Thermal Emission Imaging System 2001 Mars Odyssey

THEMIS STANDARD DATA PRODUCTS SOFTWARE INTERFACE SPECIFICATION

July 1, 2003

Thermal Emission Imaging System 2001 Mars Odyssey

THEMIS STANDARD DATA PRODUCTS SOFTWARE INTERFACE SPECIFICATION

Prepared by:	Kimberly C. Murray THEMIS Data Archivist	Date
Approved by:	Philip R. Christensen THEMIS Principal Investigator	Date
	Greg L. Mehall THEMIS Instrument Manager	Date
	Noel S. Gorelick THEMIS Principal Systems Programmer	Date
	R. Stephen Saunders Mars Odyssey Project Scientist	Date
	Betty J. Sword PDS Mars Data Engineer	Date

July 1, 2003

DOCUMENT CHANGE LOG

Date	Description	Sections affected
10/01/01	Initial draft	All
02/25/02	Response to PDS Imaging Node review	All
04/01/02	Response to PDS Imaging Node review; QUBE label corresponds with SFDU2CUBE V-1.45	Most
05/31/02	Response to PDS Imaging Node review and external content review; QUBE label corresponds with SFDU2CUBE V-1.50	Most
07/24/02	Revision of TIME keywords in all labels; revision of IREDR CORE_NULL value; revision of RDR label; revision of center corresponds of the VIS filters; QUBE label corresponds with SFDU2CUBE V-1.54	Section 2.3.3; Appendices
10/01/02	Revision of IR-RDR QUBEs calibration (V-4.5) and data format; QUBE label corresponds with SFDU2CUBE V-1.54	Sections 2.2, 3.2; Appendices
	Response to PDS Peer Review	
01/01/03	Addition of IR-BTR and VIS-ABR as Standard Data Products	Title and most sections
	Revision of EDR QUBE headers corresponds with SFDU2CUBE V-1.56; revision of RDR QUBE headers corresponds with IR calibration V-4.6 and VIS calibration V-1.0	Appendices
	Addition of ERRATA_ID history objects	Appendix A.6
04/01/03	Revision of IR-RDR QUBE format; revision of VIS-RDR History Object	Section 3.2; Appendices
07/01/03	Revisions to timing keywords; revision of VIS-RDR History Object	Section 2.3.4, Appendices

CONTENTS

DOCUMENT CHANGE LOG	III
CONTENTS	IV
 INTRODUCTION	1 1 1
2. DATA PRODUCT CHARACTERISTICS AND ENVIRONMENT	2
 2.1 Instrument Overview	3 4 4 6 7 7 7 7 7 7 7 7
 DETAILED DATA PRODUCT SPECIFICATIONS 3.1 Data Product Structure and Organization 3.2 Data Format 3.3 Labels 3.3.1 File Identification and Structure Label 3.3.2 HISTORY Object Structure 3.3.3 Telemetry Table Object Structure 3.3.4 QUBE Object Label 3.3.5 IMAGE Object Label 	9 10 10 10 11 11
 4. APPLICABLE SOFTWARE 4.1 Utility Programs	11
A. APPENDICIES	13
A.1 Example Label: IREDRA.2 Example Label: VISEDRA.3 Example Label: IRRDR	13 15

A.4 Example Label: VISRDR	20
A.5 Example Label: IRBTR	22
A.6 Example Label: VISABR	22
A.7 Label Keyword Descriptions	23
A.8 HISTORY Object Items and Examples	
A.9 Telemetry Table Structure (tlm.fmt)	

ACRONYMS

ABR	Apparent Brightness Record
ASU	Arizona State University
BTR	Brightness Temperature Record
DN	Data Number
EDR	Experiment Data Record
IR	Infrared
IRIS	Infrared Imaging System
IRS	Infrared Subsystem
ISIS	Integrated Software for Imaging Spectrometers
JPL	Jet Propulsion Laboratory
NASA	National Aeronautics and Space Administration
PDS	Planetary Data System
RDR	Reduced Data Record
ODY	2001 Mars Odyssey
SBRS	Santa Barbara Remote Sensing
SFDU	Standard Formatted Data Unit
SIS	Software Interface Specification
TDI	Time -Delay Integration
TE	Thermal Electric
THEMIS	THermal EMission Imaging System
TLM	Telemetry
VIS	Visible

1. INTRODUCTION

1.1 Purpose and Scope

The purpose of this Data Product SIS is to provide users of the Thermal Emission Imaging System (THEMIS) Visible and Infrared standard data products with enough information to enable them to read and understand the data products. THEMIS standard data products include experimental, reduced, and derived data files. The experimental and reduced products (VISEDR, IREDR, VISRDR, and IRRDR) are spectral image QUBEs consisting of one layer per each visible or infrared band collected. The derived (VISABR and IRBTR) are one band IMAGE files produced from the reduced products. The format and content specifications presented here apply to all data collection phases of the 2001 Mars Odyssey Project for which the data products are available. This SIS is intended to be used by the scientists who will analyze the data, including those associated with the 2001 Mars Odyssey Project and those in the general planetary science community.

1.2 Contents

This Standard Data Product SIS describes in detail how the visible and infrared data products are acquired by the THEMIS instrument, and how the data are processed, formatted, labeled, and uniquely identified. The document discusses standards used in generating the product and the software that may be used to access the product. The data product structure and organization is described in sufficient detail to enable a user to read the product. Finally, examples of product labels are provided.

