MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA PEDR SIS)

MGS-M-MOLA-3-PEDR-L1A-V1.0

Version 2.8, February 2, 2000

NASA Goddard Space Flight Center Greenbelt, MD 20771

MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLAPEDR SIS)

MGS-M-MOLA-3-PEDR-L1A-V1.0

Submitted:		
	Gregory A. Neumann	Date
	MOLA Science Team	
Concurred:		
	Maria Zuber	Date
	MOLA Deputy Principal Investigator	
Approved:		
-	David E. Smith	Date
	MOLA Principal Investigator	

MARS ORBITER LASER ALTIMETER PRECISION EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA PEDR SIS)

	Document and Change Control Log					
Date	Version	Section	Status			
04/01/97	1.0	all	Released for MGS			
07/23/97	1.1	Section 4.3.2 Table 1 Table 2 Appendix C	Updated for PEDR format changes			
07/23/97	1.1	Appendix C	Incorrect start bytes and descriptions were corrected in the format files (unmarked)			
01/30/98	2.0	all	revised for contingency science			
09/24/98	2.5	Section 4.3.2	revised format definitions			
10/01/98	2.6	Tables 1 and 2; Appendix C	delta-spacecraft position replaces SC X-Y-Z coordinates at frame mid-point			
10/12/98		Table 2, Appendix C	frame local time defined as subsolar longitude in radians			
12/17/98	2.7	Tables 1 and 2; Appendix C	·			
2/1/99	2.7		Reformatted for html, no text changed			
10/14/99	2.718	1.0; 4.4	PEDR aggregated by UTC calendar day; identified by Project orbit number + 10000			
2/18/00	2.8	Tables 1 and 2; Appendix C	Crossover correction lat_lon replaces flags. Along_track_shift and across_track_shift replace atmospheric opacity. These may be used as indicators of total position accuracy.			

Section	Table of Contents	Page
1.0	Introduction	1
1.1	Purpose	1
1.2	Scope	1
1.3	Applicable Documents	1
1.4	Functional Description	2
1.4.1	Data Content Summary	2
1.4.2	Source and Transfer Method	2
1.4.3	Recipients and Utilization	2
1.4.4	Pertinent Relationships with Other Interfaces	2
1.5	Assumptions and Constraints	3
2.0	Environment	3
2.1	Hardware Characteristics and Limitations	3
2.2	Interface Medium and Characteristics	3
2.3	Failure Protection, Detection, and Recovery Features	3
2.3.1	Backup Requirements	3
2.3.2	Security / Integrity Measures	3
2.4	End-Of-File (or Medium) Conventions	3
3.0	Access	4
3.1	Access Tools	4
3.2	Input / Output Protocol	4
3.3	Timing and Sequencing Characteristics	4
3.4	PDB Information	4
4.0	Detailed Interface Specifications	5
4.1	Labeling and Identification	5
4.2	Orbit Numbering	5
4.3	Structure and Organization Overview	5
4.4	Substructure Definition and Format	5
4.4.1	Header / Trailer Description Details	5
4.4.2	Data Description Details	7
4.5	Volume, Size, and Frequency Estimates	8

	List of Figures	Page
1	PEDR Data Product Structure and Organization	9

	List of Tables	Page
1	PEDR Data Product Record Format	10
2	PEDR Data Product Record Contents Description	12
3	PEDR Data Product Subcommutated Data Format	16

	List of Appendices	Page
Appendix A	Acronyms	18
Appendix B	Precision Experiment Data Record Catalog Files	19
Appendix C	SFDU Labels and Format Files	20
Appendix C.1	SFDU Labels and Catalog Header	20
Appendix C.2	Contents of the PEDRSEC1.FMT Format File	24
Appendix C.3	Contents of the PEDRENG1.FMT Format File	35
Appendix C.4	Contents of the PEDRENG2.FMT Format File	38
Appendix C.5	Contents of the PEDRENG3.FMT Format File	42
Appendix C.6	Contents of the PEDRENG4.FMT Format File	46
Appendix C.7	Contents of the PEDRENG5.FMT Format File	47
Appendix C.8	Contents of the PEDRENG6.FMT Format File	50
Appendix C.9	Contents of the PEDRENG7.FMT Format File	51
Appendix C.10	Contents of the PEDRSEC3.FMT Format File	53

1.0 Introduction

The MOLA Science Team is required to create validate, and archive the MOLA standard data products. To define each standard data product, the MOLA Science Team is required to provide a Software Interface Specification (SIS). The SIS shall describe the data product contents and define the record and data format. The Planetary Data System's (PDS) Geosciences Node has agreed to archive the MOLA standard data products. The MOLA archive volume shall be described in a separate SIS. The MOLA standard science data products are the Aggregated Experiment Data Record—all MOLA raw data aggregated by day; Precision Experiment Data Record—MOLA science data processed into profiles with precision orbit locations added; Any Experiment Gridded Data Record—MOLA gridded data in 2 different densities. This SIS shall define the Precision Experiment Data Record (PEDR) Data Product.

1.1 Purpose

This document describes the format and contents of the PEDR Data Product. This includes a description of the required SFDU format and the record description and contents of the PEDR File.

1.2 Scope

This SIS defines the format of the SFDU labels and headers and the Precision Experiment Data Record down to the bit level. Also, the PEDR Data Product software, hardware, and human interfaces shall be mentioned in order to describe the interface; the actual software, hardware, or human node on the other side of the interface shall be described in detail in its own interface or other reference document.

1.3	Applicable Documents	
1.	MOLA-672-PL-89.354	Operations Facility Configuration and Control Plan, Version 1.0, NASA Goddard Space Flight Center Wallops Flight Facility, January 5, 1990
2.	MOLA-972-SP-91.163	Mars Orbiter Laser Altimeter Aggregated Experiment Data Record Product Software Interface Specification Document, Version 1.0, NASA Goddard Space Flight Center Wallops Flight Facility, March 31, 1997
3.	SFOC-0088-00-07-02	Space Flight Operations Center User's Guide for Work Station End Users, Volume 2: Working with File Data, Version 17.0, Draft, Jet Propulsion Laboratory, January 1992
4.	MO-642-3-PDB-UG-01	Mars Observer Project Database (MO PDB) User Overview, Strawman, Jet Propulsion Laboratory, February 7, 1990
5.	MOSO0099-04-00	Planetary Science Data Dictionary Document, PDS Version 3.0, Jet Propulsion Laboratory, November 20,1992, JPL D-7116, Rev C

6. MOLA-972-SP-92-232 Mars Orbiter Laser Altimeter Any-Experiment Gridded
Data Product Software Interface Specification, Version
1.0, NASA Goddard Space Flight Center Wallops Flight
Facility, March 31, 1997

7. MOLA-972-SP-92.213 MOLA CD-ROM Standard Product Archive Collection Software Interface Specification, Version 1.0, S. Slavney, R. E. Arvidson, Washington University, August 11, 1993

1.4 Functional Description

1.4.1 Data Content Summary

The PEDR data product contains the along-track, time series collection of the MOLA instrument's science mode data in engineering and physical units. Precision orbit data describing the instrument's position and location has been added to each record. The precision orbit data is supplied by the MOLA Science Team.

Using the precision orbit data, the accuracy of the MOLA footprint is 30 meters radially; 30 meters along track; 30 meters across track.

1.4.2 Source and Transfer Method

The PEDR Data Product is created on the MOLA operations computer system. The PEDR Data Product is created by reading the Aggregated Experiment Data Record (AEDR) Data Product record by record, computing the applicable science parameters (as described in Section 4.0), appending the precision orbit data, and wrapping the whole file with SFDU headers and labels. This SIS will detail the format of the PEDR Data Product. The AEDR Data Product is described in Applicable Document #2. After creation and verification, the PEDR Data Product shall be transferred to the MOLA SOPC to await delivery to the Planetary Data System's (PDS) Geosciences Node where it will be archived to CD-ROM and made available to the science community. The PEDR Data Product shall remain available to the MOLA Science Team on the MOLA operations file system.

1.4.3 Recipients and Utilization

The PEDR data product shall be used to create the Experiment Gridded Data Record (EGDR) data products.

The PDS shall receive the PEDR data product and make it available to the science community.

The PEDR data product shall remain on the MOLA operations file system and be available to the MOLA Science Team for further investigations.

1.4.4 Pertinent Relationships with Other Interfaces

The PEDR data product is created from the Aggregated Experiment Data Record (AEDR) data product. Any changes to the AEDR data product could affect the format or content of the PEDR data product. See Applicable Document #2 for a detailed description of the AEDR Data Product.

Any changes to the PEDR data product, either format or content shall affect the software that

creates the data product.

Additionally, any changes to the PEDR data product could affect the EGDR data products' content or affect the software that creates the EGDR data products. See Applicable Document #6 for a detailed description of the EGDR Data Products.

1.5 Assumptions and Constraints

The PEDR data product contains only MOLA science mode data.

Each PEDR data product shall encompass one orbit of MOLA data.

2.0 Environment

2.1 Hardware Characteristics and Limitations

Not applicable.

2.2 Interface Medium and Characteristics

The PEDR data product shall be produced on computer(s) within the MOLA operations environment. The PEDR data product shall be transferred to the MOLA SOPC via FTP in preparation for distribution to the PDS Geosciences Node. The SOPC architecture is described in Applicable Document #1. The PEDR data product will be transferred to the PDS Geosciences Node via FTP from the SOPC. The PDS will write the data products to CD-ROMs for distribution to the science community.

2.3 Failure Protection, Detection, and Recovery Features

2.3.1 Backup Requirements

The PEDR data product will be retained on the MOLA operations file system for back up purposes and shall be archived on magnetic media. The PEDR data product is distributed to the PDS for archival. The MGS Project Database will be available as an additional backup location.

2.3.2 Security / Integrity Measures

Refer to Applicable Document #1 for a description of the MOLA operations system security and integrity plan.

2.4 End-Of-File (or Medium) Convention

The PEDR data product is a standard UNIX flat file in Standard Formatted Data Unit (SFDU) format. SFDU formatted objects have labels and headers describing the high level structure of the object and the content of the object. The end of the PEDR data product will be detected by the end-of-file marker. In the FORTRAN programming language, fixed-length record files may be opened using the keyword access='direct', recl=776, and end-of-file may be detected by the err= keyword in the READ statement.

3.0 Access

3.1 Access Tools

The MOLA Science Team shall have the capability to access the PEDR data product on the MOLA operations file system via FTP. The science community will have access to the PEDR Data Product through the Archive Volume produced by the PDS Geosciences Node and should obtain the MOLA CD-ROM Archive Volume SIS, Applicable Document #7 for information on data access. The MOLA Science Team will not provide the PDS any special tools to access the PEDR Data Product.

3.2 Input / Output Protocol

N/A

3.3 Timing and Sequencing Characteristics

A PEDR data product will be created for each orbit containing MOLA science data. Data products will be created as precision orbit data becomes available. The PEDR data product may be re-processed up to three times depending on new releases of precision orbit data. PEDR data products will be created for all the MOLA science data collected during the MGS mapping mission.

3.4 PDB Information

The PEDR Data Product will be stored in the Science category as a science data product in the PDB. See Applicable Document #4 for an end user overview of the PDB.

The data set id for the MOLA PEDR data product is MGS-M-MOLA-3-PEDR-L1A-V1.0. This is the data set id that was provided to the PDB and the Planetary Data System. This id describes the overall PEDR data product. The version number is incremented should the PEDR Data Product format change.

The PDB required keywords are

PDS VERSION ID PRODUCT RELEASE DATE RECORD_TYPE PRODUCT_VERSION_TYPE FILE RECORDS START TIME STOP_TIME RECORD_BYTES LABEL RECORDS NATIVE START TIME FILE NAME NATIVE_STOP_TIME DATA SET ID SPACECRAFT CLOCK START COUNT PRODUCT_ID SPACECRAFT_CLOCK_STOP_COUNT PRODUCT_CREATION_TIME SPACECRAFT_NAME INSTRUMENT_ID MISSION_PHASE_NAME INSTRUMENT_NAME ORBIT_NUMBER TARGET_NAME PRODUCER_ID PRODUCER_FULL_NAME SOFTWARE NAME UPLOAD ID PRODUCER INSTITUTION NAME SOURCE_PRODUCT_ID DESCRIPTION

4.0 Detailed Interface Specifications

4.1 Labeling and Identification

The PEDR Data Product shall be labeled to form an SFDU as described in Section 4.3. The data set id for the PEDR Data Product and required catalog keywords are listed in Section 3.4.

The file naming convention for each PEDR data product produced is AP####a.B, where:

- A represents the MOLA instrument, an altimeter
- P is the data product, PEDR, identifier
- ##### is the orbit number with leading zeros (see below)
 - a is the product edition number or letter
 - B indicates the file is fixed point, binary.

