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Revisions  

 

 
 
 

22 July 1997  

 
 
This edition of TIME Required Reading documents the routine ET2LST. This routine allows 
user's to easily convert Ephemeris Time (Barycentric Dynamical Time) to the local solar time at 
a user specified longitude on the surface of an object.  

In addition to the new routine ET2LST, we document a slight extension of the set of time strings 
that are recognized by the SPICE time software. This extension is documented in Appendix B.  

 

15 October 1996  

 
 
This edition of TIME Required Reading is a substantial revision to the previous edition; this 
reflects a major enhancement of the SPICE time software. This version describes the new time 
related software that was included in version N0046 of SPICE . We also draw distinctions 
between the various levels of time conversion software that are available to Toolkit users.  

The following routines are new as of version N0046 of SPICELIB.  

 
    STR2ET      TSETYR      TTRANS      JUL2GR 



    TIMOUT      TIMDEF      TPARTV      GR2JUL 
    TPICTR      TCHCKD      TCHECK      TEXPYR 
 

30 June 1994  

 
 
This version differs substantially from the previous version of 13 April 1992. Much of the 
description of the time software has been redone and sections added to describe how to modify 
time string parsing behavior and the conversion between uniform time systems.  

 

13 April 1992  

 
 
This version differs from the previous version of 10 April 1991 in that it discusses the new 
routine, UNITIM, for converting between additive numeric time systems.  
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Introduction  

 

 
 
This document describes the software available in the SPICE Toolkit for manipulating various 
representations of time. It is your main source for general information about calendar based and 
continuous time systems in SPICE . For specifics of a particular routine you should consult the 
header of that routine.  

In addition to the discussion of time software, there are two appendices to this document. The 
first provides basic background material on various time systems. The second discusses the 
details of how time strings are parsed in the SPICE system.  

The Toolkit also supports conversion between spacecraft clock (SCLK) and Barycentric 
Dynamical Time (TDB). However, spacecraft clock conversion is mentioned only in the context 
of background information in Appendix A. SPICE routines dealing with spacecraft clock are 
discussed in SCLK Required Reading.  

 

Intended Audience  

 
 
This document is intended for all SPICE users.  

 

Overview  

 

 
 
SPICE contains a versatile set of time conversion routines designed to simplify conversions 



between several time systems. The basic time systems supported are: Coordinated Universal 
Time (UTC), Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT). In 
addition, most common time formats are supported including: calendar, day of year, and Julian 
Date.  

A brief description of the various time systems is given in Appendix A.  

 

If You're in a Hurry  

 
 
We'll discuss things in more detail in a moment, but in case you are just looking for the right 
name of the routine to perform some time transformation task, here is a classification of the time 
routines in SPICE. We touch on only the most important routines in the remainder of this 
overview.  

Loading a Leapseconds Kernel  

 
    LDPOOL ( FILE ) 
Converting strings to ET  
 
    STR2ET ( STRING, ET ) 
  
    UTC2ET ( UTCSTR, ET ) 
  
    TPARSE ( STRING, SP2000, ERROR ) 
Converting ET to a string  
 
    TIMOUT ( ET, PICTUR, STRING ) 
  
    ET2UTC ( ET, FORMAT, PREC, UTCSTR ) 
  
    ETCAL  ( ET, STRING ) 
Converting between numeric representations of time  
 
    UNITIM ( DPTIME, INSYS, OUTSYS ) 
Runtime modification of behavior  
 
    TIMDEF ( ACTION, ITEM, VALUE ) 
  
    TSETYR ( YEAR ) 
  
    TPARCH ( YESNO ) 
Formatting aid  
 
    TPICTR ( SAMPLE, PICTUR, OK, ERROR ) 
Converting ET to local solar time on the surface of an object.  
 



    ET2LST ( ET, BODY, LONG, TYPE, HR, MN, SC, TIME, AMPM ) 
Foundation routines  
 
    TTRANS ( INTYP, OUTTYP, TIMVEC ) 
  
    TPARTV ( STRING, TVEC,   NTVEC, TYPE, 
   .                 MODIFY, MODS,  YABBRV, SUCCES, 
   .                 PICTUR, ERROR ) 
Utilities  
 
    DELTET ( EPOCH, EPTYPE, DELTA ) 
  
    TEXPYR ( YEAR ) 
  
    TCHCKD ( YESNO ) 
  
    JUL2GR ( YEAR, MONTH, DAY, DOY ) 
  
    GR2JUL ( YEAR, MONTH, DAY, DOY ) 
  
    TCHECK ( TVEC, TYPE, MODS, MODIFY, OK, ERROR ) 
Time constants  
 
    B1900 () 
    B1950 () 
    J1900 () 
    J1950 () 
    J2000 () 
    J2100 () 
    JYEAR () 
    SPD   () 
    TYEAR () 
 

The J2000 Epoch  

 
 
The basic spatial reference system for SPICE is the J2000 system. This is an inertial reference 
frame in which the equations of motion for the solar system may be integrated. This reference 
frame is specified by the orientation of the earth's mean equator and equinox at a particular epoch 
--- the J2000 epoch. This epoch is Greenwich noon on January 1, 2000 Barycentric Dynamical 
Time. Throughout the SPICE documentation, you will see the expressions: ``seconds past 2000''; 
``seconds past J2000''; or ``seconds past the J2000 epoch.'' In all cases, the reference epoch is 
noon January 1, 2000 on a particular time scale.  

(As we've just seen ``J2000'' is used to name the fundamental inertial frame and a particular 
epoch. This can sometimes be confusing if you are not careful to distinguish the context in which 
the term ``J2000'' is used.)  

 



Leapseconds  

 
 
In almost all cases, before converting between different representations of time you must ``load'' 
a leapseconds kernel (LSK) into memory. The leapseconds kernel is a text kernel and is loaded 
via the routine LDPOOL.  

 
    LDPOOL ( '<file name of leapseconds kernel>' ) 
The leapseconds kernel is discussed in more detail later in this document.  

 

Converting Time Strings to Numeric Representations  

 
 
If you are starting with a representation of time in the form of a string such as ``Mon Sep 30 
09:59:10 PDT 1996'' you will normally need to get this into a numeric representation before you 
can work with it. The basic routine for converting strings to a numeric representation is STR2ET 
(``String to ET'').  

 
    STR2ET ( STRING, ET ) 
STR2ET computes the ephemeris epoch corresponding to an input string. The ephemeris epoch 
is represented as seconds past the epoch of the J2000 reference frame in the time system known 
as Barycentric Dynamical Time (TDB). This time system is also referred to as Ephemeris Time 
(ET) throughout the SPICE Toolkit.  

The variety of ways people have developed for representing times is enormous. It is unlikely that 
any single subroutine can accommodate all of the custom time formats that have arisen in 
various computing contexts. However, we believe that STR2ET correctly interprets most time 
formats used throughout the planetary science community. For example STR2ET supports ISO 
time formats, UNIX `date` output formats. VMS time formats, MS-DOS formats, epochs in both 
the A.D. and B.C. eras, time zones, etc.  

If you've been using the Toolkit for a while you are probably familiar with the routine UTC2ET.  

 
    UTC2ET ( UTCSTR, ET ) 
UTC2ET provides a subset of the capabilities contained in STR2ET. It does not recognize time 
zones or time systems other than the UTC system. However, it has been the work horse for time 
conversion within the Toolkit for many years. In version N0046 of the Toolkit it was upgraded to 
support ISO time formats.  



If you are writing new code, we recommend that you use the routine STR2ET. There is no need 
to upgrade any of your existing code that calls UTC2ET. However, you may want to replace 
calls to UTC2ET with calls to STR2ET due to the greater flexibility of STR2ET.  

 

Converting Numeric Representations to Time Strings  

 
 
If you need to examine an epoch given as some double precision number of seconds past J2000, 
you will normally want to convert it to some more meaningful representation. There are two 
routines normally used for this task. They offer varying degrees of flexibility in the output strings 
they can produce. The more general of these is TIMOUT.  

 
    TIMOUT ( ET, PICTUR, STRING ) 
Given an epoch ET expressed as double precision seconds past J2000 and a format picture pictur 
that you would like to use as a model for the output time strings, TIMOUT produces a string 
representing the input ET in a format that matches the one specified by pictur with the length of 
the string lenout. Using TIMOUT you can produce a time string in almost any format you desire 
(including many that cannot be recognized by any of the SPICE software). To assist in creating a 
format picture the routine TPICTR is provided. TPICTR takes a sample time string and produces 
the format picture that corresponds to the sample. By using TPICTR and TIMOUT together you 
can easily produce strings in the format you are used to seeing.  

Less flexible, but slightly easier to use, ET2UTC has been the standard SPICE time formatting 
routine for many years.  

 
    ET2UTC ( ET, FORMAT, PREC, UTCSTR ) 
This routine supports several fixed formats: calendar, Julian Date (UTC), day-of-year, ISO 
year/month/day, and ISO year/day-of-year. You may adjust the number of digits that follow the 
decimal point in the seconds component (or day in the Julian Date format).  

 

Converting between Different Numeric Formats  

 
 
You may need to convert between different numeric representations of time such as TDT, Julian 
Date TDB, TAI seconds past J2000, etc. The routine UNITIM is available for such conversions.  

 
    UNITIM ( DPTIME, INSYS, OUTSYS ) 
 



Initialization  

 

 
 
 

Leapseconds Kernel  

 
 
Most SPICE time routines make use of the information contained in a leapseconds kernel. 
Specifically, all of the following routines make use of the leapseconds kernel.  

STR2ET  

Converts strings to ET. 
UTC2ET  

Converts UTC strings to ET 
TIMOUT  

Converts ET to strings 
ET2UTC  

Converts ET to a UTC string. 
UNITIM  

Converts between numeric time systems 
TTRANS  

Converts between different parsed representations of time 
Before any of these routines can be used you must ``load'' a leapseconds kernel into the ``kernel 
pool.'' This is done by calling the routine LDPOOL, whose calling sequence is:  
 
    LDPOOL ( KERNEL ) 
KERNEL is the name of a ``leapseconds kernel.'' Leapseconds kernels are text based kernels 
containing the epochs of leap seconds and other constants required by the time conversion 
routines.  

The leapseconds kernel needs to be loaded just once per program run; normally, the leapseconds 
kernel is loaded in a program's initialization section.  

The precise contents of the leapseconds kernel are discussed in the section ``Computing Delta 
ET'' below. Text kernels and the routine LDPOOL are discussed in more detail in KERNEL 
Required Reading.  



 

SPK and PCK kernels  

 
 
The routine ET2LST converts ephemeris time (ET) to the local solar time for a point at a user 
specified longitude on the surface of a body. This computation is performed using the bodyfixed 
location of the sun. Consequently, to use ET2LST you must first load SPK and PCK files that 
contain sufficient position and orientation data for the computation of the bodyfixed location of 
the sun.  

SPK files are loaded using the routine SPKLEF.  

 
    SPKLEF ( '<spk file name>', HANDLE ) 
PCK files are usually text based. Text based kernels are loaded by calling LDPOOL.  
 