1.3 Applicable Documents and Constraints

This Data Product SIS is responsive to the following 2001 Mars Odyssey documents:

- 1. Mars Exploration Program Data Management Plan, R. E. Arvidson and S. Slavney, Rev. 2, Nov. 2, 2000.
- 2. 2001 Mars Odyssey Orbiter Archive Generation, Validation and Transfer Plan, R. E. Arvidson, R. S. Saunders, and S. Slavney, JPL D-20679, November 3, 2000.

This SIS is also consistent with the following Planetary Data System documents:

- 3. Planetary Data System Data Preparation Workbook, February 1, 1995, Version 3.1, JPL D-7669, Part 1.
- 4. Planetary Data System Data Standards Reference, October 30, 2002, Version 3.5, JPL D-7669, Part 2.
- 5. Planetary Data System Data Dictionary, August 28, 2002, JPL D-7116, Rev E. (Note: The Data Dictionary is being updated to include several THEMIS specific changes.)

The user is referred to the following THEMIS documents for additional information:

6. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, P.R. Christensen, et. Al., Submitted to *Space Science Review*, 2001.

- 7. Calibration Report for the Thermal Emission Imaging System (THEMIS) for the 2001 Mars Odyssey Mission, P.R. Christensen.
- 8. Mars Odyssey THEMIS: Data Processing User's Guide, P.R. Christensen.
- 9. Mars Odyssey THEMIS: Geometric Processing User's Guide.

Finally, this SIS is meant to be consistent with the contract negotiated between the 2001 Mars Odyssey Project and the THEMIS Principal Investigator (PI) in which reduced data records and documentation are explicitly defined as deliverable products.

1.4 Relationships with Other Interfaces

Changes in the standard data products (THM-EDR, THM-RDR, IRBTR, or VISABR) would require changes to this document. Changes to the data products will most likely also affect the processing software described in THEMIS Data Processing User's Guide [8].

2. DATA PRODUCT CHARACTERISTICS AND ENVIRONMENT

2.1 Instrument Overview

The THEMIS instrument is a combined infrared (IR) and visible (VIS) multi-spectral pushbroom imager. The imaging system is comprised of a three-mirror, off-axis, reflecting telescope in a rugged enclosure, a visible/infrared beamsplitter, a silicon focal plane for visible detection, and a microbolometer for infrared detection. The telescope has a 12-cm effective aperture, speed of f/1.6, and co-aligned VIS-IR detector arrays. A major feature of this instrument is the uncooled IR microbolometer array which can be operated at ambient temperature. A small thermal electric (TE) cooler is used to stabilize the detector temperature to ± 0.001 K. The calibration flag is the only moving part in the instrument, allowing for thermal calibration and protection of the detectors from unintentional direct Sun illumination when the instrument is not in use.

THEMIS IR images are acquired at selectable image lengths and in combinations of ten selectable bands. The image width is 320 pixels (32 km, based on the nominal 400 km mapping orbit) and the length is variable, in multiples of 256 line increments, with a minimum and maximum image lengths of 272 and 65,296 lines respectively (27.2 km and 6,530 km, based on the nominal mapping orbit). The IR focal plane is covered by ten ~1 μ m-bandwidth strip filters, producing ten band images with bands 1 and 2 having the same wavelength range. VIS images can be acquired simultaneously with IR images, but the spacecraft can only transfer data from one of the two THEMIS imagers at a time. The IR imager transfers data as it is being collected, while the VIS images are stored within an internal THEMIS buffer for later transfer to the spacecraft computer.

THEMIS VIS images are acquired in framelets of size 1024 pixels crosstrack by 192 lines downtrack, for a total image size of 3.734 Mbytes or less. The number of framelets is determined by the number of bands selected (five available) and the spatial resolution selected (three summing modes available). The size of an image is given by:

 $[((1024 * 192) * #framelets * #bands) \div summing^{2}] = 3.734 \text{ Mbytes}$

For example, if spatial summing is not applied (summing=1), either a single-band, 19-framelet (65.6 km) image or a 5-band 3-framelet (10.3 km) image can be collected. Each VIS image

collected is stored in the THEMIS internal buffer and must be transferred to the spacecraft computer before a subsequent image can be acquired.

The IR and VIS cameras share the instrument optics and housing, but have independent power and data interfaces to the spacecraft. Internal THEMIS data processing may be applied to each image type before storage. IR images may be processed with a time-delay integration (TDI) algorithm which co-adds 16 independent measurements of each point on the ground to improve the signal-to-noise ratio of each pixel. VIS images may be compressed with a lossy data compression algorithm. Both the IR and VIS data streams are downlinked through the spacecraft after lossless data compression has been applied by the hardware Rice data compression algorithm chip. Final data stream formatting for both the IR and VIS data is performed by the spacecraft processor. Further information about onboard processing is available in the THEMIS *Space Science Review* paper [6].

2.2 Data Product Overview

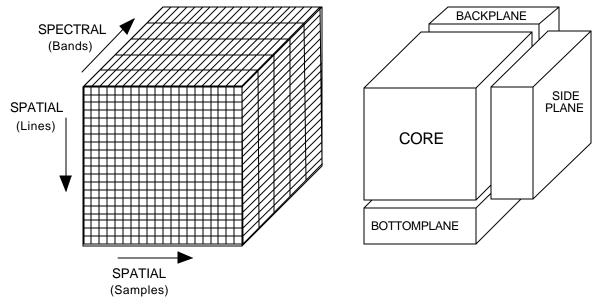
The four THEMIS multi-spectral standard data products (referred to collectively as the THM-EDR and THM-RDR data products) include raw and radiometrically calibrated image QUBEs at either thermal infrared or visible wavelengths. As discussed in the Instrument Overview (Section 2.1), one THEMIS observation results in either a visible image, an infrared image, or both an infrared image and a visible image with overlapping spatial coverage. Additional infrared images, called "reset" and "shutter" images, are collected throughout each orbit for calibration purposes. All images are stored in binary format with an attached ASCII label and header data objects.

