE) { DAF, continue adding data }
After thiscdl, thefileidentified by HANDLE will be the current file, and calsto DAFADA will
add datato the current array in thisfile. The usua sequence of cdls has the form:

CALL DAFCAD (HANDLE) { DAF, continue adding data }
CALL DAFADA (DATA, N) { DAF, add data to array }

Since DAFENA can be used to end arrays only in the current file, DAFCAD is aso used to
select afile as current so that an array can be ended in that file:

CALL DAFCAD (HANDLE) { DAF, continue adding data }
CALL DAFENA { DAF, end new array }

Only filesthat dready have an array in progress may be sdected as current by DAFCAD. An
error will be sgnalled if DAFCAD is used to select an array file that does not have an array in

progress.

Thefollowing example illugtrates the use of DAFCAD:

We write data obtained from the routine GET_DATA (which isnot a SPICELIB routine) into
two separate array files. Thefirst N/2 dements of the array DATA will be written to thefird file;
the rest of the array will be written to the second file.

Open the array files for write access, using either DAFOPW (if the files dready exist) or
DAFONW (if they do not).

CALL DAFOPW (FNAMELl, HANDL1)
CALL DAFOPW (FNAME2, HANDL2)

Begin the new array files by caling DAFBNA.

CALL DAFBNA (HANDL1, SUML, NAMEL)
CALL DAFBNA (HANDL2, SUM2, NAME2)

Add datato the arrays, using DAFCAD to sdect the current file and DAFADA to add datato the
current array in the current file.

CALL GET_DATA (DATA, N, FOUND)

DO WHI LE (FOUND)

CALL DAFCAD (HANDL1)
CALL DAFADA (DATA N 2)
CALL DAFCAD (HANDL2)
CALL DAFADA (DATA(N2 + 1), N- N2)

CALL GET_DATA (DATA, N, FOUND)

END DO
End each array by cdling DAFENA, sdecting the filein which to end the array by cdling
DAFCAD:

CALL DAFCAD (HANDL1)
CALL DAFENA

CALL DAFCAD (HANDL2)
CALL DAFENA

The notions of “current array file and “current array’ apply to both adding datato arrays and to
searching array files. However, the files and arrays regarded as current for the purpose of
searching are unrelated to those regarded as current for the purpose of adding data.

Reordering Arrays

Once arrays are written to a DAF, it is concelvable that their order may need to be changed.
Suppose that the arraysin a DAF are to be ordered according to the arithmetic mean of the data
they contain. Also suppose that the arithmetic mean of datain an array is stored in the second
double precison component of the summary. After reading each summary and cregting a vector
IORDER with dimension N that specifies the new order of the arrays, the subroutine DAFRA
can be used to reorder the arrays.

CALL DAFRA (HANDLE, | ORDER, N) { Reorder arrays }

Sear ching

The process of locating an array of interest within an array file is known as “searching’. The

organization of the arrays as a doubly-linked list makes it possible to conduct searchesin
forward or backward order.

Subroutines DAFBFS and DAFFNA are used to search an array file in forward order. DAFBFS
places a pointer at the head of the doubly-linked lit formed by the arraysin thefile. Each call to
DAFFNA moves the pointer to the next array in thelist. (Thefirst call to DAFFNA movesthe
pointer to thefirgt array.) DAFFNA returns alogica flag which istrue whenever another array
has been found, and is false when the tall of the list has been reached. All forward searches are
vaiaions on the following template:

CALL DAFBFS (HANDLE) { Begin forward search }
CALL DAFFNA (FOUND) { Find next array }

DO VHI LE (FOUND)

CALL DAFFNA (FOUND) { Find next array }
END DO

Subroutines DAFBBS and DAFFPA are likewise used to search an array file in backward order.
DAFBBS moves the pointer to the tall (instead of the head) of the list; DAFFPA movesthe
pointer to the previous (instead of the next) array in the list. The template shown aboveis
modified to conduct backward searches by replacing calsto DAFBFS and DAFFNA with cdls
to DAFBBS and DAFFPA, respectively:

CALL DAFBBS (HANDLE) { Begin backward search }
CALL DAFFPA (FOUND) { Find previous array }

DO WHI LE (FOUND)

CALL DAFFPA (FOUND) { Find previous array }
END DO

Once a search has begun, the pointer may be moved in ether direction.

After the pointer has been moved to anew array, the summary and name of the array can be
retrieved by DAFGS and DAFGN:

CALL DAFBBS (HANDLE) { Begin backward search }
CALL DAFFPA (FOUND) { Find previous array }
DO WHI LE (FOUND)

CALL DAFGS (SUM) { Get sunmary }

CALL DAFGN (NAME) { Get nane }

CALL DAFFNA (FOUND) { Find next array }
END DO

Once returned, a name can be examined directly. However, a summary must first be unpacked
into its components by subroutine DAFUS.

CALL DAFUS (SUM ND, NI, DC, IC) { Unpack summary }

The name and summary are used to determine whether the current array is of interest. For
example, if the arithmetic mean of the eementsin each array of an array fileis sored in the
second double precision component of the summary, then the following code fragment
determines the initial and find addresses (1A and FA) of the array with the greatest average.
(Assume function DPMIN returns the smalest double precison number supported in the host
environment.)

MAXAVG = DPM N()

CALL DAFBFS (HANDLE) { Begin forward search }
CALL DAFFNA (FOUND) { Find next array }

DO WHI LE (FOUND)
CALL DAFGS (SUM) { Get summary }
CALL DAFUS (SUM ND, NI, DC, I1C) { Unpack sunmary }

IF (DC(2) .GT. MAXAVG) THEN

MAXAVG = DC(2)
I A = IC(NI-1)
FA = IC(Nl)
END | F
CALL DAFFNA (FOUND) { Find next array }
END DO

Recdl that the final two integer components of any array summary---1C(NI-1) and IC(NI)---
contain the initid and find addresses of the array.

Searching Multiple Array Files

Searching multiple array files smultaneoudy is alittle like adding deta to multiple files
amultaneoudy: in each case, it becomes necessary to identify the file to act upon, when caling
routines that don't accept an input handle argument.