    LDPOOL ( KERNEL ) 
Occasionally, PCK, files are binary (DAF based) files that contain the orientation of an object 
with respect to an inertial frame. Binary PCK files are loaded with the routine PCKLOF.  
 
    PCKLOF ( '<binary pck file name>', HANDLE ) 
As with the leapseconds kernel, SPK and PCK files need to be loaded just once per program run-
--usually at program initialization.  

 

Input String Conversion  

 

 
 
We normally represent epochs as a combination of a date and time of day. In C the simplest 
means of specifying an epoch as a date and time is to create a string such as:  

 
    STRING = 'Oct 1, 1996 09:12:32' 
However, arithmetic is most easily performed with numeric representations of time. In SPICE 
we represent epochs as some number of double precision seconds past the J2000 epoch.  

SPICE contains three routines for converting strings directly to ``seconds past 2000.'' They are 
STR2ET, UTC2ET, and TPARSE. All of these routines take a string as input and produce a 
double precision number that gives the number of seconds past the J2000 epoch corresponding to 
the input string. The method of analyzing the input string and assigning meaning to its various 
components is identical for all three routines. This analysis is called ``parsing'' the string. All 



three routines, STR2ET, UTC2ET and TPARSE, use the ``foundation'' routine TPARTV to parse 
the input string. Each then interprets the results of TPARTV to assign meaning to the string. 
Below are a number of examples of strings and the interpretation assigned to the various 
components.  

ISO (T) Formats.  

 
   String                        Year Mon  DOY DOM  HR Min Sec 
   ----------------------------  ---- ---  --- ---  -- --- ------ 
   1996-12-18T12:28:28           1996 Dec   na  18  12  28 28 
   1986-01-18T12                 1986 Jan   na  18  12  00 00 
   1986-01-18T12:19              1986 Jan   na  18  12  19 00 
   1986-01-18T12:19:52.18        1986 Jan   na  18  12  19 52.18 
   1995-08T18:28:12              1995  na  008  na  18  28 12 
   1995-18T                      1995  na  018  na  00  00 00 
Calendar Formats.  
 
   String                        Year   Mon DOM  HR Min  Sec 
   ----------------------------  ----   --- ---  -- ---  ------ 
   Tue Aug  6 11:10:57  1996     1996   Aug  06  11  10  57 
   1 DEC 1997 12:28:29.192       1997   Dec  01  12  28  29.192 
   2/3/1996 17:18:12.002         1996   Feb  03  17  18  12.002 
   Mar 2 12:18:17.287 1993       1993   Mar  02  12  18  17.287 
   1992 11:18:28  3 Jul          1992   Jul  03  11  18  28 
   June 12, 1989 01:21           1989   Jun  12  01  21  00 
   1978/3/12 23:28:59.29         1978   Mar  12  23  28  59.29 
   17JUN1982 18:28:28            1982   Jun  17  18  28  28 
   13:28:28.128 1992 27 Jun      1992   Jun  27  13  28  28.128 
   1972 27 jun 12:29             1972   Jun  27  12  29  00 
   '93 Jan 23 12:29:47.289       1993*  Jan  23  12  29  47.289 
   27 Jan 3, 19:12:28.182        2027*  Jan  03  19  12  28.182 
   23 A.D. APR 4, 18:28:29.29    0023   Apr  04  18  28  29.29 
   18 B.C. Jun 3, 12:29:28.291   -017   Jun  03  12  29  28.291 
   29 Jun  30 12:29:29.298       2029+  Jun  30  12  29  29.298 
   29 Jun '30 12:29:29.298       2030*  Jun  29  12  29  29.298 
Day of Year Formats  
 
   String                        Year  DOY HR Min Sec 
   ----------------------------  ----  --- -- --- ------ 
   1997-162::12:18:28.827        1997  162 12  18 28.827 
   162-1996/12:28:28.287         1996  162 12  28 28.287 
   1993-321/12:28:28.287         1993  231 12  28 28.287 
   1992 183// 12 18 19           1992  183 12  18 19 
   17:28:01.287 1992-272//       1992  272 17  28 01.287 
   17:28:01.282 272-1994//       1994  272 17  28 01.282 
   '92-271/ 12:28:30.291         1992* 271 12  28 30.291 
   92-182/ 18:28:28.281          1992* 182 18  28 28.281 
   182-92/ 12:29:29.192          0182+ 092 12  29 29.192 
   182-'92/ 12:28:29.182         1992  182 12  28 29.182 
Julian Date Strings  
 
   jd 28272.291                  Julian Date   28272.291 
   2451515.2981 (JD)             Julian Date 2451515.2981 



   2451515.2981 JD               Julian Date 2451515.2981 
Abbreviations Used in Tables  
 
   na    --- Not Applicable 
   Mon   --- Month 
   DOY   --- Day of Year 
   DOM   --- Day of Month 
   Wkday --- Weekday 
   Hr    --- Hour 
   Min   --- Minutes 
   Sec   --- Seconds 
*  

The default interpretation of a year that has been abbreviated with a leading quote as in 
'xy (such as '92) is to treat the year as 19xy if xy is more than 49 and to treat it is 20xy 
otherwise. Thus '52 is interpreted as 1952 and '47 is treated as 2047. 

+  

When a day of year format or calendar format string is input and neither of the integer 
components of the date is greater than 1000, the first integer is regarded as being the year. 

 

Parsing Time Strings  

 
 
A time string is parsed by first scanning the string from left to right and identifying recognizable 
substrings. (integers, punctuation marks, names of months, names of weekdays and time 
systems, time zones, etc.) These recognizable substrings are called the tokens of the input string. 
The meaning of some tokens are immediately determined. For example named months, 
weekdays and time systems have clear meanings. However, the meanings of numeric 
components must be deciphered from their magnitudes and location in the string relative to the 
immediately recognized components of the input string.  

The following substrings are immediately recognizable.  

1. All months (January, February, ... ) or any abbreviation of at least 3 letters;  

2. All weekdays (Sunday, Monday, ... ) or any abbreviation of at least 3 letters;  

3. Standard abbreviations of U.S. time zones: 'EST', 'EDT', 'CST', 'CDT', 'MST', 'MDT', 
'PDT', 'PST'.  

4. The abbreviations for eras: 'B.C.', 'BC', 'A.D.', and 'AD';  

5. Time systems: 'TDT', 'TDB', 'UTC' (Note that 'ET' is not a recognized time system);  

6. Julian Date Label: 'JD' (Note that JED is not a recognized Julian Date Label);  



7. The 12-hour clock labels: 'A.M.', 'AM', 'P.M.' and 'PM';  

8. Time Zones expressed as UTC offsets: UTC+HR:MN, UTC-HR:MN where HR is an 
unsigned integer between 0 and 12 inclusive; MN is an unsigned integer between 0 and 
59 inclusive.  

With the exception of months, all items above may be enclosed in parentheses. For example 
'TDB' and '(TDB)' are both recognized as the same time system.  

The case of the letters in these substrings does not matter. For example all of the various ways of 
writing 'TDB' ( 'TDB', 'tDB', ... 'tdb') are recognized as 'TDB'.  

It is not necessary to leave space between the various substrings. For example JDTDT and 
JDUTC are recognized as 'JD' followed by 'TDT' and 'JD' followed by 'UTC' respectively.  

To determine the meaning of the numeric tokens in the input string, a set of transformation rules 
are applied to the full set of tokens in the string. These transformations are repeated until the 
meaning of every token has been determined or until further transformations yield no new clues 
into the meaning of the numeric tokens. Here is an overview of the rules that are applied to the 
various tokens in the string.  

1. Unless the substring JD or jd is present the string is assumed to be a calendar format 
(day-month-year or year and day of year). If the substring JD or jd is present, the string is 
assumed to represent a Julian date.  

2. If the Julian date specifier is not present, any integer greater than 999 is regarded as 
being a year specification.  

3. A dash `-' can represent a minus sign only if it precedes the first digit in the string and 
the string contains the Julian date specifier (JD). (No negative years, months, days, etc 
are allowed).  

4. Numeric components of a time string must be separated by a character that is not a 
digit or decimal point. Only one decimal component is allowed. For example 
1994219.12819 is sometimes interpreted as the 219th day of 1994 + 0.12819 days. The 
SPICE time parsing software does not support such strings.  

5. No exponential components are allowed. For example you can't input 1993 Jun 23 
23:00:01.202E-4. You have to explicitly list all zeros that follow the decimal point: i.e. 
1993 Jun 23 23:00:00.0001202  

6. The single colon (:) when used to separate numeric components of a string is 
interpreted as separating Hours, Minutes, and Seconds of time.  

7. If a double slash (//) or double colon (::) follows a pair of integers, those integers are 
assumed to represent the year and day of year.  



8. A quote followed by an integer less than 100 is regarded as an abbreviated year. For 
example: '93 would be regarded as the 93rd year of the reference century. See TEXPYR 
for further discussion of abbreviated years.  

9. An integer followed by 'B.C.' or 'A.D.' is regarded as a year in the era associated with 
that abbreviation.  

10. All dates are regarded as belonging to the extended Gregorian Calendar (the 
Gregorian calendar is the calendar currently used by western society).  

11. If the ISO date-time separator (T) is present in the string, only ISO allowed token 
patterns are examined for a match with the current set of tokens. If no match is found the 
search is abandoned and appropriate diagnostic messages are generated.  

12. If two delimiters are found in succession in the time string, the time string is 
diagnosed as an erroneous string. (Delimiters are comma, white space, dash, slash, 
period, day of year mark)  

   Note the delimiters do not have to be the same. The pair of characters ``,-'' counts as 
two successive delimiters.  

13. White space and commas serve only to delimit tokens in the input string; they do not 
affect the meaning of any of the tokens.  

14. When the sizes of the integer components do not clearly specify a year but the name 
of a month is present (for example 'APR') the following patterns are assumed  

 
               Year Month Day 
               Month Day Year 
               Year Day Month 

15. When integer components are separated by slashes (/) as in 3/4/5. The integers are 
assumed to be Month, Day, Year. Thus in our example '3/4/5' is assumed to mean 4th of 
March in the year '05.  

16. If a day of year marker is present (// or ::) and the size of the integer components 
does not clearly specify the year (as in 45-33//) the string is interpreted as Year Day-of-
Year. Thus 45-33// is interpreted as the 33rd day of the year '45.  

Once the various tokens have been determined and a meaning attached to them, the routines 
STR2ET, UTC2ET, and TPARSE, use the tokens to construct the double precision number 
giving the number of seconds past J2000 that corresponds to input string. However, not all 
tokens or token combinations are allowed by the routines.  

 

STR2ET  



 

 
 
The routine STR2ET is the most flexible of the three time transformation routines. STR2ET 
accepts the widest variety of time strings. To illustrate the various features of STR2ET we begin 
by considering the string  

 
   1988 June 13, 3:29:48 
There is nothing in this string to indicate what time system the date and time belong to. 
Moreover, there is nothing to indicate whether the time is based on a 24-hour clock or twelve 
hour clock.  

In the absence of such indicators, the default interpretation of this string is to regard the time of 
day to be a time on a 24-hour clock in the UTC time system. The date is a date on the Gregorian 
Calendar (this is the calendar used in nearly all western societies).  