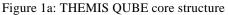
All THEMIS experimental and reduced standard data products are image QUBEs: VISEDR and IREDR contain raw data values; VISRDR and IRRDR contain radiometrically corrected radiance data. The label attached to each product contains identification and observation parameters associated with the image. A HISTORY data object, in ASCII format, follows the label within each product header. For raw infrared products (IREDR), the header includes a second data object containing binary telemetry information sampled regularly throughout the observation. In an image QUBE each layer contains the data from one instrument band; thus, a three band observation will result in a three layer QUBE. Available bands for each camera are listed in Table 1a&b. VIS layers are sorted into ascending wavelength order during QUBE generation. All standard data products are represented in raw raster order; geometric correction of the THM-RDR products is discussed in the THEMIS Geometric Processing User's Guide [9].

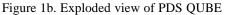
INFRARED BANDS		
Band	Center	FWHM
Numbers	(µm)	(µm)
IR-1	6.78	1.01
IR-2	6.78	1.01
IR-3	7.93	1.09
IR-4	8.56	1.16
IR-5	9.35	1.20
IR-6	10.21	1.10
IR-7	11.04	1.19
IR-8	11.79	1.07
IR-9	12.57	0.81
IR-10	14.88	0.87

VISIBLE BANDS		
Band	Center	FWHM
Numbers	(µm)	(µm)
V-1	0.425	0.049
V-2	0.540	0.051
V-3	0.654	0.053
V-4	0.749	0.053
V-5	0.860	0.045

There are two THEMIS derived standard data products: visible apparent brightness records (VISABR) and infrared brightness temperature records (IRBTR). These products are calculated from a single band of the corresponding RDR product: IRBTRs are derived from band IR-9, or the first available band; VISABRs are derived from band V-3, or the first available band. Each brightness record is stored as an 8-bit IMAGE with an attached label containing identification and the geometric parameters calculated for the center of the observation.


2.3 Standards Used in Generating Data Products


2.3.1 PDS Standards


The THM-EDR and THM-RDR data products comply with Planetary Data System standards for file formats and labels, as specified in the PDS Standards Reference [4].

2.3.2 QUBE Object

All multi-spectral THEMIS data products make use of the PDS spectral QUBE object, adapted from the ISIS cube object and defined in the PDS Standards Reference [4]. A QUBE is an array of sample values in two or more dimensions. The "core" of a THEMIS QUBE is threedimensional, with two spatial dimensions (samples and lines) and one spectral dimension (bands), as shown conceptually in Figure 1a. This format allows THEMIS data to be simultaneously a set of images (at different wavelengths) of the same target area, and also a multi-point spectrum at each spatially registered pixel in the target area. Additional information may be stored in "suffix" planes (back, side, or bottom) as shown in Figure 1b. JPL D-xxxxx

The QUBE object has an attached label containing pertinent observation information, and header data objects (Figure 2). Required keywords, in the "keyword=value" text format of PDS labels, define QUBE structure, CORE parameters, and BAND_BIN information. The header data objects contain information related to the image; for THEMIS QUBEs these may include a HISTORY object and a telemetry TABLE object.

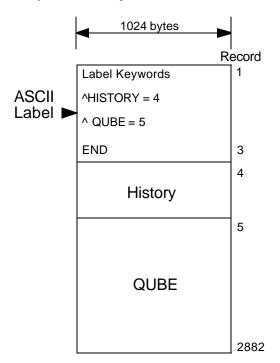


Figure 2: Example of a THEMIS VISEDR QUBE: attached label, header data object, and image QUBE

2.3.3 IMAGE Object

THEMIS brightness products (IRBTR and VISABR) make use of the PDS IMAGE object defined in the PDS Standards Reference [4]. An IMAGE is a two-dimensional array of values organized as line_samples and lines. A THEMIS IMAGE is derived from a single band of a THM-RDR QUBE and has the same dimensions as that band. Each THEMIS IMAGE has an attached label, shown conceptually in Figure 3, containing a summary of observation information in the "keyword=value" format.

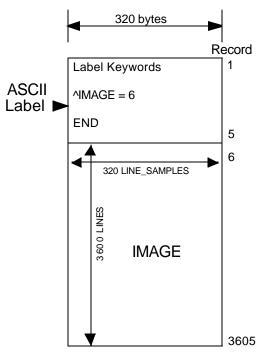


Figure 3: Example of a THEMIS IRBTR: attached label and IMAGE data

2.3.4 Time Standards

The time stamp (SPACECRAFT_CLOCK_START_COUNT) stored with each standard data product is the value of the spacecraft clock at the time of data acquisition of the leading edge of the first detector in the array (filter 1), even if filter 1 is not downlinked. For VIS QUBEs, this time is calculated from the UNCORRECTED_SCLK_START_COUNT and may differ by as much as 4 seconds, depending on which bands are acquired in the observation. The stop time stamp, SPACECRAFT_CLOCK_STOP_COUNT, is calculated from the sum of the UNCORRECTED_SCLK_START_COUNT and IMAGE_DURATION. For VIS QUBEs, the difference of the start and stop time stamps may not be equivalent to IMAGE_DURATION, depending on which bands are acquired in the observation.