4.2 Orbit Numbering

On March 9, 1999, the MGS spacecraft entered the Mapping Phase of the mission after spending nearly two years in the Orbit Insertion Phase. The MGS Project reset the orbit count to 1 at the beginning of the Mapping Phase, at the descending equator crossing of actual orbit 1683. Since MOLA had already generated many products during Orbit Insertion with product IDs based on the orbit number, there was a potential problem that the product ID would not be unique if MOLA continued to use the Project orbit number. To ensure a unique product ID, MOLA Mapping Phase products are therefore identified by the Project orbit number plus 10000. For example, a PEDR product containing data acquired starting in Mapping Phase orbit 24 is identified as AP10024a.B.

4.3 Structure and Organization Overview

The PEDR Data Product shall be written as a standard UNIX flat, sequential file with the MOLA data in spacecraft event time-ordered sequence. Each 776-BYTE record contains two seconds of data (a frame) extracted from the science mode telemetry packet. The data records are wrapped with the appropriate SFDU labels and headers, comprising a total of 10 776-byte records. There shall be a primary label, a catalog label and header, and a data label. The catalog label shall have a corresponding end label to delimit the catalog information from the data. See Figure 1 for a representation of the PEDR data product.

4.4 Substructure Definition and Format

The following sections define in detail the label, header, and data formats and content.

4.4.1 Header / Trailer Description Details

An example of the labels and K-header is in Appendix C.

4.4.1.1 Primary SFDU Label

The Primary SFDU Label, also known as the aggregation label or Z-label delimits the entire product. The Primary Label is 20 bytes long and shall have the following format for the PEDR

data product.

CCSD3ZF0000100000001

where:

CCSD is the Control Authority ID

3 is the SFDU version ID

Z is the class ID for primary labels

F is the SFDU delimiter type, total EOFs.

0 is a spare octet

is the Data Descriptive Package ID (DDPID)

00000001 is the delimiter value for this label; indicates the number of EOFs delimiting the

product.

4.4.1.2 Catalog Label and Header

The catalog labels and header, also known as the K-header, are made up of the start and end labels and the catalog data objects that are to be stored in the Mars Global Surveyor PDB and the Planetary Data System's data base. The start label has the following form:

NJPL3KS0PDSX\$\$INFO\$\$

where:

NJPL is the Control Authority ID 3 is the SFDU version ID

K is the class ID for catalog data object labels

S is the SFDU delimiter type, start marker.

0 is a spare octet

PDSX is the Data Descriptive Package ID \$\$INFO\$\$ is the delimiter value for this label

After the label, shall be the catalog entries required by the Project. These shall be in the KEY-WORD=VALUE format. Each KEYWORD=VALUE string shall be terminated by a carriage return, line feed combination. The required keywords are listed in Section 3.4. The catalog entries (keywords) with example values are listed in Appendix C.1. Applicable Document #5 contains definitions of the keywords listed in the appendix.

Planetary Data System required object definitions and pointers are contained in the catalog header. Each data parameter in the product is defined by the object structure; the pointers direct the user to format files which fully define the PEDR record format and contents. Appendix C contains an example of the object definitions and pointers.

The catalog entries will be delimited by the K-header end label; it has the following form:

CCSD\$\$MARKER\$\$INFO\$\$

4.4.1.3 Data Label

The data or I-class Label precedes the actual data in the SFDU. This label is also known as the data object label or the tertiary header. The I-class label is registered individually with the JPL Control Authority and bears a unique DDPID. The start label has the following format

NJPL3IF0004100000001

1				
W	h	$\boldsymbol{\Delta}$	rΔ	٠
vv	ч	u	ı	

NJPL is the Control Authority ID
3 is the SFDU version ID
I is the class ID for data labels

F is the SFDU delimiter type, Total EOFs

0 is a spare octet

is the Data Descriptive Package ID

0000001 is the delimiter value for this label; indicates the number of EOFs delimiting the

product.

4.4.2 Data Description Details

A Precision Experiment Data Record contains MOLA science mode telemetry data that has been converted to engineering and physical units. Each PEDR contains a 2 second span of data, called a frame, that is retrieved from the 14 second MOLA science mode telemetry packet. Therefore, seven PEDRs are generated from each MOLA science mode telemetry packet. In addition to the frame data, the packet's engineering and housekeeping data are retained and subcommutated among the seven PEDRs that comprise a packet. Additional packet information, e.g., packet header, are stored in the PEDR as well as data correction values which were used to process the telemetry data into the PEDR data. Storing the data correction values ensures that the telemetry data can be re-created from the PEDR data.

Contained in a PEDR are the range value computed at the frame mid-point, the planetary radius at the frame mid-point, and the planetary radius for each shot. There are 20 possible shots in a 2 second frame. Additionally, location, i.e., latitude, longitude, and radial distance, obtained from the precision orbit data, is stored in the PEDR. The precision orbit data is gathered at the frame mid-point with respect to the Mars Global Surveyor center of mass. The range and planetary radius values are computed with respect to the center of mass of the Mars Global Surveyor. Additional information describing the instrument and its configuration are included in the PEDR.

A complete listing of all parameters contained in a PEDR can be found in Table 1. A description of the parameters contained in a PEDR is found in Table 2. The engineering/housekeeping data are listed in Table 3; this table also describes the location of the engineering/housekeeping data among the seven PEDRs that constitute a MOLA telemetry packet. Additionally, the PEDR format and contents are described in the PEDR Data Dictionary in Appendix B.

4.5 Volume, Size, and Frequency Estimates

The size of each PEDR data product shall vary depending in the number of science mode packets obtained. The maximum number of science mode packets that could be produced during a day is approximately 6170, therefore the maximum number of PEDRs in a PEDR Data Product would be approximately 43190. Each PEDR shall contain 776 bytes.

The PEDR data product will be produced as the AEDR files and corresponding precision orbit data become available. The data products will be produced during a standard 5 day / 40 hour work week.

Approximately 1 PEDR Data Product shall be produced for each mapping mission day resulting in a daily volume of 33.5 Mbytes. During the period of time designated as contingency science or phasing orbits, MOLA ranges to the surface for only 20-30 minutes and the volume is accordingly reduced.

FIGURES

Figure 1: PEDR Data Product Structure and Organization

PRIMARY SFDU START LABEL
CATALOG START LABEL
CATALOG HEADER
CATALOG END LABEL
DATA START LABEL
DATA RECORD 1
DATA RECORD 2
DATA RECORD 3
DATA RECORD N

TABLES

Table 1: PEDR Data Product Record Format

Star t Byte	Parameter	Bytes	Units	End Byte
1	frame mid-point time whole seconds (Elapsed Time from J2000)	4	seconds	4
5	frame mid-point time fractional seconds (Elapsed Time from J2000)	4	microseconds	8
9	orbit reference number	4	counts	12
13	frame mid-point areocentric latitude of spacecraft	4	degrees * 10 ⁶	16
17	frame mid-point areocentric longitude of spacecraft	4	degrees * 10 ⁶	20
21	frame mid-point radial distance of spacecraft	4	centimeters	24
25	frame mid-point range	4	centimeters	28
29	shot quality flag	4		32
33	shot quality descriptor flag	8		40
41	crossover correction lat_lon	8		48
49	shot planetary radius (20 * 4)	80	centimeters	128
129	frame mid-point planetary radius	4	centimeters	132
133	instrument attitude right ascension	4	milliradians	136
137	instrument attitude declination	4	milliradians	140
141	instrument attitude twist	4	milliradians	144
145	corrected received pulse energy (20 * 2)		attojoules	184
185	surface reflectivity * atmospheric transmittance		parts in 10 ⁵	224
225	trigger channel number (20 * 1)			244
245	returned pulse width at threshold 40 nanoseconds * 10		nanoseconds * 10	284
285	received optical pulse width (20 * 2)	40	nanoseconds * 10	324
325	parallax delta-latitude	4	degrees * 109m-1	328
329	parallax delta-longitude	4	degrees * 109m-1	332
333	crossover residual	4	centimeters	336
337	frame mid-point latitude and longitude	8	degrees * 10 ⁶	344
345	laser transmit power (20 * 2)	40	mJ * 100	384
385	shot classification code	40		424
425	channel background noise (8 * 4)(per half-frame and channel)	32	counts	456
457	range delay	4	centimeters	460
461	range width		centimeters	464
465	receiver channel threshold (8 * 2)(per half-frame and channel)		millivolts	480
481	receiver channel mask			482
483	algorithm word (MIN_HITS) 2			484
485	algorithm word (HIT_COUNT) 2 counts			

Star t Byte	Parameter	Bytes	Units	End Byte
487	frame counter	2		488
489	trigger channel	2		490
491	within-packet frame index	2	(1-7)	492
493	packet source header	8		500
501	telemetry packet coarse time code - seconds (J2000 elapsed time)	4	seconds	504
505	telemetry packet coarse time code - milliseconds	2	ms	506
507	telemetry packet fine time code	2	counts	508
509	engineering / housekeeping data	28		536
537	Orbit quality flag	2		538
539	Attitude flag	2		540
541	Frame local time	2	radians * 10 ⁴	542
543	Phase angle 2 radians * 10 ⁴			
545	Solar incidence angle	2	radians * 10 ⁴	546
547	Emission angle 2 radians * 10 ⁴		radians * 10 ⁴	548
549	Along-track shift ^b 4 seco		seconds* 10 ⁵	550
551	Across-track shift ^b		seconds* 10 ⁵	552
553	Double precision frame mid-point time in IEEE standard (Elapsed time from J2000)		seconds	560
561	trigger channel raw received pulse energy (20 * 1)	20	counts (0-255)	580
581	trigger channel raw received pulse width (20 * 1)	20	counts (0-63)	600
601	delta spacecraft latitude	4	degrees * 10 ⁶	604
605	delta spacecraft longitude	4	degrees * 10 ⁶	608
609	delta spacecraft radial distance	4	centimeters	612
613	Areoid radius	4	centimeters	616
617	Off-nadir angle	4	degrees * 10 ⁶	620
621	Encoder bits	20	counts	640
641	delta areoid	4	cm	644
645	MOLA clock rate	4	Hz	648
649	MOLA range value (20 * 4)		centimeters	688
729	range correction (20 * 2)	40	centimeters	768
769	delta latitude	4	degrees * 10 ⁶	772
773	delta longitude	4	degrees * 10 ⁶	776
		776	bytes total	

Table 2: MOLA Precision Experiment Data Record (PEDR) Contents Rate: 1 every 2 seconds

Parameter	Bytes	Units	Description
- frame mid-point time whole seconds	4	Seconds	The whole portion of the Elapsed Time since J2000 at the frame mid-point ¹ in the MOLA data frame
- frame mid-point time fractional seconds	4	Microseconds	The fractional portion of the Elapsed Time since J2000 at the frame mid-point in the MOLA data frame
- orbit reference number	4	Counts	Mapping mission orbit number determined by Mars Global Surveyor flight operations system at frame mid-point
- frame mid-point areo- centric latitude of spacecraft	4	Degrees * 10 ⁶	MGS Spacecraft areocentric latitude, in IAU1991 coordinates, associated with MOLA data frame midpoint; from Precision Orbit data
- frame mid-point areo- centric longitude	4	Degrees * 10 ⁶	MGS Spacecraft east longitude, in IAU1991 coordinates, associated with MOLA data frame mid-point; from Precision Orbit data
- frame mid-point radial distance of spacecraft	4	Centimeters	Radial distance (<i>i.e.</i> , the distance from Martian bodycenter to Mars Global Surveyor spacecraft center of mass) associated with MOLA data frame mid-point; from Precision Orbit data
- frame mid-point range	4	Centimeters	MOLA range (corrected to Mars Global Surveyor center of mass) associated with MOLA data frame midpoint, obtained from a straight line best-fit of the individual (up to 20) MOLA range measurements in the MOLA data frame
- shot quality flag	4		3 bytes-flag whether good/bad shot (20 least significant bits, one for each of the 20 shots, with least significant bit, 0, being shot 1 and bit 19 being shot 20) and each bit set to 0 for good, 1 for bad shot; bits 20Đ 23 are unused
			1 byte–good shot counter, (total of bits set to 0 in above 20 bits)
- shot quality descriptor flag	16		Flag indicating whether the packet or individual shots passed or failed the various shot quality tests. Reading the flag from right to left with the rightmost bit being bit 0 and the leftmost bit being bit 127 the format of the flag is
			bit 0: packet validity checksum test bit 1: computer software checksum test bit 2: frame acquisition vs. tracking mode test bit 3: first shot is an OTS shot test bits 4–23: transmit power test bits 24–43: non-zero 1st channel test bits 44–63: return energy test bits 64–83: range window test
			bits 84–103: range comparison test bits 104–127: unused

_

The phrase 'frame mid-point' is used to denote the transmit time of shot 10.5, a point midway between the 10th and 11th shots in the set of 20 laser shots in a MOLA frame.

