S- and P-Kernel Files

Revisions

October 14, 1999

Theroutines

SPKPCS
SPKEZP
SPKGPS
SPKAPO
were added with version NOOS0 of the SPICE Toalkit. These routines are the ~ position only”

equivaents of gate routines

SPKEZR
SPKEZ

SPKGEO
SPKAPP

respectively. The caling sequences of the podtion only routines are identical to the state
routines. However, where the state routines return 6-vectors (position and velocity), the position
only routines return a 3-vector (just position). Moreover, the positions returned by the position
only routines agree with the positions returned by the state routines.

Although the position only routines do not return as much information as the State routines (they
don't return velocity), they are in some respects more generd than the ate routines. Thisis due
to the link between the frame system and the SPK system. Some reference frames do not contain
rate information. Consequently when a date is requested relative to such aframe, the state
routines cannot perform transformations on the velocity components of the state. However, since
the position only routines are not sendtive to the rate informeation, they can gill perform position
transformations and return the requested position.

March 2, 1998

This verson contains corrections of typographica errors and miscellaneous format changes. A
note has been added on porting SPK files between SPICELIB and CSPICE (the ANSI C version
of SPICELIB).

June 24, 1997

This versgon of this document isamgor reorganization and expansion of the materia presented
in the December 1994 version.

Overview of the June 24, 1997 revision

Because of the substantia changes made in this revison, the description of those changesis
retained here.

When the SPK system was introduced, states of objects (positions and vel ocities) were stored
rediveto inertid frames and retrieved rldive to inertid frames. Beginning with verson 41 of

the NAIF Toolkit, states can be stored relative to both inertial and nor+inertial frames. Moreover,
states may be retrieved relative to both inertid and non-inertia frames. Norinertid frames may
be tied to the rotation of a planet, the orientation of some structure on a spacecraft, an Earth
based telescope, etc. By expanding the SPK system in thisway, computation that previoudy
required dozens lines of code may now be reduced to three or four lines of code.

Thisverson of the "SPK Required Reading” documents for the first time this important
expangon of the SPK system.

Also in this verson, we document:

1. theability to request states of objects by name instead of by object ID codes,

2. the addition of SPK data Type 10 which alows the incorporation of NORAD ™ two-
line" dementsfor Earth orbitersinto the SPK system;

3. theaddition of SPK data Type 14 which supports Chebyshev interpolation over nor-
uniformly spaced time intervas;

4. the addition of SPK data Type 17 which supports the incluson of equinoctid dements
into the SPK system.

The complete ligt of routines that are documented here for thefirg timeis

LTI ME

SPKEZR
SPKPVN
SPKE10

SPKE14
SPKE17
SPKR10
SPKR14
SPKR17
SPKS10
SPKS14
SPKS17
SPKWLO
SPK14A
SPK14B
SPK14E
SPKWL7

Purpose

The purpose of this document is to describe the NAIF Toolkit software provided in the software
library SPICELIB, (SPICE LIBrary) used for producing and accessing SPICE ephemeris data. In
addition this document describes SPK---the common file format for NAIFs S-kernel and
ephemeris portion of the P-kerndl.

Intended Audience

This document is intended for al users of SPK (ephemeris) kernd files.

References

All references are to NAIF documents. The notation [Dn] refers to NAIF document number.

1. [349] Frames Required Reading

N

. [174] CK Required Reading

w

. [254] PCK Required Reading

S

. [222] Spacecraft Clock Time Required Reading. (SCLK)

al

. [218] KERNEL Required Reading.

6. [219] NAIF IDS Required Reading.

7. [163] JPL Internal Memorandum on Modified Difference Array polynomids; F.
Krogh

8. [164] Precession Matrix Based on IAU (1976) System of Astronomical Congtants; E.
M. Standish; Astronomy and Astrophysics 73, 282-284 (1979)

9. [165] Orientation of the JPL. Ephemerides, DE200/L E200, to the Dynamical Equinox
of J2000; E. M. Standish; Astronomy and Astrophysics 114, 297-302 (1982)

10. [166] The JPL Asteroid and Comet Database (as Implemented by NAIF); a
collection of papers and memos; assembled by I. Underwood; 11 Dec 1989

11. [167] Double Precison Array Files (DAF) - Required Reading; latest version

12. [212) COMMNT User's Guide

If you'reinahurry

Well discuss thingsin more detall in amoment but in case you are just looking for the right
name of the routine to perform some ephemeris task, here is a categorization of the most
frequently used SPK and rdlated routinesin SPICELIB. Input arguments are given in lower case
and enclosed in “angle brackets." Output arguments are given in upper case.

High Level Routines

Loading/Unloading an SFK file

SPKLEF (<file>, HANDLE)
SPKUEF (<handl e>)

Retrieving states (position and velocity) using names of objects

SPKEZR (<object>, <et>, <frame>, <corr>, <observe
Retrieving pogitions using names of objects

SPKPOS (<object>, <et>, <frame>, <corr>, <observe

Retrieving states usng NAIF ID codes
SPKEZ (<obj __id> <et>, <frame>, <corr>, <obj _id&

SPKGEO (<obj _id>, <et>, <franme>, <obj id> S
Retrieving positions using NAIF 1D codes

SPKEZP (<obj _id>, <et>, <frame>, <corr>, <obj _id&

SPKGPS (<obj _id>, <et>, <franme>, <obj id> P
Cdculaing ~Uplink and Downlink™ Light Time

LTIME (<etobs>, <obs_id> <dir> <targ_id> ETTARG
Loading/Unloading Binary PCK files (see PCK Required Reading)

PCKLOF (<bi nary_pck>, HANDLE)
PCKUCF (<handl e>)

Loading Text based kernds---PCK, SCLK, etc.

LDPOOL (<text_kernel >)
Loading/Unloading C-kernels (see CK Required Reading)

CKLPF (<c-kernel >, HANDLE)
CKUPF (<handl e>)

Foundation Routines

The routines listed in this section are the real ~“work horses’ of the SPK and related systems. Not
al of theroutinesin this section are described in this document. In those cases, the gppropriate
SPICE document is cited.

Sdecting files and ssgments

SPKSFS (<target>, <et>, HANDLE, DESCR, |DENT, FOUND)
Computing states from segment descriptors

SPKPVN (<handl e>, <descr>, <et>, REF, STATE, CENTER)
Correcting for stellar aberration

STELAB (POBJ, VOBS, APPOBJ)
Trandating between object names and object ID codes (see NAIF_IDS Required Reading)

BODN2C (<name>, | DCODE, FOUND)
BODC2N (<i dcode> NAME, FOUND)

Trandating between frame names and frame ID codes (see Frames Required Reading)

FRVNAM (<idcode> NAME)
NAMFRM (<name>, | DCODE)

State transformation matrices (see Frames Required Reading)

FRMCHG (<from.idcode>, <to_idcode> <et>, MAT6X6)
Classfying frames (see Frames Required Reading)

FRI NFO (<idcode>, CENTER, CLASS, CLSSID, FOUND)

Utility Programs

Examining SPK files

bri ef
commmt
spaci t
Converting to and from transfer format

spaci t

tobin
t oxfr

| ntroduction

To hdp fully understand the science data returned from a spacecraft's instrumentsiit is necessary
to know, at any given epoch, the pogitions and possibly the velocities of the spacecraft and al the
target bodies of interest. The purpose of the SPK---which stands for S(pacecraft) and P(lanet)
Kernd---fileisto dlow ephemerides for any collection of solar system bodies to be combined
under acommon file format, and accessed by a common set of subroutines.

Higtoricaly, ephemerides for spacecraft have been organized differently from those for planets
and satedllites. They are usualy generated through different processes and using different
representations. However, there is no essentia reason for keeping them separate. A spacecraft,
planet, satellite, comet, or asteroid has a position and velocity relative to some center of mass
and reference frame. Consequently al of these objects can be represented in an SPK file.

Consider the Gdlileo misson. Some of the objects of specid interest to the Gdlileo misson are:

Gal il eo Spacecraft
Gal il eo Probe
Earth

Moon

Earth Moon Barycenter

Venus

Sun

Sol ar System Barycenter (S.S.B.)
Asteroid |da

Ida's Satellite Dactyl

Ast eroi d Gaspra

Conmet Shoemraker - Levy

Jupiter System Barycenter (J.B.)
Jupi ter

lo

Ganynede

Eur opa

Cal lysto

Gol dst one Tracki ng Station.

Each of these objects has a postion and velocity (date) relative to some other object. The graph
below illustrates which objects will be used as reference objects for representing the states of
others.

+d |
/ pr obe
/ | o Conet
Gaspra / al+ /| Shoemaker Levy
Gl +--o0 / \
| / Venus Jupi ter o--probe
| 0--+ |
al + |/ / Gl | 1o
| | / / | o0----- +d |
| |/ / J.B.| [/
lda o0------- 0------ O---------------- - 0 ----0------ +d |
/ Sun S. S. B. [\ Eur opa
o] \ Ganynede / \
Dact yl \ o} \
\ | o Callisto
Eart h- Moon Barycenter o0----0 + |
| Moon dl |
| + 4l
o Earth
[\
/ \
/ + al
o]
Gol dst one

This graph is somewhat complicated. Nevertheless, the complete ephemeris history for al of
these objects can be captured in asingle SPK file.

(Although we can store the entire ephemeris history illugtrated above in asingle SPK file, for the
sake of data management aproject islikely to use severd SPK files. However, even in this case,
al of the SPK files can be used smultaneoudy.)

The SPK format is supported by a collection of subroutines that are part of the SPICELIB
library---the mgor component of the NAIF Toolkit. Thisfamily of SPK subroutines provides the

following capabilities

1. Insert ephemeris data from some source into an SPK file.
2. Make the ephemeris datain one or more SPK files available to a user's program.

3. Returnthe apparent, true, or geometric Sate (postion and velocity) of one ephemeris
object as seen from another in some convenient reference frame.

The SPK software alows you to ignore the potential ephemeris complexity associated with the a
mission such as Gdlileo and dlows you to more directly compute various quantities that depend
upon the position or velocity of one object as seen from another.

SPK Files

SPK filesare binary files. The format of these binary filesis based upon a more abgtract file
architecture caled Double precison Array File (DAF). Severa other SPICE kernels are also
based on the DAF architecture. If you are only going to be a consumer of SPK files or if you will
be usng a SPICE utility program for creating SPK files, you can safely ignore aspects of the
DAF system that are not covered by this document. On the other hand, if you plan to write
software for cregting SPK files you will probably need to familiarize yoursdf with the DAF
software contained in SPICEL IB. The DAF architecture and supporting softwareis discussed in
[169]. The particular aspects of the DAF architecture that are relevant to the SPK format are
discussed later in this document (see below---SPK Format).

Moving SPK files between computers

A binary file suitable for use on one computer, may not be suitable for use on another computer.
For example, SPK files created on a Sun Sparc-10 are not suitable for use on a PC running
SPICE software compiled with the Microsoft FORTRAN compiler. Asaresult you can't dways
perform a binary copy” of an SPK file from one machine to another. NAIF provides two utility
programs---TOXFR and SPACIT for converting SPICE binary kerndlsto a *transfer format”
that is suitable for text copying from one computer to another. Once the transfer format file has
been copied, the NAIF utilities TOBIN and SPACIT are available for converting the transfer
formét file to the binary format suitable for the new machine.

The utilities TOXFR and TOBIN are ""command line" programs. To convert abinary kernd to
transfer format you smply type TOXFR followed by the name of the binary kernd at your
termina prompt.

prompt > toxfr spk_file
To convert atransfer format to binary format, you type TOBIN followed by the name of the
transfer format kerndl.

pronpt> tobin transfer_file
The utility SPACIT isan interactive program that alows you to sdect an action to peform on a
filefrom aligt of posshilities. It can be used to convert to or from transfer format files.

Note that transfer formét files are suitable only for moving data from one machine to another.
They cannot be ~loaded" into a SPICE based program to retrieve ephemeris data. Only binary
format files can be used for retrieving ephemeris data with SPICE software.

Porting files between SPICEL 1B and CSPICE

In most environments where SPICELIB is supported, CSPICE can use the same binary kernds
as does SPICELIB. Environments where this loca compatibility exigs are;

Sun, Solaris; Sun Fortran; Sun C or Gnhu gcc

Silicon Graphics, IRIX OS; Silicon G aphics Fortran; Gnau gcc

HP Series 700 conputers, HP-UX 9000/ 750; FORTRAN 9000; HP C

VAX/ VMS; VAX FORTRAN; VAX C

PC, DOS/ W n95/ NT; Ms Powerstation Fortran; Borland Bcc32i C++/C

NeXT, Mach; Absoft Fortran; Giu gcc

Maci nt osh???