Aswith adding data, the notions of “current array file and “current array' gpply to searching.
Sating asearch in an aray file by cdling either DAFBFS or DAFBBS makes that file the
“current file'. Subsequent callsto DAFFNA or DAFFPA advance or back up the array pointer in
the current file. The last array found by DAFFNA or DAFFPA in the “current fil€ isthe "current
aray' for tha file. As mentioned above, there is no relation between the files or arrays that are
considered current for searching and those considered current for adding data.

If, after asearch is started in one array file, DAFBFS or DAFBBS are called to start asearch ina
second array file, the second file becomes current: DAFFNA, DAFFPA, DAFGN, and DAFGS
will dl operate on the second file.

The complete set of DAF routines that act on the current file (for searching) is

DAFFNA { DAF, find next array }
DAFFPA { DAF, find previous array }
DAFGS { DAF, get summary }

DAFGN { DAF, get nane }

DAFGH { DAF, get handle }

DAFRS { DAF, replace sumuary }
DAFRN { DAF, replace nane }

DAFWS { DAF, wite sumary }

The routine DAFCS is used to continue asearch in an array file that is no longer current. Caling
DAFCS makes the file specified by the input handle argument the current file for searching:

CALL DAFCS (HANDLE) { DAF, continue search }
After this cdl, the routines in the above list will act upon the file desgnated by HANDLE. For
example, to continue aforward search in thet file,

CALL DAFCS (HANDLE) { DAF, continue search }

CALL DAFFNA (FOUND) { DAF, find next array }
and to continue a backward search,

CALL DAFCS (HANDLE) { DAF, continue search }

CALL DAFFPA (FOUND) { DAF, find previous array }
while to get the name and summary of the current array in thefile,

CALL DAFCS (HANDLE) { DAF, continue search }

CALL DAFGN (NAME) { DAF, get nane }

CALL DAFGS (SUM) { DAF, get summary }

A search must have been started by DAFBFS or DAFBBS before it can be continued. An error
will be sgndled if DAFCS is used to continue a search in an array filein which no search has
been started.

Accessing Array Elements

After an array of interest has been located, the entire array or any contiguous set of elements can
be accessed---read or updated---by supplying apair of addresses. Elements are read by
DAFRDA and written by DAFRWDA.

The following code fragment continues the example above by subtracting the average from each
of the dementsin the array. (Recdl that A and FA contain theinitid and final addresses of the

aray.)

CALL DAFRDA (HANDLE, I A, FA, DATA) { Read data
from address }
DOl =1, FA- A+ 1
DATA(1) = DATA(l) - MAXAVG
END DO

CALL DAFVWDA (HANDLE, | A, FA DATA) { Wite data
to address }

Note that it is not necessary to retrieve the entire array at once. The following code fragment
illustrates how to process an array of unknown size using afixed amount of locd storage. The
locd array DATA isdeclared to be sze CHUNK. DAFRDA reads a maximum of CHUNK
elements from the double precison array and DARWDA writes them. This technique is useful
when the arrays stored in an array file may be arbitrarily large.

FIRST = I A

DO WHI LE (FIRST .LE. FA)
LAST = MN (FA FIRST + CHUNK - 1)
CALL DAFRDA (HANDLE, FIRST, LAST, DATA) { Read data
from address }
NUMELE = LAST - FIRST + 1

DO 1 =1, NUMELE
DATA(I) = DATA(l) - MAXAVG
END DO
CALL DAFWDA (HANDLE, FI RST, LAST, DATA) { Wite data
FI RST = FI RST + CHUNK to address }
END DO

Updating Summaries and Names

In the previous example, once the average value of the array has been subtracted from each
element of the array, the vaue for the average stored in the summary is no longer vaid (the
average is now zero) and should be changed.

Subroutines DAFRS and DAFRN are analogous to subroutines DAFGS and DAFGN. DAFGS
“gets the summary for the array to which the pointer currently points; DAFRS replacesit.
DAFGN "gets the name of the array to which the pointer currently points; DAFRN replacesiit.

If theindex, K, of the updated array is known, then the new average for the array (zero) is stored
by the following code fragment.

CALL DAFBFS (HANDLE) { Begin forward search }
DOI =1, K
CALL DAFFNA (FOUND) { Find next array }
END DO
CALL DAFGS (SUM) { Get sunmary }
CALL DAFUS (SUM ND, NI, DC, 1C) { Unpack summary }

DC(2) = 0.D0

CALL DAFPS (ND, NI, DC, IC, SUM) { Pack sumary }
CALL DAFRS (SUM) { Repl ace sunmary }

Buffering

Unless the vaue of CHUNK is 128 (the number of double precison words in arecord) and the
initial address of the array happens to correspond to the first word of a physica record (neither of
which isvery likdly), each call to DAFRDA or DAFWDA will involve reading partia records---
data that spans across records. In generd, successive callswill refer to different parts of at least
one record.

In fact, as records are read from array files they are saved in an internd buffer maintained by the
DAF subroutines. If any part of arecord is needed, it can frequently be returned directly from the
buffer, without accessing the file again. In particular, when an entire array is accessed
sequentidly, asin the example above, each of the necessary records is read exactly onetime.
When the eements of an array are accessed more randomly, the number of file accesses may
increase somewhat.

It ispossible, a any point in a program, to determine the number of file accesses prevented by
the buffering scheme. The subroutine DAFNRR returns the number of physica records actudly
read, and the number of records or partia records that have been requested, asillustrated below:

CALL DAFNRR (READS, REQS) { Nunber of reads,
requests }
RATI O DBLE(READS) / DBLE(REQS)
PERCNT = I NT (RATIO * 100.D0)
WRI TE (*,*) 'Reads/requests (% ="', PERCNT
Idedlly, the ratio of reads to requests should approach zero. In the worst case, where it
gpproaches one, the size of the buffer should probably be adjusted. (The module headers for

DAFRDR and DARWDR provide details on adjusting the buffer size.)

Conversion and Transfer of DAF's

In order to be transferred to a new environment, a binary file is converted to an equivaent SPICE
trandfer file---aformatted, sequentia file that contains only printable ASCII characters and
blanks (ASCII 32-126). In order to be used in the new environment, it is converted back to a
binary file. This conversion process must occur because binary representations of numbers vary
from machine to machine, the SPICE transfer representations do not.