 

Labels (A.M. and P.M.)  

 
 
If you add more information to the string, STR2ET can then make a more informed 
interpretation of the time string. For example:  

 
   1988 June 13, 3:29:48 P.M. 
is still regarded as a UTC epoch. However, with the addition of the ``P.M.'' label it is now 
interpreted as the same epoch as the unlabeled epoch 1988 June 13, 15:29:48. Similarly  
 
   1988 June 13, 12:29:48 A.M. 
is interpreted as  
 
   1988 June 13, 00:29:48 
on the 24-hour clock.  

 

For the Record  

 
 
12:00 A.M. corresponds to Midnight (00:00 on the 24-hour clock). 12:00 P.M. corresponds to 
Noon (12:00 on the 24-hour clock).  



 

Labels (Time Zones)  

 
 
You may add still further indicators to the string. For example  

 
   1988 June 13, 3:29:48 P.M. PST 
is interpreted as an epoch in the Pacific Standard Time system. This is equivalent to  
 
   1988 June 13, 23:29:48 UTC 
All of the standard abbreviations for U.S. time zones are recognized by the time parser.  
 
   EST   --- Eastern Standard Time  ( UTC-5:00 ) 
   CST   --- Central Standard Time  ( UTC-6:00 ) 
   MST   --- Mountain Standard Time ( UTC-7:00 ) 
   PST   --- Pacific Standard Time  ( UTC-8:00 ) 
  
   EDT   --- Eastern Daylight Time  ( UTC-4:00 ) 
   CDT   --- Central Daylight Time  ( UTC-5:00 ) 
   MDT   --- Mountain Daylight Time ( UTC-6:00 ) 
   PDT   --- Pacific Daylight Time  ( UTC-7:00 ) 
In addition, any other time zone may be specified by representing its offset from UTC.  

To specify an offset from UTC you need to create an offset label. The label starts with the letters 
`UTC' followed by a `+' for time zones east of Greenwich and `-' for time zones west of 
Greenwich. This is followed by the number of hours to add or subtract from UTC. This is 
optionally followed by a colon `:' and the number of minutes to add or subtract to get the local 
time zone. Thus to specify the time zone of Calcutta (which is 5 and 1/2 hours ahead of UTC) 
you would specify the time zone to be UTC+5:30. To specify the time zone of Newfoundland 
(which is 3 and 1/2 hours behind UTC) use the offset notation UTC-3:30.  

 

For the Record  

 
 
Leapseconds occur at the same time in all time zones. In other words, the seconds component of 
a time string is the same for any time zone as is the seconds component of UTC. The following 
are all legitimate ways to represent an epoch of some event that occurred in the leapsecond  

 
   1995 December 31 23:59:60.5  (UTC) 
  
  
   1996 January   1, 05:29:60.5  (UTC+5:30 --- Calcutta Time) 
   1995 December 31, 20:29:60.5  (UTC-3:30 --- Newfoundland) 



   1995 December 31  18:59:60.5  (EST) 
   1995 December 31  17:59:60.5  (CST) 
   1995 December 31  16:59:60.5  (MST) 
   1995 December 31  15:59:60.5  (PST) 
 

Labels ( TDT, TDT, and UTC )  

 
 
In addition to specifying time zones you may specify that the string be interpreted as a formal 
calendar representation in either the Barycentric Dynamical Time system (TDB) or the 
Terrestrial Dynamical Time system (TDT).  

In these systems there are no leapseconds; every day has exactly 86400 seconds. TDB times are 
written as  

 
   1988 June 13, 12:29:48 TDB 
TDT times are written as:  
 
   1988 June 13, 12:29:48 TDT 
To add clarity or to override any changes you happen to make to the default behavior of ET2STR 
(see below) you may add the label ``UTC'' to any time string.  
 
   1998 Jun 13, 12:29:48 UTC 
Note that the system label may be placed anywhere in the time string. All of the following will 
be understood by the time parsing software:  
 
   TDB 1988 June 13, 12:29:48 
   1988 June 13, 12:29:48 TDB 
   1988 June 13, TDB 12:29:48 
 

UTC2ET  

 

 
 
The routine UTC2ET can be thought of as a version of STR2ET that allows a narrower range of 
inputs. It converts strings in the UTC system to TDB seconds past the J2000 epoch. It does not 
support other time systems or time zones. In addition UTC2ET does not recognize times on a 12-
hour clock. Strings such as  

 
   1983 June 13, 9:00:00 A.M. 
are treated as erroneous by UTC2ET.  



 

TPARSE  

 

 
 
The routine TPARSE can be thought of as a narrow version of STR2ET that allows only TDB as 
input. TPARSE converts strings on a formal time scale to seconds past the J2000 epoch. 
TPARSE doesn't ``know'' anything about leapseconds. Since TPARSE does not make use of 
leapseconds, it can be used without first loading a leapseconds kernel.  

Like UTC2ET, TPARSE does not recognize other time systems or time zones. Also it does not 
recognize times on a 12-hour clock.  

Unlike STR2ET and UTC2ET, TPARSE does not make use of the SPICE exception handling 
subsystem. Erroneous strings are diagnosed via a string---ERROR. If the string ERROR is 
returned empty (blank) no problems were detected in the input string. If ERROR is returned by 
TPARSE non-blank, it contains a diagnostic message that indicates problems with the input time 
string.  

 

Changing Default Behavior  

 

 
 
The three time string transformation routines can be adjusted at run time so that various built in 
defaults can be changed without re-writing any of the code for the routines.  

 

Abbreviated Years  

 
 
All three string transformation routines treat abbreviated years in the same fashion. The default 
behavior is to map any abbreviated year into the range from 1968 to 2067. Thus the year 22 
corresponds to 2022; 77 corresponds to 1977. However, you may reset the lower end of this 100 
year range via the routine TSETYR. For example if you would like to set the default range to be 
from 1972 to 2071 issue the following subroutine call:  



 
    TSETYR ( 1972 ) 
Note that this change affects the behavior of all three string conversion routines.  

 

Range of Time String Components  

 
 
The routines TPARSE and UTC2ET accept time strings whose numeric components are outside 
of the normal range of values used in time and calendar representations. For example strings 
such as  

 
   1985 FEB 43 27:65:25  (equivalent to 1985 MAR 16 04:05:25) 
will be accepted as input. You might wish to restrict the range of input strings so that this 
behavior is not allowed. The routine TPARCH is provided for this purpose. If you place the 
following subroutine call  
 
    TPARCH ( 'YES' ) 
early in your program, prior to any calls to UTC2ET or TPARSE, the components of calendar 
strings will be restricted so that all calendar components will be in the ``expected'' range. (The 
exact ranges for the components are spelled out in the header for TPARCH )  

STR2ET does not accept time strings whose components are outside the normal range used in 
conversation. You cannot alter this behavior without re-coding STR2ET.  

 

Default Time Systems and Time Zone  

 
 
When a string is presented without a time system or time zone label STR2ET assumes that the 
string represents a time in a default time zone or time system. If you take no action, the default 
time system is UTC. (There is no time zone offset; UTC is the same as UTC+00:00) You can 
override the default by simply including the time zone or time system of interest in the input time 
string. However, under some circumstances you may find that you almost always use the TDB 
time system. In such a case you would normally need to include the TDB label in the time string 
every time you use STR2ET. Hence, the defaults used by STR2ET might be a hindrance rather 
than a convenience. With this possibility in mind, STR2ET has been designed so that you may 
alter its default behavior with regard to default time system or time zone. To change the default 
time system or time zone use the routine TIMDEF.  



(Keep in mind that if you specify a time zone or time system label in the input time string the 
default time zone or system is not used. The label in the string is used to determine the time zone 
or time system.)  

 

Changing the Time System  

 
 
Three time systems are supported: UTC, TDB, TDT. To change the default system to one of 
these three systems issue the appropriate subroutine call below:  

 
    TIMDEF ( 'SET', 'SYSTEM', 'UTC' ) 
    TIMDEF ( 'SET', 'SYSTEM', 'TDB' ) 
    TIMDEF ( 'SET', 'SYSTEM', 'TDT' ) 
Note that setting a time system turns off any default time zone you may have set using TIMDEF.  

 

Time Zones  

 
 
All time zones are supported by STR2ET. The default time zone is simply Greenwich Mean 
Time (UTC+00:00). To change the default behavior of STR2ET so that unlabeled strings are 
assumed to be referenced to a particular time zone (for example Pacific Standard Time) issue the 
subroutine call below.  

 
    TIMDEF ( 'SET', 'ZONE', 'PST' ) 
Note that setting a time zone turns off any default time system you may have set via TIMDEF.  

 

Calendars  

 
 
The default calendar used by STR2ET is the Gregorian calendar. However, the Gregorian 
calendar did not come into existence until October 15, 1582. To complicate matters, many 
countries did not adopt the Gregorian calendar until centuries later. Prior to adoption of the 
Gregorian calendar most western societies used the Julian calendar. The generation of successive 
days is identical on the Julian and Gregorian calendars except for the determination of leap days 
in the last year of a century such as the year 1900. On the Julian calendar, a leap day is inserted 
as the last day of February every 4 years. on the Gregorian calendar, a leap day is inserted as the 



last day of February every 4 years with the possible exception of the last year of a century (such 
as 1900). The last year of a century is a leap year only if the year is evenly divisible by 400. Thus 
the year 2000 is a leap year on the Gregorian calendar but 1900 is not.  

Both the Gregorian and Julian calendars can be extended forward and backward in time 
indefinitely. The default behavior of STR2ET is to use the Gregorian calendar for all epochs. 
However, using TIMDEF you can set the default calendar to one of three: GREGORIAN, 
JULIAN, or MIXED.  

 
    TIMDEF ( 'SET', 'CALENDAR', 'GREGORIAN' ) 
    TIMDEF ( 'SET', 'CALENDAR', 'JULIAN'    ) 
    TIMDEF ( 'SET', 'CALENDAR', 'MIXED'     ) 
The ``MIXED'' calendar assumes that calendar strings for epochs prior to October 6, 1582 belong 
to the Julian Calendar; strings for later epochs are assumed to belong to the Gregorian Calendar. 
The specification of a calendar, does not affect a previous setting of a time system or time zone. 
You can change the calendar used by STR2ET only through the routine TIMDEF, there are no 
labels recognized by STR2ET for the various calendars.  

 

Output Conversion  

 

 
 
Times need to be printed out as well as read in. SPICE contains three routines for accomplishing 
this task: TIMOUT, ET2UTC, and ETCAL. All three convert a number of ephemeris seconds 
past J2000 to a time string.  

 

TIMOUT  

 

 
    TIMOUT ( ET, PICTUR, OUTSTR ) 
where  
ET  

is a double precision number containing the number of TDB seconds past J2000 
corresponding to some epoch. 

PICTUR  



is a characters string that describes how the output string should be formatted. It is a 
``picture'' of the format for output. 