Mac- ppc???
Porting between any pair of supported Fortran and C environmentsis dways possible via
binary/transfer conversion. The processis identica to that described above for porting between

incompatible Fortran environments.

Examining SPK files

Since SPK files are binary files, you can't just open them with your favorite text editor to
determine which ephemeris objects are represented in the file. Instead you need to use one of the
NAIF utility programs that alow you to summarize the ephemeris contents of an SPK file. The

firg of theseis SPACIT which was introduced above. The second is the command line utility
BRIEF.

BRIEF gives aquick summary of the contents of the file and supports awide set of summary
options. SPACIT on the other hand, provides summaries that are more detailed and reflect
closly the actud internd structure of the file. Unless you need the more detailed summary,
you'l probably find BRIEF to be a better tool for examining the contents of an SPK file.

Meta Data in the SPK file

SPICE kernels may contain ““meta’ data that describe the contents, intended use, accuracy, etc.
of the kerndl. This metadatais caled the " comments' portion of the kernel. Many SPK files
contain comments that can help you decide upon the suitability of the kernd for your application.
Two SPICE uitilities are avallable for examining the comments of abinary kernd---COMMNT
and SPACIT.

Weve dready introduced SPACIT. COMMNT issmilar to SPACIT in that it tooisan
interactive program. However, COMMNT aso alows you to modify the comments of an SPK
file. Usng COMMNT you can ddete the comments of an SPK file, extract the commentsto a
text file, or gppend the text from some text file to the comments dready present in the kerndl.

If you create SPK files, we strongly recommend that you add comments to the kernd that
describe who created it, expected usage of the kerndl, and the expected accuracy of the
position/velocity information contained in the kernel. A comment template is provided in the
appendix "COMMENTS".

Warning: If you add commentsto an SPK (or other binary kernd) usng COMMNT, you must
wait for the program to complete the task before exiting the program. Failure to wait for

COMMNT to finish itswork will result in irreparable corruption of the binary kernd. (Seethe
COMMNT User's Guide [212] for details on the use of COMMNT).

Terminology

Throughout this document we shdl be using terms such as reference frame, state, ephemeris
time, etc. Weinclude a brief review of these terms below.

Reference Frame

State

A reference frameis a cartesian coordinate system with three axes---x, y and z. The axes
are mutudly orthogona. The center of the frame is the origin of the cartesian reference
system. For the reference framesin SPICE, the positions of the axes are typically defined
by some observable object. For example, in the J2000 reference frame, the x-axisis
defined to lie in the intersection of two planes: the plane of the Earth's equator and the
plane of the Earth's orbit. The zaxis is perpendicular to the Earth's equator. The y-axis
completes aright handed system. The center of the frameistypicaly taken to be the solar
system barycenter. (Note we are not attempting to rigoroudy define the J2000 frame
here. We are only illustrating how reference frames are defined. Many more details are
required for arigorous definition of the J2000 frame. These details are given in the
SPICE document ~ Frames' [349].)

A dateisan array of Sx double precison numbers. The first three numbers give the x, v,
and z coordinates respectively for the position of some object relative to another object in
some cartesan reference frame. The next three numbers give the velocity (dx/dt, dy/dt
and dz/dt respectively) of the object with respect to the same reference frame.

Inertial Frame

Aninertid frame, is one in which Newton's laws of mation gpply. A frame whose axes
are not moving with respect to the observed positions of distant galaxies and quasars
goproximates an inertia frame.

Non-Inertial Frame

A non-inertid frameis aframethat rotates with respect to the cdestia background. For
example aframe whose axes are fixed with respect to the festures on the surface of the
Eath isanortinetid frame,

Ephemeris Time (ET)

Ephemeristime, ET, is the independent variable in the equations of motion that describe
the positions and velocities of objectsin the solar system. In SPICELIB wetreat ET asa
synonym for Barycentric Dynamicd Time. Asfar as has been experimentdly

determined, an atomic clock placed at the solar system barycenter, would provide a
fathful messure of ET.

Seconds Past 2000

In the SPK system times are specified as a count of seconds past a particular epoch---the
epoch of the J2000 reference frame. This reference epoch iswithin a second or two of the
the UTC epoch: 12:01:02.184 Jan 1, 2000 UTC. (See the document TIME.REQ for a
more thorough discussion of the J2000 epoch). Epochs prior to this epoch are represented
as negative numbers. The “units' of ET are designated in severd different ways: seconds
past 2000, seconds past J2000, seconds past the Julian year 2000, seconds past the epoch
of the J2000 frame. All of these phrases mean the same thing and are used

interchangesbly throughout this documen.

SPK segment

The trgjectories of objectsin SPK files are represented in pieces called segments. A
segment represents some arc of the full trgjectory of an object. Each segment contains
information that specifies the trgjectory of a particular object relative to a particular
center of motion in afixed reference frame over some particular interva of time. From
the point of view of the SPK system segments are the atomic portions of atrgectory.

The SPK Family of Subroutines

SPICELIB contains afamily of subroutines that are designed specificaly for use with SPK files.
The name of each routine begins with the letters "SPK", followed by atwo- or three-character
mnemonic. For example, the routine that returns the ate of one body with respect to another is
named SPKEZR, pronounced 'S-P-K-easer'. A complete list of mnemonics, trandations, and
calling sequences can be found at the end of this document.

Each subroutine is prefaced by a complete SPICEL 1B header, which describes inputs, outputs,
restrictions, and exceptions, discusses the context in which the subroutine can be used, and
shows typicd examples of its use. Any discusson of the subroutinesin this document is intended
as an introduction: the final documentation for any subroutine isits header.

Whenever an SPK subroutine gppears in an example, the trandation of the mnemonic part of its
name will appear to the right of the reference, in braces. We aso continue with the convention of
distinguishing between input and output arguments by listing input arguments in lower case and
enclosed in angle brackets. For example,

CALL SPKLEF (<file>, HANDLE) { Load epheneris file }
All subroutines and functions, including those whose names do not begin with "SPK', are from
SPICELIB.

Code examples will make use of the structured DO ... END DO and DO WHILE ... END DO
statements supported by most Fortran compilers.

SPK readers are available to perform the following functions.

1. Determine the gpparent, true, or geometric state of abody with respect to another
body relative to a user specified reference frame.

2. Determine the apparent, true, or geometric state of abody with respect to an observer
with having a user-supplied state.

3. Determine the geometric State of a body with respect to the solar system barycenter.

4. Determine the geometric state of atarget body with respect to its center of motion for
aparticular ssgment.

5. Determine, from alist of SPK files supplied by the caling program, the files and
segments needed to fulfill arequest for the state of a particular body.

Computing States

SPKEZR isthe most powerful of the SPK readers. It determines the apparent, true, or geometric
state of one body (the target) as seen by a second body (the observer) relative to a user specified
reference frame.

CALL SPKEZR (<targ>, <et>, <frame>,
<aberr>, <obs>,
STATE, LT) { Easier state }

The subroutine accepts five inputs---target body, epoch, reference frame, aberration correction
type, and observing body---and returns two outputs---state of the target body as seen from the
observing body, and one-way light-time from the target body to the observing body.

Thetarget body, observing body and frame are identified by strings that contain the names of
these items. For example, to determine the State of Triton as seen from the VVoyager-2 spacecraft
relative to the J2000 reference frame

CALL SPKEZR ('TRITON , ET, 'J2000', ABERR,
VCNAGER 2 STATE LT) { Easier state }

By def|n|t|on the ephemeridesin SPK flles are continuous: the user can obtain Sates at any
epoch within the interva of coverage. Epochs are dways specified in ephemeris seconds past the
epoch of the J2000 reference system (Julian Ephemeris Date 2451545.0) For example, to
determine the gate of Triton as seen from Voyager-2 at Julian Ephemeris Date 2447751.8293,

ET = (2447751.8293D0 - J2000()) * SPD()

CALL SPKEZR ('TRITON , ET, 'J2000', <aberr>,
VCNAGER 2' STATE LT) { Easier state }

Where the function J2000 returns the epoch of the J2000 frame (Julian Ephemeris Date
2451545.0) and the function SPD returns the number of seconds per Julian day (86400.0).

The ephemeris datain an SPK file may be referenced to a number of different reference frames.
States returned by SPKEZR do not have to be referenced to any of these " native” frames. The
user can specify that states are to be returned in any of the frames recognized by the frame
subsystem. For example, to determine the Sate of Triton as seen from Voyager-2, referenced to
the J2000 ecliptic reference frame,

CALL SPKEZR ('TRITON , ET, 'J2000ECLI P, ABERR,
' VOYAGER- 2" STATE, LT) { Easier state }

SPK EZR returns apparent, true, or geometrl ¢ states depending on the value of the aberration
correction type flag ABERR.

Apparent states are corrected for planetary aberration, which is the composite of the apparent
angular displacement produced by motion of the observer (stellar aberration) and the actual
motion of the target body (correction for light-time). True states are corrected for light-time only.
Geometric states are uncorrected.

Instead of using the potentidly confusing terms “true’ and "geometric' to pecify the type of sate
to be returned, SPKEZR requires the specific corrections to be named. To compute apparent
dates, specify correction for both light-time and stellar aberration: "LT+S. To compute true
dates, specify correction for light-time only: "LT'. To compute geometric States, specify no
correction: 'NONE'.

Indl cases, the one-way light-time from the target to the observer isreturned dong with the
dtate.

The Computation of Light Time

The light time corrected states returned by the SPK system are smply the 6-vector difference

TARGET_SSB (ET - LT) - OBSERVER SSB (ET)
where TARGET_SSB and OBSERVER_SSB give the position of the target and observer reaive
to the solar system barycenter. LT isthe unique number that satisfies:

| TARGET SSB (ET - LT) - OBSERVER SSB (ET) |

Speed of Light
Where

| STATE |
refers to the length of the position component of a state vector.
(Note that the velocity portion of the gtate returned is Smply the difference in the
velocity components of

TARGET_SSB (ET - LT) and OBSERVER SSB (ET)
ThisisNOT the derivative of the light time corrected position because this does not
take into account the time derivative of LT.)

Mathematicdly, LT can be computed to arbitrary precision viathe following agorithm:

| TARGET_SSB (ET - LT (i-1)) - OBSERVER SSB (ET) |
[T e T
Speed of Light

(for i =1, 2, 3 ...)
It can be shown that the sequence LT O, LT _1,LT 2, ... convergesto LT geometricaly.
Moreover, it can be shown that the difference between LT i and LT satisfies the following
inequality.

i +1

| LT - LT | <LT* (VIC)
whereV is the speed of the target body with respect to the solar system barycenter and C isthe
gpeed of light. Let's examine the error we make if weuse LT_1 as an gpproximation for LT.

For nearly dl objectsin the solar system V isless than 60 km/sec. The value of C is 300000
km/sec. Thus the one iteration solution for LT has a potentid relative error of not more than
4*10D-8. Thisisapotentid light time error of gpproximately 2* 10D-5 seconds per astronomical
unit of distance separating the observer and target. Thus as long as the observer and target are
separated by less than 50 Astronomica Units the error in the light time returned using option

‘LT islessthan 1 millisecond.

For thisreason, we use LT_1 to gpproximate LT when you request alight time corrected state by
setting the aberration correction argument in SPKEZR to LT or 'LT+S.

Y ou can make SPKEZR perform a better gpproximation to LT by requesting that it compute a
““converged Newtonian" value for LT. To do this set the aberration correction to "CN' or "CN+S.
SPKEZR will then return LT _3 as the approximation for light time. The maximum error in LT_3
isless than a nanosecond for any observer/target pair in the solar system.

However, you should note that thisis a purely Newtonian approximetion to the light time. To
modd the actud light time between target and observer one must take into account effects due to
Generd relativity. These may be as high as afew hundredths of a millisecond for some objects.

The routines in the SPK family do not attempt to perform either generd or specid rdatividic
corrections in computing the various aberration corrections. For many gpplications relativistic
corrections are not worth the expense of added computation cycles. If, however, your application
requires these additional corrections we suggest you consult the astronomica dmanac (page
B36) for adiscussion of how to carry out these corrections.

Light Time Corrected Non-Inertial States

When we observe adistant object, we don't seeit asit is a the moment of observation. We seeit
asit was when the photons we have sensed were emitted by or reflected from the object. Thus
when we look at Mars through a telescope, we see it not asit is now, but rather asit was one
“light-time" ago. Thisistrue not only for the position of Mars, but for its orientation as well.