There are two routines for converting DAFs from binary to transfer and transfer to binary
formats: DAFBT and DAFTB.

DAFTB crestes anew binary file. It then converts and writes the information from a previoudy
opened SPICE trandfer file to the binary file. Before returning to the caling program it closes the
binary file. DAFTB leaves the SPICE trandfer file open.

DARBT opens an exiding binary file. It then converts and writes information fromitto a
previoudy opened SPICE trandfer file. Before returning to the caling program it closes the
binary file. DAFBT leaves the SPICE transfer file open.

Note that the routines DAFBT and DAFTB make no use of the DAF reserved record area. They
only convert the data portion of the DAF file.

When converting abinary file for transfer (or archiving), it may be necessary to add additiona
information---catalog or history information, for example---to the resulting text file. The
following code fragment creates atext file containing an ASCI| array file preceded and followed
by markers. The SPICELIB routine TXTOPN opens anew text file; TXTOPR opens an existing
text file for read access.

BEGVRK
ENDVRK

"*** BEG N ARRAY FI LE ***'
"*** END ARRAY FILE ***'

CALL TXTOPN (FILENM UNIT)
WRITE (UNIT, *) BEGWRK

CALL DAFBT (BINARY, UNIT) { Binary to transfer }

WRITE (UNIT,*) ENDMRK
CLOSE (UNIT)

The following code fragment converts the resulting text file into abinary array file.

CALL TXTOPR (FILENM UNIT)
READ (UNIT, FMI=' (A)') BEGWRK

CALL DAFTB (UNI'T, BI NARY) { Transfer to binary }

READ (UNIT, FMI=' (A)') ENDMRK
CLOSE (UNIT)

Structure

Every aray fileis aFortran 77 direct accessfile, created by the following statement (or an
equivaent statement producing the same results):

OPEN (UNIT = unit,
FI LE = file nane,
ACCESS = ' DI RECT',
RECL = record | ength,
STATUS = ' NEW)

The record length is processor dependent. The smallest possible vaue should be sdected by the
user such that each record in thefile is large enough to contain 128 double precison numbers or
1000 characters, whichever islarger. Some suitable values for several compilers are shown
below.

Conpi | er Record | ength
HP Wor kstation

/ HP- UX

/ HP Fortran 1024
Maci nt osh

/ Language Systens Fortran 1024
NeXT

/ Absoft Fortran 1024
PC

/ Lahey 1024
PC

/M crosoft Fortran Power Station 1024

Silicon Graphics
/1Rl X
/ SG Fortran 256

Sun
/ SunCS and Sol ari s
/ Sun FORTRAN 1024

VAX
/ OpenVNVS
/ VAX Fortran 256

VAX

/ OSF/ 1

/ DEC Fortran 256
VAX

| VMS
/ VAX Fortran 256

Organization

An array file contains five types of physica records:

1. A gngle filerecord. This contains globa information about the file.

2. An arbitrary number of “reserved records. These records are provided so that the user
can store information about the data within the DAF. Typicd information might include
the source of the data, or the names of programs used to process and interpret it.

3. Some number of “summary records. These contain array summaries and pointersto
other summary records. The number of summary records in aparticular array fileisa
function of the number of arrays stored in thefile.

4. Some number of “name records. These contain array names. An array file contains
one name record for each summary record.

5. An arbitrary number of "element records. These contain eements of the arrays stored
inthe aray file

TheFile Record

Thefilerecord is dwaysthe first physica record in an array file. It contains seven items.

1. Anidentification word (' DAF/xxxX'). Where 'xxxx' isagtring of four characters or
lessindicating the type of data stored in the DAF file. Thisis used by the SPICELIB
subroutines to verify that aparticular fileisin fact an array file and not merdly adirect
access file with the same record length. When an array file is opened, an error issigndled
if this keyword is not present.

2. Thevdue of ND, the number of double precision components in eech array summary.
3. Thevadue of NI, the number of integer componentsin each array summary.

4. Theinterna name (60 characters) of the array file.

5. Therecord number of theinitid summary record in thefile.

6. Therecord number of thefind summary record in thefile.

7. Thefird free addressin thefile. Thisis the address at which the first dement of the
next array to be added to the file will be stored.

Reserved Records

By definition, reserved records are invisible to DAF subroutines. The contents and formats of
reserved records are |eft entirely to the user. The initial reserved record is located in the second
record of the file; the findl reserved record immediately precedes the initid summary record of
thefile

Reserved records may be used to store information about the data such asiits source, names and
Stes of programs that processed it, names and Sites of programs to interpret it, people to contact
for support, its peculiarities or omissons, just to name afew.

Summary Records

A summary record contains a maximum of 128 double precisons words. The first three words of
each summary record are reserved for the following control information:

1. Therecord number of the next summary record in thefile. (Zero if thisisthe find
summary record.)

2. Therecord number of the previous summary record in thefile. (Zero if thisisthe
initid summary record.)

3. The number of summaries stored in this record.

The record pointers form the basis of the array list. Each summary record is linked to two other
summary records, alowing the summariesto be retrieved in forward or backward order. (The
links between adjacent summariesin a summary record are implicit.) The names can be retrieved
from the corresponding name records. And the locations (initia and find addresses) of the arrays
themselves are stored in the summaries.

Although the control items are integer vaues, they are stored as double precision numbers. This
alows summary records and element records, which contain only double precison numbers, to
be buffered usng the same mechanism.

The control items are followed immediately by the summaries themsdves. The number of
summaries (NS) that can fit in a Single summary record depends on the Size of a single summary
(SS), afunction of NI and ND:

(NI + 1)
SS = ND+ -------- (Note that this is
2 i nt eger division.)

SS * NS <= 125

NS <= 125/SS (Note that NS nust be an
i nteger greater than or
equal to one.)

A summary record can be depicted as written below, where the numbers correspond to the
number of the double precision word in the record.

| 11 2] 3] 4] 5] 6| | 126 | 127 | 128 |
A A A
NEXT | |
PREV |
NSUM

If SSisthe gze (in double precison words) of each summary array, then the first summary is
stored in words 4 through SS+3; the second summary is stored in words SS+4 through 2(SS)+3;
and s0 on. For example, if SSisequd to 3, 41 (125/3) summaries can fit in the summary record,
leaving two words empty. In this case the record can be pictorialy represented as written below,
where the labd below the record indicates the summary number.

| 1| 2| 3| 4| 5| 6| ... | 124 | 125 | 126 | 127 | 128 |
A A AN o Summary 10} ... | Summary 41 }A A
NEXT | | | |
PREV | These words
NSUM are unused.