OUTPUT  

is the string corresponding to ET and PICTUR. 
To see how this works, consider the following example time string:  
 
   04:29:29.292 Jan 13, 1996 
The value of PICTUR to use to create time strings that are similar in appearance to the example 
string is:  
 
   PICTUR = 'HR:MN:SC.### Mon DD, YYYY ::RND' 
Most of this components in PICTUR are fairly obvious. The exception is the substring  
 
   '::RND'. 
This substring tells TIMOUT to round the seconds portion of the output string instead of simply 
truncating. (Note that the case of the letters is significant in pictur.) TIMOUT can produce 
strings representing epochs in the time systems (UTC, TDB, TDT) or any time zone, and on 
either the Julian, Gregorian Calendar or Mixed Calendar. You may round or truncate numeric 
components.  

The rules for constructing pictur are spelled out in the header to TIMOUT. However, you may 
very well never need to learn these rules. SPICE contains the routine TPICTR that can construct 
a time format picture for you from a sample time string. Returning to the example above, if the 
following block of code is executed, pictur will contain the format picture that will yield output 
strings similar to our example string.  

 
    EXAMPL = '04:29:29.292 Jan 13, 1996' 
  
    TPICTR ( EXAMPL, PICTUR, OK, ERROR ) 
The arguments ok and error are outputs from TPICTR. They are present because some strings are 
not recognized as time strings. TPICTR recognizes the same set of time strings as does STR2ET, 
UTC2ET and TPARSE. However, if you want your output string to be in a system other than 
UTC you must supply the label for that system in your example string. TPICTR can construct 
format pictures for strings that are not accepted by the string conversion routines. For example, if 
you would like to suppress the year in a calendar output format, you could use the following 
example string:  
 
    EXAMPL = 'Jan 12, 02:28:29.### A.M. (PDT)' 
Even though this string is ambiguous as an epoch (there's no year specified), it is sufficient for 
determining a picture that describes its format. If you decide to use TPICTR with inputs like this, 
be sure to check the output flag OK. Even though you know what is intended, TPICTR may have 
problems with some ambiguous time strings.  

 

ET2UTC  



 
 
The routine ET2UTC is an older time formatting routine. It is not as flexible as TIMOUT. All 
outputs are UTC outputs and only a limited set of formats are supported. On the other hand it is 
easier to learn how to use ET2UTC. ET2UTC is an inverse to UTC2ET: that is following the 
calls  

 
    UTC2ET ( UTCIN,  ET             ) 
    ET2UTC ( ET,    'C',  3, UTCOUT ) 
utcout is identical in content to (although probably formatted differently from) UTCIN. ET2UTC 
can create time strings in any of the following formats.  
 
   Format      Name            Example 
   ------      -----------     -------------------------- 
   'C'         Calendar        '1979 JUL 04 14:19:57.184' 
   'D'         Day of Year     '1979-114 // 14:19:57.184' 
   'J'         Julian Date     'JD 2433282.529' 
   'ISOC'      ISO Calendar    '1987-04-122T16:31:12.814' 
   'ISOD'      ISO Day of Year '1987-102T16:31:12.814' 
In addition, you may specify the number of decimal places in the fractional part of the seconds 
token or the Julian Date (three, in the examples above). Note that Julian Dates are prefaced with 
the character string `JD' (and are UTC Julian Dates). This allows strings generated by ET2UTC 
to be used later as inputs to UTC2ET or STR2ET.  

 

ETCAL  

 
 
The routine ETCAL is a utility routine. It can produce outputs in a single format with a fixed 
number of decimal places. Moreover, the calendar strings it produces are on a formal calendar. 
There are no leapseconds; each day has exactly 86400 seconds. Since it does not make use of 
leapseconds, you don't need to load a leapseconds kernel prior to calling ETCAL. This makes it 
well suited for producing diagnostic messages. Indeed, it was created so that more user friendly 
diagnostic messages could be produced by those SPICE routines that require ET as an input.  

 

Converting Between Uniform Time Scales  

 

 
 
We use the term uniform time scale to refer to those representations of time that are numeric 
(each epoch is represented by a number) and additive. A numeric time system is additive if given 



the representations E1 and E2 of any pair of successive epochs, the time elapsed between the 
epochs is given by the difference E2 - E1.  

Conversion between uniform time scales can be carried out via the double precision function 
UNITIM. The uniform time scales that are supported by this routine are:  

 
   'TAI'     International Atomic Time. 
   'TDB'     Barycentric Dynamical Time. 
   'TDT'     Terrestrial Dynamical Time. 
   'ET'      Ephemeris time 
   'JDTDB'   Julian Date relative to TDB. 
   'JDTDT'   Julian Date relative to TDT. 
   'JED'     Julian Ephemeris date. 
  
   *  In the @SPICE system ET  is synonymous to TDB. 
   ** In the @SPICE system JED is synonymous to JDTDB. 
 

Local Solar Time  

 

 
 
Local solar time is a used to give people an idea of how high the sun is in the sky as seen from a 
particular site on surface of a planet or satellite. When the Sun is on the zenith meridian, the local 
solar time is 12:00:00 noon. For points on the equator of a body, the Sun rises around 6:00:00 
A.M. local solar time; it sets around 6:00:00 P.M. local solar time.  

Formally, the local solar time at a site on a body is the difference between the planetocentric 
longitude of the site and the planetocentric longitude of the Sun as seen from the center of the 
body. The angular difference in these two longitudes is measured in hours, minutes, and seconds 
in the same sense that hours, minutes and seconds are used to measure right ascension--- 24 
hours in 360 degrees; 60 minutes in an hour; 60 seconds in a minute. When the sun in on the 
zenith meridian the hour is defined to be 12. Finally, the hours increase from sunrise to sunset.  

Because of these conventions, an hour of local solar time will not be of the same duration as a 
UTC hour. In the case of a site on Mars, a solar hour will be approximately 62 UTC minutes.  

Local solar time for a specific site can be computed using the routine ET2LST (ET to Local 
Solar Time).  

 

Foundation Routines and Utilities  



 

 
 
At the heart of the SPICE time software subsystem are the ``foundation'' routines TPARTV and 
TTRANS. TPARTV is used to take apart a time string and convert it to a vector of numeric 
components. TTRANS serves the role of converting between the various numeric vector 
representations of time. If you need to build your own time conversion routines, these routines 
are a good place to begin.  

In addition to the foundation routines, you may find helpful the following utility routines.  

TEXPYR  

converts two-digit abbreviated years to full years. You set lower bound of the 100 year 
mapping interval via the routine TSETYR discussed earlier in this document. 

TCHECK  

takes a numeric vector representing the components of a calendar time and checks that all 
components are within the normal range used in conversation. Note that TCHECK 
performs no action until you call TPARCH with an argument of "YES". 

TCHCKD  

allows you to determine if component checking has been enabled in TCHECK via a call 
to TPARCH. 

JUL2GR  

converts the year, month, and day of an epoch on the Julian Calendar to the 
corresponding year, month, day and day-of-year on the Gregorian calendar. 

GR2JUL  

converts the year, month, and day of an epoch on the Gregorian Calendar to the 
corresponding year, month, day and day-of-year on the Julian calendar. 

DELTET  

computes the time difference TDB - UTC. 
B1900  

returns the Julian ephemeris date (TDB) of the epoch of the Besselian date 1900. 
B1950  

returns the Julian ephemeris date (TDB) of the epoch of the Besselian date 1950. 
J1900  

returns the Julian Date of 1899 DEC 31 12:00:00 (TDB) 
J1950  

returns the Julian ephemeris date of the epoch 1 Jan 1950 00:00:00 (TDB). 



J2000  

returns the Julian ephemeris date of the epoch 1 Jan 2000 12:00:00 (TDB). 
J2100  

returns the Julian ephemeris date of the epoch 1 Jan 2100 12:00:00 
JYEAR  

returns the number of seconds in a Julian year (365.25 Julian days). 
SPD  

returns the number of TDB seconds in a Julian day TDB (86400 seconds). 
TYEAR  

returns the number of seconds in a tropical year (approximately the number of seconds 
from one spring equinox to the next) 

 

Example  

 

 
 
The following program demonstrates use of the time conversion routines STR2ET, TPICTR, 
TIMOUT and ET2UTC.  

Note that the data necessary to convert between UTC and ET are loaded into the kernel pool just 
once---typically during program initialization--- after which the conversion may be performed at 
any level within the program.  

 
         PROGRAM EXAMPLE 
   C 
   C     Convert between UTC and ET interactively, and convert ET 
   C     back to UTC in calendar format, DOY format, and as a 
   C     Julian date. 
   C 
   C     Requires a leapseconds kernel. 
   C 
         INTEGER               FILEN 
         PARAMETER           ( FILEN = 128 ) 
  
         INTEGER               LNSIZE 
         PARAMETER           ( LNSIZE = 60 ) 
  
  
         CHARACTER*(8)         ANSWER 
         CHARACTER*(FILEN)     KERNEL 
  



         CHARACTER*(LNSIZE)    DOY 
         CHARACTER*(LNSIZE)    ERROR 
         CHARACTER*(LNSIZE)    EXAMP1 
         CHARACTER*(LNSIZE)    EXAMP2 
         CHARACTER*(LNSIZE)    JDUTC 
         CHARACTER*(LNSIZE)    PICTR1 
         CHARACTER*(LNSIZE)    PICTR2 
         CHARACTER*(LNSIZE)    PST 
         CHARACTER*(LNSIZE)    STR 
         CHARACTER*(LNSIZE)    UTC 
  
         DOUBLE PRECISION      ET 
  
         LOGICAL               OK 
  
   C 
   C     Get the name of the leapseconds kernel file. 
   C 
         WRITE (*,*)  'We need to load a leapseconds kernel.' 
         CALL PROMPT ('Kernel Name: ', KERNEL ) 
  
   C 
   C     Load the leapseconds kernel into the kernel pool. 
   C 
         CALL LDPOOL ( KERNEL ) 
  
  
   C 
   C     Create pictures for producing strings similar to 
   C     those below. 
   C 
         EXAMP1 = 'Fri Oct 04, 08:57:28.000 (UTC) 1996' 
         EXAMP2 = 'Fri Oct 04, 08:57:28.000 (PST) 1996' 
  
         CALL TPICTR ( EXAMP1, PICTR1, OK, ERROR ) 
         CALL TPICTR ( EXAMP2, PICTR2, OK, ERROR ) 
  
  
   C 
   C     Compute result for each new UTC epoch. 
   C 
         ANSWER = 'Y' 
  
         DO WHILE (      ( ANSWER(1:1) .EQ. 'Y' ) 
        .           .OR. ( ANSWER(1:1) .EQ. 'y' )  ) 
  
            WRITE (*,*) ' ' 
            CALL PROMPT ( 'Enter a time: ', STR ) 
  
            CALL STR2ET ( STR, ET ) 
  
            WRITE (*,*) ' ' 
            WRITE (*,*) 'Input time converts to ET ' // 
        .               '(sec past J2000)', ET 
  
  
            CALL TIMOUT ( ET, PICTR1,    UTC   ) 



            CALL TIMOUT ( ET, PICTR2,    PST   ) 
            CALL ET2UTC ( ET, 'ISOC', 3, DOY   ) 
            CALL ET2UTC ( ET, 'J',    7, JDUTC ) 
  
            WRITE (*,*) ' ' 
            WRITE (*,*) 'ET converts back to' 
            WRITE (*,*) ' ' 
            WRITE (*,*) UTC 
            WRITE (*,*) PST 
            WRITE (*,*) ' ' 
            WRITE (*,*) DOY 
            WRITE (*,*) JDUTC 
  
            WRITE (*,*) ' ' 
            CALL PROMPT ('Do you wish to continue?', ANSWER ) 
  
         END DO 
  
         END 
 

Appendix A. Background Material  
 

 
 
 
The Toolkit directly supports three time systems. They are  

1. Coordinated Universal Time (UTC)  

2. Barycentric Dynamical Time (TDB) also called Ephemeris Time (ET)  

3. Spacecraft Clock Time (SCLK---pronounced ``ess clock'')  

 

Coordinated Universal Time (UTC)  

 

 
 
 

International Atomic Time (TAI)  



 
 
Before discussing Coordinated Universal Time we feel it is helpful to talk about International 
Atomic Time (TAI or atomic time). Atomic time is based upon the atomic second as defined by 
the ``oscillation of the undisturbed cesium atom.'' Atomic time is simply a count of atomic 
seconds that have occurred since the astronomically determined instant of midnight January 1, 
1958 00:00:00 at the Royal Observatory in Greenwich, England. Atomic time is kept by the 
International Earth Rotation Service (IERS, formally the Bureau International L'Heure---BIH) in 
Paris, France. The National Bureau of Standards and the U.S. Naval Observatory set their clocks 
by the clock maintained by the IERS.  