Parameter	Bytes	Units	Description		
- shot quality descriptor flag (contd.)			A 1 indicates the test was failed, 0 indicates the test was passed. For the bits that flag each shot the lower bit corresponds to shot 1 and the higher bit corresponds to shot 20.		
- shot planetary radius	80	Centimeters	Array of 20 MOLA planetary radii, one per shot, in the data frame; the distance from the center of Mars to the point on the surface of Mars described by the MOLA range, 20 4-byte values		
- frame mid-point plan- etary radius	4	Centimeters	Planetary radius associated with MOLA data frame mid-point; the distance from the center of Mars to the point on the surface of Mars described by the MOLA mid-point range		
- instrument attitude right ascension	4	Milliradians	MOLA right ascension at data frame mid-point		
- instrument attitude declination	4	Milliradians	MOLA declination at data frame mid-point		
- instrument attitude twist	4	Milliradians	MOLA twist at data frame mid-point		
- corrected received pulse energy	40	Attojoules	Corrected surface-scattered return energy as measured by the pulse width and area counters, corrected for threshold setting, 20 2-byte values		
- surface reflectivity * atmospheric transmittance	40	Pure fraction * 10 ⁵	Relative Martian surface reflectivity values, one per shot; 20 2-byte values		
- trigger channel number	20		Channel number of first MOLA filter channel to trigger, 20 1-byte values		
- returned pulse width at threshold	40	Nanoseconds * 10	Time between threshold crossings of the detected pulse. The pulse width is used to correct the time-of-flight to the optical pulse centroid, but recv_pulse_energy_counts may be saturated. In this case, the timing correction is limited to the equivalent of a six-degree slope. 20 2-byte values		
- received optical pulse width	40	Nanoseconds * 10	Received optical pulse width, corrected for filter characteristics and threshold settings, as determined by the receiver model (one sigma value, with the minimum limited by the filter response). The pulse width provides an estimate of target slope and/or roughness, assuming nadir-looking geometry		
parallax delta-latitude	4	degrees * 109m-1	change in latitude with respect to planetary radius at frame midpoint due to parallax		
parallax delta-longitude	4	degrees * 109m-1	change in longitude with respect to planetary radius at frame midpoint due to parallax		
crossover residual	4	Centimeters	Crossover residual of planetary radius with respect to MOLA database at frame midpoint		
- frame mid-point lati- tude, longitude	8	Degrees * 106	The areocentric latitude and the East longitude, in IAU1991 coordinates, of the intersection point between the frame mid-point shot and the Mars surface; from Precision Orbit data; 2 4-byte values		
- laser transmit power	40	mJ * 100	MOLA laser transmitted pulse energy, corrected for detector and heat sink temperatures, 20 2-byte values		

Parameter	Bytes	Units	Description
- shot classification code	40		shot classification and weighting codes: 0 denotes a
- channel background noise counts	32	Counts	false return or no trigger; 1 denotes a ground return. Frame value for background levels in the MOLA channels, at half-frame rate (order: 1A, 2A, 3A, 4A, 1B, 2B, 3B, and 4B where A is first half and B is second half of data frame), for raw background counts (prior to engineering unit conversion) equal to or less than 23 the converted value is set to 1.0, 8 4-byte values
- range delay	4	Centimeters	Frame value of range gate delay (to beginning of range window)
- range width	4	Centimeters	Frame value of range gate width
- receiver channel threshold settings	16	Millivolts	Threshold settings for the 4 MOLA channels, at half-frame rate (order: 1A, 2A, 3A, 4A, 1B, 2B, 3B, and 4B), 8 2-byte values
- receiver channel mask	2		MOLA channel mask setting for the frame; the mask indicates whether any of the 4 channels have been commanded off
- algorithm word MIN_HITS	2		Frame value for the flight software word MIN_HITS
- algorithm word HIT_COUNT	2	Counts	Frame value for the flight software word HIT_COUNT
- frame counter	2		Software status value
- trigger channel	2		Software status value
within-packet frame indexpacket source header	8	Count	Frame number (among seven frames in MOLA telemetry packet) generated in Ground Data System processing Information placed in MOLA telemetry packet by
- telemetry packet coarse time code seconds	4	ET (Elapsed Time) seconds	Payload Data System The whole portion of the Payload Data System generated time code in ET seconds referenced to J2000; a signed number.
- telemetry packet coarse time code milliseconds	2	ET milliseconds	The fractional portion of the Payload Data System generated time code in ET seconds referenced to J2000; a signed number
- telemetry packet fine time code	2	counts	MOLA generated fine time counter
- engineering/house- keeping data	28		Complete set of packet engineering and housekeeping data (196 bytes) from each MOLA telemetry packet, subcommutated into 7 data frames, 28 bytes appear at this location in each frame
- orbit quality flag	2		Flag indicating origin of orbit. 0 indicates JPL NAV team was producer; 1 or higher indicates the MOLA Science Team reference gravity model number.
- attitude flag	2		Flag to indicate spacecraft attitude information was missing for this frame. Set to 2 if attitude information was missing for part of the frame; 3 if missing for entire frame; otherwise 0.
- frame local time	2	radians * 10 ⁴	The subsolar longitude on Mars, -Pi to Pi.
- phase angle	2	radians * 10 ⁴	The angle between the vectors from Mars to Mars

Parameter	Bytes	Units	Description		
			Global Surveyor and from Mars to the Sun at the frame mid-point location		
- solar incidence angle	2	radians * 10 ⁴	The angle between the Mars surface normal vector and the Sun vector at the frame mid-point location		
- emission angle	2	radians * 10 ⁴	The angle between the Mars surface normal vector and the Mars Global Surveyor vector at the frame midpoint location		
- along-track shift ^b	2	seconds * 10 ⁵	Empirical adjustment of frame mid-point on ground in the along-track direction from crossover analysis		
- across-track shift ^b	2	seconds * 10 ⁵	Empirical adjustment of frame mid-point on ground in the across-track direction (90° ccw from along-track)		
- double precision frame mid-point time	8	seconds	The frame mid-point time represented in IEEE standard double precision; ET seconds from J2000		
- trigger channel raw received pulse energy	20	Counts	The received pulse energy counts; 255=>saturation; 20 1-byte values		
- trigger channel raw received pulse width	20	Counts	The received pulse width counts; 63=>saturation; 20 1-byte values		
delta spacecraft latitude	4	Degrees * 10 ⁶	The average change in spacecraft areocentric latitude associated with each 20-shot MOLA frame		
delta spacecraft longitude	4	Degrees * 106	The average change in spacecraft areocentric longitude associated with each 20-shot MOLA frame		
delta spacecraft radius	4	Centimeters	The average change in spacecraft areocentric radius associated with each 20-shot MOLA frame		
- Areoid radius	4	Centimeters	The radius of the reference areoid with 3396 kilometer mean equatorial radius, determined from the GMM-1 or more recent potential model of degree and order 70		
- Off-nadir angle	4	Degrees * 106	Angle between the transmitted laser shot direction and areocentric direction, at spacecraft frame mid-point		
- Encoder bits	20		The start and stop encoder bits for each MOLA shot. With these bits, the MOLA shot range is interpolated within each clock count. The start and stop encoders are stored in bits 0-1 and 4-5 of each byte		
- delta areoid	4	centimeters	The average change in areoid associated with each 20-shot MOLA frame.		
- MOLA clock rate	4	Hertz	The MOLA clock frequency used to calculate laser pulse time-of-flight.		
- MOLA range	80	centimeters	The MOLA one-way range value per shot; the raw MOLA time-of-flight range plus the range correction below, 20 4-byte values		
- range correction	40	centimeters	Correction to the range value due to the detector response and range walk, 20 2-byte values		
- delta latitude	4	Degrees * 10 ⁶	The average distance between each areocentric latitude associated with each 20-shot MOLA frame		
- delta longitude	4	Degrees * 10 ⁶	The average distance between each areocentric longitude associated with each 20-shot MOLA frame		
TOTAL:	776				

Table 3: PEDR Data Product Subcommutated Data Format

Packet Byte	Contents	Length in Bytes	Frame	Frame Start Byte	Frame Stop Byte
12	Computer Memory temperature	2	PEDR 1	509	510
13	Computer CPU temperature	2	PEDR 1	511	512
14	Power Supply temperature	2	PEDR 1	513	514
15	Computer I/O temperature	2	PEDR 1	515	516
16	LASER array sink heat temperature	2	PEDR 1	517	518
17	LASER diode array drive electronics temperature	2	PEDR 1	519	520
18	Optical Test Source (OTS) LED temperature	2	PEDR 1	521	522
19	100 MHz Oscillator temperature	2	PEDR 1	523	524
20	Start Detector temperature	2	PEDR 1	525	526
21	Outside Detector box temperature	2	PEDR 1	527	528
22	LASER Radiator Opposite Output port temperature	2	PEDR 1	529	530
23	LASER Radiator Output port temperature	2	PEDR 1	531	532
24	Interface Plate near hot foot temperature	2	PEDR 1	533	534
25	Radiation shield transition temperature	2	PEDR 1	535	536
26	Electronics Box top near S/C thermistor temperature	2	PEDR 2	509	510
27	LASER box near hot foot temperature	2	PEDR 2	511	512
28	28 Volt monitor	2	PEDR 2	513	514
29	Reference Voltage monitor	2	PEDR 2	515	516
30	+12 Volt voltage monitor	2	PEDR 2	517	518
31	24 Volt voltage monitor	2	PEDR 2	519	520
32	+5 Volt voltage monitor	2	PEDR 2	521	522
33	-12 Volt voltage monitor	2	PEDR 2	523	524
34	LASER / thermal current monitor	2	PEDR 2	525	526
35	-5 Volt voltage monitor	2	PEDR 2	527	528
36	Power Supply current monitor	2	PEDR 2	529	530
37	High Voltage current monitor	2	PEDR 2	531	532
38	-12 Volt current monitor	2	PEDR 2	533	534
39	+12 Volt current monitor	2	PEDR 2	535	536
40	-5 Volt current monitor	2	PEDR 3	509	510
41	+5 Volt current monitor	2	PEDR 3	511	512
42	Current STATUS register value (SEU counter)	1	PEDR 3	513	513
43	Software Version Number Upper (4.4 bit format)	1	PEDR 3	514	514
43	Software Version Number Lower (4.4 bit format)	1	PEDR 3	515	515
55	Range Tracking Status (frame #7654321) (1= tracking, 0 = acquisition) (MSB=OTS)	1	PEDR 3	516	516
44	Flag word (2 KB RAM block test)	2	PEDR 3	517	518

Packet Byte	Contents	Length in Bytes	Frame	Frame Start Byte	Frame Stop Byte
46	Status Flags (SFLAG1 (16 bits), SFLAG2 (16 bits))	4	PEDR 3	519	522
50	Software validity checksum	2	PEDR 3	523	524
52	Received command count (modulo 8 bits)	1	PEDR 3	525	525
53	Command error count (modulo 8 bits)	1	PEDR 3	526	526
54	Transmitter threshold setting (XMITDA)	2	PEDR 3	527	528
56	Range gate tracker array (73.728 km)	8	PEDR 3	529	536
64	Range gate tracker array (cont.)	28	PEDR 4	509	536
92	Range gate tracker array (cont.)	12	PEDR 5	509	520
104	HSTART value for HISTOGRAM dump	4	PEDR 5	521	524
	unused	4	PEDR 5	525	528
106	Valid commands received count (modulo 16 bits)	2	PEDR 5	529	530
108	Memory dump segment (16 Kbytes/16 bytes = 1024 packets ~= 4 hours)	6	PEDR 5	531	536
114	Memory dump segment (cont.)	10	PEDR 6	509	518
124	Command echo	16	PEDR 6	519	534
140	Packet validity checksum	2	PEDR 6	535	536
142	OTS Range	4	PEDR 7	509	512
144	OTS 1st channel received energy	4	PEDR 7	513	516
145	Spare	4	PEDR 7	517	520
223	OTS transmit power	4	PEDR 7	521	524
3	OTS pulse width	1	PEDR 7	525	525
3	OTS pulse amplitude	1	PEDR 7	526	526
	OTS quality flag	1	PEDR 7	527	527
11	Packet Type (0 for Science Mode)	1	PEDR 7	528	528
	Areocentric longitude of the Sun	2	PEDR 7	529	530
	unused	6	PEDR 7	531	536
325 f	325 frame mid-point coordinates (x,y,z)		centimeters		336
325 f	rame mid-point coordinates (x,y,z)	12	centimeter	rs	336
325 f	rame mid-point coordinates (x,y,z)	12	centimeters		336
325 f	325 frame mid-point coordinates (x,y,z) 12 centimeters				336

APPENDICES

Appendix A Acronyms

AEDR Aggregated Experiment Data Record

aJ attoJoule

DDPID Data Descriptive Package ID

EGDR Experiment Gridded Data Record

ET Elapsed Time

EUC Engineering Unit Conversion

FTP File Transfer Protocol

Gbytes gigabytes

GMM-1 Goddard Mars Model-1 potential model (Smith et al., 1993)

GSFC Goddard Space Flight Center

IAU1991 Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates

and Rotational Elements of the Planets and Satellites, Buenos Aires, 1991.