Unlike arrays, summaries are never split across physical record boundaries, so the end of each
summary record may remain unused. Whenever the number of summaries stored in the current
summary record reaches the maximum number that will fit, anew (empty) summary record is
added to the end of thefile.

It isnow clear that the bounds on the values for ND and NI are determined by their rdlation to
the number of double precision words used for summary information in the summary record. ND
and NI mugt satisfy the following inequalities:

(NI + 1) (Note that this is
ND + -------- <= 125 i nt eger division.)

0 <= ND <= 124

2 <= N <= 250

Name Records

Each name record contains nothing but array names. A new name record is added to the file each

time a new summary record is added. The new name record is located in the record immediately
following the new summary record. Because a DAF iswritten in this manner, the number of
summary recordsis equa to the number of name records.

Each time anew summary is added to a summary record, a new name is added to the
corresponding name record. Therefore, the number of summariesin asummary record isequd to
the number of names in the corresponding name record.

The vaues for ND and NI determine the maximum length for a name in the name record, NC:

(NI + 1)
NC = 8* (ND+ --------) (Note that this is
2 i nteger division.)
If the numbersin the summary record represent double precision words, and the numbersin the
name record represent characters, the two records can be depicted as written below for a DAF
whose format is specified by ND =2 and NI = 2.

| 1| 2| 3| 4| 5| 6| ... | 124 | 125 | 126 | 127 | 128 |
N N AN Sunmary 1} A Summary 41 }n N
NEXT | | |
PREV | Words 127 and
NSUM 128 are unused.
| 1| | 24 |....... | 961 | | 984 | 985 |....... | 1000 |
{ Name 1 oo { Name 41 }A A

Characters 985 through
1000 are unused.

Thefirst nameis stored in characters 1 through NC of the record; the second nameis stored in
characters NC+1 through 2(NC); and so on.

Element Records

Most of the records in any array file are edement records. Element records hold the elements of
the arrays stored in thefile. (The other records are used for accounting purposes only.)

Each eement record contains up to 128 double precison numbers. An element record is dways
full (contains 128 numbers) unlessit immediately precedes a summary record, in which case it
may be partidly filled.

The elements stored in a particular eement record may belong to more than one array. However,
elements belonging to the same array are stored contiguoudy within the record.

For example, suppose three arrays exist: A, B, and C. Array A has 10 dements, array B has 100
elements, and array C has 15 dements. If dl of the e ements are Sored in the same dement
record, it could be pictorialy represented as written below:

Al1]
Al 2]
Al 3]

A 10]
B[1]
B[2]
B[3]

B[100]

q 1]
d 2]
q 3]

ql 15]
A particular element record aways lies between two summary/name record pairs, or between a
summary/name record pair and the end of the file.

Designing a DAF

During the VVoyager- 2 encounter with Neptune, NAIF processed pictures using an image center
finding technique in order to determine instrument pointing. For each body in each picture, a set
of limb points---pixel and line pairs---was selected and an dlipse was fitted to the set, producing
a center for the body.

Suppose that the pixel and line pairs for the points are to be stored so that existing and future
models can be used to interpret the data. While it's true that the pixel and line numbers are
integers, they must be converted to double precison numbers for the dlipse fitting processing.
As double precision numbers, they could be stored in a DAF.

Data stored in aDAF is characterized by a set of double precision and integer vaues. In this
case, each picture has several vaues associated with it that could be used to describe it: the

picture number, the spacecraft identification code, the time at which the picture was taken, the
identifier for the command load, the identifier for the camera, the identification code for the body
whose center is described by the data. Examples of each of these itemsis given below:

Pi cture nunber : 9230. 4
Spacecraft event time : -332927103.9324339
Spacecraft 1D : -32

Load : 901

Canera I D : 1

Body I D : 899

To specify the “format' of this DAF, the values of ND and NI must be determined. The number
of double precison vaues used to describe the picture is two (picture number and spacecraft
event time) so ND = 2. The number of integer values used to describe the picture is 4 (Spacecraft
ID, load, camera D, and body 1D). Because two of the integer components in the summary are
used for storing locations of the arrays themselves, NI must dways be two more than the number
of integer values used to describe the data. In thisexample, NI =4 + 2 = 6. Thus, the format of
the DAF used to store the limb points is specified by ND =2 and NI = 6.

Having determined the values for ND and NI, the value of NC can be computed. NC is defined
as:

(NI + 1)
NC=8%*(ND+ --------)
2
o, for thisexample:
(6 + 1)
NC=8%*(2+ --------) =8* (2+ 3) =40
2

In this example, each array name may contain a maximum of forty characters. The array names
could describe the science activity of the scan platform. They would then give a clue as to what
the picture might contain. For example, “Slew to center of Neptune' could be used to describe
picture number 9230.4.

After the format has been determined, the user needs to write software to transfer the limb point
datato the DAF, and to read and interpret limb point data that has been stored in a DAF. Higher
level DAF-based software, much like the SPK or CK software, can be written to achieve this
functiondity.

Creating an Array File

The following example illustrates the use of addresses and lists within an array file by showing
how asmple array file might be created, and how arrays might be added to that file.

Throughout the example, the following notations will be used:

- - Within thefile record there are severd values. IDWORD, ND, NI, RI, RF, and FFA.
IDWORD is acharacter string that contains the file architecture, DAF, and code for the
type of datastored in the DAF file. This code is a string consisting of four characters or
less and is described in the header of the routine DAFONW. ND and NI are the vaues of
the parameters that define the format of thefile. RI and RF are the record numbers of the
initid and find summary records in thefile. FFA isthefird free addressin the file.

- - Within aparticular summary record, NEXT and PREV are the record numbers of the
next and previous summary records in the file, and NSUM is the number of summaries
stored in the record.