 

Naming the seconds of TAI --- UTC  

 
 
Coordinated Universal Time is a system of time keeping that gives a name to each instant of time 
of the TAI system. These names are formed from the calendar date and time of day that we use 
in our daily affairs. They consist of 6 components: year, month, day, hour, minutes and seconds. 
The year, month and day components are the normal calendar year month and day that appear on 
wall calendars. The hours component may assume any value from 0 through 23. The minutes 
component may assume any value from 0 to 59. The seconds will usually (but not always) range 
from 0 to 59.999... . The hour-minute-second string  

 
   '00:00:00' 
is midnight and is the first instant of the calendar day specified by the first three components of 
the UTC time.  

In the SPICE system UTC times are represented by character strings. These strings contain: year, 
month, day, hour, minute and second separated by delimiters (spaces or punctuation marks). The 
various delimiters and substrings between the delimiters are called the tokens of the string. A 
typical time string looks like  

 
       '5 OCTOBER 1986 7:20:16.122 (UTC)' 
The tokens of the string and the associated UTC time components are  
 
   '5'       --- day 
   'OCTOBER' --- month 
   '1986'    --- year 
   '7'       --- hours 
   '20'      --- minutes 
   '16.122'  --- seconds 
The link between any token and its corresponding UTC component is determined by examining 
the values of the tokens and comparing them to the other tokens. The precise rules used are 



spelled out in great detail in appendix 2. For now, simply be assured that the following five 
strings all mean the same thing and are interpreted in the same way by SPICE Toolkit software.  
 
   '5 OCTOBER 1986' 
   '1986 OCTOBER 5' 
   '1986 5 OCTOBER' 
   '1986 10 5' 
   '10 5 1986' 
 

Tying UTC to the Earth's Rotation  

 
 
The names given to TAI instants by the UTC system are governed by the earth's rotation. Ideally, 
UTC strings having hours, minutes and seconds components all zero should correspond to 
Greenwich midnight as determined by the observations of the transits of stars (the time system 
known as UT1). However, since the rotation of the earth is not uniform, this ideal cannot be 
realized. The difference between Greenwich midnight observed astronomically and UTC 
midnight is almost never zero. However, to keep the difference from becoming too large, UTC is 
occasionally adjusted so that the difference between the two midnights never exceeds .9 seconds. 
Thus from a knowledge of UTC one can always compute UT1 to better than 1 second accuracy.  

 

Leapseconds  

 
 
When Greenwich UT1 midnight lags behind UTC midnight by more than 0.7 seconds the IERS 
will announce that a leap second will be added to the collection of UTC names. This leap second 
has traditionally been added after the last ``normal'' UTC name of December 31 or June 30. Thus 
when a UTC second is added the hours-minutes-seconds portion of the UTC name progresses as 
shown here  

 
   ... DECEMBER 31 23:59:57 
   ... DECEMBER 31 23:59:58 
   ... DECEMBER 31 23:59:59 
   ... DECEMBER 31 23:59:60 
   ... JANUARY   1 00:00:00 
instead of the usual progression  
 
   ... DECEMBER 31 23:59:57 
   ... DECEMBER 31 23:59:58 
   ... DECEMBER 31 23:59:59 
   ... JANUARY   1 00:00:00 



Should Greenwich UT1 midnight run ahead of UTC midnight by more than 0.7 seconds the 
IERS will announce a negative leap second. In this case one of the usual UTC hours-minutes-
seconds triples will be missing from the list of UTC names. In this case the progression will be:  
 
   ... DECEMBER 31 23:59:57 
   ... DECEMBER 31 23:59:58 
   ... JANUARY   1 00:00:00 
Since 1972 when leap seconds and the UTC system were introduced, a negative leap second has 
not occurred.  

 

The Leapseconds Kernel (LSK)  

 
 
The primary difficulty with UTC strings is that it is not possible to predict which atomic times 
will correspond to times during a UTC leap second. Thus algorithms for converting between 
UTC and time systems that simply use a continuous set of numeric markers require knowledge 
of the location of leap seconds in the list of names. This is the purpose of the LEAPSECONDS 
kernel supplied with the Toolkit. To convert between UTC times and any other system, you must 
first load the leapseconds kernel via a call to the routine LDPOOL.  

 

Ephemeris Time (ET)  

 

 
 
Ephemeris time is the uniform time scale represented by the independent variable in the 
differential equations that describe the motions of the planets, sun and moon. There are two 
forms of ephemeris time: Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time 
(TDT). Although they represent different time systems, these time systems are closely related.  

 

Barycentric Dynamical Time (TDB)  

 
 
Barycentric dynamical time is used when describing the motion of bodies with respect to the 
solar system barycenter.  

 



Terrestrial Dynamical Time (TDT)  

 
 
Terrestrial dynamical time is used when describing motions of objects near the earth. As far as 
measurements have been able to detect, TDT and TAI change at the same rate. Thus the 
difference between TDT and TAI is a constant. It is defined to be 32.184 seconds. At the zero 
point of TAI, TDT has a value of 32.184.  

 

The Relationship between TDT and TDB  

 
 
TDB is believed to be in agreement with the time that would be kept by an atomic clock located 
at the solar system barycenter. A comparison of the times kept by a clock at the solar system 
barycenter with a TDB clock on earth would reveal that the two clocks are in close agreement 
but that they run at different rates at different times of the year. This is due to relativistic effects.  

At some times in the year the TDT clock appears to run fast when compared to the TDB clock, at 
other times of the year it appears to run slow. Let TDB0 be some fixed epoch on the TDB clock 
and TDT0 be a fixed epoch on the TDT clock (TDB0 and TDT0 do not necessarily have to be 
the same epoch). Any epoch, EPOCH, can be represented in the following ways: as the number 
of seconds TDB(EPOCH), that have elapsed since TDB0 on the TDB clock; or as the number of 
seconds, TDT(EPOCH), that have elapsed since TDT0 on the TDT clock. If we plot the 
differences TDB(EPOCH) - TDT(EPOCH) against TDB(EPOCH) over all epochs, we will find 
that the graph is very close to a periodic function.  

In SPICE the difference between TDT and TDB is computed as follows:  

 
   [1]      TDB - TDT =  K * sin (E) 
where K is a constant, and E is the eccentric anomaly of the heliocentric orbit of the Earth-Moon 
barycenter. This difference, which ignores small-period fluctuations, is accurate to about 
0.000030 seconds. Thus to five decimal places the difference between TDT and TDB is a 
periodic function with magnitude approximately 0.001658 seconds and period equal to one 
sidereal year.  

The eccentric anomaly E is given by  

 
   [2]     E = M + EB sin (M) 
where EB and M are the eccentricity and mean anomaly of the heliocentric orbit of the Earth-
Moon barycenter. The mean anomaly is in turn given by  
 
   [3]     M = M0 + M1*t 



where t is the epoch TDB expressed in barycentric dynamical seconds past the epoch of J2000.  

The values K, EB, M0, and M1 are retrieved from the kernel pool. These are part of the 
leapseconds kernel. They correspond to the ``kernel pool variables'' DELTET/K, DELTET/EB, 
and DELTET/M. The nominal values are:  

 
   DELTET/K               =    1.657D-3 
   DELTET/EB              =    1.671D-2 
   DELTET/M               = (  6.239996D0   1.99096871D-7 ) 
 

In the Toolkit ET Means TDB  

 
 
When ephemeris time is called for by Toolkit routines, TDB is the implied time system. 
Software that converts between the various time systems described here use TDB whenever 
ephemeris time is called for. We call this time ET. (You can convert a UTC time string to TDT 
times, but you must make two subroutine calls instead of one.)  

Ephemeris time is given in terms of seconds past a reference epoch. The reference epoch used 
throughout the Toolkit is the epoch J2000 (roughly noon on January 1, 2000). Using the Toolkit 
software, you can find out how many seconds the J2000 epoch is from right now.  

 

Naming the Seconds of Ephemeris Time  

 

 
 
Although ephemeris time is a formal time, within the limits of measurements it coincides with 
atomic time. As such we should be able to relate it to the expressions of time that we use use 
everyday.  

However, ephemeris time is described as a count of ephemeris seconds past the ephemeris 
reference epoch (J2000). For most of us the expression  

 
   -312819349 seconds past the ephemeris epoch J2000 
bears little relationship to the time system we use to organize our lives. For this reason, it is 
common to give names to the various ephemeris seconds in a manner analogous to the UTC 
naming of the seconds of TAI---as a calendar date and time of day. The above string corresponds 
to  
 



   '1990 FEB 1 21:44:11 (TDB)' 
There is an important distinction between the names given to ephemeris seconds and the names 
used by the UTC system. The names assigned to ephemeris times never have leap seconds. The 
`seconds' component of the name is restricted to and includes all values from 0 to 59.999... . 
Thus the time string above does not represent the same moment in time as does ``1990 FEB 1 
21:44:11 (UTC)'' There are two reasons. First, ephemeris time is ahead of atomic time by 32.184 
seconds. Second, when a leap second occurs UTC strings fit an extra name into the sequence of 
valid UTC names. Thus it appears that UTC names fall behind ET names by a second after each 
leapsecond. At the present time UTC time strings appear to be 62.184 seconds behind ET time 
strings. This appearance is due to the fact that the two naming conventions are not the same. 
They simply have a lot of names in common.  

It is both fortunate and unfortunate that there is a huge set of common names between calendar 
dates ET and calendar dates UTC. Since there are relatively few leapseconds, a time given by an 
ET name is always close to the time in the UTC system having the same name. Thus for 
planning observations, you can know what day the observation will take place, whether or not 
you are likely to need a coat and how to arrange your daily activities around the observation. But 
for precise work you must pay attention to the difference between the two times systems. If in 
planning the observation of a stellar occultation by an asteroid the difference between the two 
naming systems is neglected, it is likely that the observation will be missed.  