The spacecraft clock value is equal to the number of seconds since 12:00 a.m. 1/01/1980 GMT. This number can vary from the number of seconds recorded on earth due to variations in the spacecraft's oscillator or relativistic effects. The portion of the number that occurs after the decimal point is a count of "clock tics" which are 1/256th of a second long; the decimal portion will always be between 0 and 255. All data products also contain time values in UTC (Universal Time Coordinated) and ET (Ephemeris Time) formats, translated from the spacecraft event

times. UTC is the date (year, month, day) and time (hour, minute, second) in GMT. ET is the time in seconds since January 1, 2000 at 12:00:00 in Barycentric Dynamical Time (TDB).

2.3.5 Coordinate Systems

The THM-EDR and THM-RDR data products are not projected into any coordinate system. The image QUBEs are maintained in the raw raster order produced by the instrument, reorganized to group together the data from each band. The QUBE layers are not spatially registered. Layers within a single QUBE can be out of registration with each other by up to 10 lines and/or columns.

THEMIS brightness products (IRBTR and VISABR) are also not projected into any coordinate system, however they do contain some basic geometric parameters in the attached header. All geometric values are based on Mars IAU 2000 areocentric model with east positive longitude. Geometric parameters are generated with a THEMIS specific ISIS software package; for more information see the THEMIS Geometric Processing User's Guide [9].

2.3.6 Orbit Numbering Conventions

The orbit number (ORBIT_NUMBER) stored with each THEMIS data product follows the convention established by the 2001 Mars Odyssey Project. During aerobraking, orbits are counted from the periapsis pass, with orbit 1 being the Mars Orbit Insertion pass. During mapping, orbits are counted from the descending equator crossing, incrementing from the last aerobraking orbit counted.

2.4 Data Product Contents

2.4.1 Data Processing Level

All THEMIS standard data products comply with NASA processing levels standards. THM-EDR are Level-0 spectral image QUBEs of raw THEMIS science data at the full resolution returned from the spacecraft, time ordered, with duplicates and transmission errors removed. THM-RDR are Level-1A spectral image QUBEs, radiometrically calibrated versions of the THM-EDR products. IRBTR and VISABR are Level-1A IMAGEs, calculated from the THM-RDR products with geometric parameters in the header.

2.4.2 Data Product Generation

The THEMIS data products will be generated by the staff at the ASU Mars Space Flight Facility. The data received on the ground are in the form of compressed, scaled, 8-bit "data numbers" (DN). Data processing will consist of decompression, radiometric calibration, and systematic noise removal. The instrument response functions necessary to perform calibration were acquired prior to launch using a thermal vacuum chamber at the SBRS facility (see THEMIS Calibration Report [7]). A detailed discussion of the processing techniques summarized below is available in the THEMIS Data Processing User's Guide [8].

For IR data, the DN values represent the delta signal between the scene and the internal reference calibration flag. After decompression, the data is converted to scene radiance by: (1) adjusting

for the gain and offset levels used during data collection; (2) correcting for drift or offset that occurs between observations of the calibration flag; and (3) converting signal to radiance using the instrument response function determined prior to launch.

For VIS data, the DN values represent relative radiance values which are converted to scene radiance by: (1) correcting for the CCD dark current with nighttime Mars images; and (2) converting signal to radiance using the instrument response function determined prior to launch. Both of the above VIS calibration steps are functions of the exposure setting of the camera, which is one of the defined image parameters available in the image label.

Brightness records are dependent on the values available in the source calibrated data record. The VISABR data values are an 8-bit version of the calibrated radiance, scaled to the minimum and maximum radiance values of each source image. The IRBTR data values are a scaled representation of the brightness temperature measured in degrees Kelvin. To remove the scaling, apply the following function to each data value (x)

 $\mathbf{y} = \mathbf{m} * \mathbf{x} + \mathbf{b}$

where m is the SCALING_FACTOR value and b is the OFFSET value, given in the IMAGE label.

2.4.3 Data Product Archive

Data will be accumulated, calibrated, and validated at the ASU Mars Space Flight Facility. The size of individual data products depends on several factors: image type (VIS vs. IR), length of an image, number of bands in the image, and data type (8-bit raw vs. 16-bit calibrated). Within these parameters, a raw VIS image (VISEDR) can vary in size from 0.38 to 3.7 Mbytes; a raw IR image (IREDR) can vary in size from 0.07 to 199 Mbytes. Calibration of any of these images (VISRDR and IRRDR) increases the size by a factor of two. A brightness record is smaller than the source RDR, usually 0.5 Mbytes to 3.6 Mbytes, with the size primarily dependent on the image type and length of the original observation. Validation will be conducted using the latest, best-effort algorithms available.

The estimated total volume of data to be collected over the course of the mission is limited by the available downlink allocated to THEMIS. Many factors affect the actual downlink available on any given day, which can vary from 0 to more than 400 Mbytes per day. THEMIS mission planners will maximize data collection by balancing the day's available allocated downlink against the size-defining parameters of the daily planned observations (VIS/IR, image length, number of bands).

Data products will be archived and released following the agreement outlined in the 2001 Mars Odyssey Orbiter Archive Plan [2]. Due to the large volume of data products expected from the mission, physical copies will be made for PDS long-term archive purposes only. All other data distribution will be facilitated through an online THEMIS data archive service, maintained by the ASU Mars Space Flight Facility.

2.4.4 Labeling and Identification

Each THEMIS data product is stored in a single file following the PDS SPECTRAL_QUBE format. Data products are uniquely identified by the PRODUCT_ID which is based on the abbreviated description of the product type, the data collected time, and the data processing level

(see Section 3.1). File names follow the PDS convention of "PRODUCT_ID".QUB or "PRODUCT_ID".IMG.