JPL Jet Propulsion Laboratory

MGS Mars Global Surveyor

Mbytes megabytes mJ milliJoule

MOLA Mars Orbiter Laser Altimeter

ms milliseconds

NAIF/ Navigation Ancillary Information Facility / Spacecraft Ephemeris, Planet Ephemeris, Instrument Offset, Instrument Inertial Orientation (C), Event Ori

ented Information Kernels

OTS Optical Test Source

PEDR Precision Experiment Data Record

PDB Project Data Base

PDS Planetary Data System

SFDU Standard Formatted Data Unit
SFOC Space Flight Operations Center
SIS Software Interface Specification

SOPC Science Operations Planning Computer

SPICE Spacecraft Ephemeris, Planet Ephemeris, Instrument Offset, Instrument Inertial

Orientation (C), Event Oriented Information Kernels

TBD to be determined

WFF Wallops Flight Facility

Appendix B Precision Experiment Data Record Catalog Files

This version of the MOLA PEDR SIS contains no listing of PDS Catalog Files

Appendix C PEDR Data Product SFDU Labels and Format Files

C.1 PEDR Data Product SFDU Labels and Catalog Header

```
CCSD3ZF0000100000001NJPL3KS0PDSX$$INFO$$
PDS_VERSION_ID = PDS3
RECORD TYPE
                     = FIXED LENGTH
                   = 'UNK'
FILE_RECORDS
- //6
= 10

FILE_NAME = 'AP00003K.B'

^PEDR_FR_1_TABLE = 11

^PEDR_FR 2 TABLE
^PEDR_FR_3_TABLE
                     = 11
                     = 11
^PEDR_FR_4_TABLE
^PEDR FR 5 TABLE
                     = 11
^PEDR_FR_6_TABLE
                     = 11
^PEDR_FR_7_TABLE
                     = 11
DATA_SET_ID = 'MGS-M-MOLA-3-PEDR-L1A
PRODUCT_ID = 'MOLA-AP00003K.B'

SPACECRAFT_NAME = 'MARS_GLOBAL_SURVEYOR'
INSTRUMENT_ID = 'MOLA'
                     = 'MGS-M-MOLA-3-PEDR-L1A-V1.0'
INSTRUMENT_NAME = 'MARS_ORBITER_LASER_ALTIMETER'

TARGET_NAME = 'MARS'

SOFTWARE_NAME = 'PREC_PP_7.20'

UPLOAD_ID = 'SM-7.6'
SOURCE PRODUCT_ID = {"MOLA-AA00003F.B", "MOLA-APPLCT01.T",
  PRODUCT_RELEASE_DATE = 1998-141
START_TIME = 1997-258T19:10:00.000
STOP_TIME = 1997-258T19:45:00.000
NATIVE_START_TIME = -76351736.816730
NATIVE_STOP_TIME = -76349636.816730
SPACECRAFT_CLOCK_START_COUNT = 443588190.140
SPACECRAFT_CLOCK_STOP_COUNT = 443595246.140
PRODUCT_CREATION_TIME = 1998-051T17:42:37.881
MISSION_PHASE_NAME = 'ORBIT INSERTION'
ORBIT_NUMBER = 00003
PRODUCT_VERSION_TYPE = { "R007-CALIBRATED REL.", "000003 - ORBIT
  "P007-CALIBRATED REL.", "E007-CALIBRATED REL." }
PRODUCER ID = 'MGS_MOLA_TEAM'
PRODUCER FULL NAME = 'DAVID E. SMITH'
PRODUCER INSTITUTION NAME = 'GODDARD SPACE FLIGHT CENTER'
                = "The PEDR data product contains the along-
DESCRIPTION
   track, time series collection of MOLA instrument, science mode
   data in engineering and physical units. Precision orbit data
   describing the instrument's position and location has been
```

added to each record. The precision data is supplied by the MOLA Science Team."

OBJECT = PEDR_FR_1_TABLE

INTERCHANGE_FORMAT = BINARY
ROWS = 'UNK'
COLUMNS = 73
ROW_BYTES = 776

^FIRST_STRUCTURE = 'PEDRSEC1.FMT'
^FR_1_ENG_STRUCTURE = 'PEDRENG1.FMT'
^THIRD STRUCTURE = 'PEDRSEC3.FMT'

DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 1. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_1_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776."

END_OBJECT = PEDR_FR_1_TABLE

OBJECT = PEDR FR 2 TABLE

INTERCHANGE_FORMAT = BINARY
ROWS = 'UNK'
COLUMNS = 73
ROW_BYTES = 776

^FIRST_STRUCTURE = 'PEDRSEC1.FMT'
^FR_2_ENG_STRUCTURE = 'PEDRENG2.FMT'
^THIRD_STRUCTURE = 'PEDRSEC3.FMT'

DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 2. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_2_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776."

END_OBJECT = PEDR_FR_2_TABLE

OBJECT = PEDR_FR_3_TABLE

INTERCHANGE_FORMAT = BINARY
ROWS = 'UNK'
COLUMNS = 72
ROW_BYTES = 776

^FIRST_STRUCTURE = 'PEDRSEC1.FMT'

^FR 3 ENG STRUCTURE = 'PEDRENG3.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 3. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_3_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." END OBJECT = PEDR_FR_3_TABLE OBJECT = PEDR_FR_4_TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' = 60COLUMNS = 776 ROW_BYTES ^FIRST_STRUCTURE = 'PEDRSEC1.FMT' ^FR_4_ENG_STRUCTURE = 'PEDRENG4.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 4. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_4_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." END_OBJECT = PEDR_FR_4_TABLE OBJECT = PEDR_FR_5_TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' = 64 COLUMNS ROW_BYTES = 776 = 'PEDRSEC1.FMT' ^FIRST_STRUCTURE ^FR 5 ENG STRUCTURE = 'PEDRENG5.FMT' = 'PEDRSEC3.FMT' ^THIRD STRUCTURE = "This is one of seven table definitions DESCRIPTION that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table

structure incorporates the engineering information returned in

Frame 5. The 'first_structure' format file includes descriptions of the first 500 bytes of the record,

'fr_5_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." END_OBJECT = PEDR_FR_5_TABLE OBJECT = PEDR_FR_6_TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' COLUMNS = 62 ROW_BYTES = 776 = 'PEDRSEC1.FMT' ^FIRST_STRUCTURE ^FR 6 ENG STRUCTURE = 'PEDRENG6.FMT' ^THIRD STRUCTURE = 'PEDRSEC3.FMT' DESCRIPTION = "This is one of seven table definitions that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 6. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr_6_eng_structure' format file describes bytes 501 to 528, and the 'third_structure' format file describes bytes 529 to 776." = PEDR_FR_6_TABLE END OBJECT OBJECT = PEDR_FR_7_TABLE INTERCHANGE_FORMAT = BINARY ROWS = 'UNK' COLUMNS = 68 = 776 ROW BYTES = 'PEDRSEC1.FMT' ^FIRST STRUCTURE ^FR_7_ENG_STRUCTURE = 'PEDRENG7.FMT' ^THIRD_STRUCTURE = 'PEDRSEC3.FMT' = "This is one of seven table definitions DESCRIPTION that apply to the seven possible PEDR record structures, one for each frame. In each data record, byte 492 (counting from one) identifies the frame number for the record. This table structure incorporates the engineering information returned in Frame 7. The 'first_structure' format file includes descriptions of the first 500 bytes of the record, 'fr 7 eng structure' format file describes bytes 501 to 528,

and the 'third_structure' format file describes bytes 529 to

= PEDR_FR_7_TABLE

END

776."

END_OBJECT

C.2 Contents of the MOLA PEDRSEC1.FMT Format File

OBJECT = COLUMN

NAME = FRAME_TIME_WHOLE_SECONDS

DATA_TYPE = MSB_INTEGER

START_BYTE = 1 BYTES = 4

END OBJECT

UNIT = 'SECONDS'

DESCRIPTION = "Frame mid-point time whole seconds. The integer represents the whole portion of the Ephemeris Time (in

number of seconds) past J2000."

_

OBJECT = COLUMN

NAME = FRAME_TIME_FRAC_SECONDS

= COLUMN

DATA_TYPE = MSB_INTEGER

START_BYTE = 5 BYTES = 4

UNIT = 'MICROSECONDS'

DESCRIPTION = "The frame mid-point time fractional seconds, scaled to microseconds. The integer represents the fractional portion of the Ephemeris Time (in number of

microseconds) past J2000."
END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = ORBIT_NUMBER

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 9 BYTES = 4

DESCRIPTION = "Mapping mission orbit number, determined

by Mars Global Surveyor flight operations system."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = AREOCENTRIC_LATITUDE

DATA_TYPE = MSB_INTEGER

START_BYTE = 13 BYTES = 4

UNIT = 'DEGREES * (10**6)'

DESCRIPTION = "The areocentric latitude, IAU1991, of the

MOLA data frame mid-point of the Mars Global Surveyor spacecraft center of mass. Obtained from the MOLA Science

Investigation Team precision orbit data."

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = AREOCENTRIC_LONGITUDE

DATA_TYPE = MSB_INTEGER

START_BYTE = 17 BYTES = 4

UNIT = 'DEGREES * (10**6)'

DESCRIPTION = "The East longitude, IAU1991, of the MOLA data frame mid-point of the Mars Global Surveyor spacecraft center of mass. Obtained from the MOLA Science Investigation

Team precision orbit data."
END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = RADIAL_DISTANCE DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 21 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "The distance from the Mars body center to the Mars Global Surveyor spacecraft center of mass associated with the MOLA frame mid-point, based on a coordinate system with origin at the center of mass of Mars. Obtained from the MOLA Science Investigation Team precision orbit data."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = FRAME_MID_POINT_RANGE DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 25 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "MOLA range (corrected to Mars Global Surveyor center of mass) associated with MOLA data frame midpoint, obtained from a straight line best fitted to the individual MOLA range measurements (up to 20) in the MOLA data frame."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SHOT_QUALITY_FLAG
DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 29 BYTES = 4

DESCRIPTION = "3 bytes - flag whether good/bad shot (20

least

significant bits, one for each of the 20 shots, with least significant bit, 0, being shot 20) and each bit set to 1 for good, 0 for bad shot. 1 byte - good shot counter, (total of bits set to 1 in above 20 bits)."

END_OBJECT = COLUMN

```
OBJECT
                   = COLUMN
NAME
                   = SHOT_QUALITY_DESCRIPTOR_FLAG
DATA_TYPE
                   = LSB_BIT_STRING
START BYTE
                    = 33
BYTES
                    = 16
DESCRIPTION
                    = "Flag indicating whether the packet or
  individual shots passed or failed the various shot quality
  tests. A 1 indicates the test was failed, 0 indicates the test
  was passed. For the bits that flag each shot, the lower bit
  corresponds to shot 1 and the higher bit corresponds to shot
  20. Reading the flag from right to left with the rightmost bit
  being bit 0 and the leftmost bit being bit 63 the format of
  the flag is:
 bit 0: packet validity checksum test, (per packet test)
 bit 1: computer software validity checksum test, (per packet
 bit 2: frame acquisition vs. tracking mode test. (per frame
  test)
 bit 3: first shot of the packet is OTS test, (per packet test)
 bits 4 - 23: transmit power test, (per shot test)
 bits 24 - 43: return energy test, (per shot test)
 bits 44 - 63: range test, (per shot test)
 bits 64 - 83: range window test
 bits 84 - 103: range comparison test
 bits 104 - 127: unused."
OBJECT
                   = BIT_COLUMN
NAME
                    = PACKET VALIDITY CHECKSUM FLAG
                  = UNSIGNED_INTEGER
BIT DATA TYPE
                    = 1
START_BIT
                    = 1
BITS
DESCRIPTION
                    = "Packet validity checksum test flag bit.
  Please see 'shot_quality_descriptor_flag' column object for
  full description."
END OBJECT
                   = BIT_COLUMN
                    = BIT_COLUMN
OBJECT
NAME
                   = SOFTWARE_VALIDITY_CHCKSM_FLAG
                = UNSIGNED_INTEGER
BIT_DATA_TYPE
START BIT
                   = 2
BITS
DESCRIPTION
                    = "Computer software validity checksum test
  flag bit. Please see 'shot_quality_descriptor_flag' column
  object for full description."
END_OBJECT
                    = BIT_COLUMN
OBJECT
                   = BIT COLUMN
NAME
                    = ACQ_TRACK_MODE_TEST_FLAG
```