The routine STR2ET will convert an ephemeris calendar date to seconds past the ephemeris 
epoch J2000.  

 

Some Consequences of Leapseconds  

 
 
There is no way of predicting when future leapseconds will occur. Normally you can predict 
whether there will be a leapsecond in the next few months, but beyond this predictions of 
leapseconds are not reliable. As a result we cannot say with certainty when a particular future 
UTC epoch will occur. For example, suppose you have a timer that you can set to ``beep'' after 
some number of seconds have passed. If this timer counts seconds perfectly without loosing or 
gaining time over decades, you cannot set it today to beep at midnight (00:00:00) January 1 
(UTC) ten years from now---the number of leapseconds that will occur in the next ten years is 
not known. On the other hand, it is possible to set the timer so that it will beep at midnight 
January 1 (TDB). The TDB system does not have leapseconds. It is only necessary to know an 
algorithm (such as STR2ET) for converting calendar epochs TDB to seconds past some 
reference epoch in order to determine how to set the timer to beep at the correct epoch.  

Any given Leapseconds Kernel will eventually become obsolete. Sometime after the creation of 
any Leapseconds Kernel there will be new leapseconds. When future leapseconds occur the old 
Leapseconds Kernel will no longer correctly describe the relationship between UTC, TDT and 
TDB for epochs that follow the new leapsecond. However, for epochs prior to the new 



leapsecond, the old kernel will always correctly describe the relationship between UTC, TDT 
and TDB.  

 

Computing UTC from TDB (DELTET)  

 

 
 
Below are a few epochs printed out in calendar format in both the TDT and UTC time systems.  

 
   1996, Oct 11, 12:01:02.1840  (TDT) 
   1996, Oct 11, 12:00:00.0000  (UTC) 
  
   1996, Oct 12, 12:01:02.1840  (TDT) 
   1996, Oct 12, 12:00:00.0000  (UTC) 
  
   1996, Oct 13, 12:01:02.1840  (TDT) 
   1996, Oct 13, 12:00:00.0000  (UTC) 
  
   1996, Oct 14, 12:01:02.1840  (TDT) 
   1996, Oct 14, 12:00:00.0000  (UTC) 
  
   1996, Oct 15, 12:01:02.1840  (TDT) 
   1996, Oct 15, 12:00:00.0000  (UTC) 
At least in October 1996, it's clear that if you have either TDT or UTC you can construct the 
corresponding representation for the same epoch in the UTC or TDT system by simply 
subtracting or adding 62.184 seconds.  

If you don't worry about what happens during a leapsecond you can express the above idea as:  

 
   [4]           DeltaTDT =  TDT - UTC 
For all epochs except during UTC leapseconds the above expression makes sense. DeltaTDT is 
simply a step function increasing by one after each leapsecond. Thus DeltaTDT can be viewed as 
a step function of either UTC or TDT.  

If you rearrange this expression, you can get  

 
   [5]           UTC = TDT - DeltaTDT 
Since, TDT can be expressed as seconds past J2000 (TDT), the above expression indicates the 
UTC can be expressed as some count of seconds. This representation is referred to by the 
dubious name of ``UTC seconds past J2000.'' If you write down the UTC calendar time string 
corresponding to an epoch and count the number of seconds between that calendar expression 



and the UTC calendar expression ``January 1, 2000 12:00:00'' and ignore leapseconds, you get 
the value of UTC in the expression above.  

In practice this expression is broken down as follows:  

 
   [6]           UTC  =  TDT - DeltaTA - DeltaAT 
where  
 
                 DeltaTA =  (TDT - TAI) 
and  
 
                 DeltaAT =  DeltaTDT - DeltaTA 
The value DeltaTA is a constant, its value is nominally 32.184 seconds. DeltaTA is a step 
function. These two variables appear in the leapseconds kernel.  

If we combine equation [6] above with equation [1] from the section ``The Relationship between 
TDT and TDB'' we get the following expression  

 
   [7]           TDB - UTC =  DeltaTA + DeltaAT + K*sin(E) 
This last value is called DeltaET and is computed by the SPICE routine DELTET. The various 
values that are used in the computation of DeltaET are contained in the Leapseconds Kernel. 
Indeed, a Leapseconds Kernel consists of precisely the information needed to compute DeltaET. 
Below is a sample Leapseconds kernel.  
 
   \begindata 
  
   DELTET/DELTA_T_A       =   32.184 
   DELTET/K               =    1.657D-3 
   DELTET/EB              =    1.671D-2 
   DELTET/M               = (  6.239996D0   1.99096871D-7 ) 
  
   DELTET/DELTA_AT        = ( 10,   @1972-JAN-1 
                              11,   @1972-JUL-1 
                              12,   @1973-JAN-1 
                              13,   @1974-JAN-1 
                              14,   @1975-JAN-1 
                              15,   @1976-JAN-1 
                              16,   @1977-JAN-1 
                              17,   @1978-JAN-1 
                              18,   @1979-JAN-1 
                              19,   @1980-JAN-1 
                              20,   @1981-JUL-1 
                              21,   @1982-JUL-1 
                              22,   @1983-JUL-1 
                              23,   @1985-JUL-1 
                              24,   @1988-JAN-1  ) 
  
   \begintext 
   DELTET/DELTA_T_A  corresponds to DeltaTA in equation [7]. 
   DELTET/K          corresponds to K in equation [7]. 
   DELTET/EB         corresponds to EB in equation [2]. 



   DELTET/M          corresponds to M0 and M1 of equation [3]. 
   DELTET/DELTA_AT   corresponds to DeltaAT of equation [7]. 
                     Note that this expression gives the 
                     points on the UTC scale at which 
                     DeltaAT changes. 
Although NAIF recommends against it, you could modify this file to alter the conversion. For 
example, until 1985 JPL's Orbit Determination Program (ODP) set used a value of 32.1843817 
for DeltaTA, and some older CRS tapes were created using this value in the conversion from 
TAI to TDT. The value returned by DELTET can be made compatible with these tapes by 
replacing the current value (32.184, exactly) with the older value. Also, JPL'S Optical 
Navigation Program (ONP) set does not use the periodic term (K sin E) of the difference TDB-
TDT. Setting the value of K to zero eliminates this term.  

 

Problems With the Formulation of DeltaET  

 
 
As we pointed out above, the expression ( TDT - UTC ) is meaningful as long as you stay away 
from leapseconds. If you write down the TDT and UTC representations for an epoch that occurs 
during a leapsecond you will have something like this:  

 
   1996 Jan 01, 00:01:01.6840  (TDT) 
   1996 Dec 31, 23:59:60.5000  (UTC) 
Given these two epochs, it is no longer clear what we should assign to the value TDT - UTC. 
Thus although equation [7] above provides a simple expression for computing the ``difference 
between UTC and TDB'', the expression fails to tell us how to convert between TDB (or TDT) 
and UTC during leapseconds. For this reason the SPICE system does not use DeltaET when 
converting between TDB (or TDT) and UTC. Instead, the table of offsets corresponding to 
DeltaAT in the leapseconds kernel is converted to an equivalent table as shown below.  
 
   Day Number of 1971-DEC-31     TAI seconds past 2000 at 
                                 beginning of 1971-DEC-31 
  
   Day Number of 1972-JAN-01     TAI seconds past 2000 at 
                                 beginning of 1972-JAN-01 
  
   Day Number of 1972-JUN-30     TAI seconds past 2000 at 
                                 beginning of 1972-JUN-30 
  
   Day Number of 1972-JUL-01     TAI seconds past 2000 at 
                                 beginning of 1972-JUL-01 
  
   Day Number of 1972-DEC-31     TAI seconds past 2000 at 
                                 beginning of 1972-DEC-31 
  
   Day Number of 1973-JAN-01     TAI seconds past 2000 at 
                                 beginning of 1973-JAN-01 
  



   Day Number of 1973-DEC-31     TAI seconds past 2000 at 
                                 beginning of 1973-DEC-31 
              .                          . 
              .                          . 
              .                          . 
where the day number associated with a particular calendar date is the integer number of days 
that have passed since Jan 01, 0001 A.D. (on the extended Gregorian Calendar).  

Given an epoch to be converted between UTC and some other time system (call this other system 
`S'), we decompose the conversion problem into two parts:  

1. converting between UTC and TAI,  

2. converting between TAI and system S.  

To convert between TAI and UTC, we examine the above table to determine whether or not the 
epoch in question falls on a day containing a leapsecond or during a day that is 86400 seconds in 
length. Once the length of the day associated with the epoch has been determined, the conversion 
from UTC to TAI (or from TAI to UTC) is straight forward. (See the routine TTRANS for 
details.) Having settled the problem of converting between TAI and UTC, the conversion 
between TAI and system S is carried out using the analytic expressions (equations [1], [2] and 
[3]) given above.  

 

Spacecraft Clock (SCLK)  

 

 
 
Most spacecraft have an onboard clock. This clock controls the times at which various actions 
are performed by the spacecraft and its science instruments. Observations are usually tagged with 
the spacecraft clock time when the observations are taken.  

Each spacecraft clock can be constructed differently. For Galileo the SPICE spacecraft clock 
times looks like  

 
   p/rrrrrrrr:mm:t:e 
  
   p - partition number 
   r - rim counts 
   m - minor frame 
   t - real time interrupt 
   e - mod eight count 
When asking for the matrix which describes the pointing for some structure or instrument used to 
perform an observation, you will usually request this information by supplying the spacecraft 



clock string that was used to tag the observation. This string must usually be related to UTC or 
ET. Consequently it is necessary to load a file of ``spacecraft clock coefficients'' that enables 
SPICE software to transform the spacecraft clock string into one of the other time systems. This 
file of spacecraft clock coefficients is loaded with the routine LDPOOL.  

A more detailed discussion of Spacecraft Clock is contained in the Required Reading file 
SCLK.REQ that is included with the SPICE Toolkit.  

 

Julian Date  

 

 
 
The Julian date system is a numerical time system that allows you to easily compute the number 
of days between two epochs. NAIF recognizes two types of Julian dates. Julian Ephemeris Date 
(JED) and Julian Date UTC (JDUTC). As with calendar dates used for ephemeris time and 
calendar dates UTC, the distinction between the two systems is important. The names of the two 
systems overlap, but they correspond to different moments of time.  

Julian Ephemeris Date is computed directly from ET via the formula  

 
   JED(ET)  = J2000() + ET/SPD() 
where J2000 is a constant function that returns the Julian Ephemeris Date of the reference epoch 
for ET, and SPD is a constant function that gives the number or seconds per day.  

Julian Date UTC has an integer value whenever the corresponding UTC time is noon.  

We recommend against using the JDUTC system as it provides no mechanism for talking about 
events that might occur during a leapsecond. All of the other time systems discussed can be used 
to refer to events occurring during a leap second.  

 

The abbreviation JD  

 
 
Julian date is often abbreviated as ``JD.'' Unfortunately, the meaning of this string depends upon 
context. For example, the SPICE routine UTC2ET treats the string ``2451821.1928 JD'' as Julian 
Date UTC. On the other hand, the SPICE routine TPARSE treats the same string as Julian Date 
TDB. Consequently, for high accuracy work, you must be sure of the context when using strings 



labelled in this way. Unless context is clear, it's usually safer to label Julian Date strings with one 
of the unambiguous labels: JDUTC, JDTDB, or JDTDT.  

