MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA PEDR SIS)

MGS-M-MOLA-3-PEDR-L1A-V1.0

Version 2.7, December 12, 1998

NASA Goddard Space Flight Center Greenbelt, MD 20771

MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLAPEDR SIS)

MGS-M-MOLA-3-PEDR-L1A-V1.0

	Gregory A. Neumann	Date
	MOLA Science Team	
Concurred: _	Maria Zuber	Date
	MOLA Deputy Principal Investigator	Date
Approved:		

Date

David E. Smith

MOLA Principal Investigator

MARS ORBITER LASER ALTIMETER PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA PEDR SIS)

Document and Change Control Log					
Date Version Section Status					
04/01/97	1.0	all	Released for MGS		
07/23/97	1.1	Section 4.3.2 Table 1 Table 2 Appendix C	Updated for PEDR format changes		
07/23/97	1.1	Appendix C	Incorrect start bytes and descriptions were cor- rected in the format files (unmarked)		
01/30/98	2.0	all	revised for contingency science		
09/24/98	2.5	Section 4.3.2	revised format definitions		
10/01/98	2.6	Tables 1 and 2; Appendix C	delta-spacecraft position replaces SC X-Y-Z coor- dinates at frame mid-point		
10/12/98		Table 2, Appendix C	frame local time defined as subsolar longitude in radians		
12/12/98	2.7	Tables 1 and 2; Appendix C	delta-latlon/delta-r and xover residual replaces ground X-Y-Z coordinates at frame-midpoint.		

Section	Table of Contents	Page
1.0	Introduction	1
1.1	Purpose	1
1.2	Scope	1
1.3	Applicable Documents	1
1.4	Functional Description	2
1.4.1	Data Content Summary	2
1.4.2	Source and Transfer Method	2
1.4.3	Recipients and Utilization	2
1.4.4	Pertinent Relationships with Other Interfaces	2
1.5	Assumptions and Constraints	2
2.0	Environment	3
2.1	Hardware Characteristics and Limitations	3
2.2	Interface Medium and Characteristics	3
2.3	Failure Protection, Detection, and Recovery Features	3
2.3.1	Backup Requirements	3
2.3.2	Security / Integrity Measures	3
2.4	End-Of-File (or Medium) Conventions	3
3.0	Access	4
3.1	Access Tools	4
3.2	Input / Output Protocol	4
3.3	Timing and Sequencing Characteristics	4
3.4	PDB Information	4
4.0	Detailed Interface Specifications	5
4.1	Labeling and Identification	5
4.2	Structure and Organization Overview	5
4.3	Substructure Definition and Format	5
4.3.1	Header / Trailer Description Details	5
4.3.2	Data Description Details	6
4.4	Volume, Size, and Frequency Estimates	7

	List of Figures	Page
1	PEDR Data Product Structure and Organization	8

	List of Tables	Page
1	PEDR Data Product Record Format	9
2	PEDR Data Product Record Contents Description	11
3	PEDR Data Product Subcommutated Data Format	16

List of Appendices Page				
Appendix A	Acronyms	18		
Appendix B	Precision Experiment Data Record Catalog Files	19		
Appendix C	SFDU Labels and Format Files	20		
Appendix C.1	SFDU Labels and Catalog Header	20		
Appendix C.2	Contents of the PEDRSEC1.FMT Format File	23		
Appendix C.3	Contents of the PEDRENG1.FMT Format File	33		
Appendix C.4	Contents of the PEDRENG2.FMT Format File	36		
Appendix C.5	Contents of the PEDRENG3.FMT Format File	39		
Appendix C.6	Contents of the PEDRENG4.FMT Format File	42		
Appendix C.7	Contents of the PEDRENG5.FMT Format File	43		
Appendix C.8	Contents of the PEDRENG6.FMT Format File	45		
Appendix C.9	Contents of the PEDRENG7.FMT Format File	46		
Appendix C.10	Contents of the PEDRSEC3.FMT Format File	48		

1.0 Introduction

The MOLA Science Team is required to create validate, and archive the MOLA standard data products. To define each standard data product, the MOLA Science Team is required to provide a Software Interface Specification (SIS). The SIS shall describe the data product contents and define the record and data format. The Planetary Data System's (PDS) Geosciences Node has agreed to archive the MOLA standard data products. The MOLA archive volume shall be described in a separate SIS. The MOLA standard science data products are the Aggregated Experiment Data Record—all MOLA raw data aggregated by orbit; Precision Experiment Data Record—MOLA science data processed into profiles with precision orbit locations added; Any Experiment Gridded Data Record—MOLA gridded data in 2 different densities. This SIS shall define the Precision Experiment Data Record (PEDR) Data Product.

1.1 Purpose

This document describes the format and contents of the PEDR Data Product. This includes a description of the required SFDU format and the record description and contents of the PEDR File.

1.2 Scope

This SIS defines the format of the SFDU labels and headers and the Precision Experiment Data Record down to the bit level. Also, the PEDR Data Product software, hardware, and human interfaces shall be mentioned in order to describe the interface; the actual software, hardware, or human node on the other side of the interface shall be described in detail in its own interface or other reference document.

1.3 Applicable Documents

1.MOLA-672-PL-89.354	<i>Operations Facility Configuration and Control Plan</i> , Version 1.0, NASA Goddard Space Flight Center Wallops Flight Facility, January 5, 1990
2.MOLA-972-SP-91.163	Mars Orbiter Laser Altimeter Aggregated Experiment Data Record Product Software Interface Specification Document, Version 1.0, NASA Goddard Space Flight Center Wallops Flight Facility, March 31, 1997
3. SFOC-0088-00-07-02	Space Flight Operations Center User's Guide for Work Station End Users, Volume 2: Working with File Data, Version 17.0, Draft, Jet Propulsion Laboratory, January 1992
4. MO-642-3-PDB-UG-01	Mars Observer Project Database (MO PDB) User Overview, Straw- man, Jet Propulsion Laboratory, February 7, 1990
5. MOSO0099-04-00	<i>Planetary Science Data Dictionary Document</i> , PDS Version 3.0, Jet Propulsion Laboratory, November 20,1992, JPL D-7116, Rev C
6. MOLA-972-SP-92-232	Mars Orbiter Laser Altimeter Any-Experiment Gridded Data Prod- uct Software Interface Specification, Version 1.0, NASA Goddard Space Flight Center Wallops Flight Facility, March 31, 1997
7.MOLA-972-SP-92.213	MOLA CD-ROM Standard Product Archive Collection Software In- terface Specification, Version 1.0, S. Slavney, R. E. Arvidson, Washington University, August 11, 1993

1.4 Functional Description

1.4.1 Data Content Summary

The PEDR data product contains the along-track, time series collection of the MOLA instrument's science mode data in engineering and physical units. Precision orbit data describing the instrument's position and location has been added to each record. The precision orbit data is supplied by the MOLA Science Team.

Using the precision orbit data, the accuracy of the MOLA footprint is 30 meters radially; 30 meters along track; 30 meters across track.

1.4.2 Source and Transfer Method

The PEDR Data Product is created on the MOLA operations computer system. The PEDR Data Product is created by reading the Aggregated Experiment Data Record (AEDR) Data Product record by record, computing the applicable science parameters (as described in Section 4.0), appending the precision orbit data, and wrapping the whole file with SFDU headers and labels. This SIS will detail the format of the PEDR Data Product. The AEDR Data Product is described in Applicable Document #2. After creation and verification, the PEDR Data Product shall be transferred to the MOLA SOPC to await delivery to the Planetary Data System's (PDS) Geosciences Node where it will be archived to CD-ROM and made available to the science community. The PEDR Data Product shall remain available to the MOLA Science Team on the MOLA operations file system.

1.4.3 Recipients and Utilization

The PEDR data product shall be used to create the Experiment Gridded Data Record (EGDR) data products.

The PDS shall receive the PEDR data product and make it available to the science community.

The PEDR data product shall remain on the MOLA operations file system and be available to the MOLA Science Team for further investigations.

1.4.4 Pertinent Relationships with Other Interfaces

The PEDR data product is created from the Aggregated Experiment Data Record (AEDR) data product. Any changes to the AEDR data product could affect the format or content of the PEDR data product. See Applicable Document #2 for a detailed description of the AEDR Data Product.

Any changes to the PEDR data product, either format or content shall affect the software that creates the data product.

Additionally, any changes to the PEDR data product could affect the EGDR data products' content or format or affect the software that creates the EGDR data products. See Applicable Document #6 for a detailed description of the EGDR Data Products.

1.5 Assumptions and Constraints

The PEDR data product contains only MOLA science mode data.

Each PEDR data product shall encompass one orbit of MOLA data.

2.0 Environment

2.1 Hardware Characteristics and Limitations

Not applicable.

2.2 Interface Medium and Characteristics

The PEDR data product shall be produced on computer(s) within the MOLA operations environment. The PEDR data product shall be transferred to the MOLA SOPC via FTP in preparation for distribution to the PDS Geosciences Node. The SOPC architecture is described in Applicable Document #1. The PEDR data product will be transferred to the PDS Geosciences Node via FTP from the SOPC. The PDS will write the data products to CD-ROMs for distribution to the science community.

2.3 Failure Protection, Detection, and Recovery Features

2.3.1 Backup Requirements

The PEDR data product will be retained on the MOLA operations file system for back up purposes and shall be archived on magnetic media. The PEDR data product is distributed to the PDS for archival. The MGS Project Database will be available as an additional backup location.

2.3.2 Security / Integrity Measures

Refer to Applicable Document #1 for a description of the MOLA *operations* system security and integrity plan.

2.4 End-Of-File (or Medium) Convention

The PEDR data product is a standard UNIX flat file in Standard Formatted Data Unit (SFDU) format. SFDU formatted objects have labels and headers describing the high level structure of the object and the content of the object. The end of the PEDR data product will be detected by the endof-file marker. In the FORTRAN programming language, fixed-length record files may be opened using the keyword access='direct', recl=776, and end-of-file may be detected by the err= keyword in the READ statement.

3.0 Access

3.1 Access Tools

The MOLA Science Team shall have the capability to access the PEDR data product on the MOLA operations file system via FTP. The science community will have access to the PEDR Data Product through the Archive Volume produced by the PDS Geosciences Node and should obtain the MOLA CD-ROM Archive Volume SIS, Applicable Document #7 for information on data access. The MOLA Science Team will not provide the PDS any special tools to access the PEDR Data Product.

3.2 Input / Output Protocol

N/A

3.3 Timing and Sequencing Characteristics

A PEDR data product will be created for each orbit containing MOLA science data. Data products will be created as precision orbit data becomes available. The PEDR data product may be re-processed up to three times depending on new releases of precision orbit data. PEDR data products will be created for all the MOLA science data collected during the MGS mapping mission.

3.4 PDB Information

The PEDR Data Product will be stored in the Science category as a science data product in the PDB. See Applicable Document #4 for an end user overview of the PDB.

The data set id for the MOLA PEDR data product is MGS-M-MOLA-3-PEDR-L1A-V1.0. This is the data set id that was provided to the PDB and the Planetary Data System. This id describes the overall PEDR data product. The version number is incremented should the PEDR Data Product format change.

The PDB required keywords are

PDS_VERSION_ID
RECORD_TYPE
FILE_RECORDS
RECORD_BYTES
LABEL_RECORDS
FILE_NAME
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT_ID
INSTRUMENT_NAME
TARGET_NAME
SOFTWARE_NAME
UPLOAD_ID
SOURCE_PRODUCT_ID

PRODUCT_RELEASE_DATE PRODUCT_VERSION_TYPE START_TIME STOP_TIME NATIVE_START_TIME NATIVE_STOP_TIME SPACECRAFT_CLOCK_START_COUNT SPACECRAFT_CLOCK_STOP_COUNT PRODUCT_CREATION_TIME MISSION_PHASE_NAME ORBIT_NUMBER PRODUCER_ID PRODUCER_ID PRODUCER_FULL_NAME PRODUCER_INSTITUTION_NAME DESCRIPTION

4.0 Detailed Interface Specifications

4.1 Labeling and Identification

The PEDR Data Product shall be labeled to form an SFDU as described in Section 4.3. The data set id for the PEDR Data Product and required catalog keywords are listed in Section 3.4.

The file naming convention for each PEDR data product produced is AP#####a.B, where:

- A represents the MOLA instrument, an altimeter
- P is the data product, PEDR, identifier
- ##### is the orbit number with leading zeros
 - a is the product edition number or letter
 - B indicates the file is fixed point, binary.

4.2 Structure and Organization Overview

The PEDR Data Product shall be written as a standard UNIX flat, sequential file with the MOLA data in spacecraft event time-ordered sequence. Each 776-BYTE record contains two seconds of data (a frame) extracted from the science mode telemetry packet. The data records are wrapped with the appropriate SFDU labels and headers, comprising a total of 10 776-byte records. There shall be a primary label, a catalog label and header, and a data label. The catalog label shall have a corresponding end label to delimit the catalog information from the data. See Figure 1 for a representation of the PEDR data product.

4.3 Substructure Definition and Format

The following sections define in detail the label, header, and data formats and content.

4.3.1 Header / Trailer Description Details

An example of the labels and K-header is in Appendix C.

4.3.1.1 Primary SFDU Label

The Primary SFDU Label, also known as the aggregation label or Z-label delimits the entire product. The Primary Label is 20 bytes long and shall have the following format for the PEDR data product.