= UNSIGNED_INTEGER BIT DATA TYPE START_BIT = 3 BITS = "Frame Acquisition vs. Tracking Mode Test DESCRIPTION flag bit. Please see 'shot_quality_descriptor_flag' column object for full description." END_OBJECT = BIT_COLUMN OBJECT = BIT_COLUMN NAME = FIRST_SHOT_OTS_FLAG BIT_DATA_TYPE = UNSIGNED_INTEGER START BIT BITS = 1 DESCRIPTION = "First shot in the packet is OTS test flag bit. Please see 'shot_quality_descriptor_flag' column object for full description." END OBJECT = BIT COLUMN OBJECT = BIT_COLUMN NAME = TRANSMIT_POWER_TEST BIT_DATA_TYPE = UNSIGNED_INTEGER START_BIT = 5 BITS = 20 = "Transmit power test flag bits. Please see DESCRIPTION 'shot_quality_descriptor_flag' column object for full description." END_OBJECT = BIT_COLUMN OBJECT = BIT COLUMN NAME = RETURN_ENERGY_TEST = UNSIGNED_INTEGER BIT_DATA_TYPE = 25 START_BIT = 20 BITS DESCRIPTION = "Return energy test flag bits. Please see 'shot_quality_descriptor_flag' column object for full description." END_OBJECT = BIT_COLUMN END_OBJECT = COLUMN OBJECT = COLUMN NAME = CROSSOVER CORRECTION LAT LON DATA_TYPE = MSB_UNSIGNED_INTEGER = 41 START_BYTE BYTES = 8 ITEMS = 2 ITEM_BYTES = 4 UNIT = 'DEGREES *(10**6)'

DESCRIPTION

= "Array of 2 correction values that were

added to the FRAME_LAT_LON values to account for systematic crossover mismatch."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SHOT_PLANETARY_RADIUS DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 49
BYTES = 80
ITEMS = 20
ITEM BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "Array of 20 MOLA planetary radius values in the data frame; the distance from Mars center of mass to the point on the surface of Mars described by the MOLA range; per shot."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = FRAME_PLANETARY_RADIUS
DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 129 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "Planetary radius associated with MOLA data frame mid-point; the distance from Mars center of mass to the point on the surface of Mars described by the frame mid-point range. Obtained from a weighted fit to the valid observations in the data frame."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = RIGHT_ASCENSION DATA_TYPE = MSB_INTEGER

START_BYTE = 133 BYTES = 4

UNIT = 'MILLIRADIANS'

DESCRIPTION = "Right ascension angle of the MOLA

instrument at data frame mid-point."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = DECLINATION

DATA_TYPE = MSB_INTEGER

START_BYTE = 137

 $\begin{array}{ccc} \text{SIARI_BYIE} & = 13 \\ \text{BYTES} & = 4 \end{array}$

UNIT = 'MILLIRADIANS'

DESCRIPTION = "Declination angle of the MOLA instrument

at data frame mid-point."

END_OBJECT = COLUMN OBJECT = COLUMN NAME = TWIST = MSB_INTEGER DATA_TYPE START_BYTE = 141 = 4 BYTES UNIT = 'MILLIRADIANS' DESCRIPTION = "Twist angle of the MOLA instrument at data frame mid-point." END_OBJECT = COLUMN OBJECT = COLUMN NAME = CORR_RECV_PULSE_ENRGY DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 145 BYTES = 40 = 20 ITEMS = 2 ITEM_BYTES UNIT = 'ATTOJOULES' DESCRIPTION = "Corrected surface-scattered return energy measured by first MOLA channel to trigger (an array of 20 values for the data frame). Saturation of energy detector may occur (see RECV_PULSE_ENERGY_COUNTS)." = COLUMN END_OBJECT OBJECT = COLUMN NAME = SURF_REFLECTIVITY DATA_TYPE = MSB UNSIGNED INTEGER START_BYTE = 185 = 40 BYTES = 20 ITEMS = 2 ITEM_BYTES DESCRIPTION = "Relative Martian surface reflectivity * atmospheric transmittance values, one per shot; stored as a pure fraction * 10**5." END_OBJECT = COLUMN OBJECT = COLUMN NAME = TRIGGER_CHANNEL_NUMBER DATA TYPE = UNSIGNED_INTEGER START_BYTE = 225 BYTES = 20 = 20 ITEMS = 1 ITEM_BYTES DESCRIPTION = "Channel number of first MOLA channel to trigger (array of 20 values for data frame)." END_OBJECT = COLUMN

OBJECT = COLUMN NAME = PULSE_WIDTH DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 245 BYTES = 40 ITEMS = 20 ITEM_BYTES = 2 = 'NANOSECONDS * 10' UNIT DESCRIPTION = "The time between threshold crossings of the detected pulse, one per shot, 20 2-byte values. Detector saturation may occur (see RECV_PULSE_WIDTH_COUNTS)." END OBJECT = COLUMN OBJECT = COLUMN NAME = RECV OPTICAL PULSE WIDTH DATA_TYPE = MSB_UNSIGNED_INTEGER START BYTE = 285 = 40 BYTES = 20 ITEMS ITEM_BYTES = 2 UNIT = 'NANOSECONDS * 10' DESCRIPTION = "Received optical pulse width, corrected for filter characteristics and threshold settings, as determined by the receiver model (an array of 20 values for the data frame). The pulse width provides an estimate of target slope and/or roughness, assuming linear detector response and nadir-looking geometry." END_OBJECT = COLUMN OBJECT = COLUMN NAME = PARALLAX_DELTA_LATITUDE DATA_TYPE = MSB_INTEGER = 325 START_BYTE = 4 BYTES ITEMS = 1 = 'DEGREES*(10**9) PER METER' UNIT DESCRIPTION = "Change in latitude with respect to planetary radius at frame midpoint due to parallax." END_OBJECT = COLUMN OBJECT = COLUMN NAME = PARALLAX DELTA LONGITUDE DATA_TYPE = MSB_INTEGER START_BYTE = 329 BYTES = 4 = 'DEGREES*(10**9) PER METER' UNIT DESCRIPTION = "Change in longitude with respect to planetary radius at frame midpoint due to parallax." = COLUMN

END_OBJECT

OBJECT = COLUMN NAME = CROSSOVER_RESIDUAL DATA_TYPE = MSB_INTEGER START_BYTE = 333 BYTES = 4 UNIT = 'CENTIMETERS' = "Crossover residual of planetary radius DESCRIPTION with respect to MOLA Science Team database at frame midpoint. May be added to planetary radius to correct for radial orbit error." END OBJECT = COLUMN OBJECT = COLUMN NAME = FRAME_LAT_LON DATA_TYPE = MSB_INTEGER START BYTE = 337 = 8 BYTES = 2 ITEMS ITEM_BYTES = 4 = 'DEGREES * (10**6)' UNIT DESCRIPTION = "The areocentric latitude and the East longitude, IAU1991, of the intersection point between the frame mid-point shot and the Mars surface; from Precision Orbit data; 2 4-byte values." END_OBJECT = COLUMN OBJECT = COLUMN = LASER_TRANSMIT_POWER NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 345 = 40 BYTES = 20 ITEMS ITEM_BYTES = 2 UNIT = 'MILLIJOULES * 100' DESCRIPTION = "MOLA laser transmitted pulse energy (array of 20 values for data frame)." = COLUMN END_OBJECT OBJECT = COLUMN NAME = SHOT CLASSIFICATION CODE DATA_TYPE = MSB INTEGER START_BYTE = 385 = 40 BYTES = 20 ITEMS ITEM_BYTES = 2 DESCRIPTION = "Shot classification: 0=false trigger or no trigger; 1=probable ground trigger; other values unassigned."

END_OBJECT = COLUMN OBJECT = COLUMN = CHANNEL_BACKGROUND_NOISE_CTS NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 425 = 32 BYTES = 8 ITEMS = 4 ITEM_BYTES UNIT = 'COUNTS' = "Background noise levels in the MOLA DESCRIPTION channels at half-frame rate; array of 8 four-byte values where array elements 1-4 are 1st half-frame values for channels 1-4 and array elements 5-8 are 2nd half-frame values for channel 1-4." END_OBJECT = COLUMN OBJECT = COLUMN NAME = RANGE_DELAY DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 457 BYTES = 4 UNIT = 'CENTIMETERS' DESCRIPTION = "Frame value of range gate delay (to beginning of range window)." END OBJECT = COLUMN OBJECT = COLUMN NAME = RANGE WIDTH DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 461 = 4 BYTES = 'CENTIMETERS' UNIT DESCRIPTION = "Frame value of range gate width." END_OBJECT = COLUMN OBJECT = COLUMN = CHANNEL_THRESHOLD_SETTINGS NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 465 BYTES = 16 = 8 ITEMS ITEM_BYTES = 2 = 'MILLIVOLTS' UNIT DESCRIPTION = "Threshold settings for the 4 MOLA channels; at half-frame rate; array of 8 two-byte values where array elements 1-4 are 1st half-frame values for channels 1-4 and array elements 5-8 are 2nd half-frame values for channel 1-4."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = RECEIVER_CHAN_MASK
DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 481 BYTES = 2

DESCRIPTION = "The receiver channel mask status; set to

the value read from the ATLMOD sent by the altimeter

electronics; the mask setting indicates which channels are

commanded on and off."

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = ALGORITHM_WORD_MIN_HITS DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 483 BYTES = 2

DESCRIPTION = "The minimum shot hit count value required for a matched filter channel to trigger; MIN_HITS value set in algorithm from the previous data frame."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = ALGORITHM_WORD_HIT_COUNT DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 485 BYTES = 2

DESCRIPTION = "Current value from the active data frame, showing the number of hits counted in the possible 20 shot hits in the single frame or the number of hits summed over the possible 100 shots when in the 5-frame mode. Tracking algorithm performance indicator. If in the acquisition mode, this field will contain the number of shot hits from a possible 80 shots within the 4 frame acquisition window."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = FRAME_COUNTER

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 487 BYTES = 2

DESCRIPTION = "The frame counter value is set from the

previous data frame tracking algorithm operation."

 END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = TRIGGER_CHANNEL
DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 489 BYTES = 2

DESCRIPTION = "The first channel triggering at or above the minimum hit count is set from the previous data frame tracking algorithm operation."

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = FRAME_INDEX

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 491 BYTES = 2

DESCRIPTION = "Frame number (among seven frames produced from the MOLA telemetry packet) generated in Ground Data System processing."

 END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PACKET_SOURCE_HEADER DATA_TYPE = MSB_UNSIGNED_INTEGER

 START_BYTE
 = 493

 BYTES
 = 8

 ITEMS
 = 2

 ITEM_BYTES
 = 4

DESCRIPTION = "The header put on the MOLA telemetry

packet by the Payload Data System."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = TIME_CODE_SECONDS

DATA_TYPE = MSB_INTEGER

START_BYTE = 501 BYTES = 4

UNIT = 'SECONDS'

DESCRIPTION = "The whole portion of the packet time referenced to J2000 in Elapsed Time seconds -- may be a negative number. The time is obtained from the Payload Data System supplied coarse time code that is generated at the time of the MOLA packet collection."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PKT_TIME_CODE_MILLISECONDS

DATA_TYPE = MSB_INTEGER

START_BYTE = 505 BYTES = 2

UNIT = 'MILLISECONDS'

DESCRIPTION = "The fractional portion of the packet time referenced to J2000 in Elapsed Time seconds * 1000 -- may be a

negative number. The time is obtained from the Payload Data System supplied coarse time code that is generated at the time of the MOLA packet collection."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PKT_FINE_TIME

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 507 BYTES = 2

UNIT = 'COUNTS'

DESCRIPTION = "MOLA-generated fine time counter."

END_OBJECT = COLUMN

C.3 Contents of the MOLA PEDRENG1.FMT File

OBJECT = COLUMN

NAME = COMPUTER_MEMORY_TEMPERATURE

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 509 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll}
MINIMUM &= 0 \\
MAXIMUM &= 7203
\end{array}$

DESCRIPTION = "The computer memory temperature."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = COMPUTER CPU TEMPERATURE

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 511 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll} \texttt{MINIMUM} & = 0 \\ \texttt{MAXIMUM} & = 7203 \end{array}$

DESCRIPTION = "The computer CPU temperature."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = POWER_SUPPLY_TEMPERATURE

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 513 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

MINIMUM = 0MAXIMUM = 7203

DESCRIPTION = "The power supply temperature."