Thefirst step in cregting afile is to determine the name to be given to the type of datatored in
the DAF file. For this example, the data type will be "Xmpl'. For more information about the
restrictions on the character string describing the type of datain the DAF file, see the header of
the routine DAFONW. The IDWORD written to the new file is the concatenation of the string
'DAF/ with the data type string. So, for this example, the IDWORD written to the new fileis
'DAF/Xmpl'.

The next sep isto sAect vauesfor ND and NI. Normally, these are relatively small, dlowing
severd summariesto fit in each summary record and thus increasing the speed with which the
file can be searched. A new file is opened by cdling DAFONW, specifying the selected vaues
for ND and NI. Recall that the final two integer components of any array summary---1C(NI-1)
and IC(NI)---contain the initid and final addresses of the array, so NI must be at least 2.

The example will be easier to follow, however, if the number of summariesthat canfitina
summary record is minimized. Therefore, in this example ND and NI will take on unusualy
largevaues

ND = 25
Nl = 27
Each array summary requires 39 double precision words of storage:

(Nl + 1)

Therefore, each summary record can hold 3 summaries:

125 (words per record)

----------------------- = 3 (sunmaries per record)
39 (words per sumrary)

If "Summary(i)[j]' represents the j'th dement of thei'th summary array, then the layout of a
typical summary record is shown below.

1 NEXT
> PREV
3 NSUM
4 Summary(1)[1]
5 Summary(1)[2]
42 Summary(1)[39]
43 Summary(2)[1]
81 Summary(2)[39]
82 Summary(3)[1]
120 Summary(3)[39]
121 Unused
128 Unused

The number of names that an array record can hold is equivaent to the number of summaries
that the summary record can hold. In thisexample it's three.

Recdl that NC, the maximum number of charactersin an array name, is determined by the
vaues of ND and NI. For this example, where ND = 25 and NI = 27, thevalue of NC is
computed below:

(NI + 1)
NC = 8% (ND+ --------) =8* (25+ 14) =8 * 39 = 312

Each array name may use up to 312 characters of storage. An array name does not have to be
exactly NC characterslong. NC is smply the limit on the length of the array name.

If "Name(i)[j]' represents the j'th character of the i'th name, then the layout of atypica name
record is shown below.

Char acter Val ue
1 Name(1)[1]
2 Name(1)[2]
312 Name(1)[312]
313 Name(2)[1]
624 Name(2)[312]
625 Name(3)[1]
936 Name(3)[312]
937 Unused
1000 Unused

Assume that RESV, the number of reserved records, is 10. When DAFONW opens the new file,
it stores the file record information in record 1, the reserved records in records 2 through 11, and

the initiadl summary record in record 12. Because the file is empty, the initid summary record,
RI, isaso the find summary record, RF.

RI 12
RF 12

DAFONW gores the lone name record for the file immediately after the summary record, in
record 13. Therefore thefirst free address, FFA, in thefileisthe first word in record 14:

FFA = word + (record - 1) * 128
= 1+ (14 - 1) * 128
= 1 + 1664
= 1665

DAFONW aso writes the internd file name to the file record. For this example the internd file
name will be TESTFILE' For the rest of the example, the file record will be depicted asa
collection of values enclosed by braces and preceded by arecord number:

r { |DWORD=x, ND=a, NI =b, |FNAME=c, RI=d, RF=e, FFA=f }
So, thefile record for thisexamplefileisinitidly:

1 { | DWORD=' DAF/ Xnpl ', ND=25, NI =27, |FNAME=' TESTFILE',
Rl =12, RF=12, FFA=1665 }
Because there is only one summary record, the values of NEXT and PREV in that record are
both zero. Because the file contains no arrays, the vaue of NSUM isdso zero. Theinformation
needed to create the summary record is complete. For the rest of the example, each summary
record will be depicted as a collection of vaues enclosed by angle brackets and preceded by a
record number:

r < NEXT=a, PREV=b, NSUM=c, (d,e),(f,qg),(h,i) >
The ordered pairs enclosed in parentheses are the initid and final addresses of the arrays whose
summaries are contained in the record. The remaining components of each summary are ignored
in order to make the example easier to follow. Thus, the lone summary record for this example
fileisinitidly:

12 < NEXT=0, PREV=0, NSUM=0, (0,0),(0,0),(0,0) >
Name records will aways be depicted as

r <" ">

Element records will aways be depicted as

r < N >
where N is the number of dements stored in the record.

Oncetheinitid summary and name records have been written, the fileis complete, if
uninteresting:

1 { | DWORD=" DAF/ Xnpl ', ND=25, NI =27, |FNAME=' TESTFI LE',
Rl =12, RF=12, FFA=1665 }

Records 2 through 11 are reserved records.

11

12 < NEXT=0, PREV=0, NSUM=0, (0,0),(0,0),(0,0) >

13 <" " >
Assume that an array A1, containing 100 eements, is to be added to thefile. The array will be
stored contiguoudy, beginning at the first free address. Thus, itsinitid and fina addresses will
be 1665 and 1764, respectively. The entire array fits into a single record, so one element record
will be added to the file. The vaue of NSUM in the summary record isincremented by one. The
new value of FFA isthe address following the final address of the new array: 1765. Thisis
dtored in the file record.

1 { | DWORD=" DAF/ Xnpl ', ND=25, NI =27, |FNAME=' TESTFILE',
Rl =12, RF=12, FFA=1765 }
2

Records 2 through 11 are reserved records.

11

12 < NEXT=0, PREV=0, NSUME1l, (1665,1764),(0,0),(0,0) >
13 <" " >

14 < 100 > 100 words for Al

Assume that a second array A2, containing 200 ements, is to be added to the file. The lements
will be stored between addresses 1765 and 1964. The array will fill the remainder of the first
element record, al of asecond record, and part of athird, so two element records will be added
to thefile. The value of NSUM in the summary record is incremented again. And the new vaue
of FFA (1965) is tored in the file record.

1 { | DWORD=' DAF/ Xmpl ', ND=25, NI =27, |FNAME=' TESTFI LE'
Rl =12, RF=12, FFA=1965 }
2
Records 2 through 11 are reserved records.