Suppose that alarge baloon has been launched into the Martian atmosphere and we want to
determine the Mars bodyfixed state of the balloon as seen from Earth at the epoch ET. We need
to determine both the light time corrected position of the baloon, and the light time corrected
orientation of Mars. To do this we compute two light times. The light time to the center of the
Mars bodyfixed frame (i.e. the center of Mars) and the light time to the balloon. Cal the light
time to the center of the Marsframe LT_F and call thelight timeto the bdloon LT_T. Thelight
time corrected state of the baloon relative to the Mars bodyfixed frame is the location of the
baloonat ET - LT_T inthe bodyfixed frame of Marsasoriented at ET - LT _F.

SPKEZR carries out dl of these computations automaticaly. In this case the computation would
be computed by a subroutine cal amilar to this.

CALL SPKEZR ('Mars_balloon', <et>, 'IAU MARS', 'LT', 'EARTH ,
: STATE, LT)
SPKEZR uses the following rules when computing states.
1. When no corrections are requested from SPKEZR (ABCORR = 'NONE)), the state of
the target is determined at the request time ET and is represented in the specified
reference frame asit is oriented at time ET.

2. When light time corrections are requested from SPKEZR (ABCORR ="LT"), two light
times are determined: LT_F the light time to the center of the specified reference frame,
and LT_T thelight time to the target. The state of the target isgiven asit wasat ET -

LT Tintheframeasitwasorienteda@ ET - LT _F.

3. When light time and stdllar aberrations are requested from SPKEZR (ABCORR =
'LT+S), both LT _Fand LT_T are again computed. The state of thetarget at ET - LT_T is
corrected for stellar aberration and represented in the reference frame as it was oriented at
ET-LT_F.

In the actud implementation of SPKEZR afew short cuts are taken. When light time requested
dates relative to an inertid frame are requested, the orientation of the frame is not corrected for
light time. The orientation of an inertid framea ET - LT_F isthe same as the orientation of the
frame a ET. Computations involving inertid frames take advantage of this observation and
avoid redundant computations.

An example

Here we illustrate how you could use SPKEZR together with other SPICELIB routines to
determineif a aparticular epoch ET the Mars Globa Surveyor spacecraft is occulted by Mars.

We will need the lengths of the axes of the triaxid €lipsoid that is used to mode the surface of
Mars. The SPICELIB routine BODVAR will retrieve this information from aloaded PCK file,
Note that BODV AR usesthe NAIF ID code for Mars (499) to retrieve the lengths of the axes.

CALL BODVAR (499, 'RADII', NVALS, AXES)
A = AXES(1)
B = AXES(2)
C = AXES(3)

Next we compute the state of Mars reative to Earth and the state of MGS rdlative to Earth in the
Mars bodyfixed frame.

CALL SPKEZR ('MARS', ET, '|lAU_MARS , 'LT+S', 'EARTH ,

: MARSST, LT)

CALL SPKEZR ('MGS', ET, '|lAU_MARS , 'LT+S', 'EARTH ,

. MGSST, LT) {Easier State}
Compute the apparent position of the Earth relative to Mars in the apparent Mars bodyfixed
frame. This means smply negating the components of MARSST. The SPICELIB routine

VMINUS carries out this task.

CALL VM NUS (MARSST, ESTATE)
Determine if the line of sght from Earth to MGS intersects the surface of Mars. The SPICELIB
routine SURFPT will find thisintersection point if it exists.

CALL SURFPT (ESTATE, MGSST, A, B, C, PO NT, FOUND)
Findly, if apoint of intersection was found, was it between the Earth and the MGS spacecraft.
To find out we can compare the distances between the intersection point and the spacecraft. The
SPICELIB function VNORM computes the length of the vector from Earth to MGS. The
function VDIST computes the distance between the point and the Earth.

IF (FOUND) THEN

BETWN = VDI ST(ESTATE, PONT) .LT. VNORM (MGSST)
ELSE

BETWN = . FALSE.
END | F

IF (BETWN) THEN

WRITE (*,*) 'MGS is behind Mars'
ELSE

WRITE (*,*) 'MGS is not behind Mars'
END | F

Integer ID Codes Used in SPK

Low level SPK software usesinteger codes to identify ephemeris objects, reference frames and
data representation, etc. At low levels of the SPICE system only integer codes are used to
communicate information about objects. To some extent, these codes are a historicd atifact in
the design of the SPICE system. Neverthdess, these integer codes provide economiesin the
development of SPICE software.

High-level SPICE software uses names (character strings) to refer to the various SPICE objects
and trand ates between names and integer codes. Thus to some extent you can disregard the
integer codes used by the SPICE internals. However, occasionally, due to the introduction of
new ephemeris objects, the name trandation software will be unable to find a name associated
with an ID code. To retrieve states for such an object you will need to use the integer code for
the object in question. If you are using SPKEZR, you can supply thisinteger code as a quoted
gring. For example the following two subroutine cals will both return the state of TRITON as
seen from Voyager-2. (The NAIF integer code for TRITON is 801; the NAIF integer code for
Voyager 2is-32).

CALL SPKEZR ('TRITON , ET, 'J2000ECLIP , ABERR

' VOYAGER- 2' STATE, LT) { Easier state }
CALL SPKEZR (801 ET, 'J2000ECLIP', ABERR,
-32 STATE, LT) { Easier state }

Consult the NAIF IDS Reqw red Reading file for the current list of body codes recognized by the
NAIF Toolkit software.

SPKEZ and SPKGEO

SPKEZR rdies upon two lower leve routines that may be useful under certain circumstances.

The routine SPKEZ performs the same functions as SPKEZR. The only differenceis the means
by which objects are specified. SPKEZ requires that the target and observing bodies be specified
using the NAIF integer 1D codes for those bodies.

SPKEZ (<targ_id> <et>, <frame> <corr>, <obj_id&
STATE, LT) { SPK Easy }

The NAIF-1D codes for ephemeris objects are listed in the NAIF_IDS required reading file.

SPKEZ is useful in those Situations when you | D codes for objects Stored as integers. Thereis
aso amodest efficiency gain when using integer 1D codes insteed of character strings to specify
targets and observers.

The routine SPK GEO returns only geometric (uncorrected) states. The following two subroutine
cdls are equivdent.

CALL SPKEZ (<targ_id>, <et>, <franme>,
" NONE' <obj _i d>
STATE, LT) { SPK Easy}

CALL SPKCGEO (<targ_id> <et>, <franme>,
<obj _i d>,
: STATE, LT) { SPK Geonetric }
SPKGEO involves dightly less overhead than does SPKEZ and thus may be margindly faster

then calling SPKEZ.

L oading Files

Note that SPKEZR, SPKEZ and SPKGEO do not require the name of an SPK file asinput.
These routines rely on a second routine, SPKLEF, to maintain a database of ephemerisfiles.
Y our application program indicates which files are to be used by passing their namesto
SPKLEF.

DOI =1, N
CALL SPKLEF (ephenm(l), HANDLE(lI)) { Load epheneris file }
END DO

SPKLEF returns a DAF file handle for each file, which may be used to access thefile directly
using DAF subroutines. Once an SPK file has been loaded, it may be accessed by SPKEZR.

In generd, a Sate returned by SPKEZR is built from severd more primitive sates. Consder the
following diagram, which shows some of the states that might be needed to determine the State
of the Gdileo spacecraft as seen from Earth:

Jupi ter_Barycenter --- Europa
/ \
/ \
/ Spacecr aft

EMB --- Earth
(SSB and EMB are the solar system and Earth- Moon barycenters.)

Each gate is computed from a distinct segment. The segments may reside in asingle SPK file, or
may be contained in as many asfive separate files. For example, the segments needed to
compuite the Earth- pacecraft state shown above might come from the following set of files:

CALL SPKLEF ('barycenters. bsp', H(1)) { Load epheneris file }
CALL SPKLEF ('planet-centers.bsp', H(2)) { Load ephemeris file }
CALL SPKLEF ('satellites.bsp', H(3)) { Load epheneris file }
CALL SPKLEF ('spacecraft.bsp', H(4)) { Load epheneris file }

or from thefollowing set:

CALL SPKLEF ('earth. bsp', H(1)) { Load epheneris file }
CALL SPKLEF ('jupiter.bsp', H(2)) { Load epheneris file }
CALL SPKLEF ('spacecraft.bsp', H(3)) { Load epheneris file }

Data Precedence

An SFK file may contain any number of segments. A singlefile may contain overlgpping
segments. segments containing data for the same body over acommon interva. When this
happens, the latest segment in afile supersedes any competing segments earlier in thefile,
Smilarly, the latest file loaded supersedes any earlier files. In effect, severa |oaded files become
equivaent to one largefile.

Unloading Files

The number of SPK filesthat may be open a any onetimeislimited. For example, some
operating systems limit the total number of files that may be open a onetimeto 20.
Consequently, your gpplication program may need to unload some SPK files to make room for
others. An SPK file may be unloaded by supplying its handle to subroutine SPKUEF. The
sequence of statements shown below,

CALL SPKLEF ('file.a'
CALL SPKLEF ('file.b',
CALL SPKLEF ('file.c',
CALL SPKUEF (

CALL SPKLEF ('file.d",
CALL SPKUEF (

is equivaent to the following (shorter) sequence:

Load epheneris file }
Load epheneris file }
Load epheneris file }
Unl oad ephemeris file }
Load epheneris file }
Unl oad ephemeris file }

IIIII%
OTmO®
e Rt N e Rt Xt

CALL SPKLEF ('file.a', HA) { Load epheneris file }
CALL SPKLEF ('file.d, HD) { Load epheneris file }

L oading Auxiliary Files

Prior to theincluson of non-inertid framesin the SPK system, the states of objects computed by
the SPK system required only that you load the correct SPK files and call the correct subroutines.
The inertid frame transformations needed for converting from one inertid frame to another are
“hard wired" into the SPICE system. The transformations are part of the object code of the
SPICELIB library---no additiona data need be supplied to compute these transformations. This
gpproach to carrying out inertid frame transformations was chosen because the transformations
are compactly represented and do not change as the result of further observations. They are
essentidly definitions.

On the other hand, the orientation of nor+inertia frames with respect to other frames are dmost
aways the result of observation. They are improved and extended as further observations are
made. For some of these frames (such as spacecraft fixed frames) vary large data sets are needed
to express the orientation of the frame with respect to other frames. Frame transformations that
are afunction of time and require megabytes of data are not suitable for encapsulation in
FORTRAN source code. Asaresult, in the SPICE system, the computation of non-inertid frame
transformations depends upon data stored in other SPICE kernds. If you request sates relative to
anortinertia frame or use ephemerides that are represented relaive to non-inertia framesyou
must load additiond SPICE kernels. The method by which an auxiliary kernd isloaded depends
upon the type of the kerndl.

There are currently four classes of reference frames that are supported by the SPICE system. We
give abrief overview of these frames here. For amore thorough discussion of the various types
of frames see the recommended reading file "FRAMES.REQ."

Inertid frames

Inertia frames are built into the SPICE system. Y ou don't need to do anything to make
their definitions available to your program. Inertid frames have NAIF ID codes whose
vaues are in the range from 1 to 10000.

PCK frames
PCK frames are bodyfixed frames. The orientation of a PCK frame is dways
expressed rlative to an inertia frame. The reationship between a PCK frame and its
asociated inertid frameis provided by a PCK kernel. PCK frames have ID codes
between 10000 and 100000. There are two types of PCK kernels---binary and text.
Binary PCK kerndls are loaded (and unloaded) in a fashion anaogous to the loading and
unloading of SPK files. To load abinary PCK file

CALL PCKLOF (<file>, HANDLE) {PCK Load
Orientation File}

To unload abinary PCK file

CALL PCKUOF (<handl e>) {PCK Unl oad
Orientation File}

text based PCK files are loaded via the routine LDPOOL. Text based PCK files can
not be conveniently unloaded (See the document Kernels for further discusson on the
manipulation of text based kerndls)

CALL LDPOOL (<file>) {Load Kernel Pool}
CK Frames
CK frames are frames that are defined relative to a spacecraft structure. The
orientation of the structure is provided through a binary SPICE kernd called a C-kerndl.
The ID codesfor C-kernd frames are negative and usudly lessthan -999. A C-kernd
frame may be defined relaive to any other kind of frame. (Most existing C-kernels are
defined rdative to inertid frames.)

C-kernds are loaded and unloaded via aroutine smilar to the routines used load and
unload SPK kernds. To load a C-kernd

CALL CKLPF (<file> HANDLE) {CK Load Pointing Fil e}
To unload a C-kernd

CALL CKUPF (<handle>) {CK Unl oad Pointing File}
The times used to represent C-kernels are spacecraft clock times---not ET. The
relationship between ET and spacecraft clock timesis stored in a SPICE text kernel
caled a spacecraft clock kernel---usually abbreviated as SCLK (ess-clock) kernd. To
retrieve dates relative to a CK frame you need to make the relationship between ET and
the spacecraft clock available to your program by loading the appropriate SCLK kerndl.
SCLK kernels are loaded via the routine LDPOOL .