END_OBJECT = COLUMN OBJECT = COLUMN NAME = COMPUTER_I/O_TEMPERATURE DATA_TYPE = MSB_SIGNED_INTEGER START_BYTE = 515 = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' MINIMUM = 0= 7203 MAXIMUM = "The computer I/O temperature." DESCRIPTION END OBJECT = COLUMN OBJECT = COLUMN NAME = LASER_DIODE_ARRAY_TEMPERATURE DATA_TYPE = MSB_SIGNED_INTEGER START BYTE = 517 = 2 **BYTES** = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0MUMIXAM = 7203 DESCRIPTION = "The LASER diode array temperature." END OBJECT = COLUMN OBJECT = COLUMN NAME = LASER_DIODE_DRIVE_ELECS_TEMP = MSB_SIGNED_INTEGER DATA_TYPE = 519 START_BYTE = 2 **BYTES** = 'DEGREES CELSIUS * 100' UNIT = 0MINIMUM = 7203 MAXIMUM = "The LASER diode drive electronics DESCRIPTION temperature." END_OBJECT = COLUMN OBJECT = COLUMN = OPTICAL_TEST_SOURCE_LED_TEMP NAME DATA_TYPE = MSB_SIGNED_INTEGER START_BYTE = 521 = 2 BYTES = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0= 7203 MAXIMUM DESCRIPTION = "The optical test source LED temperature." END_OBJECT = COLUMN OBJECT = COLUMN

= HUNDRED_MHZ_OSCILLATOR_TEMP

NAME

DATA TYPE = MSB SIGNED INTEGER START_BYTE = 523 = 2 BYTES = 'DEGREES CELSIUS * 100' UNIT MINIMUM = 0= 7203 MAXIMUM DESCRIPTION = "The 100 MHz Oscillator temperature." END_OBJECT = COLUMN OBJECT = COLUMN = START DETECTOR TEMPERATURE NAME DATA TYPE = MSB SIGNED INTEGER START_BYTE = 525 = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' = 0MINIMUM = 7203 MAXIMUM DESCRIPTION = "The start detector temperature." = COLUMN END_OBJECT OBJECT = COLUMN NAME = OUTSIDE_DETECTOR_HOUSING_TEMP DATA TYPE = MSB SIGNED INTEGER START BYTE = 527 = 2 BYTES = 'DEGREES CELSIUS * 100' UNIT = 0MINIMUM = 7203 MAXIMUM MAXIMO.. DESCRIPTION = "The outside detector housing temperature." END_OBJECT = COLUMN OBJECT = COLUMN NAME = LASR_RADIATR_OPP_OPT_PORT_TEMP = MSB_SIGNED_INTEGER DATA_TYPE START_BYTE = 529 = 2 BYTES UNIT = 'DEGREES CELSIUS * 100' MINIMUM MAXIMUM = 7203 DESCRIPTION = "The LASER radiator opposite output port temperature." END OBJECT = COLUMN OBJECT = COLUMN NAME = LSER_RADIATOR_OUTPUT_PORT_TEMP DATA_TYPE = MSB_SIGNED_INTEGER START_BYTE = 531 BYTES = 2 UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll}
MINIMUM &= 0 \\
MAXIMUM &= 7203
\end{array}$

DESCRIPTION = "The LASER radiator output port

temperature."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = INTERFACE_PLATE_HOT_FOOT_TEMP

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 533 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll}
MINIMUM &= 0 \\
MAXIMUM &= 7203
\end{array}$

DESCRIPTION = "The interface plate temperature."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = HONEYCOMB_PANEL_TEMPERATURE

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 535 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{lll}
MINIMUM & = 0 \\
MAXIMUM & = 7203
\end{array}$

DESCRIPTION = "The honeycomb panel temperature."

END_OBJECT = COLUMN

C.4 Contents of the MOLA PEDRENG2.FMT Format File

OBJECT = COLUMN

NAME = ELECTRONICS_BOX_TOP_SC_THRMSTR

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 509 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll} \texttt{MINIMUM} & = 0 \\ \texttt{MAXIMUM} & = 7203 \end{array}$

DESCRIPTION = "The electronics box top near spacecraft

OBJECT = COLUMN

NAME = LASER_CASE_HOT_FOOT_TEMP

DATA_TYPE = MSB_SIGNED_INTEGER

START_BYTE = 511 BYTES = 2

UNIT = 'DEGREES CELSIUS * 100'

 $\begin{array}{ll}
MINIMUM &= 0 \\
MAXIMUM &= 7203
\end{array}$

DESCRIPTION = "The LASER case near 'hot foot'

temperature."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PLUS_28_VOLT_VOLTAGE_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 513 BYTES = 2

UNIT = 'MILLIVOLTS'

 $\begin{array}{lll}
MINIMUM &= 0 \\
MAXIMUM &= 63531
\end{array}$

DESCRIPTION = "The 28-volt monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = REFERENCE_VOLTAGE_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 515 BYTES = 2

UNIT = 'MILLIVOLTS'

 $\text{MINIMUM} = 0 \\
 \text{MAXIMUM} = 5000$

DESCRIPTION = "The reference voltage monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PLUS_12_VOLT_VOLTAGE_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 517 BYTES = 2

UNIT = 'MILLIVOLTS'

MINIMUM = 0MAXIMUM = 27346

DESCRIPTION = "The 12-volt voltage monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PLUS_24_VOLT_VOLTAGE_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 519 BYTES = 2

UNIT = 'MILLIVOLTS'

 $\begin{array}{lll} \texttt{MINIMUM} & = 0 \\ \texttt{MAXIMUM} & = 65535 \end{array}$

DESCRIPTION = "The 24-volt voltage monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = PLUS_5_VOLT_VOLTAGE_MONITOR = MSB_UNSIGNED_INTEGER DATA_TYPE START_BYTE = 521 = 2 BYTES = 'MILLIVOLTS' UNIT MINIMUM = 0MAXIMUM = 11320DESCRIPTION = "The 5-volt voltage monitor reading." END_OBJECT = COLUMN OBJECT = COLUMN NAME = MINUS_12_VOLT_VOLTAGE_MONITOR DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 523 BYTES = 2 = 'MILLIVOLTS' UNIT = 0MINIMUM MAXIMUM = 27149DESCRIPTION = "The negative-12-volt voltage monitor reading." END_OBJECT = COLUMN OBJECT = COLUMN NAME = LASER_THERMAL_CURRENT_MONITOR = MSB_UNSIGNED_INTEGER DATA_TYPE = 525 START_BYTE = 2 BYTES = 'MILLIAMPS * 10' UNIT = 0MINIMUM = 8462 MAXIMUM = "The LASER/thermal current monitor DESCRIPTION reading." END_OBJECT = COLUMN OBJECT = COLUMN NAME = MINUS_5_VOLT_VOLTAGE_MONITOR DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 527 = 2 **BYTES** UNIT = 'MILLIVOLTS' MINIMUM = 0= 11330 MUMIXAM DESCRIPTION = "The negative-5-volt voltage monitor reading."

= COLUMN

= COLUMN

END_OBJECT

OBJECT

NAME = POWER_SUPPLY_CURRENT_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 529 BYTES = 2

UNIT = 'MILLIAMPS * 10'

 $\begin{array}{ll} \texttt{MINIMUM} & = 0 \\ \texttt{MAXIMUM} & = 8263 \end{array}$

DESCRIPTION = "The power supply current monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = HIGH_VOLTAGE_MONITOR
DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 531 BYTES = 2

UNIT = 'DECIVOLTS'

MINIMUM = 0MAXIMUM = 12349

DESCRIPTION = "The high voltage monitor reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = MINUS_12_VOLT_CURRENT_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 533 BYTES = 2

UNIT = 'MILLIAMPS * 100'

 $\begin{array}{lll}
MINIMUM &= 0 \\
MAXIMUM &= 24424
\end{array}$

DESCRIPTION = "The negative-12-volt current monitor

reading."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PLUS_12_VOLT_CURRENT_MONITOR

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 535 BYTES = 2

UNIT = 'MILLIAMPS * 100'

 $\begin{array}{ll} \texttt{MINIMUM} & = 0 \\ \texttt{MAXIMUM} & = 24395 \end{array}$

DESCRIPTION = "The 12-volt current monitor reading."

END_OBJECT = COLUMN

C.5 Contents of the MOLA PEDRENG3.FMT Format File

OBJECT = COLUMN

NAME = MINUS_5_VOLT_CURRENT_MONITOR

DATA TYPE = MSB UNSIGNED INTEGER START_BYTE = 509 = 2 BYTES = 'MILLIAMPS * 100' UNIT MINIMUM = 0= 25199 MAXIMUM DESCRIPTION = "The negative-5-volt current monitor reading." END_OBJECT = COLUMN OBJECT = COLUMN NAME = PLUS 5 VOLT CURRENT MONITOR DATA_TYPE = MSB_UNSIGNED_INTEGER = 511 START_BYTE = 2 **BYTES** = 'MILLIAMPS * 10' UNIT = 0 MINIMUM = 13537 MUMIXAM = "The 5-volt current monitor reading." DESCRIPTION END_OBJECT = COLUMN OBJECT = COLUMN NAME = CURRENT STATUS REGISTER VALUE DATA_TYPE = UNSIGNED INTEGER = 513 START_BYTE BYTES = 1 = 0MINIMUM = 255 MAXIMUM = "Value read from STATUS register at end of DESCRIPTION packet collection cycle. Read STATUS register and store lower 8 bits. MSnibble = SEU counter value." = COLUMN END_OBJECT OBJECT = COLUMN NAME = SOFTWARE_VERSION_NUMBER = UNSIGNED INTEGER DATA_TYPE START_BYTE = 514 = 1 BYTES MINIMUM = 0MAXIMUM = 255 DESCRIPTION = "The software version number in the telemetry packet in 4.4 bit format." END_OBJECT = COLUMN OBJECT = COLUMN NAME = FLAG_WORD DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 515 **BYTES** = 2

MINIMUM = 0MAXIMUM = 65535 DESCRIPTION = "RAM block test flag word. Memory test results. Bit representation of the results of the RAM write/read/ verify block test performed after a CPU reset (HOT or COLD start). MSB (#15) represents the memory block from 7800h to 7FFFh; LSB (#0) from 0000h to 7FFh. 1 = error detected, 0 = block O.K." END_OBJECT = COLUMN OBJECT = COLUMN NAME = STATUS FLAGS DATA_TYPE = MSB_UNSIGNED_INTEGER = 517 START_BYTE **BYTES** = 4 = 2 ITEMS = 2 ITEM BYTES = 0MINIMUM = 65535 MUMIXAM DESCRIPTION = "Values of SFLAG1 and SFLAG2 stored at packet completion. Each flag represents four 4 bit words. B[0] = byte 0; B[1] = byte 1; B[2] = byte 2; B[3] = byte 3. The meanings of the individual bit settings is in Appendix A of the MOLA Flight Software Users' Guide." END_OBJECT = COLUMN OBJECT = COLUMN NAME = SOFTWARE_VALIDITY_CHECKSUM DATA TYPE = MSB UNSIGNED INTEGER START_BYTE = 521 = 2 **BYTES** = 0MINIMUM = 65535 MUMIXAM = "Checksum (end-around-carry, word adds) DESCRIPTION calculated using start address and length from Parameter Table. One word calculated using (CHKLEN/2)# of word end-around-carry additions start at word # (CHKSTART/2). Note: CHKLEN and CHKSTART exist in the parameter table and are BYTE length and BYTE address or offset. B[0] is MSByte and B[1] is LSByte of software validity checksum." END OBJECT = COLUMN OBJECT = COLUMN NAME = RECEIVED_COMMAND_COUNT DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 523 BYTES = 1 = 0MINIMUM MAXIMUM = 255

DESCRIPTION = "Number of commands received in the DMA buffer, i.e., number separated by CMD_START bits set, never cleared, init = 0. Number of CMD_START bits set in the commands received buffer. Only look at the number of commands received during that RTI interval. Count performed during RTI 4ms 'quiet time'. Counter starts at 0 from a HOT/COLD start, counts up and rolls over from OFFh to OOh." = COLUMN END_OBJECT OBJECT = COLUMN NAME = COMMAND_ERROR_COUNT = UNSIGNED INTEGER DATA TYPE START BYTE = 524 BYTES = 1 MINIMUM = 0= 255 MUMIXAM = "Number of invalid MOLA specific commands DESCRIPTION received, never cleared, init = 0. Command errors counter works the same way as Received command count (see above), except, this counts the # of command errors, defined as wrong instrument id, wrong command type bit, parity error in 1st word of multi-word command, incorrect opcode word (NOT 0x2120) in multi-word command, or unknown single-word command." END_OBJECT = COLUMN OBJECT = COLUMN NAME = TRANSMITTER_THRESHOLD_SETTING DATA_TYPE = MSB_UNSIGNED_INTEGER START BYTE = 525 BYTES = 1 = 0MINIMUM MAXIMUM = 255= "Value of XMITDA from Parameter table, DESCRIPTION stored at packet completion. LSB is equivalent to 1 mv. This byte reports the value of XMITDA from PARAM_TABLE. It is stored in the packet at the end of the packet collection cycle." END_OBJECT = COLUMN OBJECT = COLUMN NAME = RANGE_TRACKING_STATUS DATA TYPE = UNSIGNED INTEGER START BYTE = 526 **BYTES** = 1 = 0MINIMUM MUMIXAM = 255DESCRIPTION = "MSB = OTS_FIRE value, bits 7654321, 1 = TRACKING, 0 = ACQ. MSB (#7) is the LSB of OST_FIRE from PARAM_TABLE, stored at the end of the packet collection cycle.