CCSD3ZF000010000001

where:

CCSD is the Control Authority ID

- 3 is the SFDU version ID
- z is the class ID for primary labels
- F is the SFDU delimiter type, total EOFs.
- 0 is a spare octet
- 0001 is the Data Descriptive Package ID (DDPID)
- 00000001 is the delimiter value for this label; indicates the number of EOFs delimiting the product.

4.3.1.2 Catalog Label and Header

The catalog labels and header, also known as the K-header, are made up of the start and end labels and the catalog data objects that are to be stored in the Mars Global Surveyor PDB and the Plane-

tary Data System's data base. The start label has the following form:

NJPL3KS0PDSX\$\$INFO\$\$

where:

- NJPL is the Control Authority ID
 - 3 is the SFDU version ID
 - K is the class ID for catalog data object labels
 - S is the SFDU delimiter type, start marker.
 - 0 is a spare octet
- PDSX is the Data Descriptive Package ID
- \$\$INFO\$\$ is the delimiter value for this label

After the label, shall be the catalog entries required by the Project. These shall be in the KEY-WORD=VALUE format. Each KEYWORD=VALUE string shall be terminated by a carriage return, line feed combination. The required keywords are listed in Section 3.4. The catalog entries (keywords) with example values are listed in Appendix C.1. Applicable Document #5 contains definitions of the keywords listed in the appendix.

Planetary Data System required object definitions and pointers are contained in the catalog header. Each data parameter in the product is defined by the object structure; the pointers direct the user to format files which fully define the PEDR record format and contents. Appendix C contains an example of the object definitions and pointers.

The catalog entries will be delimited by the K-header end label; it has the following form:

CCSD\$\$MARKER\$\$INFO\$\$

4.3.1.3 Data Label

The data or I-class Label precedes the actual data in the SFDU. This label is also known as the data object label or the tertiary header. The I-class label is registered individually with the JPL Control Authority and bears a unique DDPID. The start label has the following format

NJPL3IF000410000001

where:

NJPL is the Control Authority ID

- 3 is the SFDU version ID
- I is the class ID for data labels
- F is the SFDU delimiter type, Total EOFs
- 0 is a spare octet
- 0041 is the Data Descriptive Package ID
- 00000001 is the delimiter value for this label; indicates the number of EOFs delimiting the product.

4.3.2 Data Description Details

A Precision Experiment Data Record contains MOLA science mode telemetry data that has been converted to engineering and physical units. Each PEDR contains a 2 second span of data, called a frame, that is retrieved from the 14 second MOLA science mode telemetry packet. Therefore, seven PEDRs are generated from each MOLA science mode telemetry packet. In addition to the frame data, the packet's engineering and housekeeping data are retained and subcommutated

among the seven PEDRs that comprise a packet. Additional packet information, *e.g.*, packet header, are stored in the PEDR as well as data correction values which were used to process the telemetry data into the PEDR data. Storing the data correction values ensures that the telemetry data can be re-created from the PEDR data.

Contained in a PEDR are the range value computed at the frame mid-point, the planetary radius at the frame mid-point, and the planetary radius for each shot. There are 20 possible shots in a 2 second frame. Additionally, location, i.e., latitude, longitude, and radial distance, obtained from the precision orbit data, is stored in the PEDR. The precision orbit data is gathered at the frame midpoint with respect to the Mars Global Surveyor center of mass. The range and planetary radius values are computed with respect to the center of mass of the Mars Global Surveyor. Additional information describing the instrument and its configuration are included in the PEDR.

A complete listing of all parameters contained in a PEDR can be found in Table 1. A description of the parameters contained in a PEDR is found in Table 2. The engineering/housekeeping data are listed in Table 3; this table also describes the location of the engineering/housekeeping data among the seven PEDRs that constitute a MOLA telemetry packet. Additionally, the PEDR format and contents are described in the PEDR Data Dictionary in Appendix B.

4.4 Volume, Size, and Frequency Estimates

The size of each PEDR data product shall vary depending in the number of science mode packets produced during an orbit. The maximum number of science mode packets that could be produced during an orbit is approximately 486, therefore the maximum number of PEDRs in a PEDR Data Product would be approximately 3402. Each PEDR shall contain 776 bytes.

The PEDR data product will be produced as the AEDR files and corresponding precision orbit data become available. The data products will be produced during a standard 5 day / 40 hour work week.

Approximately 13 PEDR Data Products shall be produced for each mapping mission day resulting in a daily volume of 34 Mbytes. During the period of time designated as contingency science or phasing orbits, MOLA ranges to the surface for only 20-30 minutes and the volume is accordingly reduced.

FIGURES

PRIMARY SFDU START LABEL

CATALOG START LABEL

CATALOG HEADER

CATALOG END LABEL

DATA START LABEL

DATA RECORD 1

DATA RECORD 2

DATA RECORD 3

DATA RECORD N

TABLES

Star t Byte	Parameter	Bytes	Units	End Byte
1	frame mid-point time whole seconds (Elapsed Time from J2000)		seconds	4
5	frame mid-point time fractional seconds (Elapsed Time from J2000)	4	microseconds	8
9	orbit reference number	4	counts	12
13	frame mid-point areocentric latitude of spacecraft	4	degrees * 10 ⁶	16
17	frame mid-point areocentric longitude of spacecraft	4	degrees * 10 ⁶	20
21	frame mid-point radial distance of spacecraft	4	centimeters	24
25	frame mid-point range	4	centimeters	28
29	shot quality flag	4		32
33	shot quality descriptor flag	16		48
49	shot planetary radius (20 * 4)	80	centimeters	128
129	frame mid-point planetary radius	4	centimeters	132
133	instrument attitude right ascension	4	milliradians	136
137	instrument attitude declination	4	milliradians	140
141	instrument attitude twist	4	milliradians	144
145	corrected received pulse energy (20 * 2)	40	attojoules	184
185	surface reflectivity * atmospheric transmittance	40	parts in 10 ⁵	224
225	trigger channel number (20 * 1)	20		244
245	returned pulse width at threshold	40	nanoseconds * 10	284
285	received optical pulse width (20 * 2)	40	nanoseconds * 10	324
325	parallax delta-latitude	4	degrees $* 10^9 \text{m}^{-1}$	328
329	parallax delta-longitude	4	degrees * 10 ⁹ m ⁻¹	332
333	crossover residual	4	centimeters	336
337	frame mid-point latitude and longitude	8	degrees * 10 ⁶	344
345	laser transmit power (20 * 2)	40	mJ * 100	384
385	shot classification code	40		424
425	channel background noise (8 * 4)(per half-frame and channel)	32	counts	456
457	range delay	4	centimeters	460
461	range width	4	centimeters	464
465	receiver channel threshold (8 * 2)(per half-frame and channel)	16	millivolts	480
481	receiver channel mask	2		482
483	algorithm word (MIN_HITS)	2		484
485	algorithm word (HIT_COUNT)	2	counts	486
487	frame counter	2		488

Star t	ar Parameter		Units	End
Byte				Byte
489	trigger channel			490
491	within-packet frame index	2	(1-7)	492
493	packet source header	8		500
501	telemetry packet coarse time code - seconds (J2000 elapsed time)	4	seconds	504
505	telemetry packet coarse time code - milliseconds	2	ms	506
507	telemetry packet fine time code	2	counts	508
509	engineering / housekeeping data	28		536
537	Orbit quality flag	2		538
539	Attitude flag	2		540
541	Frame local time	2	radians * 104	542
543	Phase angle	2	radians * 10 ⁴	544
545	Solar incidence angle	2	radians * 10 ⁴	546
547	Emission angle	2	radians * 10 ⁴	548
549	Atmospheric opacity (Tau)	4	pure number * 10 ⁶	552
553	Double precision frame mid-point time in IEEE standard (Elapsed time from J2000)	8	seconds	560
561	trigger channel raw received pulse energy (20 * 1)	20	counts (0-255)	580
581	trigger channel raw received pulse width (20 * 1)	20	counts (0-63)	600
601	delta spacecraft latitude	4	degrees * 106	604
605	delta spacecraft longitude	4	degrees * 106	608
609	delta spacecraft radial distance	4	centimeters	612
613	Areoid radius	4	centimeters	616
617	Off-nadir angle	4	degrees * 10 ⁶	620
621	Encoder bits	20	counts	640
641	delta areoid	4	cm	644
645	MOLA clock rate	4	Hz	648
649	MOLA range value (20 * 4)	80	centimeters	688
729	range correction (20 * 2)	40	centimeters	768
769	delta latitude	4	degrees * 10 ⁶	772
773	delta longitude	4	degrees * 10 ⁶	776
		776	bytes total	

Table 1: PE	DR Data Pro	duct Record For	rmat (Continued)
-------------	-------------	-----------------	------------------

Parameter **Bytes** Description Units - frame mid-point time 4 Seconds The whole portion of the Elapsed Time since J2000 at the frame mid-point^a in the MOLA data frame whole seconds The fractional portion of the Elapsed Time since - frame mid-point time 4 Microseconds fractional seconds J2000 at the frame mid-point^a in the MOLA data frame - orbit reference num-4 Counts Mapping mission orbit number determined by Mars ber Global Surveyor flight operations system at frame mid-point - frame mid-point areo-4 Degrees * 106 MGS Spacecraft areocentric latitude, in IAU1991 centric latitude of coordinates, associated with MOLA data frame midpoint; from Precision Orbit data spacecraft - frame mid-point areo-4 Degrees * 106 MGS Spacecraft east longitude, in IAU1991 coordicentric longitude nates, associated with MOLA data frame mid-point; from Precision Orbit data - frame mid-point radial 4 Centimeters Radial distance (i.e., the distance from Martian bodydistance of spacecraft center to Mars Global Surveyor spacecraft center of mass) associated with MOLA data frame mid-point; from Precision Orbit data - frame mid-point range 4 Centimeters MOLA range (corrected to Mars Global Surveyor center of mass) associated with MOLA data frame midpoint, obtained from a straight line best-fit of the individual (up to 20) MOLA range measurements in the MOLA data frame - shot quality flag 4 3 bytes-flag whether good/bad shot (20 least significant bits, one for each of the 20 shots, with least significant bit, 0, being shot 1 and bit 19 being shot 20) and each bit set to 0 for good, 1 for bad shot; bits 20-23 are unused 1 byte—good shot counter, (total of bits set to 0 in above 20 bits) - shot quality descrip-16 Flag indicating whether the packet or individual shots passed or failed the various shot quality tests. Reading tor flag the flag from right to left with the rightmost bit being bit 0 and the leftmost bit being bit 127 the format of the flag is bit 0: packet validity checksum test bit 1: computer software checksum test bit 2: frame acquisition vs. tracking mode test bit 3: first shot is an OTS shot test bits 4-23: transmit power test bits 24-43: non-zero 1st channel test bits 44-63: return energy test bits 64-83: range window test bits 84-103: range comparison test bits 104-127: unused

Table 2: MOLA Precision Experiment Data Record (PEDR) ContentsRate: 1 every 2 seconds

Table 2: MOLA Precision Experiment Data Record (PEDR) Contents (Continued)Rate: 1 every 2 seconds

Parameter	Bytes	Units	Description
- shot quality descriptor flag (contd.)			A 1 indicates the test was failed, 0 indicates the test was passed. For the bits that flag each shot the lower bit corresponds to shot 1 and the higher bit corre- sponds to shot 20.
- shot planetary radius	80	Centimeters	Array of 20 MOLA planetary radii, one per shot, in the data frame; the distance from the center of Mars to the point on the surface of Mars described by the MOLA range, 20 4-byte values
- frame mid-point plan- etary radius	4	Centimeters	Planetary radius associated with MOLA data frame mid-point; the distance from the center of Mars to the point on the surface of Mars described by the MOLA mid-point range
- instrument attitude right ascension	4	Milliradians	MOLA right ascension at data frame mid-point
- instrument attitude declination	4	Milliradians	MOLA declination at data frame mid-point
- instrument attitude twist	4	Milliradians	MOLA twist at data frame mid-point
- corrected received pulse energy	40	Attojoules	Corrected surface-scattered return energy as measured by the pulse width and area counters, corrected for threshold setting, 20 2-byte values
- surface reflectivity * atmospheric transmit- tance	40	Pure fraction * 10 ⁵	Relative Martian surface reflectivity values, one per shot; 20 2-byte values
- trigger channel num- ber	20		Channel number of first MOLA filter channel to trig- ger, 20 1-byte values
- returned pulse width at threshold	40	Nanoseconds * 10	Time between threshold crossings of the detected pulse. The pulse width is used to correct the time-of- flight to the optical pulse centroid, but recv_pulse_energy_counts may be saturated. In this case, the timing correction is limited to the equivalent of a six-degree slope. 20 2-byte values
- received optical pulse width	40	Nanoseconds * 10	Received optical pulse width, corrected for filter char- acteristics and threshold settings, as determined by the receiver model (one sigma value, with the minimum limited by the filter response). The pulse width pro- vides an estimate of target slope and/or roughness, as- suming nadir-looking geometry
parallax delta-latitude	4	degrees * 10 ⁹ m ⁻¹	change in latitude with respect to planetary radius at frame midpoint due to parallax
parallax delta-longitude	4	degrees * 10 ⁹ m ⁻¹	change in longitude with respect to planetary radius at frame midpoint due to parallax
crossover residual	4	Centimeters	Crossover residual of planetary radius with respect to MOLA database at frame midpoint