 

Appendix B. Parsing Time Strings  
 

 
 
 
This appendix gives a detailed account of how the routine TPARTV parses time strings. 
TPARTV is the ``foundation'' routine relied upon by STR2ET, UTC2ET, TPARSE and TPICTR 
to accomplish the task of analyzing and assigning meaning to the components of a time string.  

This appendix is not for everyone. Unless you need to understand in great detail how parsing of 
strings is performed, you can safely skip this appendix. The discussion below is quite technical 
and mirrors very closely the code in TPARTV that handles the parsing of time strings.  

 

An Outline of the Parser  

 

 
 
The first step in processing a time string is to scan it from left to right identifying various 
substrings. If a substring is encountered that cannot be identified, attempts to further process the 
string are abandoned.  

Having identified the components in the string as integers, months, weekdays, time systems, etc. 
An internal representation of the string is constructed. This representation is simply a list of the 
identified substrings in the order they are encountered. Each item in the list is called a token.  

Working with the list of tokens, various rules are applied to remove some tokens and combine 
others into new tokens. The process of combination and removal of tokens continues until all 
tokens belong to a special set of ``meaningful'' tokens or until no further combinations and 
removals can be performed. If processing stops before all tokens are meaningful, a diagnostic 
message is created and the string is regarded as un-parsable. If all of the tokens are meaningful, a 
compatibility check is performed on the tokens to make sure that they unambiguously specify an 
epoch.  



Once it is clear that an unambiguous epoch has been specified, the substrings corresponding to 
the meaningful tokens are converted into numeric representations or are noted so that the time 
conversion software can properly interpret the numeric components.  

Almost all of the work of manipulating tokens is carried out by SPICE private routines. These 
routines are not considered part of the SPICE public interface. Feel free to read and copy these 
routines. However, we strongly recommend that you not call these routines in your own code 
since we do not guarantee backward compatibility of these routines in future releases of the 
Toolkit.  

 

Tokenizing the Input String  

 

 
 
The first step in parsing a time string is to decompose it into recognizable substring components. 
This decomposition is done as follows:  

Starting with the next unexamined character (on the first pass this is the first character in the 
string), scan from left to right looking for one of the following classes of substrings:  

1. a maximal sequence of digits forming an unsigned integer.  

2. a maximal sequence of space characters  

3. a tab character  

4. a weekday (or abbreviation of a weekday of at least 3 letters)  

5. a month name (or abbreviation of a month name of at least 3 letters)  

6. a time zone ( standard U.S. abbreviations)  

7. a positive UTC offset specifier ( `UTC+' )  

8. a negative UTC offset specifier ( `UTC-' )  

9. a time system (TDT, TDB, UTC)  

10. an era specifier ( `A.D.', `B.C.', `AD', `BC' )  

11. a 12-hour clock specifier ( `A.M.', `P.M.', `AM', `PM' )  

12. a Julian date specifier ( `JD' )  



13. a day of year specifier ( `::' or `//' )  

14. a period `.'  

15. a dash `-'  

16. a slash `/'  

17. a colon `:'  

18. a left parenthesis `('  

19. a right parenthesis `)'  

20. a single quote character (')  

Once the next substring has been identified, its boundaries and classification are stored in the 
next available location in the buffer reserved for the tokenized representation of the time string.  

The steps above are then repeated until the entire substring has been tokenized or a failure to 
recognize some substring occurs. If a failure occurs the location in the string is noted and a 
diagnostic message is created indicating the failure in the attempt to parse the string.  

When the tokenization is finished, there will be a list of tokens from which a string can be 
constructed that lists the class of each token. Each class of token is represented by a single 
character. By placing these characters in a string a simple list of token classes is maintained. The 
characters used for the remainder of this discussion are listed below.  

 
   Q  stands for the quote character 
   [  stands for the left parenthesis character 
   ]  stands for the right parenthesis character 
   ,  stands for the comma character 
   -  stands for the dash character 
   .  stands for the decimal point character 
   /  stands for the slash character 
   :  stands for the colon character 
   N  stands for one of the symbols A.M. or P.M. 
   O  stands for the symbol UTC+ 
   Z  stands for a time zone such as PDT, PSD, CDT, 
   b  stands for a block of white space (spaces or tabs) 
   d  stands for the day of year marker (// or ::) 
   e  stands for the era (B.C. or A.D.) 
   j  stands for Julian date 
   m  stands for a month 
   o  stands for the symbol UTC- 
   s  stands for a time system (UTC, TDT, TDB) 
   t  stands the ISO date-T-time separator 
   w  stands for the day of the week 
   i  stands for a sequence of digits 
Thus the list of token classifications corresponding to  



 
   '1995 Jan 12 12:28:28' 
will be  
 
   'ibmbibi:i:i' 
 

Combining and Removing Tokens  

 

 
 
Once an internal tokenized representation of the time string has been created, the internal 
representation is manipulated so that the meaning of the tokens is gradually discovered.  

There are 3 basic operations that can be performed on the tokenized representation:  

1. A token can be ``removed'' from the representation based on its classification. This 
removal can be wholesale as in ``remove all tokens corresponding to the blank character'', 
or it can be positional as in ``remove the last token classified as a blank.''  

2. A sequence of tokens can be combined into a single new token with a potentially new 
classification. For example you might have a subsequence of token classifications such as 
ì.i' in the tokenized representation that corresponds to an unsigned integer, a period, and 

another unsigned integer. Under suitable circumstances this sequence `i.i' might be 
replaced by `n' (for number).  

3. A single token can be reclassified. For example you might have a token whose 
classification is `i' for `unsigned integer' and have it reclassified as an hour `H'  

 

Initial Token Processing  

 

 
 
The first phase of processing the tokenized time discovers any UTC offsets in the input string, 
abbreviated months, decimal numbers, and removes white space. The process proceeds as 
follows:  

1. Token sequences that represent UTC time offsets are combined to form a single token 
with a new classification. (The character used for this new kind of token is `Z'.)  



2. Months or weekdays that are followed by a period are combined to form a single 
token (month or weekday respectively). The motivation for this combination is to allow 
abbreviations such as ``Jan.'' It also allows strings such as ``January.''  

3. The right most sequence of tokens of the form ``i.i'', (integer-period-integer) or ``i.'' 
(integer-period) is combined to form a single token ``n'' (number). This combination is 
performed only once in the token resolution process.  

4. All blanks (``b'') are removed from the tokenization.  

 

Julian Dates  

 
 
The string is now examined to see if the Julian date specifier `JD' is present. If so the following 
operations are performed. If no Julian date specifier is present, the steps below are skipped and 
processing resumes under the section ``Calendar Dates.''  

1. Any token sequence of the form `[s]' ( left parenthesis - time system - right 
parenthesis) is transformed to the sequence `*s*'. The `*' token is then removed. This 
leaves just the time system (TDT, TDB, or UTC) specification in the tokenization.  

-- Note: Whenever a character in the token classification is replaced by `*', the next step 
is to remove all tokens classified as `*' from the token list. In the remainder of the 
discussion, we will not add the sentence describing the removal of all asterisks. It will be 
implicit that the asterisk is always removed after it is placed in the token list.  

2. If the token sequence `[j]' (left parenthesis - Julian date specifier - right parenthesis) is 
present, it is replaced by `*j*'  

3. If no number token, `n', (see above) is present in the tokenization, the left most integer 
(`i') is reclassified as a number ( `n' ).  

4. If the token sequence `-n' ( dash - number ) appears in the token list, it is combined 
and classified as a number (`n'). This allows for the input of negative Julian dates.  

5. The Julian date specifier `j' is noted and removed from the token list.  

6. Any system token (`s') present in the token list is noted and removed.  

7. The numeric components of the string are converted to double precision values and 
the token list is checked for unresolved tokens. (The only thing that should be in the 
token list at this point is a single numeric token.)  



8. The parsing process halts. Either the string was successfully parsed and a double 
precision value for the Julian date has been constructed or there were unresolved tokens 
in the token list and a diagnostic message has been created.  

 

Calendar Dates  

 
 
If the Julian date specifier was not present in the token list, we assume that the string and token 
list represents some calendar date format. One consequence of this assumption is that the dash `-' 
is now assumed to be just a punctuation mark and not part of some number. ISO formats are 
given first priority in the scheme of token resolution. Note that ISO formats do not allow the 
inclusion of time systems, time zones, eras, or 12-hour clocks.  

Any integer class tokens (`i') whose corresponding substrings represent integers greater than or 
equal to 1000 are reclassified as years (`Y').  

 

ISO Formats  

 
 
If the ISO separator token `T' is present, the string is treated as an ISO format string. If the token 
list matches one of the token patterns in the left column it is transformed to the corresponding 
item in the right column by removing punctuation and making the indicated transformations.  

 
      Y-i-iT ........ YmD 
      Y-i-iTi ....... YmDH 
      Y-i-iTi:i ..... YmDHM 
      Y-i-iTi:i:i ... YmDHMS 
      Y-i-iTi:i:n ... YmDHMS 
      Y-i-iTi:n ..... YmDHM 
      Y-i-iTn ....... YmDH 
      Y-iT .......... Yy 
      Y-iTi ......... YyH 
      Y-iTi:i ....... YyHM 
      Y-iTi:i:i ..... YyHMS 
      Y-iTi:i:n ..... YyHMS 
      Y-iTi:n ....... YyHM 
      Y-iTn ......... YyH 
      i-i-iT ........ YmD 
      i-i-iTi ....... YmDH 
      i-i-iTi:i ..... YmDHM 
      i-i-iTi:i:i ... YmDHMS 
      i-i-iTi:i:n ... YmDHMS 
      i-i-iTi:n ..... YmDHM 



      i-i-iTn ....... YmDH 
      i-iT .......... Yy 
      i-iTi ......... YyH 
      i-iTi:i ....... YyHM 
      i-iTi:i:i ..... YyHMS 
      i-iTi:i:n ..... YyHMS 
      i-iTi:n ....... YyHM 
      i-iTn ......... YyH 
  
                      Y  ---  Year 
                      m  ---  Month 
                      D  ---  Day of Month 
                      y  ---  Day of Year 
                      H  ---  Hour 
                      M  ---  Minute 
                      S  ---  Second 
If the token list contains the ISO separator (`T') but the list does not match one of the patters 
shown above, the input string is regarded as erroneous.  

 

Other Calendar Formats  

 
 
If the ISO separator is not part of the token list, we next do what we can to recognize years and 
note the presence of modifiers (time zone specification, era, 12-hour clock etc.)  

1. If a two digit integer is preceded by the quote character ('), the pair of tokens is 
combined to a single token and reclassified as a year.  