Each product has an attached PDS label (see Section 3.3), which includes a PRODUCT_VERSION_ID keyword in the event that a revision to the product must be made after the initial public release. If a revision is required, the PRODUCT_VERSION_ID value will be incrimented, an ERRATA_ID will be established, and the change made will be documented. An ERRATA_ID value takes the form of ODTaa_rrrr_v.v, where

- ODTaa is the abbreviated dataset description; [ODTIB = IRBTR dataset; ODTIE = IREDR dataset; ODTIR = IRRDR dataset; ODTVB = VISABR dataset; ODTVE = VISEDR dataset; ODTVR = VISRDR dataset;]
- rrrr is a zero padded, 4-digit RELEASE_ID number identifying when the product was originally released; [0001 = data released in October 2002]
- v.v is the PRDUCT_VERSION_ID value [1.0 = first release of product]

Every ERRATA_ID will be documented in the ERRATA.TXT, the appropriate ODTaaREL.CAT, and the modified fields of the INDEX.TAB. For QUBE objects (THM-EDRs and THM-RDRs), a description of the applied errata will be added to the HISTORY object (see Appendix A.8).

3. DETAILED DATA PRODUCT SPECIFICATIONS

3.1 Data Product Structure and Organization

Each THEMIS data product is an individual file with a unique label. Data products are organized in the time-sequential order that they were collected during the mission. Each file name consists of an alphanumeric identifier following the pattern "AooooonnnPPP.EXT", where

А	is a 1-letter description of the type of image collected; [$V = visible$ image; I =
	infrared image; $R = infrared$ reset image; $S = infrared$ shutter image]
00000	is a 5-digit mission orbit number when the image was collected; [01000 =
	mapping orbit number example]
nnn	is a 3-digit image sequence number indicating the order that images were
	collected each orbit; [001 = first image collected in the xxxxx orbit]
PPP	is a 3-letter description of the processing level of the image data; [ABR = visible
	derived apparent brightness data; BTR = infrared derived brightness temperature

- derived apparent brightness data; BTR = infrared derived brightness temperature data; EDR = raw data; RDR = radiometrically calibrated data]
- .EXT is a 3-letter extension describing this product; [IMG = PDS IMAGE format; QUB = PDS SPECTRAL_QUBE format]

More information, including mission orbit numbers, spacecraft clock times, processing dates, and version numbers, are accessible in the ASCII label described in Section 3.3 below.

3.2 Data Format

The THM-EDR data products are uncompressed, binary, band-sequential QUBEs of 8-bit integers. The image width is fixed (320 pixels for IR, 1024 pixels for VIS), but the length varies proportional to the duration of the observation. The number of layers in a THM-EDR QUBE

corresponds to the number of bands selected for the observation: an IREDR may have up to 10 layers; a VISEDR may have up to 5 layers.

The format of the IRRDR QUBEs is identical to the source IREDR QUBE, except that the data are stored as floating point values, scaled into 16-bit integers. To recover the floating point values, apply the following function to each data value per band (x_i)

$y_i = m_i \ast x_i + b_i$

where m_i is the BAND_BIN_MULTIPLIER value for band i, and b_i is the BAND_BIN_BASE value for band i. These scaling factors are given in the BAND_BIN group within each IRRDR QUBE label.

The format of the VISRDR QUBEs is identical to the source VISEDR QUBE, except that the data are stored as 16-bit MSB integers.

The THEMIS brightness products are uncompressed, binary, single band IMAGEs of 8-bit integers. The length and width of the IMAGE is identical to a single band of the source THM-RDR QUBE.

For IR QUBEs, missing data pixels are set to the CORE_NULL value and the total count of missing lines is stored in the MISSING_SCAN_LINES keyword. For VISEDR QUBEs, missing data pixels are either filled with zero values, if several complete lines are missing, or they are filled with a pattern of values, if a section of a line is missing. In VISRDR QUBEs, the missing data pixels are set to zero.

3.3 Labels

The PDS label describes the structure, content, and observation specifications of the data. It is attached as ASCII text at the beginning of each image file. Information in the label are stored in a "keyword=value" text format and structured in the Object Definition Language (ODL) of PDS. Example labels are shown in Appendices A.1-A.6; individual keyword items are defined in Appendices A.7-A.9.

3.3.1 File Identification and Structure Label

The first lines of the label are the file identification keywords and associated values. Next are the file structure keywords, which define the number and size of records in the data file, followed by the pointer keywords, which define the start byte of the header data objects and the image data. Finally, 'identification data elements' define parameters of the mission, spacecraft, instrument team, and data stream. See Appendix A.7 for a detailed description of these keywords.

3.3.2 HISTORY Object Structure

A HISTORY object is available in each THEMIS QUBE. The HISTORY object structure keywords define the size and format of the data object stored later in the header. The HISTORY object itself is a structured series of text entries identifying all previous computer manipulations of the data in the file; the format is not intended to be compliant with PDS-ODL standards. HISTORY entries may include identification of source data, processes performed, processing parameters, and dates and times of processing. See Appendix A.8 for a detailed description of the entries and keywords used with THM-EDR and THM-RDR HISTORY objects.

3.3.3 Telemetry Table Object Structure

The telemetry (TLM) table is only available in the raw infrared data products (IREDR). The TLM table object structure keywords define the size and format of the table object stored later in the header. See Appendix A.7 for a detailed content description of the TLM table.

The TLM table itself follows the PDS TABLE structure using fixed length binary records sorted time-sequentially. The table structure is defined in an external, ASCII file identified in the pointer keyword as "tlm.fmt". It contains details such as the table dimensions, a general description of the telemetry data source, and definitions of each table column. Column definitions include the following details: name, starting position (in bytes), size (in bytes), data type, description, and scaling factors if applicable. In some cases, the column being described is composed of multiple bit-fields; the individual meaning of each bit-field is described with the same details listed above.