Table 2: MOLA Precision Experiment Data Record (PEDR) Contents (Continued)Rate: 1 every 2 seconds

Parameter	Bytes	Units	Description	
- frame mid-point lati- tude, longitude	8	Degrees * 106	The areocentric latitude and the East longitude, in IAU1991 coordinates, of the intersection point between the frame mid-point shot and the Mars sur- face; from Precision Orbit data; 2 4-byte values	
- laser transmit power	40	mJ * 100	MOLA laser transmitted pulse energy, corrected for detector and heat sink temperatures, 20 2-byte values	
- shot classification code	40		shot classification and weighting codes: 0 denotes a false return or no trigger; 1 denotes a ground return.	
- channel background noise counts	32	Counts	Frame value for background levels in the MOLA channels, at half-frame rate (order: 1A, 2A, 3A, 4A, 1B, 2B, 3B, and 4B where A is first half and B is sec ond half of data frame), for raw background counts (prior to engineering unit conversion) equal to or less than 23 the converted value is set to 1.0, 8 4-byte values	
- range delay	4	Centimeters	Frame value of range gate delay (to beginning of range window)	
- range width	4	Centimeters	Frame value of range gate width	
- receiver channel threshold settings	16	Millivolts	Threshold settings for the 4 MOLA channels, at half- frame rate (order: 1A, 2A, 3A, 4A, 1B, 2B, 3B, and 4B), 8 2-byte values	
- receiver channel mask	2		MOLA channel mask setting for the frame; the mask indicates whether any of the 4 channels have been commanded off	
- algorithm word MIN_HITS	2		Frame value for the flight software word MIN_HITS	
- algorithm word HIT_COUNT	2	Counts	Frame value for the flight software word HIT_COUNT	
- frame counter	2		Software status value	
- trigger channel	2		Software status value	
- within-packet frame index	2	Count	Frame number (among seven frames in MOLA telem- etry packet) generated in Ground Data System pro- cessing	
- packet source header	8		Information placed in MOLA telemetry packet by Payload Data System	
- telemetry packet coarse time code sec- onds	4	ET (Elapsed Time) seconds	The whole portion of the Payload Data System gener- ated time code in ET seconds referenced to J2000; a signed number.	
- telemetry packet coarse time code milli- seconds	2	ET milliseconds	The fractional portion of the Payload Data System generated time code in ET seconds referenced to J2000; a signed number	
- telemetry packet fine time code	2	counts	MOLA generated fine time counter	

Table 2: MOLA Precision Experiment Data Record (PEDR) Contents (Continued)Rate: 1 every 2 seconds

Parameter	Bytes	Units	Description
- engineering/ house- keeping data	28		Complete set of packet engineering and housekeeping data (196 bytes) from each MOLA telemetry packet, subcommutated into 7 data frames, 28 bytes appear at this location in each frame
- orbit quality flag	2		Flag indicating origin of orbit. 0 indicates JPL NAV team was producer; 1 or higher indicates the MOLA Science Investigation Team.
- attitude flag	2		Flag to indicate spacecraft attitude information was missing for this frame. Set to 2 if attitude information was missing for part of the frame; 3 if missing for entire frame.
- frame local time	2	radians * 104	The subsolar longitude on Mars, -Pi to Pi.
- phase angle	2	radians * 104	The angle between the vectors from Mars to Mars Global Surveyor and from Mars to the Sun at the frame mid-point location
- solar incidence angle	2	radians * 104	The angle between the Mars surface normal vector and the Sun vector at the frame mid-point location
- emission angle	2	radians * 104	The angle between the Mars surface normal vector and the Mars Global Surveyor vector at the frame mid-point location
- Atmospheric opacity	4	Pure number * 10 ⁶	May be retrieved from TES data; nominally 0.5
- double precision frame mid-point time	8	seconds	The frame mid-point time represented in IEEE stan- dard double precision; ET seconds from J2000
- trigger channel raw received pulse energy	20	Counts	The received pulse energy counts; 255=>saturation; 20 1-byte values
- trigger channel raw received pulse width	20	Counts	The received pulse width counts; 63=>saturation; 20 1-byte values
delta spacecraft latitude	4	Degrees * 106	The average change in spacecraft areocentric latitude associated with each 20-shot MOLA frame
delta spacecraft longitude	4	Degrees * 106	The average change in spacecraft areocentric longi- tude associated with each 20-shot MOLA frame
delta spacecraft radius	4	Centimeters	The average change in spacecraft areocentric radius associated with each 20-shot MOLA frame
- Areoid radius	4	Centimeters	The radius of the reference areoid with 3396 kilometer mean equatorial radius, determined from the GMM-1 or more recent potential model of degree and order 70
- Off-nadir angle	4	Degrees * 106	Angle between the transmitted laser shot direction and areocentric direction, at spacecraft frame mid-point
- Encoder bits	20		The start and stop encoder bits for each MOLA shot. With these bits, the MOLA shot range is interpolated within each clock count. The start and stop encoders are stored in bits 0-1 and 4-5 of each byte

Table 2: MOLA Precision Experiment Data Record (PEDR) Contents (Continued)
Rate: 1 every 2 seconds

Parameter	Bytes	Units	Description
- delta areoid	4	centimeters	The average change in areoid associated with each 20- shot MOLA frame.
- MOLA clock rate	4	Hertz	The MOLA clock frequency used to calculate laser pulse time-of-flight.
- MOLA range	80	centimeters	The MOLA one-way range value per shot; the raw MOLA time-of-flight range plus the range correction below, 20 4-byte values
- range correction	40	centimeters	Correction to the range value due to the detector response and range walk, 20 2-byte values
- delta latitude	4	Degrees * 10 ⁶	The average distance between each areocentric lati- tude associated with each 20-shot MOLA frame
- delta longitude	4	Degrees * 10 ⁶	The average distance between each areocentric longi- tude associated with each 20-shot MOLA frame
TOTAL:	776		

a. The phrase "frame mid-point" is used to denote the transmit time of shot 10.5, a point midway between the 10th and 11th shots in the set of 20 laser shots in a MOLA frame.

Packet Byte	Contents	Length in Bytes	Frame	Frame Start Byte	Frame Stop Byte
12	Computer Memory temperature	2	PEDR 1	509	510
13	Computer CPU temperature	2	PEDR 1	511	512
14	Power Supply temperature	2	PEDR 1	513	514
15	Computer I/O temperature	2	PEDR 1	515	516
16	LASER array sink heat temperature	2	PEDR 1	517	518
17	LASER diode array drive electronics temperature	2	PEDR 1	519	520
18	Optical Test Source (OTS) LED temperature	2	PEDR 1	521	522
19	100 MHz Oscillator temperature	2	PEDR 1	523	524
20	Start Detector temperature	2	PEDR 1	525	526
21	Outside Detector box temperature	2	PEDR 1	527	528
22	LASER Radiator Opposite Output port temperature	2	PEDR 1	529	530
23	LASER Radiator Output port temperature	2	PEDR 1	531	532
24	Interface Plate near "hot foot" temperature	2	PEDR 1	533	534
25	Radiation shield transition temperature	2	PEDR 1	535	536
26	Electronics Box top near S/C thermistor temperature	2	PEDR 2	509	510
27	LASER box near "hot foot" temperature	2	PEDR 2	511	512
28	28 Volt monitor	2	PEDR 2	513	514
29	Reference Voltage monitor	2	PEDR 2	515	516
30	+12 Volt voltage monitor	2	PEDR 2	517	518
31	24 Volt voltage monitor	2	PEDR 2	519	520
32	+5 Volt voltage monitor	2	PEDR 2	521	522
33	-12 Volt voltage monitor	2	PEDR 2	523	524
34	LASER / thermal current monitor	2	PEDR 2	525	526
35	-5 Volt voltage monitor	2	PEDR 2	527	528
36	Power Supply current monitor	2	PEDR 2	529	530
37	High Voltage current monitor	2	PEDR 2	531	532
38	-12 Volt current monitor	2	PEDR 2	533	534
39	+12 Volt current monitor	2	PEDR 2	535	536
40	-5 Volt current monitor	2	PEDR 3	509	510
41	+5 Volt current monitor	2	PEDR 3	511	512
42	Current STATUS register value (SEU counter)	1	PEDR 3	513	513
43	Software Version Number Upper (4.4 bit format)	1	PEDR 3	514	514
43	Software Version Number Lower (4.4 bit format)	1	PEDR 3	515	515
55	Range Tracking Status (frame #7654321) "(1= tracking, 0 = acquisition) (MSB=OTS)"	1	PEDR 3	516	516
44	Flag word (2 KB RAM block test)	2	PEDR 3	517	518

 Table 3: PEDR Data Product Subcommutated Data Format

Packet Byte	Contents		Frame	Frame Start Byte	Frame Stop Byte
46	Status Flags (SFLAG1 (16 bits), SFLAG2 (16 bits))	4	PEDR 3	519	522
50	Software validity checksum	2	PEDR 3	523	524
52	Received command count (modulo 8 bits)	1	PEDR 3	525	525
53	Command error count (modulo 8 bits)	1	PEDR 3	526	526
54	Transmitter threshold setting (XMITDA)	2	PEDR 3	527	528
56	Range gate tracker array (73.728 km)	8	PEDR 3	529	536
64	Range gate tracker array (cont.)	28	PEDR 4	509	536
92	Range gate tracker array (cont.)	12	PEDR 5	509	520
104	HSTART value for HISTOGRAM dump	4	PEDR 5	521	524
	unused	4	PEDR 5	525	528
106	Valid commands received count (modulo 16 bits)	2	PEDR 5	529	530
108	Memory dump segment (16 Kbytes/16 bytes = 10246PEDR 5531packets ~= 4 hours)6PEDR 5531		536		
114	Memory dump segment (cont.)		PEDR 6	509	518
124	Command echo	16	PEDR 6	519	534
140	Packet validity checksum		PEDR 6	535	536
142	OTS Range 4 PEDR 7 509		512		
144	OTS 1st channel received energy 4 PEDR 7 513		516		
145	Spare 4 PEDR 7 517		520		
223	OTS transmit power	4	PEDR 7	521	524
3	OTS pulse width	1	PEDR 7	525	525
3	OTS pulse amplitude	1	PEDR 7	526	526
	OTS quality flag	1	PEDR 7	527	527
11	Packet Type (0 for Science Mode)	1	PEDR 7	528	528
	Areocentric longitude of the Sun		PEDR 7	529	530
	unused	6	PEDR 7	531	536
225 frame mid point accordinates (r. r. r.)					226
	323 frame find-point coordinates (x,y,z) 12 centimeters			550	
325 f	325frame mid-point coordinates (x,y,z)12centimeters			336	
325 f	325frame mid-point coordinates (x,y,z)12centimeters			336	
325 f	frame mid-point coordinates (x,y,z) 12 centi		centimete	rs	336

 Table 3: PEDR Data Product Subcommutated Data Format (Continued)

APPENDICES

Appendix A Acronyms

AEDR	Aggregated Experiment Data Record
aJ	attoJoule
DDPID	Data Descriptive Package ID
EGDR	Experiment Gridded Data Record
ET	Elapsed Time
EUC	Engineering Unit Conversion
FTP	File Transfer Protocol
Gbytes	gigabytes
GMM-1	Goddard Mars Model-1 potential model (Smith et al., 1993)
GSFC	Goddard Space Flight Center
IAU1991	Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites, Buenos Aires, 1991.
JPL	Jet Propulsion Laboratory
MGS	Mars Global Surveyor
Mbytes	megabytes
mJ	milliJoule
MOLA	Mars Orbiter Laser Altimeter
ms	milliseconds
NAIF/ SPICE	Navigation Ancillary Information Facility / Spacecraft Ephemeris, Planet Ephemeris, Instrument Offset, Instrument Inertial Orientation (C), Event Ori- ented Information Kernels
OTS	Optical Test Source
PEDR	Precision Experiment Data Record
PDB	Project Data Base
PDS	Planetary Data System
SFDU	Standard Formatted Data Unit
SFOC	Space Flight Operations Center
SIS	Software Interface Specification
SOPC	Science Operations Planning Computer
SPICE	Spacecraft Ephemeris, Planet Ephemeris, Instrument Offset, Instrument Inertial Orientation (C), Event Oriented Information Kernels
TBD	to be determined
WFF	Wallops Flight Facility