CALL LDPOOL (<sclk _file_name>) {Load Kernel Pool}
TK Frames
TK frames (short for Text Kernd frames) are framesthat are defined via a SPICE text
kernd. These frames can be trandformed to another reference frame via a constant
rotation matrix. Typica examples are topocentric frames and ingrument frames. TK
frames are loaded viathe routine LDPOOL.

CALL LDPOOL (<TK frame_file>) {Load Kernel Pool}
In addition to the files mentioned above, it may be necessary to load a ~“frame definition” file
aong with the one of the SPICE kernds listed above. (If the producer of the file has done his or
her homework this step should be unnecessary.) The frame definition file is a SPICE text kernd
that specifiesthe type of the frame, the center of the frame, the name of the frame, and its 1D
code. (See FRAMES.REQ for more details concerning frame definitions.)

Asis evident from the above discussion, the use of non-inertid frames requires more data
management on the part of the user of the SPICE system. However, this data management

problem is not a new problem. In previous versons of the SPICE systemn the same kernels would
have been required. Moreover, in previous versons of the SPICE system, you would have been
required to perform al nortinertid transformations in your own code. With the inclusion of nort
inertia framesin the SPK system, we have relieved you of some of the tasks associated with
nor-inertial frames

SPK File Structure

An S fileis made up of one or more data " segments’ and a™“comment” area. These
components are described below.

Segments--The Fundamental SPK Building Blocks

An SFK file contains one or more ™ segments.” Each segment contains ephemeris deata sufficient
to compute the geometric Sate (position and velocity) of one solar system body (the “target)
with respect to another (the “center’) a any epoch throughout some finite interva of time.

Either body may be a spacecraft, a planet or planet barycenter, a satellite, a comet, an asteroid, a
tracking gtation, aroving vehicle, or an arbitrary point for which an ephemeris has been
caculated. Each body in the solar system is associated with aunique integer code. A list of
names and codes for the planets, major satellites, spacecraft, asteroids and comets can be found
in the document NAIF_IDS.REQ

The states computed from the ephemeris datain a ssgment must be referenced to asingle,
recognized reference frame.

The datain each segment are stored as an array of double precison numbers. The summary for
the array, called a "descriptor', has two double precision components.

1. Theinitid epoch of the interva for which ephemeris data are contained in the
segment, given in ephemeris seconds past Julian year 2000.

2. Thefina epoch of theinterva for which ephemeris data are contained in the segment,
given in ephemeris seconds past Julian year 2000.

The descriptor has Six integer components:

1. The NAIF integer code for the target.

2. The NAIF integer code for the center.

3. The NAIF integer code for the reference frame.

4. Theinteger code for the representation (type of ephemeris data).
5. Theinitia address of the array.

6. Thefind address of the array.

In addition to a descriptor, each array aso has a name. The name of each array may contain up to
40 characters. This space may be used to store a brief description of the segment. For example,
the name may contain pedigree information concerning the segment or may contain the name of
the object whose position is recorded in the segment.

The Comment Area

Preceding the “segments, the Comment Area provides space in the SPK file for storing textua
information besdes what is written in the array names. Idedly, each SPK file would contain
internal documentation that describes the origin, recommended use, and any other pertinent
information about the datain that file. For example, the beginning and ending epochs for thefile,
the names and NAIF integer codes of the bodies included, an accuracy estimate, the date the file
was produced, and the names of the source files used in making the SPK file could be included
in the Comment Area

The utility programs COMMNT and SPACIT may be used to examine and manipulate the
commentsin an SPK file. In addition to these utilities, SPICELIB provides afamily of
subroutines for handling this Comment Area. The name of each routine in this family begins

with the letters "SPC' which stand for "SPk and Ck' because this feature is common to both types
of files. The SPC software provides the ability to add, extract, read, and delete comments and
convert commented files from binary format to SPICE transfer format and back to binary again.

The SPC routines and their functions are described in detail in the SPC Required Reading.

SPK Data Types

The fourth integer component of the descriptor---the code for the representation, or “data type---
isthe key to the SPK format.

For purposes of determining the segment best suited to fulfill a particular request, al segments
are treated equally. It is only when the datain a segment are to be evaluated- --when a state
vector isto be computed---that the type of data used to represent the ephemeris becomes
important.

Because this dep isisolated within asingle low-level reader, SPKPVN, new data types can be
added to the SPK format without affecting application programs that use the higher level reeders.
SPKPVN is designed so that the changes required to implement a new datatype are minimd.

There are no red limits on the possible representations that can be used for ephemeris data.
Users with access to data suitable for creating an ephemeris may choose to invent their own
representations, adapting SPKPVN accordingly. (We recommend that you consult with NAIF
prior to implementing an new datatype.)

The data types currently supported by SPICELIB software are listed under **Supported Data
Types' later in this document.

L ower-level Readers

When computing states, SPKEZR should be sufficient to handle the needs of most users.
However, it is possible to exercise more direct control over the way states are computed. In this
section we discuss means by which the user of the SPK system can take more direct control over
the computation of dates.

As noted above, SPKEZR isidentica to SPKEZ except that it uses the names of objects as inputs
instead of integer ID codes. Indeed, SPKEZR ""looks up" the ID codes associated with the named
objects, and then calls SPKEZ using these ID codes.

SPKEZ computes apparent and true states using two readers of dightly less power---SPKSSB
and SPKAPP.

SPKSSB returns the state of a body with respect to the solar system barycenter. SPKEZ usesit to
compute the gtate of the observer rdative to an inertid reference frame.

The second, SPKAPP, returns the state of atarget body as seen from an observer. Where SPKEZ
requires the integer code for an observer, SPKAPP requires the actua state of the observer with

respect to the solar system barycenter rlive to an inertia reference frame. A single call to
SPKEZ,

CALL SPKEZ (801, ET, 'J2000', 'LT+S', -32, STARG LT) { Easy
state }

isequivaent to apair of calsto SPKSSB and SPKAPP:

CALL SPKSSB (-32,
ET,
' J2000',
STOBS) { Sol ar system barycenter }

CALL SPKAPP (801,
ET,
'J2000',
STOBS,
"LT+S',
STARG,
LT) { Apparent state }

(It isimportant to note that this equivaence breaks down if SPKEZ is requested to return states
relaive to anortinertid frame. When nortinertia apparent or true states are requested, SPKEZ
first computes an inertial gpparent or true state. After the inertid state has been computed, it is
transformed to a nor+inertid frame taking into account the light time delay from the center of
that frame.)

One possible advantage of using SPKAPP directly is the ability to place an observer somewhere
other than at the center of abody (for example, at a specified location on the surface of the
Earth).

When computing uncorrected, that is, geometric states, SPKEZ does not need to compute the
date of the target and observer relative to the solar system barycenter, but only relative to the
first common center of motion of those two bodies. SPKEZ calls SPKGEO to compute
geometric states.

Using SPKGEO instead of the combination SPKSSB and SPKAPP as above prevents possible
round-off error, may reduce the number of file reads, and may require less data. For example, if
SPK ephemeris data for a spacecraft relative to a planet has been loaded, but the ephemeris data
for that planet relaive to the solar system barycenter is not available, SPK GEO can till compute
the state of the spacecraft relative to the planet, whereas the combination SPKSSB and SPKAPP
would be unsuccessful at computing that sate.

Primitive States

At the lowest leve, it is possible to compute states without combining them at dl. Given the

handle and descriptor for a particular segment, subroutine SPKPVN returns a state from that
segment directly.

CALL SPKPVN(<handl e>,
<descr >,
<et >,
REF,
STATE,
CENTER) { Position, velocity, native frame }

SPKPVN isthe most basic SPK reader. It returns states relative to the frame in which they are
gored in the SPK file. It does not rotate or combine them: it returns a Sate relative to the center
whose integer code is stored in the descriptor for the segment. This Sateis relaive to the frame
whose integer ID code is also stored in the descriptor of the segment. The user is responsible for
using that State correctly.

The user is ds0 respongible for usng DAF subroutines to determine the particular file and
segment from which each sate is to be computed.

Note that to use the state returned by SPKPVN in any frame other than the " native frame" of the
segment, you must convert the state to the frame of interest. A second low level routine SPKPV
can be used to perform the state transformations for you. The calling sequence for SPKPV is
identicd to that for SPKPVN. However, in the case of SPKPV the reference frameis an input
instead of an output argument.

CALL SPKPV (<handl e>,
<descr >,
<et >,
<ref >,
STATE,
CENTER) { Position, velocity }
Thus using SPKPV ingtead of SPKPVN dlows you to avoid the details of converting states to

the frame of interest.

If files have been loaded by previous calsto SPKLEF, it is possible to use the same segments
that would normally be used by SPKEZR, SPKEZ, SPKSSB, SPKAPP, and SPKGEO.
Subroutine SPK SFS sdlects, from the database of |oaded files, the file handle and segment
descriptor for the segment best suited to the request. If two segments from different filesare
auitable, SPKSFS sdlects the one from the file that was loaded later. If two segments from the
samefile are suitable, SPKSFS sdlects the one that is stored later in thefile. The call

CALL SPKSFS (<801>,
<et >,
HANDL E
DESCR,
SEGNAM
FOUND) { Select file and segnent }

returns the handle, descriptor, and segment name for the latest segment containing data for Triton
at the specified epoch. SPKSFS maintains a buffer of segment descriptors and segment names, so
it doesn't waste time searching the database for bodiesit aready knows about.

Examples of Using SPK Readers

Example 1. Computing L atitude and L ongitude

The next severd sections present sample programs to show how the SPK readers can be used to
compute state vectors, and how those vectors can be used to compute derived quantities.

All subroutines and functions used in the examples are from SPICELIB. The convention of
expanding SPK subroutine names will be dropped for these examples.

The firgt example program computes the planetocentric latitude and longitude of the sub-
observer point on atarget body for any combination of observer, target, and epoch. (Note that
planetocentric coordinates differ from planetographic and cartographic coordinates in that they
are dways right-handed, regardless of the rotation of the body. Also note that for this example
we define the sub-observer point to be the point on the " surface” of the target thet lies on the ray
from the center of the target to the observer.)

PROGRAM LATLON

C

C SPI CELI B functi ons

C
DOUBLE PRECI SI ON DPR

C

C Vari abl es

C
CHARACTER* (32) TI ME
CHARACTER* (32) oBS
CHARACTER* (32) TARG

DOUBLE PRECI SI ON ET
DOUBLE PRECI SI ON LAT
DOUBLE PRECI SI ON LON

O00000000000

O00000

O0000000

DOUBLE PRECI SI ON LT
DOUBLE PRECI SI ON RADI US

DOUBLE PRECI SI ON STATE (6)
DOUBLE PRECI SI ON TIBF (3,3)
| NTEGER H (13)

Load constants into the kernel pool. Two files are
needed. The first ("tinme.ker') contains the dates
of |l eap seconds and val ues for constants needed to
conpute the difference between UTC and ET at any
epoch. The second (pck. ker') contains | AU val ues
needed to conpute transformations frominertia
(J2000) coordinates to body-fixed (pole and prine
meri di an) coordi nates for the major bodies of the
sol ar system (These files, or their equivalents,
are normally distributed al ong with SPI CELIB.)

CALL CLPOCL
CALL LDPOOL ('time.ker')
CALL LDPOOL (' pck. ker’)

Several epheneris files are used. Most contain data for
a single planetary system (jupiter.ker', "“saturn.ker',
and so on). Sone contain data for spacecraft (" vgrl.ker',
“mgn. ker').

CALL SPKLEF (' MERCURY.BSP', H(1l))
CALL SPKLEF ('VENUS.BSP', H(2))
CALL SPKLEF ('EARTH.BSP', H(3))
CALL SPKLEF (' Mars.BSP', H(4))
CALL SPKLEF ('JUPITER BSP', H(5))
CALL SPKLEF ('SATURN.BSP', H(6))
CALL SPKLEF ('URANUS.BSP', H(7))
CALL SPKLEF (' NEPTUNE.BSP', H(8))
CALL SPKLEF ('PLUTO.BSP', H(9))
CALL SPKLEF ('VGRL.BSP', H(10))
CALL SPKLEF ('VGR2.BSP', H(11))
CALL SPKLEF (' MGN.BSP', H(12))
CALL SPKLEF (' GLL.BSP', H(13))

Inputs are entered interactively. The user enters three
items: the nane for the observer , the nane

for the target, and the UTC epoch at which the

sub-observer point is to be conputed (a free-format string).