2. The following token transformations are performed:  

 
   '[e]'  ---> '*e*' (parenthesized era to era) 
   '[w]'  ---> '*w*' (parenthesized weekday to weekday) 
   '[N]'  ---> '*N*' (parenthesized AM/PM   to AM/PM) 
   '[Z]'  ---> '*Z*' (parenthesized time zone to time zone) 
   '[s]'  ---> '*s*' (parenthesized time system to time system) 
   'ie',  ---> 'Ye'  (integer-era  to Year-era) 

3. Eras, weekdays, AM/PM, time zones, time systems are noted and removed from the 
token list.  

4. The string is examined for redundant commas, dashes, slashes periods, etc. If any are 
found the string is regarded as erroneous.  

 

Built in Representations  



 
 
Having processed the token list to this point, we check to see if what remains is one of those in a 
large set of immediately recognized token lists. The complete list is shown below. As in the case 
of ISO formats, the left item is the token list, the right item is the transformation after removing 
delimiters. Note that the letter `d' stands for a day-of-year delimiter ( `//' or `::' ).  

 
   Y-i-it......... YmD             i/i/ii:i:n..... mDYHMS 
   Y-i-iti........ YmDH            i/i/ii:n....... mDYHM 
   Y-i-iti:i...... YmDHM           i/i/ii:n....... mDYHM 
   Y-i-iti:i:i.... YmDHMS          i:i:ii-i-Y..... HMSmDY 
   Y-i-iti:i:n.... YmDHMS          i:i:ii/i/Y..... HMSmDY 
   Y-i-iti:n...... YmDHM           i:i:ii/i/i..... HMSmDY 
   Y-i-itn........ YmDH            i:i:iimY....... HMSDmY 
   Y-i/........... Yy              i:i:imiY....... HMSmDY 
   Y-i/i:i........ YyHM            i:i:ni-i-Y..... HMSmDY 
   Y-i/i:i:i...... YyHMS           i:i:ni/i/Y..... HMSmDY 
   Y-i/i:i:n...... YyHMS           i:i:ni/i/i..... HMSmDY 
   Y-i/i:n........ YyHM            i:i:nimY....... HMSDmY 
   Y-id........... Yy              i:i:nmiY....... HMSmDY 
   Y-idi:i........ YyHM            i:ii-i-Y....... HMmDY 
   Y-idi:i:i...... YyHMS           i:ii/i/Y....... HMmDY 
   Y-idi:i:n...... YyHMS           i:ii/i/i....... HMmDY 
   Y-idi:n........ YyHM            i:iimY......... HMDmY 
   Y-it........... Yy              i:imiY......... HMmDY 
   Y-iti.......... YyH             i:ni-i-Y....... HMmDY 
   Y-iti:i........ YyHM            i:ni/i/Y....... HMmDY 
   Y-iti:i:i...... YyHMS           i:ni/i/i....... HMmDY 
   Y-iti:i:n...... YyHMS           i:nimY......... HMDmY 
   Y-iti:n........ YyHM            i:nmiY......... HMmDY 
   Y-itn.......... YyH             iYd............ yY 
   Yid............ Yy              iYdi:i......... yYHM 
   Yidi:i......... YyHM            iYdi:i:i....... yYHMS 
   Yidi:i:i....... YyHMS           iYdi:i:n....... yYHMS 
   Yidi:i:n....... YyHMS           iYdi:n......... yYHM 
   Yidi:n......... YyHM            iiY............ mDY 
   Yii............ YmD             iiYi........... mDYH 
   Yiii........... YmDH            iiYi:i......... mDYHM 
   Yiii:i......... YmDHM           iiYi:i:i....... mDYHMS 
   Yiii:i:i....... YmDHMS          iiYi:i:n....... mDYHMS 
   Yiii:i:n....... YmDHMS          iiYi:n......... mDYHM 
   Yiii:n......... YmDHM           iiYn........... mDYH 
   Yiiii.......... YmDHM           iid............ Yy 
   Yiiiii......... YmDHMS          iidi:i......... YyHM 
   Yiiiin......... YmDHMS          iidi:i:i....... YyHMS 
   Yiiin.......... YmDHM           iidi:i:n....... YyHMS 
   Yiin........... YmDH            iidi:n......... YyHM 
   Yim............ YDm             iim............ YDm 
   Yimi........... YDmH            iimi........... YDmH 
   Yimi:i......... YDmHM           iimi:i......... YDmHM 
   Yimi:i:i....... YDmHMS          iimi:i:i....... YDmHMS 
   Yimi:i:n....... YDmHMS          iimi:i:n....... YDmHMS 
   Yimi:n......... YDmHM           iimi:n......... YDmHM 
   Yimn........... YDmH            iimii.......... YDmHM 



   Yin............ YmD             iimiii......... YDmHMS 
   Ymi............ YmD             iimiin......... YDmHMS 
   Ymii........... YmDH            iimin.......... YDmHM 
   Ymii:i......... YmDHM           iimn........... YDmH 
   Ymii:i:i....... YmDHMS          imY............ DmY 
   Ymii:i:n....... YmDHMS          imYi........... DmYH 
   Ymii:n......... YmDHM           imYi:i......... DmYHM 
   Ymin........... YmDH            imYi:i:i....... DmYHMS 
   Ymn............ YmD             imYi:i:n....... DmYHMS 
   Ynm............ YDm             imYi:n......... DmYHM 
   i-Y/........... yY              imYn........... DmYH 
   i-Y/i:i........ yYHM            imi............ YmD 
   i-Y/i:i:i...... yYHMS           imi:i:iY....... DmHMSY 
   i-Y/i:i:n...... yYHMS           imi:i:nY....... DmHMSY 
   i-Y/i:n........ yYHM            imi:iY......... DmHMY 
   i-Yd........... yY              imi:nY......... DmHMY 
   i-Ydi:i........ yYHM            imii........... YmDH 
   i-Ydi:i:i...... yYHMS           imii:i......... YmDHM 
   i-Ydi:i:n...... yYHMS           imii:i:i....... YmDHMS 
   i-Ydi:n........ yYHM            imii:i:n....... YmDHMS 
   i-i-Y.......... mDY             imii:n......... YmDHM 
   i-i-Yi:i....... mDYHM           imiii.......... YmDHM 
   i-i-Yi:i:i..... mDYHMS          imiiii......... YmDHMS 
   i-i-Yi:i:n..... mDYHMS          imiiin......... YmDHMS 
   i-i-Yi:n....... mDYHM           imiin.......... YmDHM 
   i-i-it......... YmD             imin........... YmDH 
   i-i-iti........ YmDH            imn............ YmD 
   i-i-iti:i...... YmDHM           inY............ mDY 
   i-i-iti:i:i.... YmDHMS          inm............ YDm 
   i-i-iti:i:n.... YmDHMS          miY............ mDY 
   i-i-iti:n...... YmDHM           miYi........... mDYH 
   i-i-itn........ YmDH            miYi:i......... mDYHM 
   i-i/i:i........ YyHM            miYi:i:i....... mDYHMS 
   i-i/i:i:i...... YyHMS           miYi:i:n....... mDYHMS 
   i-i/i:i:n...... YyHMS           miYi:n......... mDYHM 
   i-i/i:n........ YyHM            miYn........... mDYH 
   i-idi:i........ YyHM            mii............ mDY 
   i-idi:i:i...... YyHMS           mii:i:iY....... mDHMSY 
   i-idi:i:n...... YyHMS           mii:i:nY....... mDHMSY 
   i-idi:n........ YyHM            mii:iY......... mDHMY 
   i-it........... Yy              mii:nY......... mDHMY 
   i-iti.......... YyH             miii........... mDYH 
   i-iti:i........ YyHM            miii:i......... mDYHM 
   i-iti:i:i...... YyHMS           miii:i:i....... mDYHMS 
   i-iti:i:n...... YyHMS           miii:i:n....... mDYHMS 
   i-iti:n........ YyHM            miii:n......... mDYHM 
   i-itn.......... YyH             miiii.......... mDYHM 
   i/i/Y.......... mDY             miiiii......... mDYHMS 
   i/i/Y/i:n...... mDYHM           miiiin......... mDYHMS 
   i/i/Yi:i....... mDYHM           miiin.......... mDYHM 
   i/i/Yi:i:i..... mDYHMS          miin........... mDYH 
   i/i/Yi:i:n..... mDYHMS          mnY............ mDY 
   i/i/i.......... mDY             mni............ mDY 
   i/i/ii:i....... mDYHM           nmY............ DmY 
   i/i/ii:i:i..... mDYHMS 



If the token list agrees with one of the items in the above list, the double precision value 
corresponding to each token is computed and the parsing process halts with success.  

 

Last Resort Production Rules  

 

 
 
If the token list did not match one of the built-in patterns above, several checks are performed to 
see if there is redundant information in the token list (duplicate time systems, eras, etc.) If any 
such duplicate items are located, the input string is diagnosed as erroneous.  

Assuming that the error checks just discussed do not produce an error diagnosis, the string is 
processed according to the following rules:  

1. Commas, dashes, and slashes are removed from the token list. The resulting token list 
is then compared once more against the list of token patterns above. If there is a 
successful match, the parsing process halts with success.  

2. The following list of transformations are attempted in the order indicated.  

 
   'i:i:i:n'  ---> 'D*H*M*S' (days, hours, minutes, seconds) 
   'i:i:i:i'  ---> 'D*H*M*S' (days, hours, minutes, seconds) 
   'i:i:n'    ---> 'H*M*S'   (hours, minutes, seconds) 
   'i:i:i'    ---> 'H*M*S'   (hours, minutes, seconds) 
   'i:n'      ---> 'H*M'     (hours, minutes) 
   'i:i'      ---> 'H*M'     (hours, minutes) 

3. All colons are removed from the token list.  

4. The following list of transformations are attempted in the order indicated.  

 
   '<miiH' ---> 'mDY'  (month, day, year) 
   '<mi'   ---> 'mD'   (month, day) 
   'Siim>' ---> 'SYDm' (seconds, year, day, month) 
   'im>'   ---> 'Dm'   (day, month) 
   'miY>'  ---> 'mDY'  (month, day, year) 
   'Ymi'   ---> 'YmD'  (year, month, day) 
   'Smi'   ---> 'SmD'  (seconds, month, day) 
   'Mmi'   ---> 'MmD'  (minutes, month, day) 
   'imY'   ---> 'DmY'  (day, month, year) 
   'imH'   ---> 'DmH'  (day, month, hour) 
   'Yid'   ---> 'Yy*'  (year, day-of-year) 
   'iYd'   ---> 'yY*'  (day-of-year, year) 
   'Ydi'   ---> 'Y*y'  (year, day-of-year) 
  



   The characters '<' and '>' mean that the transformation is 
   performed only if the token list occurs at the beginning or 
   end respectively of the the token list. 

5. The token list is now examined to determine whether any unresolved numeric tokens 
remain. If unresolved numeric tokens are present, the input string is diagnosed as 
erroneous. If no unresolved components remain, the token list is checked for consistency. 
For example there can be only one of each type of token, and there must be a sufficient 
number of tokens present to unambiguously determine the epoch.  

 

Conclusion  

 

 
 
As can be surmised from the preceding discussion, it is very difficult to give a complete list of all 
token patterns that might yield a parsed time string. Nevertheless, we feel that the approach taken 
and the transformations applied will yield correct and consistent interpretations of the many 
ways people choose to represent time.  