11

12 < NEXT=0, PREV=0, NSUM=2, (1665,1764),(1765,1964),(0,0) >
13 < " " >

14 < 128 > 100 words for Al, 28 words for A2

15 < 128 > 128 words for A2

16 < 44 > 44 words for A2

To add athird array A3, containing 150 elements, the process is repeated. The dementswill be
stored between addresses 1965 and 2114. The array will fill the remainder of the third dement
record, and part of afourth, so one new element record is added. The value of NSUM isinthe
summary record isincremented again. And the new vaue of FFA (2115) isin the file record.

1 { | DWORD=' DAF/ Xnpl ', ND=25, NI =27, |FNAME=' TESTFILE',

Rl =12, RF=12, FFA=2115 }
2

Records 2 through 11 are reserved records.

11

12 < NEXT=0, PREV=0, NSUM=3, (1665,1764), (1765, 1964), (1965, 2114) >
13 <" " >

14 < 128 > 100 words for Al, 28 words for A2

15 < 128 > 128 words for A2

16 < 128 > 44 words for A2, 84 words for A3

17 < 66 > 66 words for A3

Note that the find summary record is full, S0 new summary and name records will added to the
file (Record 17 will remain only partialy filled.) The values of NEXT and PREV in the
summary records are adjusted o that the records point to each other:

1 { | DWORD=" DAF/ Xnpl ', ND=25, NI =27, |FNAME=' TESTFILE'

Rl =12, RF=12, FFA=2115 }

2

Records 2 through 11 are reserved records.
11
12 < NEXT=18, PREV=0, NSUME3, (1665, 1764), (1765, 1964), (1965,2114) >
13 <" " >
14 < 128 > 100 words for Al, 28 words for A2
15 < 128 > 128 words for A2
16 < 128 > 44 words for A2, 84 words for A3
17 < 66 > 66 words for A3
18 < NEXT=0, PREV=12, NSUM=0, (0,0),(0,0),(0,0) >

19 <" " >
The file record is updated so that the value of RF points to the new summary record, and the
vaue of FFA in the file record will point to the first word in the first record following the new
name record (address 2433):

1 { | DWORD=" DAF/ Xnmpl ', ND=25, NI =27, |FNAME=' TESTFI LE'

RI =12, RF=18, FFA=2433 }

2

Records 2 through 11 are reserved records.
11
12 < NEXT=18, PREV=0, NSUM=3, (1665, 1764), (1765, 1964), (1965, 2114) >
13 <" " >
14 < 128 > 100 words for Al, 28 words for A2
15 < 128 > 128 words for A2
16 < 128 > 44 words for A2, 84 words for A3
17 < 66 > 66 words for A3
18 < NEXT=0, PREV=12, NSUM=0, (0,0),(0,0),(0,0) >

<

19 <" " >
Adding more arraysisidentica to the previous example: the necessary e ement records are
added; the summary and name records are updated; and the value of FFA is updated. However,
every third array aso adds new summary and name records, and the values of RF and FFA are
updated as well.

Transfer Format for Porting

In order to transfer a DAF file from one computer platform to another, it should be converted to
a SPICE trandfer file. Previoudy, other SPICELIB routines such as DAFA2B, DAFB2A,
DAFT2B, and DAFB2T were recommended for converting DAF files. These routines are now
obsolete; however, they will remain in SPICELIB for backwards competibility. Two routines
replace them, DAFTB and DAFBT. Please use these routines in new software for converting
DAF files. Older software does not need to changed to use the new routines. Software that calls
the obsolete routines will continue to work properly, and the files they produce can be read using
newer versons of the NAIF Toolkit.

Examples

The next severa sections present example programs and subroutines to show how the DAF
subroutines can be used to manipulate array files.

All subroutines and functions used in the examples are from SPICELIB or they have been
provided as examples themselves.

Example 1: Converting Between Transfer and Binary Format

This example is a complete program to convert a binary double precison array file (DAF) to an
equivaent SPICE trandfer file, suitable for porting to a different environment. The program
queriesthe user for the names of the binary file to be converted and the transfer file to be created.

PROGRAM B2T

CHARACTER* (128) Bl NARY

CHARACTER* (128) XFER

| NTEGER XFLUN

WRI TE (*,*) 'Nane of binary file?'

READ (*, FMI='(A)') BI NARY

WRITE (*, *) "Name of transfer file?
READ (*,FMI='(A)') XFER

CALL TXTOPN (XFER, XFLUN)
CALL DAFBT (BI NARY, CFLUN) { Binary to transfer }

CLOSE (XFLUN)

END
Now convert from SPICE transfer format back to binary:

PROGRAM T2B

CHARACTER* (128) Bl NARY

CHARACTER* (128) TXFER

| NTEGER TXTLUN

WRI TE (*,*) "Nane of text file?'

READ (*,FMI='(A)') XFER

WRITE (*,*) "Name of binary file?
READ (*, FMI='(A)') BI NARY

CALL TXTOPR (XFER, XFLUN)
CALL DAFTB (XFLUN, BI NARY) { Transfer to binary }

CLOSE (XFLUN)

END
The subroutines DAFBT and DAFTB can be embedded in programs with more sophisticated
interfaces as well, such as X windows.

Example 2: Summarizing the Contents of an Array

The next example is a subroutine, SUMARR, that summarizes the contents of an array in a DAF.
SUMARR assumes that a DAF file is open, a search (forward or backward) isin progress, and
that an array has been found.

The subroutine takes two character string arrays as inputs. Each character array contains labels
describing what the double precison and integer components of the summary represent. A
program caling SUMARR might print out each labd followed by its corresponding value in the
aray summary.

Thefunction LASTNB returns the index of the last non-blank character in astring.

SUBROUTI NE SUMARR (DNAMES, | NAMES)

CHARACTER* (*) DNAMES (*)
CHARACTER* (*) | NAMES (*)

C SPI CELI B functi ons

O0000 OO0 OO0

O00000

o000

| NTEGER LASTNB

Local vari abl es

CHARACTER* (80) PNAME

DOUBLE PRECI SI ON DC (125)

DOUBLE PRECI SI ON

SUM (125)

| NTEGER HANDL E
| NTEGER |

| NTEGER IC (250)
| NTEGER ND

| NTEGER NI

| NTEGER LONG

Look up the handle of the file, and the sumrary of the
array nost recently found.