The TLM table records can be accessed using the DAVINCI software package described in Section 4.1 below.

3.3.4 QUBE Object Label

The QUBE object keywords make up the bulk of a QUBE label and are organized by the following sub-structure descriptions:

QUBE structure	- parameters of the multidimensional array (image)
CORE description	- parameters of the array elements (pixels)
Observation parameters	- operational modes of the instrument for this image
Band-bins	- parameters of the layers (bands) in the array

See Appendix A.7 for a detailed description of the keywords used in the QUBE label.

3.3.5 IMAGE Object Label

The IMAGE object label describes the size and format of the image data. Since scaling has been applied to the IRBTR data, this label contains the required values to reproduce the true data. See Appendix A.7 for a detailed description of the keywords used in the IMAGE label.

4. APPLICABLE SOFTWARE

4.1 Utility Programs

The THEMIS team uses the software tools DAVINCI and ISIS to display and analyze the image QUBEs. DAVINCI is a data analysis package for working with images and image QUBEs. DAVINCI is distributed by ASU and is available at http://davinici.asu.edu/software. ISIS is an image processing package produced by USGS - Flagstaff and is available at http://astrogeology.usgs.gov/Projects/ISIS.

The software tool VANILLA is used to extract the telemetry (TLM) table object embedded in the image header. Vanilla was produced by the MGS-TES team at ASU to read and manipulate PDS tables and the variable-length records. Since DAVINCI can extract and read the TLM

table, most users will not need to acquire VANILLA, however, the software is available at http://tes.asu.edu/software.

4.2 Applicable PDS Software Tools

The THEMIS team uses no PDS software to view, manipulate or process the data. However, the images are stored and labeled using the PDS QUBE standard structure and any tool that understands that structure should be able to view them.

A. APPENDICIES

Appendices A.1-4 contains example labels from THEMIS IREDR, VISEDR, IRRDR, and VISRDR image QUBEs; appendices A.5-6 contain example labels from THEMIS IRBTR and VISABR IMAGEs. Definitions of individual items contained in the label are given in Appendix A.7 and are listed in the order of appearance within a QUBE label. "Valid values" for each item are shown in [] at end of each description, as appropriate. Appendix A.8 contains definitions for the basic HISTORY items used and example HISTORY objects. Appendix A.9, Telemetry Table Structure contains a copy of the "tlm.fmt" file which defines and describes that object.

A.1 Example Label: IREDR

An example IREDR label is shown below:

PDS_VERSION_ID = PDS3

/* File Identification and Structure */ RECORD_TYPE = "FIXED_LENGTH" RECORD_BYTES = 320 FILE_RECORDS = 18087 LABEL_RECORDS = 8

/* Pointers to Data Objects */ ^HISTORY = 9 ^TABLE = 11 ^SPECTRAL_QUBE = 12

```
/* Identification Data Elements */
```

```
MISSION NAME = "2001 MARS ODYSSEY"
INSTRUMENT HOST NAME = "2001 MARS ODYSSEY"
INSTRUMENT NAME = "THERMAL EMISSION IMAGING SYSTEM"
INSTRUMENT ID = "THEMIS"
DETECTOR ID = "IR"
MISSION_PHASE_NAME = "MAPPING"
TARGET NAME = "MARS"
PRODUCT ID = "I00013007EDR"
PRODUCER ID = "ODY THM TEAM"
DATA SET ID = "ODY-M-THM-2-IREDR-V1.0"
PRODUCT_CREATION_TIME = 2002-03-08T21:54:02
PRODUCT VERSION ID = "1.0"
RELEASE ID = "0001"
START_TIME = 2001-11-02T14:38:30.010
STOP TIME = 2001-11-02T14:39:30.271
SPACECRAFT CLOCK START COUNT = "689179146.000"
SPACECRAFT CLOCK STOP COUNT = "689179206.067"
START_TIME_ET = 57983974.192
```

```
STOP_TIME_ET = 57984034.453
ORBIT_NUMBER = 00013
/* History Object Structure */
OBJECT = HISTORY
BYTES = 640
HISTORY_TYPE = CUSTOM
INTERCHANGE_FORMAT = ASCII
END_OBJECT = HISTORY
/* Telemetry Table Structure */
OBJECT = TABLE
```

```
NAME = TLM
ROWS = 2
^STRUCTURE = "tlm.fmt"
END_OBJECT = TABLE
```

OBJECT = SPECTRAL_QUBE

```
/* QUBE Structure */
AXES = 3
AXIS_NAME = (SAMPLE, LINE, BAND)
```

```
/* Core Description */
CORE_ITEMS= (320, 1808, 10)
CORE_NAME = "RAW_DATA_NUMBER"
CORE_ITEM_BYTES = 1
CORE_ITEM_TYPE = MSB_UNSIGNED_INTEGER
CORE_BASE = 0.0
CORE_MULTIPLIER = 1.0
CORE_UNIT = "DIMENSIONLESS"
CORE_NULL = 0
```

```
/* Observation Parameters */
FLIGHT_SOFTWARE_VERSION_ID = "1.00"
COMMAND_SEQUENCE_NUMBER = 13
IMAGE_ID = 7
DESCRIPTION = "Example IR image"
INST_CMPRS_RATIO = 2.70
UNCORRECTED_SCLK_START_COUNT = "689179146.000"
IMAGE_DURATION = 60.067
GAIN_NUMBER = 8
OFFSET_NUMBER = 0
TIME_DELAY_INTEGRATION_FLAG = "ENABLED"
MISSING_SCAN_LINES = 0
```