It is the value used to determine the firing status of the

Optical Test Shot for the first shot of the packet cycle. Bits 6-0 represent frames 7-1 tracking status. 0 means that the software was in acquisition mode for that frame, while 1 represents tracking mode."

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = SPARE

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 527 BYTES = 2

DESCRIPTION = "Two unused bytes."

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = RANGE_GATE_TRACKER_ARRAY

DATA TYPE = MSB UNSIGNED INTEGER

 START_BYTE
 = 529

 BYTES
 = 8

 ITEMS
 = 4

 ITEM_BYTES
 = 2

 MINIMUM
 = 0

 MAXIMUM
 = 255

DESCRIPTION = "The range gate tracker array information is actually 48 bytes of data. These 8 bytes represent the first 8 in the array. Subsequent bytes appear in Frame 4 and 5 engineering data. 73.728 km, 48 HISTOGRAM bins starting at HSTART. 48 sequential bins of the ranging histogram, stored after the sixth shot is collected, but before the ranging algorithm is executed on that frame's data. HSTART, from PARAM_TABLE, with the LSB cleared is the number of the first bin stored. Bins are represented as bytes, but they are stored as words. Therefore, the bytes are swapped. HSTART correction: HSTART = HSTART + 0xFFFE. The following denotes the range of each bin for each data byte (B[x]). C = 1.536km.

B[0] : (HSTART + 1) * C; B[1] : (HSTART + 0) * C; B[2] : (HSTART + 3) * C; B[3] : (HSTART + 2) * C; B[4] : (HSTART + 5) * C; B[5] : (HSTART + 4) * C; B[6] : (HSTART + 7) * C; B[7] : (HSTART + 6) * C; B[8] : (HSTART + 9) * C; B[9] : (HSTART + 8) * C; B[10] : (HSTART + 11) * C; B[11] : (HSTART + 10) * C; B[12] : (HSTART + 13) * C; B[13] : (HSTART + 12) * C; B[14] : (HSTART + 15) * C; B[15] : (HSTART + 14) * C; B[16] : (HSTART + 17) * C; B[17] : (HSTART + 16) * C; B[18] : (HSTART + 19) * C; B[19] : (HSTART + 18) * C; B[20] : (HSTART + 21) * C; B[21] : (HSTART + 20) * C; B[22] : (HSTART + 23) * C; B[23] : (HSTART + 22) * C; B[24] : (HSTART + 25) * C; B[25] : (HSTART + 24) * C; B[26] : (HSTART + 27) * C; B[27] : (HSTART + 26) * C;

```
B[28] : (HSTART + 29) * C; B[29] : (HSTART + 28) * C; B[30] : (HSTART + 31) * C; B[31] : (HSTART + 30) * C; B[32] : (HSTART + 33) * C; B[33] : (HSTART + 32) * C; B[34] : (HSTART + 35) * C; B[35] : (HSTART + 34) * C; B[36] : (HSTART + 37) * C; B[37] : (HSTART + 36) * C; B[38] : (HSTART + 39) * C; B[39] : (HSTART + 38) * C; B[40] : (HSTART + 41) * C; B[41] : (HSTART + 40) * C; B[42] : (HSTART + 43) * C; B[43] : (HSTART + 42) * C; B[44] : (HSTART + 45) * C; B[45] : (HSTART + 44) * C; B[46] : (HSTART + 47) * C; B[47] : (HSTART + 46) * C" END OBJECT = COLUMN
```

C.6 Contents of the MOLA PEDRENG4.FMT Format File

```
OBJECT
                     = COLUMN
NAME
                     = RANGE_GATE_TRACKER_ARRAY
 DATA_TYPE
                     = MSB_UNSIGNED_INTEGER
                     = 509
 START BYTE
 BYTES
                     = 28
                     = 14
 ITEMS
                     = 2
 ITEM_BYTES
                     = 0
 MINIMUM
 MUMIXAM
                     = 255
 DESCRIPTION
                     = "The range gate tracker array information
  is actually 48 bytes of data. These 28 bytes represent bytes 9
  - 36 (counting from 1) in the array. Previous and subsequent
  bytes appear in Frame 3 and 5 engineering data, respectively.
  73.728 km, 48 HISTOGRAM bins starting at HSTART. 48 sequential
  bins of the ranging histogram, stored after the sixth shot is
  collected, but before the ranging algorithm is executed on that
  frame's data. HSTART, from PARAM_TABLE, with the LSB cleared
  is the number of the first bin stored. Bins are represented as
  bytes, but they are stored as words. Therefore, the bytes are
  swapped. HSTART correction: HSTART = HSTART + 0xfffE. The
  following denotes the range of each bin for each data byte
  (B[x]). C = 1.536km.
  B[ 0] : (HSTART + 1) * C; B[ 1] : (HSTART + 0) * C;
  B[ 2] : (HSTART + 3) * C; B[ 3] : (HSTART +
                                                 2) * C;
   B[ 4] : (HSTART + 5) * C; B[ 5] : (HSTART +
                                                 4) * C;
   B[ 6] : (HSTART + 7) * C; B[ 7] : (HSTART +
                                                 6) * C;
   B[ 8] : (HSTART + 9) * C; B[ 9] : (HSTART +
  B[10] : (HSTART + 11) * C; B[11] : (HSTART + 10) * C;
   B[12] : (HSTART + 13) * C; B[13] : (HSTART + 12) * C;
  B[14] : (HSTART + 15) * C; B[15] : (HSTART + 14) * C;
   B[16] : (HSTART + 17) * C; B[17] : (HSTART + 16) * C;
  B[18] : (HSTART + 19) * C; B[19] : (HSTART + 18) * C;
  B[20] : (HSTART + 21) * C; B[21] : (HSTART + 20) * C;
  B[22] : (HSTART + 23) * C; B[23] : (HSTART + 22) * C;
```

```
B[24] : (HSTART + 25) * C; B[25] : (HSTART + 24) * C; B[26] : (HSTART + 27) * C; B[27] : (HSTART + 26) * C; B[28] : (HSTART + 29) * C; B[29] : (HSTART + 28) * C; B[30] : (HSTART + 31) * C; B[31] : (HSTART + 30) * C; B[32] : (HSTART + 33) * C; B[33] : (HSTART + 32) * C; B[34] : (HSTART + 35) * C; B[35] : (HSTART + 34) * C; B[36] : (HSTART + 37) * C; B[37] : (HSTART + 36) * C; B[38] : (HSTART + 39) * C; B[39] : (HSTART + 38) * C; B[40] : (HSTART + 41) * C; B[41] : (HSTART + 40) * C; B[42] : (HSTART + 43) * C; B[43] : (HSTART + 44) * C; B[46] : (HSTART + 47) * C; B[47] : (HSTART + 44) * C; B[46] : (HSTART + 47) * C; B[47] : (HSTART + 46) * C" END OBJECT = COLUMN
```

C.7 Contents of the MOLA PEDRENG5.FMT Format File

```
OBJECT
                     = COLUMN
NAME
                     = RANGE GATE TRACKER ARRAY
                     = MSB UNSIGNED INTEGER
 DATA TYPE
 START_BYTE
                    = 509
 BYTES
                     = 12
                    = 6
 ITEMS
ITEM_BYTES
                    = 2
MINIMUM
                    = 0
                    = 255
MUMIXAM
                     = "The range gate tracker array information
 DESCRIPTION
  is actually 48 bytes of data. These 28 bytes represent bytes
  37-48 (counting from 1) in the array. Previous bytes appear in
  Frame 3 and 4 engineering data. 73.728 km, 48 HISTOGRAM bins
  starting at HSTART. 48 sequential bins of the ranging
  histogram, stored after the sixth shot is collected, but before
  the ranging algorithm is executed on that frame's data. HSTART,
  from PARAM TABLE, with the LSB cleared is the number of the
  first bin stored. Bins are represented as bytes, but they are
  stored as words. Therefore, the bytes are swapped. HSTART
  correction: HSTART =HSTART + 0xFFFE. The following denotes the
  range of each bin for each data byte (B[x]). C = 1.536km.
  B[ 0] : (HSTART + 1) * C; B[ 1] : (HSTART + 0) * C;
  B[ 2] : (HSTART + 3) * C; B[ 3] : (HSTART +
                                                 2) * C;
   B[ 4] : (HSTART + 5) * C; B[ 5] : (HSTART +
                                                 4) * C;
   B[ 6] : (HSTART + 7) * C; B[ 7] : (HSTART +
  B[ 8] : (HSTART + 9) * C; B[ 9] : (HSTART + 8) * C;
   B[10] : (HSTART + 11) * C; B[11] : (HSTART + 10) * C;
  B[12] : (HSTART + 13) * C; B[13] : (HSTART + 12) * C;
   B[14] : (HSTART + 15) * C; B[15] : (HSTART + 14) * C;
  B[16] : (HSTART + 17) * C; B[17] : (HSTART + 16) * C;
  B[18] : (HSTART + 19) * C; B[19] : (HSTART + 18) * C;
  B[20] : (HSTART + 21) * C; B[21] : (HSTART + 20) * C;
```

```
B[22] : (HSTART + 23) * C; B[23] : (HSTART + 22) * C;
  B[24] : (HSTART + 25) * C; B[25] : (HSTART + 24) * C;
   B[26] : (HSTART + 27) * C; B[27] : (HSTART + 26) * C;
  B[28] : (HSTART + 29) * C; B[29] : (HSTART + 28) * C;
  B[30] : (HSTART + 31) * C; B[31] : (HSTART + 30) * C;
  B[32] : (HSTART + 33) * C; B[33] : (HSTART + 32) * C;
  B[34] : (HSTART + 35) * C; B[35] : (HSTART + 34) * C;
  B[36] : (HSTART + 37) * C; B[37] : (HSTART + 36) * C;
  B[38] : (HSTART + 39) * C; B[39] : (HSTART + 38) * C;
  B[40] : (HSTART + 41) * C; B[41] : (HSTART + 40) * C;
  B[42] : (HSTART + 43) * C; B[43] : (HSTART + 42) * C;
  B[44] : (HSTART + 45) * C; B[45] : (HSTART + 44) * C;
  B[46] : (HSTART + 47) * C; B[47] : (HSTART + 46) * C"
END_OBJECT
                     = COLUMN
OBJECT
                     = COLUMN
                     = HSTART VALUE HISTOGRAM DUMP
NAME
DATA TYPE
                    = MSB UNSIGNED INTEGER
                    = 521
 START_BYTE
                    = 4
 BYTES
MINIMUM
                    = 0
 MUMIXAM
                    = 100663296
                   = CENTIMETERS
 UNIT
DESCRIPTION = "Value of HSTART from Parameter table,
  stored at packet completion. Stored at the end of the packet
  collection cycle. HSTART is used to store the Histogram dump
  bins on the previous frame (2 seconds earlier)."
END_OBJECT
                    = COLUMN
OBJECT
                    = COLUMN
 NAME
                     = SPARE
DATA_TYPE
                    = MSB_UNSIGNED_INTEGER
                    = 525
 START_BYTE
                    = 4
 BYTES
ITEMS
                    = 2
ITEM_BYTES
                    = 2
DESCRIPTION
                    = "Four unused bytes."
END_OBJECT
                    = COLUMN
OBJECT
NAME
                    = VALID COMMANDS RECEIVED COUNT
 DATA TYPE
                    = MSB UNSIGNED INTEGER
 START_BYTE
                    = 529
                     = 2
 BYTES
                    = 0
MINIMUM
 MAXIMUM
                    = 65535
                    = "Number of Time broadcast and Parameter
 DESCRIPTION
  update and channel on/off commands executed, never cleared,
  init. = 0. This is a 16 bit counter that starts at 0 after a
```

CPU reset and rolls over from 0FFFFh to 0. Valid MOLA specific commands are defined as Channel ON/OFF commands and Parameter Update command All other MOLA specific commands are either flagged as errors or cause a mode change or CPU reset. B[0] = MSByte and B[1] = LSByte of valid command counter"

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = MEMORY_DUMP_SEGMENT
DATA_TYPE = MSB_UNSIGNED_INTEGER

 START_BYTE
 = 531

 BYTES
 = 6

 ITEMS
 = 3

 ITEM_BYTES
 = 2

 MINIMUM
 = 0

 MAXIMUM
 = 255

DESCRIPTION = "The memory dump segment is 16 bytes in length. This portion represents the first 6 bytes. The next 10 bytes are located in the Frame 6 engineering data. 16 bytes read from memory space starting at ((SEQUENCE & 0x3FFh)*16), dumps 0 - 3FFFh then starts again at 0. Using the lower 11 bits of the SEQUENCE count, stored in this packet, multiplied by 16 as the starting byte address, 8 words are read from RAM and stored in the packet. The following denotes the memory address at each data byte (B[x]). C = ((SEQUENCE & 0x3FFF) *16).