CALL DAFGH (HANDLE)
CALL DAFHSF (HANDLE, ND, NI)

Get, and unpack, the summary of the array. Note that SUM
DC, and I C are dinensioned | arge enough to hold the
bi ggest possi ble sunmary.

CALL DAFGS (SUM)
CALL DAFUS (SUM ND, NI, DC, IC)

Find the Il ength of the [ongest print nanme. Al names will
be transferred into a tenporary string for printing.
Shorter names will be followed by enough bl anks to nake
t he conponents line up

LONG = 1

DOl =1, ND
LONG = MAX (LONG, LASTNB (DNAMES(I)))
END DO

DOI =1, N
LONG = MAX (LONG, LASTNB (INAMES(I)))
END DO

Wite the summary: an aligned list of conponents, each
preceded by a descriptive nane.

WRI TE (*,*)
WRI TE (*,*) ' Summary
WRITE (*,*) '------- '
WRITE (*,*)

DOl =1, ND

PNAME = DNANES(1)

WRI TE (*,*) PNAME(1:LONG), ' :', DC(I)
END DO

DOl =1, N

PNAVE = | NAMES(1)

WRI TE (*,*) PNAME(1:LONG), ' :', 1C(1)
END DO

RETURN
END

Thefollowing program uses SUMARR to summarize al of the arrays in a specific kind of array
file. Each summary in the file contains four double precison components (minimum, maximum,
average, sandard deviation) and three integer components (sort flag, initial address, find
address).

Note that the program opens a DAF and begins aforward search. After an array isfound by
DAFFNA, it issummarized by SUMARR. This process of searching and summarizing continues
until dl of the arraysin the file have been summarized.

PROGRAM SUNDAF

| NTEGER ND
PARAMETER (ND=4)
| NTEGER NI
PARAMETER (Nl =3)
CHARACTER* (40) DNAMES (ND)
CHARACTER* (40) INAMES (NI)
CHARACTER* (128) FI LE
| NTEGER HANDL E
LOG CAL FOUND
DATA DNANMES / ' Largest val ue',
" Smel | est val ue',
" Aver age val ue',
' Standard devi ation' /
DATA I NAMES /['Sorted (1l=yes, 0=no)',
' Begins at address',
"Ends at address’ /
WRI TE (*,*)
WRI TE (*,*) 'Nane of file?

READ (*,FMI='(A)') FILE

CALL DAFOPR (FILE, HANDLE)

CALL DAFBFS (HANDLE)
CALL DAFFNA (FOUND)

DO VHI LE (FOUND)
CALL SUMARR (DNAMES, | NAMES)
CALL DAFFNA (FOUND)

END DO

END
The summary of atypicd array is shown below:

Summary

Lar gest val ue 1 221.42123212345
Smal | est val ue : 17.332467369560
Aver age val ue . 148. 37378239493
St andard devi ati on : 21.263546586965
Sorted (1=yes, 0=no) : O

Begi ns at address . 21463

Ends at address : 29271

Example 3: Copying Arrays from One Fileto Another

The next exampleis a subroutine to copy an entire array from one array file to another. It
assumes that the array file that isto be updated aready exists, a search (forward or backward) is
in progress, and that an array has been found.

It takes asingle input: the name of the file to which the array is to be copied.

SUBROUTI NE COPYA (FILE)

CHARACTER* (*) FI LE
C
C Local vari abl es
C
CHARACTER* (1000) NAME
| NTEGER FA
| NTEGER FI RST
| NTEGER FROM
| NTEGER HANDLE
| NTEGER I A
| NTEGER I C (250)
| NTEGER LAST
| NTEGER ND
| NTEGER NI

I NTEGER TO

o000

OO0

O000

O000

O0o0

OO0

DOUBLE PRECI SI ON DATA (100)
DOUBLE PRECI SI ON DC (125)
DOUBLE PRECI SION SUM (250)

Get the handl e of the source file, and the val ues
of ND and NI for that file.

CALL DAFGH (FROM)

CALL DAFHSF (FROM ND, N)

Open the target file for wite access.

CALL DAFOPW (FILE, TO)

Get the summary and nane for the array to be copied.
Start the new array.

CALL DAFGS (SUM)
CALL DAFGN (NAME)

CALL DAFBNA (TO, SUM NAME)

Unpack the sunmary to get the initial and final addresses
of the original array.

CALL DAFUS (SUM ND, NI, DC, IC)
A = IC(NI-1)
FA = IC(Nl)

Copy the elenments in groups of 100.

FIRST = I A

DO WHILE (FIRST .LE. FA)
LAST = MN (FA, FIRST + 100 - 1)
CALL DAFRDA (FROM FI RST, LAST, DATA)
CALL DAFADA (DATA, LAST - FIRST + 1)
FIRST = FIRST + 100

END DO

Make the addition pernanent, then close the target file.

CALL DAFENA
CALL DAFCLS (TO)

RETURN
END

Example 4. Copying Arraysto a New Filein Sorted Order

Thefind example is a complete program to copy the arraysin one file to a second file, so that
the arraysin the new file are sorted according to the vaue of the first double precison
component of each summary.

The program assumes that the file contains fewer than 1000 arrays.

Subroutine ORDERD cresates an order vector for a double precision array. Subroutine COPY A,
defined in the previous example, is used to copy the arrays.

PROGRAM DAFSRT

CHARACTER* (128) SOURCE
CHARACTER* (128) TARGET
CHARACTER* (80) ARCH
CHARACTER* (80) TYPE
DOUBLE PRECI SI ON DC (125)
DOUBLE PRECI SI ON SUM (125)
DOUBLE PRECI SI ON VALUES (1000)
| NTEGER HANDL E
| NTEGER IC (250)
| NTEGER NA
| NTEGER ND
| NTEGER NI
| NTEGER ORDER (1000)
| NTEGER TO
| NTEGER I
| NTEGER J
| NTEGER TARHAN
LOG CAL FOUND
C
C Pronmpt for the nanes of the source and target files.
C
WRI TE (*,*)
WRITE (*, *) "Name of source (unsorted) file?

READ (*,FMI='(A)') SOURCE

WRI TE (*,*)
WRI TE (*,*) "Nane of target (sorted) file?
READ (*,FMI='(A)') TARGET

O0o0

O0000

o000

O00000

O000000

O0000

Determine the file architecture and the type of data
in the file.