MD5_CHECKSUM = "fe027fe2ca98562a1d61e0d6be3284d0"

/*Band Bins */ GROUP = BAND_BIN BAND_BIN_FILTER_NUMBER = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) BAND_BIN_ BAND_NUMBER = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) BAND_BIN_CENTER = (6.78, 6.78, 7.93, 8.56, 9.35, 10.21, 11.04, 11.79, 12.57, 14.88) BAND_BIN_WIDTH = (1.01, 1.01, 1.09, 1.16, 1.20, 1.10, 1.19, 1.07, 0.81, 0.87) BAND_BIN_UNIT = "MICROMETER" END_GROUP = BAND_BIN

END_OBJECT = SPECTRAL_QUBE

END

A.2 Example Label: VISEDR

An example VISEDR label is shown below:

PDS_VERSION_ID = PDS3

/* File Identification and Structure */ RECORD_TYPE = "FIXED_LENGTH" RECORD_BYTES = 1024 FILE_RECORDS = 2882 LABEL_RECORDS = 2

/* Pointers to Data Objects */ ^HISTORY = 3 ^SPECTRAL_QUBE = 4

```
/* Identification Data Elements */
MISSION_NAME = "2001 MARS ODYSSEY"
INSTRUMENT_HOST_NAME = "2001 MARS ODYSSEY"
INSTRUMENT_INAME = "THERMAL EMISSION IMAGING SYSTEM"
INSTRUMENT_ID = "THEMIS"
DETECTOR_ID = "VIS"
MISSION_PHASE_NAME = "MAPPING"
TARGET_NAME = "MARS"
PRODUCT_ID = "V00013003EDR"
PRODUCER_ID = "ODY_THM_TEAM"
DATA_SET_ID = "ODY-M-THM-2-VISEDR-V1.0"
PRODUCT_CREATION_TIME = 2002-03-08T21:45:02
PRODUCT_VERSION_ID = "1.0"
RELEASE_ID = "0001"
```

START_TIME = 2001-11-02T14:38:49.010 STOP_TIME = 2001-11-02T14:38:56.010 SPACECRAFT_CLOCK_START_COUNT = "689179165.000" SPACECRAFT_CLOCK_STOP_COUNT = "689179172.000" START_TIME_ET = 57983993.192 STOP_TIME_ET = 57984000.192 ORBIT_NUMBER = 00013

```
/* History Object Structure */
OBJECT = HISTORY
BYTES = 1024
HISTORY_TYPE = CUSTOM
INTERCHANGE_FORMAT = ASCII
END_OBJECT = HISTORY
```

OBJECT = SPECTRAL_QUBE

/* QUBE Structure */ AXES = 3 AXIS_NAME = (SAMPLE, LINE, BAND)

```
/* Core Description */

CORE_ITEMS= (1024, 576, 5)

CORE_NAME = "RAW_DATA_NUMBER"

CORE_ITEM_BYTES = 1

CORE_ITEM_TYPE = MSB_UNSIGNED_INTEGER

CORE_BASE = 0.0

CORE_MULTIPLIER = 1.0

CORE_MULTIPLIER = 1.0

CORE_UNIT = "DIMENSIONLESS"

CORE_NULL = 0
```

```
/* Observation Parameters */

FLIGHT_SOFTWARE_VERSION_ID = "1.00"

COMMAND_SEQUENCE_NUMBER = 13

IMAGE_ID = 3

DESCRIPTION = "Example VIS image"

INST_CMPRS_RATIO = 1.93

UNCORRECTED_START_SCLK_COUNT = "689179165.000"

IMAGE_DURATION = 7.000

INST_CMPRS_NAME = "PREDICTIVE"

FOCAL_PLANE_TEMPERATURE = -0.42

EXPOSURE_DURATION = 3.000

INTERFRAME_DELAY = 1.000

SPATIAL_SUMMING = 1

MD5_CHECKSUM = "851ab2a81c55db940fc59200d9ba6f6f"
```

```
XXX-XXX
```

```
/*Band Bins */
GROUP = BAND_BIN
BAND_BIN_FILTER_NUMBER = (2, 5, 3, 4, 1)
BAND_BIN_BAND_NUMBER = (1, 2, 3, 4, 5)
BAND_BIN_CENTER = (0.425, 0.540, 0.654, 0.749, 0.860)
BAND_BIN_WIDTH = (0.049, 0.051, 0.053, 0.053, 0.045)
BAND_BIN_UNIT = "MICROMETER"
END_GROUP = BAND_BIN
```

END_OBJECT = SPECTRAL_QUBE

END

A.3 Example Label: IRRDR

An example IRRDR label is shown below:

PDS_VERSION_ID = PDS3

/* File Identification and Structure */ RECORD_TYPE = "FIXED_LENGTH" RECORD_BYTES = 644 FILE_RECORDS = 18114 LABEL_RECORDS = 7

/* Pointers to Data Objects */ ^HISTORY = 8 ^SPECTRAL_QUBE = 15

```
/* Identification Data Elements */
MISSION NAME = "2001 MARS ODYSSEY"
INSTRUMENT HOST NAME = "2001 MARS ODYSSEY"
INSTRUMENT NAME = "THERMAL EMISSION IMAGING SYSTEM"
INSTRUMENT_ID = "THEMIS"
DETECTOR_ID = "IR"
MISSION_PHASE_NAME = "MAPPING"
TARGET NAME = "MARS"
PRODUCT ID = "I00013007RDR"
PRODUCER ID = "ODY THM TEAM"
DATA SET ID = "ODY-M-THM-3-IRRDR-V1.0"
PRODUCT CREATION TIME = 2002-03-08T22:00:02
PRODUCT VERSION ID = "1.0"
RELEASE ID = "0002"
START_TIME = 2001-11-02T14:38:30.010
STOP TIME = 2001-11-02T14:39:30.271
SPACECRAFT_CLOCK_START_COUNT = "689179146.000"
```