Appendix B Precision Experiment Data Record Catalog Files

This version of the MOLAPEDR SIS contains no listing of PDS Catalog Files

Appendix C PEDR Data Product SFDU Labels and Format Files

C.1 PEDR Data Product SFDU Labels and Catalog Header

CCSD3ZF000010000001NJPL3KS0PDSX\$\$INF0\$\$ PDS_VERSION_ID = PDS3 RECORD_TYPE = FIXED_LENGTH FILE_RECORDS = 'UNK' RECORD BYTES = 776 RECORD_BYTES= 770LABEL_RECORDS= 10FILE_NAME= 'AP00003K.B'^PEDR_FR_1_TABLE= 11^PEDR_FR_2_TABLE= 11^PEDR_FR_3_TABLE= 11^PEDR_FR_4_TABLE= 11 ^PEDR FR 5 TABLE = 11 ^PEDR FR 6 TABLE = 11 ^PEDR_FR_6_TABLE = 11
^PEDR_FR_7_TABLE = 11
DATA_SET_ID = 'MGS-M-MOLA-3-PEDR-L1A-V1.0'
PRODUCT_ID = 'MOLA-AP00003K.B'
SPACECRAFT_NAME = 'MARS_GLOBAL_SURVEYOR'
INSTRUMENT_ID = 'MOLA'
INSTRUMENT_NAME = 'MARS_ORBITER_LASER_ALTIMETER'
TARGET_NAME = 'PREC_PP_7.00'
UPLOAD_ID = 'SM-7.6'
SOURCE_PRODUCT_ID = { "MOLA-AP00003F_B" "MOLA-APPLC" SOURCE PRODUCT ID = { "MOLA-AA00003F.B", "MOLA-APPLCT01.T", "", "", "", "", "", ""} PRODUCT RELEASE DATE = 1998-141 START_TIME = 1997-212T19:10:00.000 STOP_TIME = 1997-212T19:45:00.000 NATIVE_START_TIME = -76351736.816730 NATIVE_STOP_TIME = -76349636.816730 SPACECRAFT CLOCK START COUNT = 443588190.140 SPACECRAFT CLOCK STOP COUNT = 443595246.140 PRODUCT_CREATION_TIME = 1998-051T17:42:37.881 MISSION_PHASE_NAME = 'ORBIT INSERTION' ORBIT NUMBER = 00003 PRODUCT VERSION TYPE = {"R007-CALIBRATED REL.","000003 - ORBIT 3", "P007-CALIBRATED REL.", "E007-CALIBRATED REL." } PRODUCER ID = 'MGS MOLA TEAM' PRODUCER FULL NAME = 'DAVID E. SMITH' PRODUCER INSTITUTION NAME = 'GODDARD SPACE FLIGHT CENTER' = "The PEDR data product contains the along-track, DESCRIPTION time series collection of MOLA instrument, science mode data in engineering and physical units. Precision orbit data describing the instrument's position and location has been added to each record. The precision data is supplied by the MOLA Science Team." = PEDR FR 1 TABLE OBJECT INTERCHANGE_FORMAT = BINARY

= 'UNK'

ROWS

COLUMNS = 73 ROW BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR_1_ENG_STRUCTURE = 'PEDRENG1.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 1. The 'first structure' format file includes descriptions of the first 500 bytes of the record, 'fr 1 eng structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." END_OBJECT = PEDR_FR_1_TABLE OBJECT = PEDR FR 2 TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' COLUMNS = 73 ROW_BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR_2_ENG_STRUCTURE = 'PEDRENG2.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' = "This is one of seven table definitions that apply DESCRIPTION to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 2. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_2_eng_structure' format file describes bytes 501 to 528, and the 'third structure' format file describes bytes 529 to 776." = PEDR FR 2 TABLE END OBJECT OBJECT = PEDR FR 3 TABLE INTERCHANGE_FORMAT = BINARY = 'UNK' ROWS COLUMNS = 72 ROW BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR 3 ENG STRUCTURE = 'PEDRENG3.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' = "This is one of seven table definitions that apply DESCRIPTION to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 3. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_3_eng_structure' format file describes bytes 501 to 528, and the 'third structure' format file describes bytes 529 to 776." = PEDR_FR_3_TABLE END_OBJECT OBJECT = PEDR_FR_4_TABLE INTERCHANGE FORMAT = BINARY = 'UNK' ROWS

COLUMNS = 60 ROW BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR_4_ENG_STRUCTURE = 'PEDRENG4.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 4. The 'first structure' format file includes descriptions of the first 500 bytes of the record, 'fr 4 eng structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." END_OBJECT = PEDR_FR_4_TABLE OBJECT = PEDR FR 5 TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' = 64 COLUMNS ROW BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR_5_ENG_STRUCTURE = 'PEDRENG5.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' = "This is one of seven table definitions that apply DESCRIPTION to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 5. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_5_eng_structure' format file describes bytes 501 to 528, and the 'third structure' format file describes bytes 529 to 776." = PEDR FR 5 TABLE END OBJECT OBJECT = PEDR FR 6 TABLE INTERCHANGE_FORMAT = BINARY = 'UNK' ROWS = 62 COLUMNS ROW BYTES = 776 ^FIRST STRUCTURE = 'PEDRSEC1.FMT' ^FR 6 ENG STRUCTURE = 'PEDRENG6.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' = "This is one of seven table definitions that apply DESCRIPTION to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 6. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_6_eng_structure' format file describes bytes 501 to 528, and the 'third structure' format file describes bytes 529 to 776." = PEDR_FR_6_TABLE END_OBJECT OBJECT = PEDR_FR_7_TABLE INTERCHANGE FORMAT = BINARY = 'UNK' ROWS

```
COLUMNS
                    = 68
ROW_BYTES
                    = 776
^FIRST_STRUCTURE = 'PEDRSEC1.FMT'
^FR 7 ENG STRUCTURE = 'PEDRENG7.FMT'
^THIRD STRUCTURE = 'PEDRSEC3.FMT'
                  = "This is one of seven table definitions that apply
DESCRIPTION
 to the seven possible PEDR record structures, one for each frame. In
 each data record, byte 492 (counting from one) identifies the frame
 number for the record. This table structure incorporates the
 engineering information returned in Frame 7. The 'first structure'
 format file includes descriptions of the first 500 bytes of the record,
 'fr_7_eng_structure' format file describes bytes 501 to 528, and the
  'third_structure' format file describes bytes 529 to 776."
                    = PEDR_FR_7_TABLE
END_OBJECT
```

```
END
```

C.2 Contents of the MOLA PEDRSEC1.FMT Format File

OBJECT	= COLUMN
NAME	= FRAME_TIME_WHOLE_SECONDS
DATA_TYPE	= MSB_INTEGER
START_BYTE	= 1
BYTES	= 4
UNIT	= 'SECONDS'
DESCRIPTION	= "Frame mid-point time whole seconds. The integer
represents the past J2000."	whole portion of the Ephemeris Time (in number of seconds)
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= FRAME_TIME_FRAC_SECONDS
DATA_TYPE	= MSB_INTEGER
START_BYTE	= 5
BYTES	= 4
UNIT	= 'MICROSECONDS'
DESCRIPTION	= "The frame mid-point time fractional seconds,
scaled to micro	seconds. The integer represents the fractional portion
of the Ephemeri	s Time (in number of microseconds) past J2000."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ORBIT_NUMBER
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 9
BYTES	= 4
DESCRIPTION	= "Mapping mission orbit number, determined by Mars
Global Surveyor	flight operations system."
END_OBJECT	= COLUMN
OBJECT	= COLUMN

```
NAME
                    = AREOCENTRIC LATITUDE
DATA TYPE
                   = MSB INTEGER
START_BYTE
                   = 13
BYTES
                    = 4
UNIT = 'DEGREES * (10**6)'
DESCRIPTION = "The areocentric latitude, IAU1991, of
 the MOLA data frame mid-point of the Mars Global Surveyor
 spacecraft center of mass. Obtained from the MOLA Science Investigation
 Team precision orbit data."
END OBJECT
                    = COLUMN
OBJECT
                  = COLUMN
                  = AREOCENTRIC LONGITUDE
NAME
DATA_TYPE
START_BYTE
                   = MSB INTEGER
                   = 17
BYTES
                   = 4
UNTT
                   = 'DEGREES * (10**6)'
DESCRIPTION = "The East longitude, IAU1991, of the MOLA
 data frame mid-point of the Mars Global Surveyor
 spacecraft center of mass. Obtained from the MOLA Science Investigation
 Team precision orbit data."
END OBJECT
                   = COLUMN
                 = COLUMN
= RADIAL_DISTANCE
= MSB_UNSIGNED_INTEGER
OBJECT
NAME
NAME
DATA_TYPE
START BYTE
                   = 21
                   = 4
BYTES
                    = 'CENTIMETERS'
UNIT
DESCRIPTION = "The distance from the Mars body center to the
 Mars Global Surveyor spacecraft center of mass associated with the MOLA
 frame mid-point, based on a coordinate system with origin at the center
 of mass of Mars. Obtained from the MOLA Science Investigation Team
 precision orbit data."
END OBJECT
                   = COLUMN
OBJECT
                  = COLUMN
NAME
                  = FRAME MID POINT RANGE
DATA_TYPE
START_BYTE
                  = MSB_UNSIGNED_INTEGER
                  = 25
BYTES
                   = 4
                   = 'CENTIMETERS'
UNIT
DESCRIPTION = "MOLA range (corrected to Mars Global Surveyor
 center of mass) associated with MOLA data frame mid-point, obtained
 from a straight line best fitted to the individual MOLA range
 measurements (up to 20) in the MOLA data frame."
END OBJECT
                    = COLUMN
OBJECT
                   = COLUMN
NAME
                  = SHOT_QUALITY_FLAG
DATA_TYPE
                  = MSB UNSIGNED INTEGER
```

MGS-M-MOLA-3-PEDR-L1A-V1.0

BYTES = 4 DESCRIPTION = "3 bytes - flag whether good/bad shot (20 least significant bits, one for each of the 20 shots, with least significant bit, 0, being shot 20) and each bit set to 1 for good, 0 for bad shot. 1 byte - good shot counter, (total of bits set to 1 in above 20 bits)." END OBJECT = COLUMN OBJECT = COLUMN NAME = SHOT QUALITY DESCRIPTOR FLAG DATA_TYPE START_BYTE = LSB BIT STRING = 33 BYTES = 16 DESCRIPTION = "Flag indicating whether the packet or individual shots passed or failed the various shot quality tests. Reading the flag from right to left with the rightmost bit being bit 0 and the leftmost bit being bit 63 the format of the flag is bit 0: packet validity checksum test, (per packet test) bit 1: computer software validity checksum test, (per packet test) bit 2: frame acquisition vs. tracking mode test. (per frame test) bit 3: first shot of the packet is OTS test, (per packet test) bits 4 - 23: transmit power test, (per shot test) bits 24 - 43: return energy test, (per shot test) bits 44 - 63: range test, (per shot test) bits 64 - 83: range window test bits 84 - 103: range comparison test bits 104 - 127: unused A 1 indicates the test was failed, 0 indicates the test was passed. For the bits that flag each shot, the lower bit corresponds to shot 1 and the higher bit corresponds to shot 20." OBJECT = BIT COLUMN NAME = PACKET VALIDITY CHECKSUM FLAG BIT_DATA_TYPE = UNSIGNED_INTEGER START_BIT = 1 BITS = 1 DESCRIPTION = "Packet validity checksum test flag bit. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN OBJECT = BIT_COLUMN = SOFTWARE VALIDITY CHCKSM FLAG NAME BIT_DATA_TYPE = UNSIGNED_INTEGER START BIT - 2 START_BIT = 2 BITS = 1 DESCRIPTION = "Computer software validity checksum test flag bit. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = ACQ_TRACK_MODE_TEST_FLAG BIT_DATA_TYPE = UNSIGNED_INTEGER START BIT ? START BIT

BITS = 1 DESCRIPTION = "Frame Acquisition vs. Tracking Mode Test flag bit. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = FIRST_SHOT_OTS_FLAG BIT_DATA_TYPE = UNSIGNED_INTEGER = 4 START BIT BITS = 1 DESCRIPTION = "First shot in the packet is OTS test flag bit. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN = BIT_COLUMN OBJECT NAME = TRANSMIT_POWER_TEST BIT_DATA_TYPE = UNSIGNED_INTEGER START BIT = 5 = 20 BTTS DESCRIPTION = "Transmit power test flag bits. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN = BIT_COLUMN OBJECT NAME = RETURN ENERGY TEST BIT_DATA_TYPE = UNSIGNED_INTEGER START_BIT = 25 BTTS = 20 = "Return energy test flag bits. Please see DESCRIPTION 'shot_quality_descriptor_flag' column object for fuller description." = BIT COLUMN END OBJECT OBJECT = BIT COLUMN NAME = RANGE TEST BIT_DATA_TYPE = UNSIGNED_INTEGER START_BIT = 45 BITS = 20 DESCRIPTION = "Range test flag bits. Please see 'shot_quality_descriptor_flag' column object for fuller description." END_OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = RANGE WINDOW TEST BIT_DATA_TYPE = UNSIGNED_INTEGER START BIT = 65 BITS = 20 DESCRIPTION = "Range window test flag bits. Please see 'shot_quality_descriptor_flag' column object for fuller description." END OBJECT = BIT COLUMN OBJECT = BIT COLUMN NAME = RANGE COMPARISON TEST