CALL GETFAT (SOURCE, ARCH, TYPE)

Open the source file, and | ook up the val ues of ND and NI
for the file. That's needed for the call to DAFONW for
openi ng the new DAF file later on.

CALL DAFOPR (SOURCE, HANDLE)
CALL DAFHSF (HANDLE, ND, N)

Col | ect the values of the first doubl e precision
conponent of each summary.

CALL DAFBFS (HANDLE)
CALL DAFFNA (FOUND)

NA = 0
DO VHI LE (FOUND)
CALL DAFGS (SUM)
CALL DAFUS (SUM ND, NI, DC, IC)

NA = NA + 1

VALUES(NA) = DC(1)

CALL DAFFNA (FOUND)
END DO

Create an order vector for the values, such that ORDER(1)
is the index of the array with the snallest val ue,
ORDER(2) is the index of the array with the next snmall est
val ue, and so on.

CALL ORDERD (VALUES, NA, ORDER)

Open the new file to initialize it, then close it

i medi ately. We'll set the type of data in the file
to be the sane as the type of data in the original
file. COPYAwill reopen the file and copy an array
toit.

CALL DAFONW (TARGET, TYPE, ND, NI, 'Sorted file', O,
TARHAN)

CALL DAFCLS (TARHAN)

Look up the arrays in the specified order (starting from
the beginning of the file each tine). Copy each one as
it is found to the target file.

DOl =1, NA

CALL DAFBFS (HANDLE)
DO J = 1, ORDER(I)
CALL DAFFNA (FOUND)
END DO
CALL COPYA (TARHAN)
END DO

END

Summary of Mnemonics

SPICELIB contains afamily of subroutines that can be used to create, populate, and manipulate
double precision array files. The name of each routine begins with the letters 'DAF, followed by
atwo- or three-character mnemonic. For example, the routine that begins aforward search of an
aray fileis named DAFBFS, pronounced "DAF-B-F-S. The following isacompletelist of
mnemonics and trandations, in dphabetica order.

ADA Add data to array

ARR Add reserved records
ARW Address to record/ word
BBS Begi n backward search
BFS Begin forward search
BNA Begi n new array

CAD Conti nue addi ng data
CLS Cl ose

CS Conti nue search

ENA End new array

FNH File name to handl e
FNA Fi nd next array

FPA Fi nd previous array
CGH Get handl e

GN Get nane

GS Cet summary

HFN Handl e to file nanme
HSF Handl e to summary format
HLU Handl e to | ogical unit
HOF Handl es of open files
LUH Logical unit to handle
NRR Nunber of reads, requests
ONW Open new

OPR Open for read

oPwW Open for wite

PS Pack summary

RA Re- order arrays

RCR Read character record

RDA Read data from address

RDR Read doubl e precision record

RFR Read file record

RN Repl ace nane

RRR Renpve reserved records
RS Repl ace summary

RVWA Record/word to address
SIH Signal invalid handles
us Unpack summary

WCR Wite character record
VDA Wite data to address
VDR Wite double precision record
WFR Wite file record

Many of the subroutines listed here are not normally used except to support other subroutines.
For example, because the subroutines that read and write records (RCR, RDR, RFR, WCR,
WDR, WFR) are low levd routines, they are not usudly caled by atypicd user, but instead by
higher level DAF routines,

Summary of Calling Sequences

The cdling sequences for the DAF subroutines are summarized below. Subroutines are grouped
by function.

Opening and dosng files

ONW (FNAME, FTYPE, ND, NI, |FNAME, RESV, HANDLE)

OPR (FNAME, HANDLE)

OPW (FNAME, HANDLE)

CLS (HANDLE)
Modifying reserved records:

ARR (HANDLE, RESV)
RRR (HANDLE, RESV)

Adding an aray to afile

BNA (HANDLE, SUM NAME)

ADA (DATA, N)
CAD (HANDLE)
ENA

Finding an array within afile

BFS (HANDLE)
FNA (FOUND)

BBS (HANDLE)
FPA (FOUND)

CS (HANDLE)
GH (HANDLE)
GN)
GS (SuM)
)
)

US (SUM ND, N, DC, I
PS (ND, NI, DC, |

Reading and writing arrays.

)
., SUM)

RDA (HANDLE, BEG N, END, DATA)
WDA (HANDLE, BEG N, END, DATA)

Reordering arrays.

RA (HANDLE, |ORDER, N)
Converting array files:

BT (BI NARY, TXTLUN)
TB (TXTLUN, BI NARY)

Reading, writing physica records:

RFR (HANDLE, ND, NI, |FNAME, FWARD, BWARD, FREE)
WFR (HANDLE, ND, NI, |FNAME, FWARD, BWARD, FREE)

RCR (HANDLE, RECNO, CREC)
WCR (HANDLE, RECNO, CREC)

RDR (HANDLE, RECNO, BEGI N, END, DATA, FOUND)
WDR (HANDLE, RECNO, DREC)
NRR (READS, REQS)

Internd conversons.
HSF (HANDLE, ND, NI)

FNH (FNAME, HANDLE)
HFN (HANDLE, FNAME)
HLU (HANDLE, UNIT)
LUH (UNIT, HANDLE)

ARW (ADDR, RECNO, WORDNO)
RWA (RECNO, WORDNO, ADDR)

Error handling utilities

HOF (FHSET)
SIH (HANDLE, ACCESS)

Redated routine-- Determining file architecture and type:

GETFAT (FILE, ARCH, TYPE)

Obsolete Routines

Thefollowing isalist of routines and their replacements. NAIF's palicy isto maintain the old
routines to assure that existing software continues to function. Bugs will be fixed; however, no
new functiondity will be added to them. The replacement routines should be used in any new
software that is being devel oped. Existing software does not need to be updated.

Asdways, for more information about a given routine, see its header documentation.

Rout i ne Repl acenent Description

DAFOPN DAFONW Open new DAF file

DAFA2B DAFTB Convert transfer to binary format
DAFB2A DAFBT Convert binary to transfer format
DAFB2T DAFBT Convert binary to transfer format

DAFT2B DAFTB Convert transfer to binary format