B[0] : C+ 1; B[1] : C+ 0; B[2] : C+ 3; B[3] : C+ 2; B[4] : C+ 5; B[5] : C+ 4; B[6] : C+ 7; B[7] : C+ 6; B[8] : C+ 9; B[9] : C+ 8; B[10] : C+ 11; B[11] : C+ 10; B[12] : C+ 13; B[13] : C+ 12; B[14] : C+ 15; B[15] : C+ 14" END_OBJECT = COLUMN

C.8 Contents of the MOLA PEDRENG6.FMT Format File

OBJECT = COLUMN

NAME = MEMORY_DUMP_SEGMENT
DATA TYPE = MSB UNSIGNED INTEGER

 START_BYTE
 = 509

 BYTES
 = 10

 ITEMS
 = 5

 ITEM_BYTES
 = 2

 MINIMUM
 = 0

 MAXIMUM
 = 255

DESCRIPTION = "The memory dump segment is 16 bytes in length. This portion represents the last 10 bytes. The previous 6 bytes are located in the Frame 5 engineering data. 16 bytes read from memory space starting at ((SEQUENCE & 0x3FFh)*16), dumps 0 - 3FFFh then starts again at 0. Using the lower 11 bits of the SEQUENCE count, stored in this packet, multiplied by 16

as the starting byte address, 8 words are read from RAM and stored in the packet. The following denotes the memory address at each data byte (B[x]). C = ((SEQUENCE & 0x3FFF) *16). B[0] : C+ 1; B[1] : C+ 0; B[2] : C+ 3; B[3] : C+ B[4] : C+ 5; B[5] : C+ 4; B[6] : C+ 7; B[7] : C+ 6; B[8] : C+ 9; B[9] : C+ 8; B[10] : C+ 11; B[11] : C+ 10; B[12] : C+ 13; B[13] : C+ 12; B[14] : C+ 15; B[15] : C+ 14" = COLUMN END_OBJECT OBJECT = COLUMN NAME = COMMAND ECHO DATA_TYPE = MSB UNSIGNED INTEGER START BYTE = 519 BYTES = 16 ITEMS = 8 ITEM_BYTES = 2 MINIMUM = 0MUMIXAM = 65535 = "First 8 command words received during DESCRIPTION current packet, only complete commands are stored, MOLA specific commands only. The software attempts to echo all valid commands. If the command will fit in the room remaining in the buffer, then it is stored and that much room is removed from that which remains in the echo buffer. If a command will not fit, then a buffer overflow is flagged, but subsequent commands that will fit are still stored in the buffer. The command echo buffer is filled with zeros at the start of each packet." END_OBJECT = COLUMN OBJECT = COLUMN NAME = PACKET_VALIDITY_CHECKSUM DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 535 BYTES = 2 MINIMUM = 0MAXIMUM = 65535 DESCRIPTION = "Simple 16 bit addition of entire packet contents upon completion. This location is zeroed for addition. This word is zeroed, then words 0-539 are added without carry to a variable that is initially zero. The resulting lower 16 bits are stored in this location. To verify, read, store, and clear this location. Then, word add without carry these 540 words and compare the lower 16 bits with the stored value." END_OBJECT = COLUMN

C.9 Contents of the MOLA PEDRENG7.FMT Format File

OBJECT = COLUMN

= OTS RANGE NAME

DATA_TYPE = MSB_UNSIGNED_INTEGER

= 509 START_BYTE = 4 BYTES

UNIT = 'CENTIMETERS'

DESCRIPTION = "The range value of the Optical Test Shot

in the packet."

END_OBJECT = COLUMN

OBJECT = COLUMN

= FIRST_CH_RECEIVED_ENERGY NAME DATA TYPE = MSB UNSIGNED INTEGER

START_BYTE = 513 BYTES = 4

UNIT = 'ATTOJOULES'

DESCRIPTION = "The first channel received energy for the

Optical Test Shot."

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = SPARE

DATA_TYPE = MSB_UNSIGNED_INTEGER

DATA_TYPE
START_BYTE = 517 BYTES = 4

= "Unused spare."

DESCRIPTION END_OBJECT END_OBJECT = COLUMN

OBJECT = COLUMN

= OTS TRANSMIT POWER NAME DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 521 = 4 BYTES

= 'NANOJOULES' UNIT

= "The Optical Test Shot transmit power." DESCRIPTION

END_OBJECT = COLUMN

OBJECT = COLUMN

= OTS_PULSE_WIDTH NAME DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 525 **BYTES** = 1

= "The Optical Test Shot pulse width DESCRIPTION

setting."

END_OBJECT = COLUMN

OBJECT = COLUMN

= OTS_PULSE_AMPLITUDE NAME DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 526

BYTES = 1 DESCRIPTION = "The Optical Test Shot pulse amplitude setting." END_OBJECT = COLUMN OBJECT = COLUMN NAME = OTS_QUAL_FLAG DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 527 **BYTES** = 1 = "The Optical Test Shot quality flag." DESCRIPTION END OBJECT = COLUMN OBJECT = COLUMN NAME = PACKET TYPE DATA_TYPE = UNSIGNED_INTEGER START BYTE = 528 BYTES = 1 = "Packet type identifier byte. Distinguishes DESCRIPTION Science Mode packets from Maintenance Mode packets. Science Mode is 0 Maintenance Mode = [1 = Status packet, 2 = memory dump]. Values 3 - 255 are reserved for future modes. Modes 0, 1, 2 are hard coded in the flight software. The packet type value should be patched when a code patch occurs that affects that mode's packet content." END_OBJECT = COLUMN OBJECT = COLUMN = AREOCENTRIC LONGITUDE OF SUN NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 529 = 2 BYTES = 'DEGREES * 100' UNIT = 0 MINIMUM MUMIXAM = 36000 DESCRIPTION = "The angle between the Mars-Sun line and the line of the equinoxes. Mars seasonal variable." END_OBJECT = COLUMN OBJECT = COLUMN NAME = SPARE DATA TYPE = UNSIGNED INTEGER START_BYTE = 531 = 6 BYTES ITEMS = 6 ITEM_BYTES = 1 = "Unused spares." DESCRIPTION END_OBJECT = COLUMN

C.10 Contents of the MOLA PEDRSEC3.FMT Format File

OBJECT = COLUMN

NAME = ORBIT_QUALITY_FLAG

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 537 BYTES = 2

DESCRIPTION = "Flag indicating origin of orbit. A 0 indicates that JPL is the producer; a 1 or higher indicates that the MOLA Science Investigation Team is the producer, using

the potential model GMM-1 or higher."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = ATTITUDE_FLAG

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 539 BYTES = 2

DESCRIPTION = "Flag indicating spacecraft attitude data was not available for all (3) or part (2) of a MOLA frame, in which case ground location is calculated assuming nadir-

pointing geometry."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = FRAME_LOCAL_TIME DATA_TYPE = MSB_INTEGER

START_BYTE = 541 BYTES = 2

UNIT = 'RADIANS * (10**4)'

DESCRIPTION = "The subsolar longitude on Mars at the

frame mid-point, in the range from -Pi to Pi."

END_OBJECT = COLUMN

OBJECT = COLUMN NAME = PHASE ANGLE

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 543 BYTES = 2

UNIT = 'RADIANS * (10**4)'

DESCRIPTION = "The angle between the vectors from Mars to Mars Global Surveyor and from Mars to the Sun at the frame

mid-point location."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SOLAR_INCIDENCE_ANGLE DATA_TYPE = MSB_UNSIGNED_INTEGER

START BYTE = 545

= 2 BYTES

UNIT = 'RADIANS * (10**4)'

DESCRIPTION = "The angle between the Mars surface normal vector and the Sun vector at the frame mid-point location."

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = EMISSION_ANGLE

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 547 BYTES = 2

= 'RADIANS * (10**4)' UNIT

DESCRIPTION = "The angle between the Mars surface normal vector and the Mars Global Surveyor vector at the frame mid-

point location."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = ATMOS_OPACITY

DATA_TYPE = MSB_UNSIGNED_INTEGER

START BYTE = 549 BYTES = 4

DESCRIPTION = "The Mars atmospheric opacity Tau; may be retrieved from TES data. Nominally 0.5. Stored as a pure number

10**6. To calculate surface reflectivity, the reflectivitytransmission product should be divided by exp(2*Tau)."

END_OBJECT = COLUMN

OBJECT = COLUMN

= DP_FRAME_TIME NAME DATA_TYPE = IEEE_REAL

START_BYTE = 553 = 8 BYTES

UNIT = 'SECONDS'

= "The IEEE standard 754-1985 double DESCRIPTION

precision frame mid-point time in elapsed time from J2000, in

seconds."

END OBJECT = COLUMN

OBJECT = COLUMN

NAME = RECV_PULSE_ENERGY_COUNTS

DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 561 BYTES = 20 = 20 ITEMS = 1 ITEM_BYTES

= 'COUNTS' UNIT DESCRIPTION = "The raw pulse energy reading for the trigger channel; in the range 0-255. (An array of 20 values per frame.)" END_OBJECT = COLUMN OBJECT = COLUMN NAME = RECV_PULSE_WIDTH_COUNTS DATA_TYPE = UNSIGNED_INTEGER START_BYTE = 581 = 20 BYTES ITEMS = 20 ITEM BYTES = 1 = 'COUNTS' UNIT = "The raw pulse width reading for the DESCRIPTION trigger channel; in the range 0-63. (An array of 20 values per frame.)" END OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA_SC_LATITUDE DATA_TYPE = MSB_INTEGER START_BYTE = 601 BYTES = 4 UNIT = 'DEGREES*(10**6)' DESCRIPTION = "The average change in spacecraft areocentric latitude associated with each 20-shot MOLA frame." = COLUMN END_OBJECT OBJECT = COLUMN NAME = DELTA_SC_LONGITUDE DATA_TYPE = MSB_INTEGER = 605 START_BYTE = 4 BYTES = 'DEGREES*(10**6)' UNIT DESCRIPTION = "The average change in spacecraft areocentric longitude associated with each 20-shot MOLA frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA_SC_RADIUS DATA TYPE = MSB INTEGER

START_BYTE = 609 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "The average change in spacecraft radial

distance associated with each 20-shot MOLA frame."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = AREOID_RADIUS

DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BYTE = 613 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "The radius of the reference areoid at frame midpoint, with a 3396 kilometer mean radius at the equator. Initially, the Goddard Mars Model 1 (GMM1) of Smith et al., 1993, with the coordinate system of IAU1991, is used."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = OFF_NADIR_ANGLE DATA_TYPE = MSB_INTEGER

START_BYTE = 617 BYTES = 4

UNIT = 'DEGREES * (10**6)'

DESCRIPTION = "Angle between the transmitted laser shot direction and areocentric direction, at spacecraft frame mid-

point."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = ENCODER_BITS
DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 621

BYTES = 20 ITEMS = 20 ITEM BYTES = 1

DESCRIPTION = "The start encoder bits (0-3) plus 16*stop encoder bits (0-3) for each MOLA shot. These bits interpolate the time of the start and stop detectors to improve shot range precision."

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = DELTA_AREOID
DATA_TYPE = MSB_INTEGER

START_BYTE = 641 BYTES = 4

UNIT = 'CENTIMETERS'

DESCRIPTION = "The average change in reference areoid

associated with each 20-shot MOLA frame."

 END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = MOLA_CLOCK_RATE

DATA TYPE = MSB UNSIGNED INTEGER START_BYTE = 645 = 4 BYTES UNIT = 'HERTZ' DESCRIPTION = "The MOLA clock rate estimated from the fine time counter drift with respect to the spacecraft clock." END_OBJECT = COLUMN = COLUMN OBJECT = MOLA_RANGE NAME DATA_TYPE = MSB_UNSIGNED_INTEGER START_BYTE = 649 = 80 BYTES = 20 ITEMS ITEM_BYTES = 4 = 'CENTIMETERS' UNIT DESCRIPTION = "MOLA range value per shot; this value is corrected by the range_correction. Array of 20 four byte values." END_OBJECT = COLUMN = COLUMN OBJECT = RANGE_CORRECTION NAME DATA_TYPE = MSB_INTEGER START_BYTE = 729 BYTES = 40 ITEMS = 20 ITEM_BYTES = 2 = 'CENTIMETERS' UNIT DESCRIPTION = "Correction to the shot range values due to the detector response and range walk. Array of 20 two-byte values." END_OBJECT = COLUMN = COLUMN OBJECT NAME = DELTA_LATITUDE DATA_TYPE = MSB_INTEGER START_BYTE = 769 BYTES = 4 UNIT = 'DEGREES *(10**6)'

DESCRIPTION = "The average change in latitude associated with each 20-shot MOLA frame." END_OBJECT = COLUMN OBJECT = COLUMN NAME = DELTA_LONGITUDE DATA_TYPE = MSB_INTEGER

START_BYTE

BYTES

= 773

= 4

UNIT = 'DEGREES *(10**6)'

DESCRIPTION = "The average change in longitude

associated with each 20-shot MOLA frame."

END_OBJECT = COLUMN