BIT DATA TYPE = UNSIGNED INTEGER START_BIT = 85 = 20 BITS DESCRIPTION = "Range comparison test flag bits. Please see 'shot_quality_descriptor_flag' column object for fuller description." = BIT COLUMN END OBJECT END OBJECT = COLUMN = COLUMN OBJECT = SHOT_PLANETARY_RADIUS NAME DATA_TYPE = MSB_UNSIGNED_INTEGER DAIA_III START_BYTE = 49 BYTES = 80 ITEMS = 20 ITEM_BYTES = 4 = 'CENTIMETERS' TINTT DESCRIPTION = "Array of 20 MOLA planetary radius values in the data frame; the distance from the center of Mars to the point on the surface of Mars described by the MOLA range; per shot." END OBJECT = COLUMN OBJECT = COLUMN NAME = FRAME PLANETARY RADIUS DATA_TYPE START_BYTE = MSB_UNSIGNED_INTEGER
= 129 BYTES = 4 UNTT = 'CENTIMETERS' DESCRIPTION = "Planetary radius associated with MOLA data frame mid-point; the distance from the center of Mars to the point on the surface of Mars described by the frame mid-point range." END OBJECT = COLUMN OBJECT = COLUMN NAME DATA_TYPE START_BYTE NAME = RIGHT_ASCENSION = MSB_INTEGER = 133 BYTES = 4 UNTT = 'MILLIRADIANS' DESCRIPTION = "Right ascension angle of the MOLA instrument at data frame mid-point." END OBJECT = COLUMN = COLUMN OBJECT NAME = DECLINATION DATA_TYPE = MSB INTEGER START_BYTE = 137 BYTES = 4 UNIT = 'MILLIRADIANS' DESCRIPTION = "Declination angle of the MOLA instrument at data frame mid-point." = COLUMN END_OBJECT OBJECT = COLUMN

= TWIST NAME DATA TYPE = MSB INTEGER START BYTE = 141 BYTES = 4 = 'MILLIRADIANS' UNIT = "Twist angle of the MOLA instrument at data frame DESCRIPTION mid-point." END_OBJECT = COLUMN = COLUMN OBJECT = CORR_RECV_PULSE_ENRGY NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE BYTES = 145 BYTES = 40 ITEMS = 20 ITEM_BYTES = 2 = 'ATTOJOULES' UNTT DESCRIPTION = "Corrected surface-scattered return energy measured by first MOLA channel to trigger (an array of 20 values for the data frame). Saturation of energy detector may occur (see RECV_PULSE_ENERGY_COUNTS)." END OBJECT = COLUMN = COLUMN = SURF_REFLECTIVITY OBJECT NAME DATA_TYPE NAME = MSB_UNSIGNED_INTEGER START BYTE = 185 BYTES = 40 ITEMS = 20 ITEM_BYTES = 2 DESCRIPTION = "Relative Martian surface reflectivity * atmospheric transmittance values, one per shot; stored as a pure fraction * 10**5." END OBJECT = COLUMN OBJECT = COLUMN NAME DATA_TYPE START_BYTE = TRIGGER_CHANNEL_NUMBER = UNSIGNED_INTEGER = 225 BYTES = 20 = 20 ITEMS ITEM_BYTES= 1DESCRIPTION= "Channel number of first MOLA channel to trigger (array of 20 values for data frame)." = COLUMN END OBJECT = COLUMN OBJECT = PULSE_WIDTH NAME DATA_TYPE = MSB UNSIGNED INTEGER START_BYTE = 245 BYTES = 40 = 20 ITEMS ITEM_BYTES = 2 = 'NANOSECONDS * 10' UNIT

DESCRIPTION = "The time between threshold crossings of the detected pulse, one per shot, 20 2-byte values. Detector saturation may occur (see RECV_PULSE_WIDTH_COUNTS)." END OBJECT = COLUMN OBJECT = COLUMN = RECV_OPTICAL_PULSE_WIDTH NAME = MSB_UNSIGNED_INTEGER = 285 DATA_TYPE DATA_TYPE START_BYTE BYTES = 40 ITEMS = 20 ITEM_BYTES = 2 = 'NANOSECONDS * 10' UNIT DESCRIPTION = "Received optical pulse width, corrected for filter characteristics and threshold settings, as determined by the receiver model (an array of 20 values for the data frame). The pulse width provides an estimate of target slope and/or roughness, assuming linear detector response and nadir-looking geometry." END OBJECT = COLUMN OBJECT = COLUMN NAME = PARALLAX DELTA LATITUDE DATA TYPE = MSB INTEGER START_BYTE = 325 BYTES = 4 ITEMS = 1 = 'DEGREES*(10**9) PER METER' UNIT DESCRIPTION = "Change in latitude with respect to planetary radius at frame midpoint due to parallax." END OBJECT = COLUMN = COLUMN OBJECT = PARALLAX_DELTA_LONGITUDE NAME DATA_TYPE = MSB_INTEGER START_BYTE BYTES = 329 = 4 = 'DEGREES*(10**9) PER METER' UNIT DESCRIPTION = "Change in longitude with respect to planetary radius at frame midpoint due to parallax." END OBJECT = COLUMN OBJECT = COLUMN NAME = CROSSOVER RESIDUAL DATA TYPE = MSB_INTEGER DATA_TYPE START_BYTE = 333 BYTES = 4 UNIT = 'CENTIMETERS' UNIT = 'CENTIMETERS' DESCRIPTION = "Crossover residual of planetary radius with respect to MOLA database at frame midpoint." END_OBJECT = COLUMN OBJECT = COLUMN NAME = FRAME LAT LON DATA_TYPE = MSB_INTEGER

START BYTE = 337 BYTES = 8 ITEMS = 2 ITEM_BYTES = 4 UNIT = 'DEGREES * (10**6)' DESCRIPTION = "The areocentric latitude and the East longitude, IAU1991, of the intersection point between the frame mid-point shot and the Mars surface; from Precision Orbit data; 2 4-byte values." END OBJECT = COLUMN OBJECT = COLUMN NAME = LASER TRANSMIT POWER DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 345 BYTES = 40 ITEMS = 20 ITEM BYTES = 2 UNIT = 'MILLIJOULES * 100' DESCRIPTION = "MOLA laser transmitted pulse energy (array of 20 values for data frame)." END OBJECT = COLUMN OBJECT = COLUMN NAME = SHOT_CLASSIFICATION_CODE = MSB_INTEGER = 385 DATA_TYPE DATA_TYPE START_BYTE BYTES = 40 = 20 TTEMS = 2 ITEM BYTES DESCRIPTION = "Shot classification: 0=false trigger or no trigger; 1=probable ground trigger; other values unassigned." = COLUMN END OBJECT OBJECT = COLUMN NAME = CHANNEL_BACKGROUND_NOISE_CTS DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 425 BYTES = 32 TTEMS = 8 ITEM BYTES = 4 = 'COUNTS' UNIT DESCRIPTION = "Background noise levels in the MOLA channels at half-frame rate; array of 8 four-byte values where array elements 1-4 are 1st half-frame values for channels 1-4 and array elements 5-8 are 2nd half-frame values for channel 1-4." END OBJECT = COLUMN = COLUMN OBJECT NAME = RANGE DELAY DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 457 BYTES = 4 = 'CENTIMETERS' UNTT DESCRIPTION = "Frame value of range gate delay (to beginning of

range window)." END_OBJECT = COLUMN = COLUMN OBJECT NAME = RANGE WIDTH DATA_TYPE = MSB_UNSIGNED_INTEGER DATA_TTE START_BYTE = 461 UNIT = 'CENTIMETERS' DESCRIPTION = "Frame value of range gate width." END_OBJECT = COLUMN OBJECT = COLUMN = CHANNEL_THRESHOLD_SETTINGS
= MSB_UNSIGNED_INTEGER
= 465 NAME DATA TYPE DATA_TYPE START_BYTE = 16 BYTES ITEMS = 8 ITEM_BYTES = 2 UNIT = 'MILLIVOLTS' DESCRIPTION = "Threshold settings for the 4 MOLA channels; at half-frame rate; array of 8 two-byte values where array elements 1-4 are 1st half-frame values for channels 1-4 and array elements 5-8 are 2nd half-frame values for channel 1-4." = COLUMN END OBJECT OBJECT = COLUMN = RECEIVER_CHAN_MASK NAME INAMIE= RECEIVER_CHAN_MASKDATA_TYPE= MSB_UNSIGNED_INTEGERSTART_BYTE= 481 = 2 BYTES DESCRIPTION = "The receiver channel mask status; set to the value read from the ATLMOD sent by the altimeter electronics; the mask setting indicates which channels are commanded on and off." END_OBJECT = COLUMN = COLUMN OBJECT NAME = ALGORITHM WORD MIN HITS DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 483 BYTES = 2 DESCRIPTION = "The minimum shot hit count value required for a matched filter channel to trigger; MIN_HITS value set in algorithm from the previous data frame." END OBJECT = COLUMN = COLUMN OBJECT = ALGORITHM_WORD_HIT_COUNT NAME DATA_TYPE = MSB UNSIGNED INTEGER DATA_III_ START_BYTE = 485 BYTES = 2 DESCRIPTION = "Current value from the active data frame, showing the number of hits counted in the possible 20 shot hits in the single frame or the number of hits summed over the possible 100 shots when in

the 5-frame mode. Tracking algorithm performance indicator. If in the acquisition mode, this field will contain the number of shot hits from a possible 80 shots within the 4 frame acquisition window." END OBJECT = COLUMN = COLUMN OBJECT = FRAME_COUNTER NAME DATA_TYPE = MSB_UNSIGNED_INTEGER
= 487 START BYTE BYTES = 2 DESCRIPTION = "The frame counter value is set from the previous data frame tracking algorithm operation." END OBJECT = COLUMN OBJECT = COLUMN = TRIGGER_CHANNEL = MSB_UNSIGNED_INTEGER = 489 NAME DATA_TYPE START_BYTE BYTES = 2 DESCRIPTION = "The first channel triggering at or above the minimum hit count is set from the previous data frame tracking algorithm operation." END OBJECT = COLUMN = COLUMN OBJECT = FRAME_INDEX NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START BYTE = 491 BYTES = 2 DESCRIPTION = "Frame number (among seven frames produced from the MOLA telemetry packet) generated in Ground Data System processing." END OBJECT = COLUMN OBJECT = COLUMN NAME = PACKET_SOURCE_HEADER DATA_TYPE = MSB_UNSIGNED_INTEGER DATA_TYPE START_BYTE = 493 BYTES = 8 TTEMS = 2 ITEM_BYTES = 4 DESCRIPTION = "The header put on the MOLA telemetry packet by ITEM BYTES the Payload Data System." END OBJECT = COLUMN = COLUMN OBJECT NAME = TIME CODE SECONDS DATA_TYPE = MSB_INTEGER START BYTE = 501 BYTES = 4 UNTT = 'SECONDS' DESCRIPTION = "The whole portion of the packet time referenced to J2000 in Elapsed Time seconds -- may be a negative number. The time is obtained from the Payload Data System supplied coarse time code that is generated at the time of the MOLA packet collection."

END_OBJECT	=	COLUMN
OBJECT	=	COLUMN
NAME	=	PKT_TIME_CODE_MILLISECONDS
DATA_TYPE	=	MSB_INTEGER
START_BYTE	=	505
BYTES	=	2
UNIT	=	'MILLISECONDS'
DESCRIPTION	=	"The fractional portion of the packet time
referenced to J200	0 :	in Elapsed Time seconds * 1000 may be a negative
number. The time i	s	btained from the Payload Data System supplied
coarse time code t	hat	t is generated at the time of the MOLA packet
collection."		
END_OBJECT	=	COLUMN
OBJECT	=	COLUMN
NAME	=	PKT_FINE_TIME
DATA_TYPE	=	MSB_UNSIGNED_INTEGER
START_BYTE	=	507
BYTES	=	2
UNIT	=	'COUNTS '
DESCRIPTION	=	"MOLA-generated fine time counter."
END_OBJECT	=	COLUMN

C.3 Contents of the MOLA PEDRENG1.FMT File

OBJECT	= COLUMN
NAME	= COMPUTER_MEMORY_TEMPERATURE
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 509
BYTES	= 2
UNIT	= 'DEGREES CELSIUS * 100'
MINIMUM	= 0
MAXIMUM	= 7203
DESCRIPTION	= "The computer memory temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= COMPUTER_CPU_TEMPERATURE
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 511
BYTES	= 2
UNIT	= 'DEGREES CELSIUS * 100'
MINIMUM	= 0
MAXIMUM	= 7203
DESCRIPTION	= "The computer CPU temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= POWER_SUPPLY_TEMPERATURE
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 513
BYTES	= 2

UNIT = 'DEGREES CELSIUS * 100' MINIMUM = 0 MAXIMUM = 7203 DESCRIPTION = "The power supply temperature." = COLUMN END_OBJECT = COLUMN
= COMPUTER_I/O_TEMPERATURE
= MSB_SIGNED_INTEGER
= 515 OBJECT NAME DATA_TYPE START_BYTE BYTES = 2 = 'DEGREES CELSIUS * 100' UNIT MINIMUM MAXIMUM = 0 = 7203 = "The computer I/O temperature." DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN = LASER_DIODE_ARRAY_TEMPERATURE = MSB_SIGNED_INTEGER = 517 NAME DATA_TYPE START_BYTE BYTES = 2 = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0 = 7203 MAXIMUM DESCRIPTION = "The LASER diode array temperature." END OBJECT = COLUMN = COLUMN = LASER_DIODE_DRIVE_ELECS_TEMP OBJECT NAME = MSB_SIGNED_INTEGER = 519 = 2 DATA_TYPE DATA_TYPE START_BYTE BYTES = 'DEGREES CELSIUS * 100' UNIT = 0 MINIMUM MAXIMUM MAXIMUM = 7203 DESCRIPTION = "The LASER diode drive electronics temperature." END OBJECT = COLUMN OBJECT = COLUMN NAME = OPTICAL_TEST_SOURCE_LED_TEMP DATA_TYPE = MSB_SIGNED_INTEGER = 521 BYTES = 2 = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0 = 7203 MAXTMUM = "The optical test source LED temperature." DESCRIPTION END_OBJECT = COLUMN = COLUMN OBJECT = HUNDRED_MHZ_OSCILLATOR_TEMP NAME = MSB_SIGNED_INTEGER = 523 DATA_TYPE START_BYTE = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' MINIMUM = 0 MAXIMUM = 7203