The epoch nust be converted to epheneris tine (ET).
DO WHILE (. TRUE.)
CALL PROWPT (' Observer? ', OBS

)
CALL PROWPT ('Target? ', TARG)
CALL PROWPT ('Epoch 2 ', TIME)

CALL STR2ET (TI Mg, ET)

FRAME = "I AU ' /] TARG
C
C Conpute the true state (corrected for light-tine)
C of the target as seen fromthe observer at the
C speci fied epoch in the target fixed reference frane.
C
CALL SPKEZR (TARG, ET, FRAME, 'LT', OBS, STATE, LT)
C
C We need the vector FROM the target TO the observer
C to conpute | atitude and |longitude. So reverse it.
C
CALL VM NUS (STATE, STATE)
C
C Convert fromrectangul ar coordinates to | atitude and
C | ongi tude, then fromradians to degrees for output.
C
CALL RECLAT (STATE, RADIUS, LON, LAT)
WRI TE (*,*)
WRI TE (*,*) ' Sub-observer latitude (deg): ', LAT * DPR()
WRITE (*,*) ' | ongi t ude ', LON * DPR()
WRI TE (*,*)
WRI TE (*,*) 'Range to target (km . ', RADIUS
WRI TE (*,*) 'Light-tine (sec) o, LT
WRI TE (*,*)
C
C Cet the next set of inputs.
C
END DO
END

Example 2: Faster Latitude and Longitude

The second example computes the same quantities as the first. However, this program assumes
that the observer is aways the Magellan spacecraft and the target is dways Venus. It aso
ignores light-time from the planet to the spacecraft. These restrictions alow amore primitive
reader, SPKPV, to be substituted for the more general reader, SPKEZR.

SPKPV returns this same state as SPKEZR, but avoids much of the overhead associated with
SPK EZR---making the second program somewhat faster than the firdt.

However, the second program is much less flexible. For example, if the spacecraft ephemeris
contains cruise data (describing the motion of the spacecraft relative to the solar system
barycenter instead of the planet center), the program would produce incorrect results.

Furthermore, the program cannot easily be generalized to work for other orbiters. The motion of
the Gdileo spacecraft, for ingtance, would normaly be known relaive to the Jupiter barycenter,
not to the planet itself.

PROGRAM FASTER

C
C SPI CELI B functi ons
C

DOUBLE PRECI SI ON DPR
C
C Definitions
C

| NTEGER MGN

PARAMETER (MGN = -18)

| NTEGER VENUS

PARAMETER (VENUS = 299)
C
C Vari abl es
C

CHARACTER* (40) SEGNAM

CHARACTER* (32) TI ME

DOUBLE PRECI SION DESCR (5)

DOUBLE PRECI SION ET

DOUBLE PRECI SI ON LAT

DOUBLE PRECI SION LON

DOUBLE PRECI SI ON RADI US

DOUBLE PRECI SI ON STATE (6)

DOUBLE PRECI SION TI BF (3,3)

| NTEGER CENTER

| NTEGER HANDL E

LOG CAL FOUND
C
C Load constants into the kernel pool. Two files are
C needed. The first ("tinme.ker') contains the dates
C of | eap seconds and val ues for constants needed to
C conpute the difference between UTC and ET at any
C epoch. The second (venus.ker') contains | AU val ues
C needed to conpute the transformation frominertial
C (J2000) coordinates to body-fixed (pole and prine
C meri di an) coordi nates for Venus.
C

CALL CLPOCL

CALL LDPOOL ('TIME KER)

CALL LDPOOL ('VENUS. KER)
C Only one epheneris file is needed. This contains data for
C the Magel | an spacecraft relative to Venus. The states of

O0000000 OO0

O0000000000

o000 O000000000

OO0

ot her bodi es are not needed.
CALL SPKLEF (' MGN. BSP', HANDLE)

Inputs are entered interactively. The user enters only the
epoch at which the sub-spacecraft point is to be conputed
(a free-format string).

The epoch nust be converted to epheneris tine (ET).
DO WHI LE (. TRUE.)

CALL PROWPT ('Epoch? ', TIME)
CALL STR2ET (TIME, ET)

Because the epheneris file mght contain many segnents
for the spacecraft, we need to select the proper segnent
each tine a state is computed

For now, we will assume that a segnent is found. A nore
careful program would check this each tinme. (If FOUND is
ever false, the data needed to respond to the user's
request are not available, and the program shoul d take
appropriate action.)

CALL SPKSFS (MG3N, ET, HANDLE, DESCR, SEGNAM FOUND)

Conmput e the geonetric state (uncorrected for light-tine)
of the spacecraft as seen fromthe planet. W can conpute
this directly because light-time is being ignored.

Do all conputations in J2000 coordi nates,

For now, we will assune that CENTER is al ways Venus
(2 or 299). A nore careful program would check this
each tine.

CALL SPKPV (HANDLE, DESCR, ET, 'IAU_VENUS', STATE, CENTER)

Convert fromrectangul ar coordinates to | atitude and
| ongi tude, then fromradians to degrees for output.

CALL RECLAT (STATE, RADIUS, LON, LAT)

WRI TE (*,*)
WRITE (*,*) ' Sub-spacecraft latitude (deg): ', LAT * DPR()
WRITE (*,*) ' | ongi t ude ', LON * DPR()
WRI TE (*,*)

Get the next input epoch

END DO

END

Example 3: Occultation or Transit

The third example determines epochs if one target body (spacecraft, planet, or satellite) is
occulted by or in trandt across another target body as seen from an observer at a user specified
epoch. Itissmilar in both form and generdity to the first example.

PROGRAM OCCTRN

C
C SPI CELI B functi ons
C

DOUBLE PRECI SI ON SUMAD

DOUBLE PRECI SI ON VNORM

DOUBLE PRECI SI ON VSEP
C
C Vari abl es
C

CHARACTER* (32) TI ME

CHARACTER* (32) 0BS

CHARACTER* (32) TARG (2)

DOUBLE PRECI SI ON AVG

DOUBLE PRECI SI ON D (2)

DOUBLE PRECI SI ON ET

DOUBLE PRECI SI ON R (2)

DOUBLE PRECI SI ON RADI | (3)

DOUBLE PRECI SI ON S (6,2)

DOUBLE PRECI SI ON SEP

| NTEGER I

| NTEGER T (2)

| NTEGER H (13)

LOG CAL FOUND
C
C Load constants into the kernel pool. Two files are
C needed. The first ("tinme.ker') contains the dates
C of | eap seconds and val ues for constants needed to
C conpute the difference between UTC and ET at any
C epoch. The second (radii.ker') contains val ues
C for the tri-axial ellipsoids used to nodel the ngjor
C maj or bodi es of the solar system
C

CALL CLPOOL

CALL LDPOOL ('TIME.KER)

CALL LDPOCL (

"RADI | . KER')

O00000

O00000000

O000000000000000O0

Several epheneris files are needed. Most contain data for
a single planetary system (jupiter.ker', “saturn.ker',
and so on). Sone contain data for spacecraft (vgrl.ker',
“nmgn. ker').

CALL SPKLEF (' MERCURY.BSP', H(1))
CALL SPKLEF (' GLL.BSP', H(13))

Inputs are entered interactively. The user enters four
items: the code for the observer (an integer), the codes
for two target bodies (integers), and the epoch at which
check for occultation or transit is to be conputed

(a free-format string).

The epoch nust be converted to epheneris tine (ET).
DO WHI LE (. TRUE.)

CALL PROWPT (' Qnbserver? ', OBS)
CALL PROWPT ('Target 1? ', TARE1))
CALL PROWPT ('Target 2? ', TARE 2))
CALL PROWPT (' Epoch ? ", TIME)

CALL STR2ET (TI Mg, ET)
Get the I D codes associated with the targets
CALL BODC2N (TARG(1l), T(1), FOUND)

CALL BODC2N (TARG(2), T(2), FOUND)

Get the apparent states of the target objects as seen from
the observer. Also get the apparent radius of each object
fromthe kernel pool. (Use zero radius for any spacecraft;
use average radius for anything else.)

T(i) is the ID code of the i'"th target.

S(1-6,i) is the apparent state of the i'th target.
D(i) is the apparent distance to the i'th target.
R(i) is the apparent radius of the i'th target.

Functi on VNORM returns the Euclidean norm (magnitude) of
a three-vector.

Function SUMAD returns the sum of the elenents in a
doubl e precision array.

DOl =1, 2
CALL SPKEZR (TAREI), ET, 'J2000', 'LT+S', OBS,
S(1,1), LT)
D(I) = VNORM S(1,1))

IE (T(1) .LT. 0) THEN

R(1) = 0.DO

ELSE
CALL BODVAR (T(1), 'RADII', DIM RADII)
AVG = SUMAD (RADII, 3) / 3.D0

R(1)
END | F
END DO

ASIN (AVG/ D(1))

Determ ne the separation between the two bodi es.

each ot her.

two three-vectors.

O00000000

SEP = VSEP (S(1,1), S(1,2)) - (R(1) + R(2))
IF (SEP .GT. 0) THEN

WRI TE (*, *)

WRI TE (*,*) 'Clear.’

O herwi se, the smaller body is either occulted or
intransit. W conpare ranges to deci de which.

OO0

ELSE IF (R(1) .LT. R(2)) THEN
IF (D(1) .LT. D(2)) THEN
WRI TE (*,*)
WRI TE (*,*) TARE1l), ' in transit across ',
ELSE
WRI TE (*,*)

separati on between the centers is greater than the sum of
the apparent radii, then the target bodies are clear

Function VSEP returns the angle of separation between

WRI TE (*,*) TARG(1), ' occulted by ', TARE 2)

END | F

ELSE
IF (D(1) .LT. D(2)) THEN
VRI TE (*, *)

WRI TE (*,*) TARE2), ' occulted by ', TARG 1)

ELSE
WRITE (*,*)
WRITE (*,*) TARZ2), ' in transit across ',
END | F
END | F

Get the next set of inputs.

OO0

END DO

END

Additiona, working examples of using the principa SPK subroutines may be found in the
““Cookbook" programs distributed with the NAIF Toolkit.

Supported Data Types

The following representations, or data types, are currently supported by the SPK routinesin
SPICELIB.

1. Modified Difference Arrays.

Created by the JPL Orbit Determination Program (ODP), these are used primarily for
spacecraft ephemerides.

2. Chebyshev polynomids (pogtion only).

These are sets of coefficients for the x, y, and z components of the body position. The
veocity of the body is obtained by differentiation. This datatype is normaly used for
planet barycenters, and for satellites whose orbits are integrated.

3. Chebyshev polynomids (position and velocity).

These are sets of coefficients for the x, y, and z components of the body position, and
for the corresponding components of the velocity. This data type is normally used for
satellites whose orbits are computed directly from theories.

4. Reserved for future use (TRW dements for TDRS and Spacetel escope).
5. Discrete states (two body propagation).

This data type contains discrete Sate vectors. A state is obtained for a specified epoch
by propageting the state vectors to that epoch according to the laws of two body motion
and then taking aweighted average of the resulting states. Normally, this data typeis
used for comets and asteroids, whose ephemerides are integrated from an initia state or
st of osculating dements.

6. Reserved for future use (Anaytic Modd for Phobos and Deilmos).
7. Reserved for future use (Precessing Classicd Elements---used by STScl).

8. Equdly spaced discrete sates (Lagrange interpolation)

This data type contains discrete state vectors whose time tags are separated by a
congtant step size. A stateis obtained for a specified epoch by finding a set of Sates
“centered' at that epoch and using Lagrange interpolation on each component of the
dtates.

9. Unequally spaced discrete states (Lagrange interpolation)

This data type contains discrete state vectors whose time tags may be unequaly
gpaced. A dateis obtained for a specified epoch by finding a set of states “centered' at
that epoch and using Lagrange interpolation on each component of the States.

10. Space Command Two-line Elements (Short Period Orbits)

This data type contains Space Command two-line e ement representations for objects
in Earth orbit (formaly caled NORAD two-line dements).

11. Reserved for future use.

12. Reserved for future use (Hermite Interpolation Uniform Spacing).

13. Resarved for future use (Hermite Interpolation Non-uniform Spacing).
14. Chebyshev polynomias nortuniform spacing (position and velocity).

This data type contains Chebyshev polynomid coefficients for the the position and
velocity of an object. Unlike SPK Types 2 and 3, the time intervas to which polynomid
coefficient sets apply do not have uniform duration.

15. Precessing conic propagation.

This data type dlowsfor first order precession of the line of gpsides and regression of
the line of nodes due to the effects of the J2 coefficient in the harmonic expansion of the
gravitationd potentia of an oblate spheroid.