= "The 100 MHz Oscillator temperature." DESCRIPTION END_OBJECT = COLUMN = COLUMN = START_DETECTOR_TEMPERATURE OBJECT NAME = MSB_SIGNED_INTEGER = 525 = 2 DATA_TYPE START_BYTE BYTES = 'DEGREES CELSIUS * 100' UNIT MINIMUM MAXIMUM = 0 = 7203 = "The start detector temperature." DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME = OUTSIDE_DETECTOR_HOUSING_TEMP DATA_TYPE = MSB_SIGNED_INTEGER START_BYTE = 527 = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' MINIMUM = 0 = 7203 MAXIMUM DESCRIPTION END_OBJECT = "The outside detector housing temperature." = COLUMN OBJECT = COLUMN = LASR_RADIATR_OPP_OPT_PORT_TEMP = MSB_SIGNED_INTEGER = 529 NAME DATA_TYPE START_BYTE = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' MINIMUM = 0 MAXIMUM = 7203 MAXIMUM = 7203 DESCRIPTION = "The LASER radiator opposite output port temperature." END_OBJECT = COLUMN OBJECT = COLUMN NAME = LSER RADIATOR OUTPUT PORT TEMP DATA_TYPE = MSB SIGNED INTEGER START_BYTE = 531 BYTES = 2 = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0 MAXIMUM = 7203 DESCRIPTION = "The LASER radiator output port temperature." END_OBJECT = COLUMN OBJECT = COLUMN NAME = INTERFACE PLATE HOT FOOT TEMP DATA_TYPE = MSB_SIGNED_INTEGER = 533 START_BYTE BYTES = 2 = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0 = 7203 MAXIMUM = 7203 = "The interface plate temperature." DESCRIPTION END_OBJECT = COLUMN

OBJECT	= COLUMN
NAME	= HONEYCOMB_PANEL_TEMPERATURE
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 535
BYTES	= 2
UNIT	= 'DEGREES CELSIUS * 100'
MINIMUM	= 0
MAXIMUM	= 7203
DESCRIPTION	= "The honeycomb panel temperature."
END_OBJECT	= COLUMN

C.4 Contents of the MOLA PEDRENG2.FMT Format File

OBJECT	= COLUMN
NAME	= ELECTRONICS_BOX_TOP_SC_THRMSTR
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 509
BYTES	= 2
UNIT	= 'DEGREES CELSIUS * 100'
MINIMUM	= 0
MAXIMUM	= 7203
DESCRIPTION	= "The electronics box top near spacecraft
thermistor	temperature."
END OBJECT	= COLUMN
	0020121
OBJECT	= COLUMN
NAME	= LASER_CASE_HOT_FOOT_TEMP
DATA_TYPE	= MSB_SIGNED_INTEGER
START_BYTE	= 511
BYTES	= 2
UNIT	= 'DEGREES CELSIUS * 100'
MINIMUM	= 0
MAXIMUM	= 7203
DESCRIPTION	= "The LASER case near 'hot foot' temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_28_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 513
BYTES	= 2
UNIT	= 'MILLIVOLTS'
MINIMUM	= 0
MAXIMUM	= 63531
DESCRIPTION	= "The 28-volt monitor reading."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= REFERENCE_VOLTAGE_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 515
BYTES	= 2
UNIT	= 'MILLIVOLTS'
MINIMUM	= 0
MAXIMUM	= 5000

DESCRIPTION	= "The reference voltage monitor reading."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_12_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START BYTE	= 517
BYTES	= 2
UNIT	= 'MILLIVOLTS'
MINIM	= 0
MAXIMIM	= 27346
DESCRIPTION	= "The 12-volt voltage monitor reading "
END_OBJECT	= COLUMN
OBJ EC.I.	= COLUMN
NAME	= PLUS_24_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 519
BYTES	= 2
UNIT	= 'MILLIVOLTS'
MINIMUM	= 0
MAXIMUM	= 65535
DESCRIPTION	= "The 24-volt voltage monitor reading."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS 5 VOLT VOLTAGE MONITOR
DATA TYPE	= MSB UNSIGNED INTEGER
START BYTE	= 521
BYTES	= 2
UNTT	= 'MILLIVOLTS'
MINIM	= 0
MAXIMIM	= 11320
DESCRIPTION	- "The 5-wolt woltage monitor reading "
END_OBJECT	= COLUMN
	- COLIIMNI
NAME	- COLUMN
	= MINUS_IZ_VOLI_VOLIAGE_MONITOR
DAIA_IYPE	= MSB_UNSIGNED_INIEGER
START_BYTE	= 523
BYTES	= 2
UNIT	= 'MILLIVOLTS'
MINIMUM	= 0
MAXIMUM	= 27149
DESCRIPTION	= "The negative-12-volt voltage monitor
reading."	
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_THERMAL_CURRENT_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START BYTE	= 525
BYTES	= 2
UNIT	= 'MILLIAMPS * 10'
MINIMIM	= 0
MAXTMIM	= 8462
	= "The LASER/thermal current monitor reading "
	- COLIMNI

OBJECT	= COLUMN
NAME	= MINUS_5_VOLT_VOLTAGE_MONITOR
DATA TYPE	= MSB_UNSIGNED_INTEGER
START BYTE	= 527
BYTES	= 2
	- MILLIVOLIS - 0
MINIMOM	- 0
MAXIMUM	
DESCRIPTION	= "The negative-5-voit voltage monitor"
reading."	
END_OBJEC.L	= COLUMN
OBJECT	= COLUMN
NAME	= POWER_SUPPLY_CURRENT_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 529
BYTES	= 2
UNIT	= 'MILLIAMPS * 10'
MINIMUM	= 0
MAXIMUM	= 8263
DESCRIPTION	= "The power supply current monitor reading."
END_OBJECT	= COLUMN
OBJECI	
NAME	= HIGH_VOLTAGE_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 531
BYTES	= 2
UNIT	= 'DECIVOLTS'
MINIMUM	= 0
MAXIMUM	= 12349
DESCRIPTION	= "The high voltage monitor reading."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= MINUS 12 VOLT CURRENT MONITOR
DATA TYPE	= MSB_UNSIGNED_INTEGER
START BYTE	= 533
BYTES	= 2
	- 'MTLLTAMDS * 100'
MINIMIM	= 0
	- 24424
DECOLDTION	- ZIIZI - "The negative 12 welt current menitor
DESCRIPTION	- The negative-12-voit current monitor
FUD_ORDFC1	= COLOMN
OBJECT	= COLUMN
NAME	= PLUS_12_VOLT_CURRENT_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 535
BYTES	= 2
UNIT	= 'MILLIAMPS * 100'
MINIMUM	= 0
MAXIMUM	= 24395
DESCRIPTION	= "The 12-volt current monitor reading."
END_OBJECT	= COLUMN

C.5 Contents of the MOLA PEDRENG3.FMT Format File

OBJECT	= COLUMN
NAME	= MINUS_5_VOLT_CURRENT_MONITOR
DATA TYPE	= MSB UNSIGNED INTEGER
START BYTE	= 509
BYTES	= 2
	- 'MTLLTAMDS * 100'
MAXIMUM	= 25199
DESCRIPTION	= "The negative-5-volt current monitor
reading."	
END_OBJECT	= COLUMN
NAME	- COLUMN
NAME	= PLUS_5_VOLI_CURRENI_MONITOR
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 511
BYTES	= 2
UNIT	= 'MILLIAMPS * 10'
MINIMUM	= 0
MAXIMUM	= 13537
DESCRIPTION	= "The 5-volt current monitor reading."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= CURRENT_STATUS_REGISTER_VALUE
DATA_TYPE	= UNSIGNED_INTEGER
START BYTE	= 513
BYTES	= 1
	= 0
MAXIMUM	- 255
DECOLOM	- 200
DESCRIPTION	= value read from Status register at end of
packet collection bits. MSnibble = S	cycle. Read STATUS register and store lower 8 EU counter value."
END_OBJECT	= COLUMN
	- COLUMN
NAME	- COLUMN - COLUMN - VEDCION NUMBED
	- SOFIWARE_VERSION_NUMBER
	= UNSIGNED_INTEGER
START_BYTE	= 514
BYTES	= 1
MINIMUM	= 0
MAXIMUM	= 255
DESCRIPTION	= "The software version number in the telemetry
packet in 4.4 bit	format."
END_OBJECT	= COLUMN
	COLIMAT
UBUECI	
	= FLAG_WORD
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 515
BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 65535
DESCRIPTION	= "RAM block test flag word. Memory test
results Bit repres	sentation of the results of the RAM write/read/
verify block test p	erformed after a CPU reset (HOT or COLD start).

MSB (#15) represents the memory block from 7800h to 7FFFh; LSB (#0) from 0000h to 7FFh. 1 = error detected, 0 = block O.K." END OBJECT = COLUMN OBJECT = COLUMN NAME = STATUS_FLAGS = MSB_UNSIGNED_INTEGER = 517 DATA_TYPE START_BYTE = 4 BYTES ITEMS = 2 = 2 ITEM_BYTES MINIMUM = 0 MAXIMUM = 65535 DESCRIPTION = "Values of SFLAG1 and SFLAG2 stored at packet completion. Each flag represents four 4 bit words. B[0] = byte 0;B[1] = byte 1; B[2] = byte 2; B[3] = byte 3. The meanings of the individual bit settings is in Appendix A of the MOLA Flight Software Users' Guide." END OBJECT = COLUMN OBJECT = COLUMN NAME = SOFTWARE VALIDITY CHECKSUM DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 521 BYTES = 2 MINIMUM = 0 MAXIMUM = 65535 DESCRIPTION = "Checksum (end-around-carry, word adds) calculated using start address and length from Parameter Table. One word calculated using (CHKLEN/2)# of word end-around-carry additions start at word # (CHKSTART/2). Note: CHKLEN and CHKSTART exist in the parameter table and are BYTE length and BYTE address or offset. B[0] is MSByte and B[1] is LSByte of software validity checksum." END_OBJECT = COLUMN OBJECT = COLUMN NAME = RECEIVED_COMMAND_COUNT DATA_TYPE = UNSIGNED INTEGER START BYTE = 523 BYTES = 1 MINIMIM = 0 = 255 MAXTMUM DESCRIPTION = "Number of commands received in the DMA buffer, i.e., number separated by CMD_START bits set, never cleared, init = 0. Number of CMD_START bits set in the commands received buffer. Only look at the number of commands received during that RTI interval. Count performed during RTI 4ms 'quiet time'. Counter starts at 0 from a HOT/COLD start, counts up and rolls over from OFFh to OOh." END OBJECT = COLUMN = COLUMN OBJECT = COMMAND_ERROR_COUNT NAME DATA_TYPE = UNSIGNED_INTEGER = 524 START_BYTE = 1 BYTES MINIMUM = 0 MAXIMUM = 255

DESCRIPTION = "Number of invalid MOLA specific commands received, never cleared, init = 0. Command errors counter works the same way as Received command count (see above), except, this counts the # of command errors, defined as wrong instrument id, wrong command type bit, parity error in 1st word of multi-word command, incorrect opcode word (NOT 0x2120) in multi-word command, or unknown single-word command." END_OBJECT = COLUMN OBJECT = COLUMN = TRANSMITTER_THRESHOLD_SETTING NAME DATA TYPE = MSB_UNSIGNED_INTEGER START BYTE = 525 BYTES = 1 MINIMUM = 0 MAXIMUM = 255 DESCRIPTION = "Value of XMITDA from Parameter table, stored at packet completion. LSB is equivalent to 1 mv. This byte reports the value of XMITDA from PARAM_TABLE. It is stored in the packet at the end of the packet collection cycle." END OBJECT = COLUMN OBJECT = COLUMN NAME = RANGE_TRACKING_STATUS DATA TYPE = UNSIGNED INTEGER START BYTE = 526 BYTES = 1 MINIMUM = 0 MAXTMIIM = 255 DESCRIPTION = "MSB = OTS_FIRE value, bits 7654321, 1 = TRACKING, 0 = ACQ. MSB (#7) is the LSB of OST FIRE from PARAM_TABLE, stored at the end of the packet collection cycle. It is the value used to determine the firing status of the Optical Test Shot for the first shot of the packet cycle. Bits 6-0 represent frames 7-1 tracking status. 0 means that the software was in acquisition mode for that frame, while 1 represents tracking mode." END_OBJECT = COLUMN OBJECT = COLUMN NAME = SPARE DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 527 BYTES = 2 DESCRIPTION = "Two unused bytes." END OBJECT = COLUMN OBJECT = COLUMN NAME = RANGE GATE TRACKER ARRAY DATA TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 529 BYTES = 8 TTEMS = 4 ITEM_BYTES = 2 = 0 MINIMUM MAXIMUM = 255 DESCRIPTION = "The range gate tracker array information is actually 48 bytes of data. These 8 bytes represent the first 8 in the array. Subsequent bytes appear in Frame 4 and 5 engineering

data. 73	.728 km,	48	HIS	rogr	AM bin	S	starting	а	t HS	TA	RT. 48
sequentia	al bins of	E tl	he r	ang:	ing his	to	gram, st	or	ed a	ft	er the sixth
shot is d	collected	, b	ut k	befo	re the	ra	anging al	Lgo	brith	ım	is executed
on that i	frame's d	ata	. н	STAR	T, fro	m :	PARAM TA	BL	E, w	it.	h the LSB
cleared :	is the nu	mbe	r o:	E th	e firs	t 1	bin stor	ed	. Bi	ns	are
represent	ted as by	tes	, bi	ıt t	hey ar	e	stored a	s	word	s.	Therefore,
the bytes	s are swa	ppe	d. 1	ISTA	RT cor	re	ction: H	ST.	ART	= 3	HSTART +
OxFFFE. 7	The follow	vin	a de	note	es the	ra	nge of ea	acł	ı bin	ιf	or each data
byte (B[z	x]). C =	1.5	36kı	n.			5				
B[0] :	(HSTART +	- :	1) *	C;	B[1]	:	(HSTART	+	0)	*	C;
B[2]:	(HSTART +	- :	3) *	C;	B[3]	:	(HSTART	+	2)	*	C;
B[4]:	(HSTART +	- !	5) *	C;	B[5]	:	(HSTART	+	4)	*	C;
B[6]:	(HSTART +		7) *	C;	B[7]	:	(HSTART	+	6)	*	C;
B[8]:	(HSTART +	- :	9) *	C;	B[9]	:	(HSTART	+	8)	*	C;
B[10] :	(HSTART +	- 11	1) *	C;	B[11]	:	(HSTART	+	10)	*	C;
B[12] :	(HSTART +	- 11	3) *	C;	B[13]	:	(HSTART	+	12)	*	C;
B[14] :	(HSTART +	- 1	5) *	C;	B[15]	:	(HSTART	+	14)	*	C;
B[16] :	(HSTART +	- 1'	7) *	C;	B[17]	:	(HSTART	+	16)	*	C;
B[18] :	(HSTART +	- 1	9) *	C;	B[19]	:	(HSTART	+	18)	*	C;
B[20] :	(HSTART +	- 2	1) *	C;	B[21]	:	(HSTART	+	20)	*	C;
B[22] :	(HSTART +	- 2	3) *	C;	B[23]	:	(HSTART	+	22)	*	C;
B[24] :	(HSTART +	- 2	5) *	C;	B[25]	:	(HSTART	+	24)	*	C;
B[26] :	(HSTART +	- 2'	7) *	C;	B[27]	:	(HSTART	+	26)	*	C;
B[28] :	(HSTART +	- 2	9) *	C;	B[29]	:	(HSTART	+	28)	*	C;
B[30] :	(HSTART +	- 3	1) *	C;	B[31]	:	(HSTART	+	30)	*	C;
B[32] :	(HSTART +	- 3	3) *	C;	B[33]	:	(HSTART	+	32)	*	C;
B[34] :	(HSTART +	- 3	5) *	C;	B[35]	:	(HSTART	+	34)	*	C;
B[36] :	(HSTART +	- 3'	7) *	C;	B[37]	:	(HSTART	+	36)	*	C;
B[38] :	(HSTART +	- 3	9) *	C;	B[39]	:	(HSTART	+	38)	*	C;
B[40] :	(HSTART +	- 42	1) *	C;	B[41]	:	(HSTART	+	40)	*	C;
B[42] :	(HSTART +	- 43	3) *	C;	B[43]	:	(HSTART	+	42)	*	C;
B[44] :	(HSTART +	- 4	5) *	C;	B[45]	:	(HSTART	+	44)	*	C;
B[46] :	(HSTART +	- 4'	7) *	C;	B[47]	:	(HSTART	+	46)	*	C "
END_OBJECT		=	COL	JMN							

C.6 Contents of the MOLA PEDRENG4.FMT Format File

OBJECT	= COLUMN
NAME	= RANGE_GATE_TRACKER_ARRAY
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 509
BYTES	= 28
ITEMS	= 14
ITEM_BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 255
DESCRIPTION	= "The range gate tracker array info:

ESCRIPTION = "The range gate tracker array information is actually 48 bytes of data. These 28 bytes represent bytes 9 - 36 (counting from 1) in the array. Previous and subsequent bytes appear in Frame 3 and 5 engineering data, respectively. 73.728 km, 48 HISTOGRAM bins starting at HSTART. 48 sequential bins of the ranging histogram, stored after the sixth shot is collected, but before the ranging algorithm is executed on that frame's data. HSTART, from PARAM_TABLE, with the LSB cleared is the number of the first bin stored. Bins are represented as bytes, but they are stored as words. Therefore, the bytes are swapped. HSTART

correct	tic	on: HSTA	RT	= H	ST	ART	+ 0xF1	FFE	E. The following denotes the
range o	сf	each bi	n	for	ea	ch	data b	yte	e (B[x]). C = 1.536 km.
B[0]	:	(HSTART	+	1)	*	C;	B[1]	:	(HSTART + 0) * C;
B[2]	:	(HSTART	+	3)	*	C;	B[3]	:	(HSTART + 2) * C;
B[4]	:	(HSTART	+	5)	*	C;	B[5]	:	(HSTART + 4) * C;
B[6]	:	(HSTART	+	7)	*	C;	B[7]	:	(HSTART + 6) * C;
B[8]	:	(HSTART	+	9)	*	C;	B[9]	:	(HSTART + 8) * C;
B[10]	:	(HSTART	+	11)	*	C;	B[11]	:	(HSTART + 10) * C;
B[12]	:	(HSTART	+	13)	*	C;	B[13]	:	(HSTART + 12) * C;
B[14]	:	(HSTART	+	15)	*	C;	B[15]	:	(HSTART + 14) * C;
B[16]	:	(HSTART	+	17)	*	C;	B[17]	:	(HSTART + 16) * C;
B[18]	:	(HSTART	+	19)	*	C;	B[19]	:	(HSTART + 18) * C;
B[20]	:	(HSTART	+	21)	*	C;	B[21]	:	(HSTART + 20) * C;
B[22]	:	(HSTART	+	23)	*	C;	B[23]	:	(HSTART + 22) * C;
B[24]	:	(HSTART	+	25)	*	C;	B[25]	:	(HSTART + 24) * C;
B[26]	:	(HSTART	+	27)	*	C;	B[27]	:	(HSTART + 26) * C;
B[28]	:	(HSTART	+	29)	*	C;	B[29]	:	(HSTART + 28) * C;
B[30]	:	(HSTART	+	31)	*	C;	B[31]	:	(HSTART + 30) * C;
B[32]	:	(HSTART	+	33)	*	C;	B[33]	:	(HSTART + 32) * C;
B[34]	:	(HSTART	+	35)	*	C;	B[35]	:	(HSTART + 34) * C;
B[36]	:	(HSTART	+	37)	*	C;	B[37]	:	(HSTART + 36) * C;
B[38]	:	(HSTART	+	39)	*	C;	B[39]	:	(HSTART + 38) * C;
B[40]	:	(HSTART	+	41)	*	C;	B[41]	:	(HSTART + 40) * C;
B[42]	:	(HSTART	+	43)	*	C;	B[43]	:	(HSTART + 42) * C;
B[44]	:	(HSTART	+	45)	*	C;	B[45]	:	(HSTART + 44) * C;
B[46]	:	(HSTART	+	47)	*	C;	B[47]	:	(HSTART + 46) * C"
END_OBJEC	'T			= CO	ЪU	MN			

C.7 Contents of the MOLA PEDRENG5.FMT Format File

OBJECT	= COLUMN
NAME	= RANGE_GATE_TRACKER_ARRAY
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 509
BYTES	= 12
ITEMS	= 6
ITEM_BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 255
DESCRIPTION	= "The range gate tracker array information is
actually 48 bytes	of data. These 28 bytes represent bytes 37-48
(counting from 1)	in the array. Previous bytes appear in Frame 3
and 4 engineering o	lata. 73.728 km, 48 HISTOGRAM bins starting at
HSTART. 48 sequenti	al bins of the ranging histogram, stored after.
the sixth shot is o	collected, but before the ranging algorithm is
executed on that fr	ame's data. HSTART, from PARAM_TABLE, with the
LSB cleared is the	number of the first bin stored. Bins are
represented as byt	es, but they are stored as words. Therefore,
the bytes are swap	ped. HSTART correction: HSTART =HSTART +
0xFFFE. The follow:	ing denotes the range of each bin for each data
byte $(B[x])$. C = 1	.536km.
B[0] : (HSTART +	1) * C; B[1] : (HSTART + 0) * C;
B[2]: (HSTART +	3) * C; B[3] : (HSTART + 2) * C;
B[4]: (HSTART +	5) * C; B[5] : (HSTART + 4) * C;
B[6] : (HSTART +	(') * C; B[7] : (HSTART + 6) * C;
B[8] : (HSTART +	9) * C; B[9] : (HSTART + 8) * C;

<pre>B[10] : (HSTART + B[12] : (HSTART + B[14] : (HSTART + B[16] : (HSTART + B[16] : (HSTART + B[20] : (HSTART + B[20] : (HSTART + B[22] : (HSTART + B[24] : (HSTART + B[26] : (HSTART + B[30] : (HSTART + B[30] : (HSTART + B[32] : (HSTART + B[34] : (HSTART + B[36] : (HSTART + B[38] : (HSTART + B[40] : (HSTART + B[40] : (HSTART + B[44] : (HSTART + B[46] : (HSTART + END_OBJECT</pre>	11) * C; B[11] : (HSTART + 10) * C; 13) * C; B[13] : (HSTART + 12) * C; 15) * C; B[15] : (HSTART + 14) * C; 17) * C; B[17] : (HSTART + 16) * C; 19) * C; B[19] : (HSTART + 18) * C; 21) * C; B[21] : (HSTART + 20) * C; 23) * C; B[23] : (HSTART + 22) * C; 25) * C; B[25] : (HSTART + 24) * C; 27) * C; B[27] : (HSTART + 26) * C; 29) * C; B[29] : (HSTART + 28) * C; 31) * C; B[31] : (HSTART + 30) * C; 33) * C; B[33] : (HSTART + 32) * C; 35) * C; B[35] : (HSTART + 34) * C; 37) * C; B[37] : (HSTART + 36) * C; 39) * C; B[39] : (HSTART + 38) * C; 41) * C; B[41] : (HSTART + 40) * C; 43) * C; B[45] : (HSTART + 44) * C; 45) * C; B[47] : (HSTART + 44) * C; 47) * C; B[47] : (HSTART + 46) * C" = COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= HSTART_VALUE_HISTOGRAM_DUMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 521
BYTES	= 4
MINIMUM	= 0
MAXIMUM	= 100663296
UNIT	= CENTIMETERS
DESCRIPTION	= "Value of HSTART from Parameter table, stored
at packet completi	on. Stored at the end of the packet collection
cycle. HSTART is u	sed to store the Histogram dump bins on the
previous frame (2	seconds earlier)."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES ITEMS ITEM_BYTES DESCRIPTION END_OBJECT	<pre>= COLUMN = SPARE = MSB_UNSIGNED_INTEGER = 525 = 4 = 2 = 2 = "Four unused bytes." = COLUMN</pre>
OBJECT	<pre>= COLUMN</pre>
NAME	= VALID_COMMANDS_RECEIVED_COUNT
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 529
BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 65535
DESCRIPTION	= "Number of Time broadcast and Parameter
update and channel	on/off commands executed, never cleared, init.
= 0. This is a 16 b	bit counter that starts at 0 after a CPU reset
and rolls over from	n OFFFFh to 0. Valid MOLA specific commands are
defined as Channel	ON/OFF commands and Parameter Update command
All other MOLA spee	cific commands are either flagged as errors or
cause a mode change	p or CPU reset. B[0] = MSByte and B[1] = LSByte

of valid command control of control of the second s	ounter" = COLUMN
	- COLLIMN
	- COLUMN GEOMENT
	= MEMORY_DUMP_SEGMENT
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 531
BYTES	= 6
ITEMS	= 3
ITEM_BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 255
DESCRIPTION	= "The memory dump segment is 16 bytes in
length. This portion	on represents the first 6 bytes. The next 10
bytes are located i	n the Frame 6 engineering data. 16 bytes read
from memory space s	starting at ((SECUENCE & Ox3FFh)*16) dumps 0
- 3FFFh then start	g again at 0 Uging the lower 11 bits of the
SECUENCE count at	ared in this packet multiplied by 16 as the
SEQUENCE COUNC, SC	ored in this packet, multiplied by 10 as the
starting byte addr	ess, 8 words are read from RAM and stored in
the packet. The fol	lowing denotes the memory address at each data
byte $(B[x])$. C =((SEQUENCE & 0x3FFF) *16).
B[0] : C+ 1; B[1] : C+ 0; B[2] : C+ 3; B[3] : C+ 2;
B[4] : C+ 5; B[5] : C+ 4; B[6] : C+ 7; B[7] : C+ 6;
B[8] : C+ 9; B[9] : C+ 8; B[10] : C+ 11; B[11] : C+ 10;
B[12] : C+ 13; B[1	.3] : C+ 12; B[14] : C+ 15; B[15] : C+ 14"
END_OBJECT	= COLUMN