16. Reserved for future use (Elements for European Space Agency's 1 SO spacecraft).
17. Equinoctid Elements

This data type represents the motion of an object about another using equinoctia
elements. It provides for precesson of the line of gpsides and regression of the line of
nodes. Unlike Type 15, the mean motion, regresson of the nodes and precession of the
line of apsides are not derived from the gravitational properties of the central body, but
are empirica vaues.

Because SPK files are Double Precision Array Files (DAFs), each segment is stored as an array.
Each array corresponding to a particular data type has a particular internd structure. These
structures (for the non-reserved types) are described below.

Type 1: Modified Difference Arrays

Thefirst SPK data type contains Modified Difference Arrays (MDA), sometimes called
“difference lines. This data type is normaly used for spacecraft whose ephemerides are produced
by JPL's principd trgectory integrator---DPTRAJ. Difference lines are extracted from the
spacecraft trgjectory file (P-files and "PV-files) created by DPTRAJ.

Each segment containing Modified Difference Arrays contains an arbitrary number of logica
records. Each record contains difference line coefficients valid up to some fina epoch, dong
with the state at that epoch. The contents of the records themsealves are described in [163]. The
subroutine SPKEQ1 contains the algorithm used to congtruct a state from a particular record and
epoch.

The records within a segment are ordered by increasing find epoch. A segment of thistypeis
structured asfollows

o e e e e e e e e e e e e e e e e e e e +
| Record 1 (difference |ine coefficients) |
o e m e e e e e e e e e e e e e e e e oo o +
| Record 2 (difference line coefficients) |
ot o o e o o e o o e e e e e e e o o——oo--- +
o e e e e e e e e e e e e e e e e e e e +
| Record N (difference |line coefficients) |
T +
| Epoch 1 |

o e o o e e e e a oo +

| Epoch 2 |

e e e ee e aaeaaas +

o e e e e e e et e e e e +

| Epoch N |

o e m e e e e e e e e e e e +

| Directory epoch 1 | (First directory epoch)
o e oo e o e e oo oo +

| Directory epoch 2 |

o e e e e e e e e e e e e e e +

o e e e e e e e e e e +

| Directory epoch (N 100)*100 | (Final directory epoch)

The number of recordsin a segment, N, can be arbitrarily large.

Records 1 through N contain the difference line coefficients and other constants needed to
compute state data. Each one of these records contains 71 double precision numbers.

Theligt of find epochs for the recordsis stored immediately after the last record.

Following the list of epochsisasecond ligt, the “directory’, containing every 100th epoch from
the previouslist. If there are N epochs, there will be N/100 directory epochs. If there are fewer
than 100 epochs, then the segment will not contain any directory epochs. Directory epochs are
used to speed up accessto desired records.

Thefind dement in the segment is the number of records contained in the segment, N.

The index of the record corresponding to a particular epoch is the index of the first epoch not less
than the target epoch.

Type 2: Chebyshev (position only)

The second SPK data type contains Chebyshev polynomid coefficients for the position of the
body as afunction of time. Normally, this data type is used for planet barycenters, and for
satellites whose ephemerides are integrated. (The velocity of the body is obtained by
differentiating the podition.)

Each segment contains an arbitrary number of logica records. Each record contains a set of
Chebyshev coefficients valid throughout an interva of fixed length. The subroutine SPKEQ2
contains the agorithm used to congtruct a state from a particular record and epoch.

The records within a segment are ordered by increasing initia epoch. All records contain the
same number of coefficients. A segment of thistype is structured as follows:

Fom e aaiaaas +
| Record 1 |
e +
| Record 2 |
T +
Fom e aaiaaas +
| Record N

o e e eea oo +
| | NTLEN |
Fommm e - +
| RSIZE |
Fomm e - +
| N I
oo +

A four-number “directory’ a the end of the segment contains the information needed to
determine the location of the record corresponding to a particular epoch.
1. INIT istheinitia epoch of thefirst record, given in ephemeris seconds past J2000.

2. INTLEN isthelength of the interva covered by each record, in seconds.
3. RS ZE isthetotd sze of (number of array dementsin) each record.
4. N isthe number of records contained in the segment.

Each record is structured as follows:

Thefirgt two dementsin the record, MID and RADIUS, are the midpoint and radius of the time
interval covered by coefficientsin the record. These are used as parameters to perform
transformations between the domain of the record (from MID - RADIUSto MID + RADIUS)
and the domain of Chebyshev polynomids (from -1to 1).

The same number of coefficientsis dways used for each component, and al records are the
same size (RSIZE), so the degree of each polynomid is

(RSIZE- 2)/ 3-1
To facilitate the creation of Type 2 segments, a segment writing routine called SPKWO02 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to construct the segment descriptor, and the datato be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 3. Chebyshev (position and velocity)

Thethird SPK data type contains Chebyshev polynomid coefficients for the position and
velocity of the body as afunction of time. Normaly, this datatypeis used for satellites for which
the ephemerides are computed from andytical theories.

The structure of the segment is nearly identical to that of the SPK data Type 2 (Chebyshev
polynomids for position only). The only differenceis that each logica record contains Sx sets of
coefficientsinstead of three. The subroutine SPKEQ3 contains the algorithm used to congtruct a
state from a particular record and epoch.

Each record is structured as follows;

The same number of coefficientsis dways used for each component, and al records are the
same size (RSIZE), so the degree of each polynomid is

(RSIZE- 2) 1/ 6-1
To facilitate the creation of Type 3 segments, a segment writing routine called SPKWO03 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to construct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 5: Discrete states (two body propagation).

The fifth stlandard SPK data type contains discrete state vectors. A state is obtained from a Type
5 segment for any epoch that is within the bounds of that segment by propagating the discrete
states to the specified epoch according to the laws of two body motion. Normaly, this data type

is used for comets and asteroids, whose ephemerides are integrated from an initiad state or set of
osculating dements.

Each segment contains of a number of logica records. Each record consists of an epoch
(ephemeris seconds past J2000) and the geometric state of the body at that epoch (X, Y, z, dx/dt,
dy/dt, dz/dt, in kilometers and kilometers per second). Records are ordered with respect to
increesing time.

The records that correspond to an epoch for which a state is desired are the ones whose
associated epochs bracket that epoch. The state in each record is used as the initid Satein atwo-
body propagation; aweighted average of the propagated states gives the position of the body at
the specified epoch. The veocity is given by the derivative of the position. Thus the position and
velocity at the specified epoch are given by:

P = Wt) * PI(t) + (1-Wt)) * P2(t)

Vo= W) % VA(t) + (1-Wt)) * V2(t) + W(t) * (PL(t) - P2(t))
where P1, V1, P2, and V2 are the position and velocity components of the propagated states and
W isthe weighting function.

Theweighting function used is

Wt) =0.5+0.5*cos[Pl * (t-tl)/ (t2-1t1l)]
wheretl and t2 are the epochs that bracket the specified epoch t.

Physically, the epochs and states are stored separately, so that the epochs can be searched as an
ordered array. Thus, theinitid part of each segment lookslikethis:

o e e e e e e +
| State 1

o e e e oo o +
o e e e oo +
| State N |
S +
| Epoch 1 |
o e e e e e oo +
o e e e e a o +
| Epoch N |
o e e e oo +

The number of records in a segment can be arbitrarily large. In order to avoid the file reads
required to search through alarge array of epochs, each segment contains asmple directory
immediately &fter the fina epoch.

This directory contains every 100th epoch in the epoch array. If there are N epochs, there will be
N/100 directory epochs. (If there are fewer than 100 epochs, no directory epochs are stored.)

Thefind itemsin the segment are GM, the gravitationa parameter of the central body
(kilometers and seconds), and N, the number of states in the segment. Thus, the complete
segment looks like this

o e e e oo +

| State 1

o e e e oo +

o e e e oo o +

| Epoch 1

o e e e e a o +

S +

| Epoch N |

o e e e e e oo +

| Epoch 100 | (First directory epoch)
o e e e e e +

| Epoch 200 |

o e e e oo +

o e e e e e e +

| Epoch (N 100)*100 | (Final directory epoch)
o e e e oo o +

| GM I

o e e e e a o +

| N I

o e e e oo +

To facilitate the creation of Type 5 segments, a segment writing routine called SPKWO05 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to congtruct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 8. Lagrange Interpolation (Equally Spaced)

The eighth SPK data type represents a continuous ephemeris using a discrete set of datesand a
Lagrange interpolation method. The epochs (also caled “time tags) associated with the states
must be evenly spaced: there must be some positive constant STEP such that each time tag

differs from its predecessor and successor by STEP seconds. For a request epoch not
corresponding to the time tag of some dtate, the data type defines a Sate by interpolating each
component of a set of states whose epochs are “centered' near the request epoch. Details of how
these states are selected and interpolated are given below.

The SPK system can a so represent an ephemeris using unequaly spaced discrete states and
Lagrange interpolation; SPK Type 9 doesthis. SPK Type 9 sacrifices some run-time speed and
economy of storage in order to achieve greater flexibility.

The statesin a Type 8 segment are geometric: they do not take into account aberration
corrections. The 9x components of each state vector represent the position and velocity (x, Y, z,
dx/dt, dy/dt, dz/dt, in kilometers and kilometers per second) of the body to which the ephemeris
applies, rdlative to the center specified by the segment's descriptor. The epochs corresponding to
the states are barycentric dynamical times (TDB), expressed as seconds past J2000.

Each segment aso has a polynomia degree associated with it; thisis the degree of the
interpolating polynomias to be used in evauating sates based on the data in the segment. The
identica degreeisused for interpolation of each state component.

Type 8 SPK segments have the structure shown below:

Fom e a oo +

| x(1) |

/ R +

/ | y(1) |

/ Fomm e - +

/ | z(1) |

o m e e e e aoao-- + / . +

| State 1 | < [dx(1)/dt|

o mm e e e e e e e e e o + \ Fommmm oo +

| State 2 | \ | dy(1)/dt]

o e e e e e e e e oo - + \ TS +

. \ | dz(1)/dt]

. Fomme oo +
+-----------; ----------- +
| State N |
o mm e e e e e e e e e o +
| Epoch of state 1 (TDB)|
o m e e e e e e e e e o +
| Step size |
o e e e e e e oo oo +
| Polynonial degree |
e +
| Number of states |
o m e e e e aoao-- +

In the diagram, each box representing a state vector corresponds to six double precison
numbers, the other boxes represent individua double precison numbers. Since the epochs of the
states are evenly spaced, they are represented by a start epoch and a step size. The number of
dates must be grester than the interpolating polynomia degree.

The Type 8 interpolation method works as follows: given an epoch a which a gate is requested
and a segment having coverage for that epoch, the Type 8 reader finds a group of states whose
epochs are “centered' about the epoch. The size of the group is one greater than the polynomia
degree associated with the segment. If the group size N is even, then the group will consst of N
consecutive gates such that the request time is between the epochs of the members of the group
having indices, relative to the start of the group, of N/2 and (N/2 + 1), inclusve. When N is odd,
the group will contain a centrd state whose epoch is closest to the request time, and will dso
contain (N-1)/2 neighboring states on either side of the central one. The Type 8 evauator will
then use Lagrange interpolation on each component of the states to produce a state corresponding
to the request time. For the jth state component, the interpolation agorithm is mathematicaly
equivaent to finding the unique polynomid of degree N-1 that interpolates the ordered pairs

(epoch(i), state(j,i)), i =k, k, ...,k
1 2 N

and evauating the polynomid at the requested epoch. Here

k, k, ..., Kk
1 2 N

aretheindices of the states in the interpolation group,

epoch(i)
isthe epoch of the ith state and

state(j,i)
isthe jth component of theith state.

There is an exception to the state sdlection agorithm described above: the request time may be
too near thefirst or last Sate of the segment to be properly bracketed. In this case, the set of
dtates selected for interpolation sill has sze N, and includes either the first or last Sate of the
segment.

To facilitate the creation of Type 8 segments, a segment writing routine called SPKWO08 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to construct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 9: Lagrange Interpolation (Unequally Spaced)

The ninth SPK data type represents a continuous ephemeris using a discrete set of satesand a
Lagrange interpolation method. The epochs (also caled “time tags) associated with the states
need not be evenly spaced. For a request epoch not corresponding to the time tag of some Sate,
the data type defines a state by interpol ating each component of a set of states whose epochs are

“centered' near the request epoch. Detalls of how these states are selected and interpolated are
given below.

The statesin a Type 9 segment are geometric: they do not take into account aberration
corrections. The Sx components of each state vector represent the position and velocity (X, Y, z,
dx/dt, dy/dt, dz/ct, in kilometers and kilometers per second) of the body to which the ephemeris
applies, rdative to the center specified by the segment's descriptor. The epochs corresponding to
the states are barycentric dynamica times (TDB), expressed as seconds past J2000.