C.8 Contents of the MOLA PEDRENG6.FMT Format File

OBJECT	= COLUMN
NAME	= MEMORY_DUMP_SEGMENT
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 509
BYTES	= 10
ITEMS	= 5
ITEM_BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 255
DESCRIPTION	= "The memory dump segment is 16 bytes in
length. This portio	on represents the last 10 bytes. The previous
6 bytes are located	in the Frame 5 engineering data. 16 bytes read
from memory space a	<pre>starting at ((SEQUENCE & 0x3FFh)*16), dumps 0</pre>
- 3FFFh then start	s again at 0. Using the lower 11 bits of the
SEQUENCE count, st	ored in this packet, multiplied by 16 as the
starting byte addr	ess, 8 words are read from RAM and stored in
the packet. The fol	lowing denotes the memory address at each data
byte $(B[x])$. C =((SEQUENCE & 0x3FFF) *16).
B[0] : C+ 1; B[1] : C+ 0; B[2] : C+ 3; B[3] : C+ 2;
B[4] : C+ 5; B[5] : C+ 4; B[6] : C+ 7; B[7] : C+ 6;
B[8] : C+ 9; B[9] : C+ 8; B[10] : C+ 11; B[11] : C+ 10;
B[12] : C+ 13; B[1	L3] : C+ 12; B[14] : C+ 15; B[15] : C+ 14"
END_OBJECT	= COLUMN
OBJECT	= COLUMN

000000	COLOIN
NAME	= COMMAND_ECHO
DATA_TYPE	= MSB_UNSIGNED_INTEGER

START_BYTE	= 519
BYTES	= 16
ITEMS	= 8
ITEM_BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 65535
DESCRIPTION current packet, on commands only. The If the command will it is stored and th in the echo buffer overflow is flagge still stored in the zeros at the start END_OBJECT	<pre>= "First 8 command words received during ly complete commands are stored, MOLA specific software attempts to echo all valid commands. l fit in the room remaining in the buffer, then at much room is removed from that which remains f. If a command will not fit, then a buffer ed, but subsequent commands that will fit are buffer. The command echo buffer is filled with t of each packet." = COLUMN</pre>
OBJECT	= COLUMN
NAME	= PACKET_VALIDITY_CHECKSUM
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 535
BYTES	= 2
MINIMUM	= 0
MAXIMUM	= 65535
DESCRIPTION contents upon comp This word is zeroe a variable that is are stored in this this location. The compare the lower	= "Simple 16 bit addition of entire packet letion. This location is zeroed for addition. d, then words 0-539 are added without carry to s initially zero. The resulting lower 16 bits location. To verify, read, store, and clear m, word add without carry these 540 words and 16 bits with the stored value."

C.9 Contents of the MOLA PEDRENG7.FMT Format File

OBJECT NAME DATA_TYPE START_BYTE BYTES UNIT	<pre>= COLUMN = OTS_RANGE = MSB_UNSIGNED_INTEGER = 509 = 4 = 'CENTIMETERS'</pre>
DESCRIPTION	= "The range value of the Optical Test Shot in
the packet."	
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= FIRST_CH_RECEIVED_ENERGY
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 513
BYTES	= 4
UNIT	= 'ATTOJOULES'
DESCRIPTION Optical Test Shot.	= "The first channel received energy for the "
END_OBJECT	= COLUMN
OBJECT	= COLUMN

NAME = SPARE DATA_TYPE = MSB_UNSIGNED_INTEGER START BYTE = 517 BYTES = 4 DESCRIPTION = "Unused spare." = COLUMN END_OBJECT = COLUMN = OTS_TRANSMIT_POWER = MSB_UNSIGNED_INTEGER = 521 OBJECT NAME DATA_TYPE START_BYTE BYTES = 4 = 'NANOJOULES' UNTT = "The Optical Test Shot transmit power." DESCRIPTION END OBJECT = COLUMN OBJECT = COLUMN NAME = OTS_PULSE_WIDTH DATA TYPE = UNSIGNED_INTEGER START_BYTE = 525 BYTES = 1 DESCRIPTION = "The Optical Test Shot pulse width setting." END_OBJECT = COLUMN = COLUMN = OTS_PULSE_AMPLITUDE OBJECT NAME = UNSIGNED_INTEGER = 526 DATA TYPE START BYTE BYTES = 1 = "The Optical Test Shot pulse amplitude DESCRIPTION setting." END_OBJECT = COLUMN = COLUMN OBJECT NAME = OTS_QUAL_FLAG DATA_TYPE = UNSIGNED_INTEGER START BYTE = 527 BYTES = 1 DESCRIPTION = "The Optical Test Shot quality flag." END OBJECT = COLUMN OBJECT = COLUMN NAME = PACKET TYPE DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 528 BYTES = 1 DESCRIPTION = "Packet type identifier byte. Distinguishes Science Mode packets from Maintenance Mode packets. Science Mode is 0 Maintenance Mode = [1 = Status packet, 2 = memory dump]. Values 3 - 255 are reserved for future modes. Modes 0, 1, 2 are hard coded in the flight software. The packet type value should be patched when a code patch occurs that affects that mode's packet content." END_OBJECT = COLUMN OBJECT = COLUMN NAME = AREOCENTRIC LONGITUDE OF SUN = MSB_UNSIGNED_INTEGER DATA TYPE START_BYTE = 529

BYTES = 2 UNIT = 'DEGREES * 100' MINIMUM MAXIMUM = 0 MAXIMUM = 36000 DESCRIPTION = "The angle between the Mars-Sun line and the line of the equinoxes. Mars seasonal variable." END_OBJECT = COLUMN DBJECT = COLUMN NAME = SPARE DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 531 OBJECT BYTES = б ITEMS = 6 ITEM_BYTES = 1 DESCRIPTION = "Unused spares." END_OBJECT = COLUMN ITEMS = б

C.10 Contents of the MOLA PEDRSEC3.FMT Format File

OBJECT	= COLUMN
NAME	= ORBIT_QUALITY_FLAG
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 537
BYTES	= 2
DESCRIPTION	= "Flag indicating origin of orbit. A 0 indicates
that JPL is the	producer; a 1 or higher indicates that the MOLA Science
Investigation T	eam is the producer, using the potential model GMM-1
or higher."	
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ATTITUDE_FLAG
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 539
BYTES	= 2
DESCRIPTION	= "Flag indicating spacecraft attitude data was not
available for a	ll (3) or part (2) of a MOLA frame, in which case ground
location is cal	culated assuming nadir-pointing geometry."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= FRAME_LOCAL_TIME
DATA_TYPE	= MSB_INTEGER
START_BYTE	= 541
BYTES	= 2
UNIT	= 'RADIANS * (10**4)'
DESCRIPTION	= "The subsolar longitude on Mars at the frame mid-point,
in the range fr	rom -Pi to Pi."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PHASE_ANGLE

DATA TYPE = MSB UNSIGNED INTEGER START BYTE = 543 = 2 BYTES = 'RADIANS * (10**4)' UNIT DESCRIPTION = "The angle between the vectors from Mars to Mars Global Surveyor and from Mars to the Sun at the frame mid-point location." END OBJECT = COLUMN = COLUMN OBJECT = SOLAR_INCIDENCE ANGLE NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 545 BYTES = 2 UNIT = 'RADIANS * (10**4)' DESCRIPTION = "The angle between the Mars surface normal vector and the Sun vector at the frame mid-point location." END OBJECT = COLUMN = COLUMN OBJECT = EMISSION_ANGLE = MSB_UNSIGNED_INTEGER = 547 NAME DATA_TYPE START_BYTE BYTES = 2 UNIT = 'RADIANS * (10**4)' DESCRIPTION = "The angle between the Mars surface normal vector and the Mars Global Surveyor vector at the frame mid-point location." END OBJECT = COLUMN = COLUMN OBJECT = ATMOS_OPACITY NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 549 = 4 BYTES DESCRIPTION = "The Mars atmospheric opacity Tau; may be retrieved from TES data. Nominally 0.5. Stored as a pure number * 10**6. To calculate surface reflectivity, the reflectivity-transmission product should be divided by exp(2*Tau)." END OBJECT = COLUMN OBJECT = COLUMN = DP_FRAME_TIME NAME DATA TYPE = IEEE REAL DATA_TYPE START_BYTE = 553 BYTES = 8 UNIT = 'SECONDS' DESCRIPTION = "The IEEE standard 754-1985 double precision frame mid-point time in elapsed time from J2000, in seconds." END OBJECT = COLUMN OBJECT = COLUMN NAME = RECV PULSE ENERGY COUNTS

DATA TYPE = UNSIGNED INTEGER START BYTE = 561 = 20 BYTES ITEMS = 20 ITEM BYTES = 1 UNIT = 'COUNTS' DESCRIPTION = "The raw pulse energy reading for the trigger channel; in the range 0-255. (An array of 20 values per frame.)" END OBJECT = COLUMN = COLUMN OBJECT NAME = RECV PULSE WIDTH COUNTS NAME DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 581 BYTES = 20 ITEMS = 20 ITEM_BYTES = 1 = 'COUNTS' UNIT DESCRIPTION = "The raw pulse width reading for the trigger channel; in the range 0-63. (An array of 20 values per frame.)" END_OBJECT = COLUMN = COLUMN OBJECT NAME = DELTA SC LATITUDE DATA_TYPE = MSB INTEGER START_BYTE = 601 BYTES = 4 UNIT = 'DEGREES*(10**6)' DESCRIPTION = "The average change in spacecraft areocentric latitude associated with each 20-shot MOLA frame." END OBJECT = COLUMN = COLUMN OBJECT = DELTA_SC_LONGITUDE NAME DATA_TYPE = MSB INTEGER START_BYTE BYTES = 605 = 4 = 'DEGREES*(10**6)' UNIT DESCRIPTION = "The average change in spacecraft areocentric longitude associated with each 20-shot MOLA frame." END OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA SC RADIUS DATA TYPE = MSB INTEGER DATA_TYPE START_BYTE = 609 BYTES = 4 UNIT = 'CENTIMETERS' DESCRIPTION = "The average change in spacecraft radial distance associated with each 20-shot MOLA frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = AREOID RADIUS

DATA TYPE = MSB UNSIGNED INTEGER START BYTE = 613 BYTES = 4 UNIT = 'CENTIMETERS' DESCRIPTION = "The radius of the reference areoid at frame midpoint, with a 3396 kilometer mean radius at the equator. Initially, the Goddard Mars Model 1 (GMM1) of Smith et al., 1993, with the coordinate system of IAU1991, is used." END OBJECT = COLUMN = COLUMN OBJECT NAME = OFF NADIR ANGLE DATA_TYPE = MSB_INTEGER START_BYTE = 617 BYTES = 4 = 'DEGREES * (10**6)' UNIT DESCRIPTION = "Angle between the transmitted laser shot direction and areocentric direction, at spacecraft frame mid-point." END OBJECT = COLUMN OBJECT = COLUMN NAME = ENCODER_BITS DATA_TYPE START_BYTE = UNSIGNED_INTEGER = 621 BYTES = 20 ITEMS = 20 ITEM_BYTES = 1 DESCRIPTION = "The start encoder bits (0-3) plus 16*stop encoder bits (0-3) for each MOLA shot. These bits interpolate the time of the start and stop detectors to improve shot range precision." END OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA AREOID DATA_TYPE = MSB_INTEGER DATA_TYPE START_BYTE = 641 BYTES = 4 TINTT = 'CENTIMETERS' DESCRIPTION = "The average change in reference areoid associated with each 20-shot MOLA frame." END OBJECT = COLUMN OBJECT = COLUMN NAME = MOLA CLOCK RATE DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 645 BYTES = 4 UNIT = 'HERTZ' DESCRIPTION = "The MOLA clock rate estimated from the fine time counter drift with respect to the spacecraft clock." END_OBJECT = COLUMN OBJECT = COLUMN

NAME = MOLA RANGE DATA_TYPE = MSB_UNSIGNED_INTEGER START BYTE = 649 BYTES = 80 = 20 ITEMS ITEM_BYTES = 4 UNIT = 'CENTIMETERS' DESCRIPTION = "MOLA range value per shot; this value is corrected by the range correction. Array of 20 four byte values." END OBJECT = COLUMN OBJECT = COLUMN NAME DATA_TYPE START_BYTE = RANGE CORRECTION = MSB_INTEGER = 729 BYTES = 40 = 20 TTEMS ITEM_BYTES = 2 UNIT = 'CENTIMETERS' DESCRIPTION = "Correction to the shot range values due to the detector response and range walk. Array of 20 two-byte values." END OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA_LATITUDE DATA_TYPE = MSB_INTEGER NAME DATA_TYPE START BYTE = 769 BYTES = 4 UNIT = 'DEGREES *(10**6)' DESCRIPTION = "The average change in latitude associated with each 20-shot MOLA frame." = COLUMN END OBJECT OBJECT NAME = COLUMN NAME = DEDIM_TEGER DATA_TYPE = MSB_INTEGER START_BYTE = 773 = 4 = DELTA LONGITUDE UNIT = 'DEGREES *(10**6)' DESCRIPTION = "The average change in longitude associated with each 20-shot MOLA frame." END OBJECT = COLUMN