Each segment aso has a polynomia degree associated with it; thisis the degree of the
interpolating polynomiasto be used in evauating states based on the data in the segment. The
identical degreeis used for interpolation of each state component.

Type 9 SPK segments have the structure shown below:

Fommmm oo +
| x(1) |
/ TS +
/ | y(1) |
/ [S +
/ | z(1) |
e + / Fommmiaa s +
| State 1 | < | dx(1)/dt]
o m e e e e aoao-- + \ . +
| State 2 | \ | dy(1)/dt]
o m e e e e e e e e e o + \ Fom e a oo +
. \ | dz(1)/dt]
. [S +
+-----------L ----------- +
| State N |
T e +
| Epoch 1 |
o mm e e e e e e e e e o +
| Epoch 2
o e e e e e e e e oo - +
+-----------; ----------- +
| Epoch N |
o m e e e e aoao-- +
| Epoch 100 | (First directory)
o m e e e e e e e e e o +
+-----------; ----------- +
| Epoch ((N-1)/100)*100 | (Last directory)
T e +

| Polynom al degree |

| Nunber of states |

In the diagram, each box representing a State vector corresponds to six double precison
numbers, the other boxes represent individua double precision numbers. The number of States
must be greater than the interpolating polynomia degree.

The set of time tagsis augmented by a series of directory entries; these entries dlow the Type 9
reeder to search for states more efficiently. The directory entries contain time tags whose indices
are multiples of 100. The sat of indices of time tags stored in the directories ranges from 100 to

((N-1) / 100) * 100
where N isthe total number of timetags. Notethat if N is

Q* 100
then only

Q-1
directory entries are stored, and in particular, if there are only 100 states in the segment, there are
no directories.

The Type 9 interpolation dgorithm is virtudly identica to the Type 8 dgorithm; seethe
discussion of SPK Type 8 for details. However, the Type 9 dgorithm executes more dowly than
the Type 8 dgorithm, since the Type 9 reader must search through tables of time tags to find
appropriates states to interpolate, while the Type 8 reader can locate the correct set of statesto
interpolate by a direct computation.

To facilitate the creation of Type 9 segments, a segment writing routine called SPKWQ09 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to congtruct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 10: Space Command Two-Line Elements

The SPK data Type 10 uses the SPICE concept of ageneric segment to store a collection of
packets each of which modesthe trgectory of some Earth satellite using Space Command two-
line eements (formerly the North American Air Defense --- NORAD).

The storage, arrangement and retrieval of two-line dement setsis handled by the SPICE generic
segment software described in the document GENSEG.REQ. (The document GENSEG.REQ is
currently in preparation.) We review only the pertinent points about generic segments here.

A generic SPK segment contains severd logicad data partitions:
1. A partition for constant values to be associated with each data packet in the segment.
2. A partition for the data packets.

3. A partition for epochs.

SN

. A partition for a packet directory, if the segment contains variable sized packets.
5. A partition for an epoch directory.

6. A reserved partition that is not currently used. This partition is only for the use of the
NAIF group at the Jet Propulsion Laboratory (JPL).

7. A patition for the meta data which describes the locations and sizes of other partitions
aswdl as providing some additiona descriptive information about the generic segment.

[e ——————]
| Const ant s |
‘o= —————=——=—==—+
| Packet 1 |
| o |
| Packet 2 |
| |
I : I
I - I
I - I
|- |
| Packet N |
[Sl e
| Ref erence Epochs |
[el
| Packet Directory |
[e
| Epoch Directory |
‘o= ————————=—=—=—==—+
| Reserved Area |
‘o= —————=——=—==—+
| Segnent Meta Data |
o e m e e e e e e e e e e e e a o +

Only the placement of the meta data at the end of a generic segment is required. The other data
partitions may occur in any order in the generic segment because the meta data will contain
pointers to their gppropriate locations within the generic segmernt.

Each “"packet” of a Type 10 segment contains one set of two-line dements, the nutationsin
longitude and obliquity of the Earth's pole, and the rates of these nutations. Each packet is
arranged as shown below. (The notation below is taken from the description that accompanies
the code available from Space Command for the evaluation of two-line dements))

1] NDT20 |
T T ey +
2| NDD60 |
o e e e e e e o e o +
3 BSTAR |
e +
4 | I NCL |
e e e e oo oo - +
5 | NODEO | Two- i ne el ement packet
SO +
6 | ECC |
o e e e e e o iaooao - +
7 OVEGA |
e +
8 | MO |
o e e e e e oo oo +
9 | NO |
o e e e oo oo oo +
10 | EPOCH |
T T ey +
11 | NU. OBLI QUI TY
o e e e e e e o e o +
12 | NU. LONG TUDE |
e +
13 | dOBLI QUI TY/ dt
e e e e oo oo - +
14 | dLONG TUDE/ dt |
SO +

ot o o e o e o e e e e e e e e e e o—oo--- +
1 | J2 gravitational harnonic for Earth
S I +
2 | J3 gravitational harnonic for Earth |
i +
3 | J4 gravitational harnonic for Earth |
o eaao s +
| Square root of the GMfor Earth where GM
4 | is expressed in Earth radii cubed per |
| mnutes squared |
oot o ot o ot o e e e e e e e oo oo +
5 | Equatorial radius of the Earth in km |
o e e e e e e e e e e e e e e e e e mem e +
6 | Low altitude bound for atnospheric |
| rnodel in km |
o eaao s +
7 | High altitude bound for atnospheric |
| nodel in km |
oot o ot o ot o e e e e e e e oo oo +
8 | Distance units/Earth radius (normally 1)
S I +

The reference epochs partition contains an ordered collection of epochs. The i'th reference epoch
is equd to the epoch in the i'th packet.

The ““epoch directory” contains every 100th reference epoch. The epoch directory is used to
efficiently locate an the reference epoch that should be associated with atwo line eement packet.

The “"packet directory” is empty.

As noted above the exact location of the various partitions must be obtained from the Meta data
contained at the end of the segment. Accessto the data should be made viathe SPICELIB
generic segment routines or viathe SPK Type 10 reader---SPKR10. The routine SPKW10 is
available for writing a Type 10 generic segment.

Type 14: Chebyshev Polynomials --- Unequal Time Steps

The SPK data Type 14 uses the SPICE concept of a generic segment to store a collection of
packets each of which models the trgectory of some object with respect to another over some
interva of time. Each packet contains a set of coefficients for Chebyshev polynomids that
gpproximeate the position and velocity of some object. The time intervals corresponding to each
packet are non-overlgpping. Moreover their union coverstheinterva of time spanned by the start
and end times of the Type 14 segment. Unlike Types 2 and 3 the time spacing between sets of
coefficients for a Type 14 segment may be non-uniform.

The storage, arrangement and retrieval of packets is handled by the SPICE generic segment
software. That software is documented in the document GENSEG.REQ. (The document
GENSEG.REQ is currently in preparation.) We only review the pertinent points about generic
segments here.
A generic SPK segment contains severd logicad data partitions:
1. A partition for constant values to be associated with each data packet in the segment.
2. A partition for the data packets.

3. A partition for epochs.

IS

. A partition for a packet directory, if the segment contains variable sized packets.
5. A partition for an epoch directory.

6. A reserved partition that is not currently used. This partition is only for the use of the
NAIF group at the Jet Propulsion Laboratory (JPL).

7. A partition for the meta data which describes the locations and sizes of other partitions
aswdl as providing some additiona descriptive information about the generic segment.

| Constants |
‘o= ————————=—=—=—==—+
| Packet 1 |
R PR PEEEE |
| Packet 2 |
| |
I : I
I - I
I : I
| |
| Packet N |
‘o= —————=——=—==—+
| Ref erence Epochs |
[Sl e
| Packet Directory |
[el
| Epoch Directory |
[e
| Reserved Area |
‘o= ————————=—=—=—==—+
| Segnent Meta Data |
o e e e e e e e e e aa o +

Only the placement of the meta data a the end of a generic segment is required. The other data
partitions may occur in any order in the generic segment because the meta data will contain
pointers to their gppropriate locations within the generic segment.

In the case of Type 14 SPK segments each ~"packet" contains an epoch, EPOCH, an alowed
time offsat, OFFSET, from the epoch, and 6 sets of Chebyshev polynomid coefficients which
are used to evduate the x,y,z, dx/dt, dy/dt, and dz/dt components of the state for epochs within
OFFSET seconds of the EPOCH. Each packet is organized with the following structure:

The maximum degree Chebyshev representation that can currently be accommodated is 18.
Packets are stored in increasing order of the midpoint of the gpproximation interval.

The ““congants' partition contains a single value, the degree of the Chebyshev representation.

The reference epochs partition contains an ordered collection of epochs. The i'th reference epoch
corresponds to the beginning of the interva for which the i'th packet can be used to determine
the State of the object modd led by this segment.

The ““epoch directory” contains every 100th reference epoch. The epoch directory is used to
efficiently locate an the reference epoch that should be associated with an epoch for which a state
has been requested.

The ““packet directory” is empty.

As noted above the exact location of the various partitions must be obtained from the Meta data
contained at the end of the segment.

Access to the data should be made via the SPICELIB generic segment routines.

Type 14 segments should be created using the routines SPK 14B, SPK14A, and SPK14E. The
usage of these routines is discussed in SPK14B.

Type 15: Precessing Conic Propagation.

The SPK data Type 15 represents a continuous ephemeris using a compact andytic modd. The
object ismodelled as orbiting a central body under the influence of a central mass plusfirst order
secular effects of the J2 term in harmonic expansion of the the centra body gravitationa
potentid.

Type 15 SPK segments have the structure shown below:

o e e e e e e e e e e e e +
| Epoch of Periapsis |
o e e e e e e e e e e e e e e e +
| Trajectory pole_x |
T +
| Trajectory pole_y |
. +
| Trajectory pole_z |
o e e e e e e e e e e e e +
| Periapsis Unit Vector x |
o m e e e e e e e e e e e e e aa o +
| Periapsis Unit Vector_y |
T +

| Semi-Latus Rectum |

T +
| Eccentricity |
S +
| J2 Processing Flag |
o e e e e e e e e e e e e +
| Central Body Pole_x |
o e e e e e e e e e e e e e e e +
| Central Body Pole_y |
T +
| Central Body Pole_z |
. +
| Central Body GM |
o e e e e e e e e e e e e +
| Central Body J2 |
o m e e e e e e e e e e e e e aa o +
| Central Body Equatorial Radius |
T +

It isimportant to note that the epoch must be that of periapss passage. Precession of the line of
gpsdes and regression of the line of nodes is computed relative to this epoch.

The effects of the J2 term are not applied if the eccentricity is greater than or equal to 1.

To facilitate the creation of Type 15 segments, a segment writing routine called SPKW15 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to construct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Type 17: Equinoctial Elements.

The SPK data Type 17 represents a continuous ephemeris using a compact andytic model. The
object isfallowing an dliptic orbit with precessing line of nodes and argument of perigpse
relative to the equatorid frame of some centrd body. The orbit is modeled viaequinoctid
elements.

Type 17 SPK segments have the structure shown below:

et +
1 | Epoch of Periapsis |
o m m e e e e e e e e e e e e e e e e mn +
2 | Sem -Major AXxis |
o e e e e e e e e e oo oo oo +
3| Htermof equinoctial elenments |
U +

4 | Ktermof equinoctial elenents |

. +
6 | P termof equinoctial elenents |
o +

7 | Qtermof equinoctial elenents |
T +

8 | rate of longitude of periapse |
o e m e e e e e e e e e e e em oo o s +

9 | nean longitude rate |
o e o o e o e e e e e e i oooo--- +

10 | longitude of ascending node rate |
o +

11 | equatorial pole right ascension |
T +

12 | equatorial pole declination |
o e m e e e e e e e e e e e e ea o s +

To facilitate the creation of Type 17 segments, a segment writing routine called SPKW17 has
been provided. This routine takes as input arguments the handle of an SPK file that is open for
writing, the information needed to construct the segment descriptor, and the data to be stored in
the segment. The header of the subroutine provides a complete description of the input
arguments and an example of its usage.

Appendix A --- Summary of SP-ker nel
Routines

Summary of Mnemonics

SPICELIB contains afamily of subroutines that are designed specificdly for use with SPK files.
The name of each routine begins with the letters "SPK', followed by atwo- or three-character
mnemonic. For example, the routine that returns the state of one body with respect to another is
named SPKEZ, pronounced 'S-P-K-E-Z'.

Many of the routines listed are entry points of another routine. If aroutine is anentry point, the
parent routine's name will be listed insde brackets preceding the mnemonic trandation.

The following is a complete list of mnemonics and trandations, in dphabetica order.

SPK14A (S/P-kernel, add to a Type 14 segnent)
SPK14B (S/P-kernel, begin a Type 14 segnent)
SPK14E (S/ P-kernel, end a Type 14 segnent)
SPKAPO (S/ P-Kernel, "apparent" position only)
SPKAPP (S/ P-kernel, Apparent state)
SPKCLS (S/P-kernel, close after wite)
SPKEO1 (S/ P-kernel, Evaluate record, Type 01)
SPKEO2 (S/ P-kernel, Evaluate record, Type 02)
SPKEO3 (S/ P-kernel, Evaluate record, Type 03)
SPKEO5 (S/ P-kernel, Evaluate record, Type 05)
SPKEOS8 (S/ P-kernel, Evaluate record, Type 08)
SPKEO09 (S/ P-kernel, Evaluate record, Type 09)
SPKE10 (S/ P-kernel, Evaluate record, Type 10)
SPKE14 (S/ P-kernel, Evaluate record, Type 14)
SPKE15 (S/ P-kernel, Evaluate record, Type 15)
SPKE17 (S/ P-kernel, Evaluate record, Type 17)
SPKEZ (S/ P-kernel, Easy state)
SPKEZP (S/IP Kernel, easy position)
SPKEZR (S/ P-kernel, Easier state)
SPKGEO (S/ P-kernel, CGeometric state)
SPKGPS (S/P Kernel, geonetric position)
SPKLEF [SPKBSR] (S/ P-kernel, Load epheneris file)
SPKOPA (S/ P-kernel, open for addition)
SPKOPN (S/ P-kernel, open new file)
SPKPDS (S/ P-kernel, pack descriptor)
SPKPOS (S/P Kernel, position)
SPKPV (S/ P-kernel, Position, velocity)
SPKPVN (S/P-kernel, Position, velocity---native)
SPKRO1 (S/ P-kernel, Read record, Type 01)
SPKR02 (S/ P-kernel, Read record, Type 02)
SPKRO3 (S/ P-kernel, Read record, Type 03)
SPKRO05 (S/ P-kernel, Read record, Type 05)
SPKR08 (S/ P-kernel, Read record, Type 08)
SPKR09 (S/ P-kernel, Read record, Type 09)
SPKR10 (S/ P-kernel, Read record, Type 10)
SPKR14 (S/ P-kernel, Read record, Type 14)
SPKR15 (S/ P-kernel, Read record, Type 15)
SPKR17 (S/ P-kernel, Read record, Type 17)
SPKS01 (S/ P-kernel, Subset data, Type 01)
SPKS02 (S/ P-kernel, Subset data, Type 02)
SPKS03 (S/ P-kernel, Subset data, Type 03)
SPKS05 (S/ P-kernel, Subset data, Type 05)
SPKS08 (S/ P-kernel, Subset data, Type 08)
SPKS09 (S/ P-kernel, Subset data, Type 09)

SPKS10 (S/ P-kernel, Subset data, Type 10)
SPKS14 (S/ P-kernel, Subset data, Type 14)
SPKS15 (S/ P-kernel, Subset data, Type 15)
SPKS17 (S/ P-kernel, Subset data, Type 17)
SPKSFS [SPKBSR] (S/ P-kernel, file and segnent)
SPKSSB (S/ P-kernel, Solar system barycenter)
SPKUDS (S/ P-kernel, Unpack descri ptor)
SPKUEF [SPKBSR] (S/ P-kernel, Unload epheneris file)
SPKSUB (S/ P-kernel, Subset a segnent)
SPKW)2 (S/IP-kernel, Wite segnment, Type 02)
SPKWO3 (S/IP-kernel, Wite segment, Type 03)
SPKW)5 (S/P-kernel, Wite segnent, Type 05)
SPKW)8 (S/P-kernel, Wite segnent, Type 08)
SPKW)9 (S/P-kernel, Wite segnent, Type 09)
SPKWL0 (S/P-kernel, Wite segnent, Type 10)
SPKWL5 (S/P-kernel, Wite segnent, Type 15)
SPKWL7 (S/IP-kernel, Wite segnment, Type 17)

Summary of Calling Sequences

The caling sequences for the SPK subroutines are summarized below. The subroutines are
grouped by function.

Loading, unloading files:

SPKLEF (FNAME, HANDLE)

SPKUEF (HANDLE)
Computing states and positions:

SPKEZR (TNAME, ET, REF, ABERR, ONAME, STATE, LT)
SPKPOS (TNAME, ET, REF, ABERR, ONAME, POSTN, LT)
SPKEZ (TARGET, ET, REF, ABERR, OBS, STATE, LT)
SPKEZP (TARGET, ET, REF, ABERR, OBS, POSTN, LT)
SPKAPP (TARGET, ET, REF, STOBS, ABERR, STATE, LT)
SPKAPO (TARGET, ET, REF, STOBS, ABERR, POSTN, LT)
SPKSSB (TARGET, ET, REF, STATE)
SPKGEO (TARGET, ET, REF, OBS, STATE, LT)
SPKGPS (TARGET, ET, REF, 0BS, POSTN, LT)

SPKPVN (HANDLE, DESCR, ET, REF, STATE, CENTER)
SPKPV (HANDLE, DESCR, ET, REF, STATE, CENTER)

Sdecting files, ssgments

SPKSFS (TARGET, ET, HANDLE, DESCR, PDGREE, FOUND)
Reading, evauating records:

SPKRO1
SPKEO1

SPKRO2
SPKEO2

SPKRO3
SPKEO3

SPKRO5
SPKEOS

SPKRO8
SPKEO8

SPKRO9
SPKEO9

SPKR10
SPKE10

SPKR14
SPKE14

SPKR15
SPKE15

SPKR17
SPKE17

Writing segmentsto files.

(
(

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

HANDLE,

SPKPDS (BODY

SPKW2 (HANDLE,

SPKWD3

SPKWD5

SPKWD8

SPKWD9

SPKWLO

SPK14B (

SPK14A (

I NTLEN,

HANDLE,
I NTLEN,

HANDLE,
GM

HANDLE,
DEGREE,

HANDLE,
DEGREE,

HANDLE,
SEG D,
HANDLE,
FI RST,

HANDLE,

DESCR

DESCR

DESCR,

DESCR

DESCR

DESCR,

DESCR

DESCR

DESCR,

DESCR

CENTER, FRAME,

BODY,
N,

BODY,
Ny

BODY,
NI

BODY,
N,

BODY,
Ny

BODY,
CONSTS,

SEG D,
LAST,

NCSETS, COCEFFS,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

ET,
ET,

CENTER
POLYDG

CENTER
POLYDG,

CENTER,
STATES,

CENTER
STATES,

CENTER
STATES,

CENTER,

NI

BODY,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

RECORD
RECORD,

)
STATE)

)
STATE)
)
STATE)

)
STATE)

)
STATE)

)
STATE)

)
STATE)

)
STATE)

)
STATE)

)
STATE)

TYPE, FI RST, LAST,

FRAME, FI RST, LAST,
CDATA, BTIME

FRAME, FI RST, LAST,
CDATA, BTIME

FRAME, FI RST, LAST,
EPOCHS

FRAME, FI RST, LAST,
EPOCH1, STEP

FRAME, FI RST, LAST,
EPOCHS

FRAME, FI RST, LAST,

ELEMS, EPOCHS

CHBDEG)

CENTER, FRANME,

EPOCHS)

DESCR)

SEG D,

SEG D,

SEG D,

SEG D,

SEG D,

SPK14E (HANDLE)

SPKWL5 (HANDLE, BODY, CENTER, FRAME, FIRST, LAST, SEG D,
EPOCH, TPOLE, PERI, P, ECC, J2FLG, CPOLE,
GM J2, RADI US)

SPKWL7 (HANDLE, BODY, CENTER, FRAME, FIRST, LAST,
SEG D, EPOCH, EPOCH, EQEL, RAPOL, DECPOL)
Examining segment descriptors.

SPKUDS (DESCR, BODY, CENTER, FRAME, TYPE,
FI RST, LAST, BEG N, END)

Extracting subsets of data from a segment:

SPKSO1 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS02 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS03 (HANDLE, BADDR, EADDR, BEG N, END)
SPKSO05 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS08 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS09 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS10 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS14 (HANDLE, BADDR, EADDR, BEGI N, END)
SPKS15 (HANDLE, BADDR, EADDR, BEG N, END)
SPKS17 (HANDLE, BADDR, EADDR, BEG N, END)

SPKSUB (HANDLE, DESCR, |DENT, BEG N, END, NEWH)
To write new or append segmentsto SPK files:

SPKOPN (NAME, | FNAME, NCOMCH, HANDLE)
SPKOPA (FILE, HANDLE)
SPKCLS (HANDLE)

Appendix B --- A Template for SPK
Comments

An undocumented ephemerisis in many respects worse than undocumented source code. With
source code you can at least read the code and perhaps discern the function of the source code.
An ephemeris on the other hand isabinary file. All it contains are numbers. It's very difficult to
determine the purpose of an ephemeris smply from the date information it contains. For this
reason, any ephemeris created for use by anyone other than yoursalf needs documentation.

If you create SPK files NAIF strongly recommends that you include descriptive documentation
in the comments portion of the SPK file. Y ou can use the utility program COMMNT to insert
comments into the file, or you may use the routines in the SPC family to insert the comments
when you create the SPK file. (See COMMNT.UG or SPC.REQ for further details.)

This gppendix addresses the contents of your comments. What will others (or yoursdlf) want to
know about the SPK file weeks, months or years after it has been created? Providing this
information can be a chdlenge. It's difficult to know in advance dl the questions someone might
ask about an ephemeris you've created. To assist with thistask NAIF has devised a ™ “template”
that you may wish to use as a sarting point when creeting the comments for an SPK file.

Constraints

The comments you place in an SPK file must be plain ASCII text. Each line of text must consist
of 80 or fewer characters. The text must contain only printing characters (ASCII characters 32
through 126).

The Basic Template

Here's one way to create the comments for an SPK file.

Objectsin the Ephemeris

List the names and NAIF ID codes for the objectsin thefile.

Approximate Time Coverage

Provide asummary of the time for which dates are available for the objects in thefile. If you use
UTC timesin this summary and the ephemeris extends more than 6 months into the future, you
should probably state that the times are approximate. Y ou don't know when legpseconds will
occur more than afew months in advance, so you can't know the exact UTC time boundaries for
the ephemerisiif it extends years into the future.

Status

Provide the “gtatus' of the ephemeris. Tdll the user why this ephemeris was crested and for
whom it isintended. For example, if thisisthe second in a series of ephemerides that will be
produced for some object tell which ephemeris this one supersedes. Tell the user when the next
ephemerisin the serieswill be available. |s the ephemeris suitable only for preliminary sudies?
Isit good for al Earth based observations? Isthis an officid operationa product? Are there
gtuations for which the ephemerisis not suitable?

Pedigree

Provide a production summary for the ephemeris. Tell when the ephemeris was produced (the
system time slamp may not port if the file is copied to other systems). Say who produced the
ephemeris;, what source products were used in the production; what version of the producing
program was used in the creation of the ephemeris. If the ephemerisis based on a set of recent
observations, say so. In short give the user the pedigree of this ephemeris. Thisinformation is
mostly for your bendfit. If a problem arises with the ephemeris, you will know how the problem
was created and have a better chance of fixing the problem.

Usage

Provide information the user will need to effectively use the ephemeris. Tell the user what other
SPICE kernels are needed to use this ephemeris. For example, if the ephemeris contains only the
date of an asteroid relative to the sun, the user will probably need a planetary ephemeristo
effectively use the one you've crested. Recommend a planetary ephemeris to use with your SPK
file. If the ephemeris contains states of objects rdlative to non-inertia frames, the user will

probably need other kernels so that various state transformations can be performed. Recommend
which of these kerndls the user should use with your SPK file.

Accuracy

If possible give some estimate asto the accuracy of your SPK file. Use numbers. Words such as
“thisis the best available" do not convey how much you know about the ephemeris.

Special Notes

Provide adescription of any specid properties of this ephemeris. For example, if some
observation seemsto be in conflict with this ephemeris you should probably point this out.

References

Ligt any references that may be relevant to the understanding of the ephemeris. For example, if
the ephemeris is based upon observations contained in the literature, site the appropriate articles.
If there is some technica memorandum or private communication that addresses certain aspects
of this ephemerislig it. Thiswill dlow you to more easly answer questions about the

ephemeris.

Contacts

List your phone number, mail or e-mail address so that users of the ephemeris will be able to get
in touch with you to ask questions or offer praise.