SPACECRAFT CLOCK STOP COUNT = "689179206.067"

START_TIME_ET = 57983974.192 STOP TIME ET = 57984034.453

ORBIT NUMBER = 00013/* History Object Structure */ **OBJECT = HISTORY** BYTES = 1932HISTORY TYPE = CUSTOM INTERCHANGE FORMAT = ASCII END OBJECT = HISTORY **OBJECT = SPECTRAL QUBE** /* QUBE Structure */ AXES = 3AXIS_NAME = (SAMPLE, LINE, BAND) /* Core Description */ CORE ITEMS= (320, 1808, 10) CORE NAME = "CALIBRATED SPECTRAL RADIANCE" CORE ITEM BYTES = 2CORE ITEM TYPE = SUN INTEGER CORE BASE = 0.000000CORE MULTIPLIER = 1.000000CORE UNIT = "WATT*CM**-2*SR**-1*UM**-1" CORE NULL = -32768 $CORE_VALID_MINIMUM = -32752$ CORE LOW REPR SATURATION = -32757CORE LOW INSTR SATURATION = -32766CORE HIGH REPR SATURATION = -32765 CORE_HIGH_INSTR_SATURATION = -32764 /* Suffix Description */ SUFFIX ITEMS = (1, 1, 0)SUFFIX BYTES = 4SAMPLE SUFFIX NAME = HORIZONTAL DESTRIPE SAMPLE SUFFIX ITEM BYTES = 2SAMPLE SUFFIX ITEM TYPE = MSB INTEGER SAMPLE SUFFIX BASE = -0.001143SAMPLE_SUFFIX_MULTIPLIER = 0.002281 SAMPLE SUFFIX VALID MINIMUM = 16#FF7FFFA# SAMPLE_SUFFIX_NULL = 16#FF7FFFB# SAMPLE SUFFIX LOW REPR SATURATION = 16#FF7FFFC# SAMPLE SUFFIX LOW INSTR SATURATION = 16#FF7FFFD# SAMPLE SUFFIX HIGH REPR SATURATION = 16#FF7FFFF#

```
JPL D-XXXXX
```

SAMPLE SUFFIX HIGH INSTR SATURATION = 16#FF7FFFE# LINE_SUFFIX_NAME = VERTICAL_DESTRIPE LINE SUFFIX ITEM BYTES = 2LINE SUFFIX ITEM TYPE = MSB INTEGER LINE SUFFIX BASE = -0.000626LINE SUFFIX MULTIPLIER = 0.00747 LINE SUFFIX VALID MINIMUM = 16#FF7FFFA# LINE SUFFIX NULL = 16#FF7FFFB# LINE SUFFIX LOW REPR SATURATION = 16#FF7FFFC# LINE SUFFIX LOW INSTR SATURATION = 16#FF7FFFD# LINE SUFFIX HIGH REPR SATURATION = 16#FF7FFFF# LINE _SUFFIX_HIGH_INSTR_SATURATION = 16#FF7FFFE#

```
/* Observation Parameters */
FLIGHT_SOFTWARE_VERSION_ID = "1.00"
COMMAND SEQUENCE NUMBER = 13
IMAGE ID = 7
DESCRIPTION = "Example IR image"
INST CMPRS RATIO = 2.70
UNCORRECTED_START_SCLK_COUNT = "689179146.000"
IMAGE DURATION = 60.067
GAIN NUMBER = 8
OFFSET NUMBER = 0
TIME DELAY INTEGRATION FLAG = "ENABLED"
MISSING SCAN LINES = 0
MD5 CHECKSUM = "cbfa3fbc6b5304ffa2976fe795e4931f"
```

```
/*Band Bins */
```

```
GROUP = BAND BIN
  BAND BIN FILTER NUMBER = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
  BAND BIN BAND NUMBER = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
  BAND BIN CENTER = (6.78, 6.78, 7.93, 8.56, 9.35, 10.21, 11.04, 11.79, 12.57,
                         14.88)
  BAND BIN WIDTH = (1.01, 1.01, 1.09, 1.16, 1.20, 1.10, 1.19, 1.07, 0.81, 0.87)
  BAND_BIN_UNIT = "MICROMETER"
  BAND BIN BASE = (2.656679681e-05, 2.74269205e-05, 3.729695163e-05,
                       4.733170135e-05, 6.271082384e-05, 7.835045108e-05,
                       8.724376676e-05, 9.393366781e-05, 0.000105464962e-05,
                       7.620971883e-05)
  BAND BIND MULITPLIER = (8.363602033e-10, 8.980139965e-10,
                               8.593996625e-10, 90.89641817e-10,
                                1.057962828e-09, 1.188111942e-09,
                                1.290969553e-09, 1.365228153e-09,
                                1.36689926e-09. 1.159281893e-09)
```

END GROUP = BAND BIN

END_OBJECT = SPECTRAL_QUBE

END

A.4 Example Label: VISRDR

An example VISRDR label is shown below:

PDS_VERSION_ID = PDS3

/* File Identification and Structure */ RECORD_TYPE = "FIXED_LENGTH" RECORD_BYTES = 2048 FILE_RECORDS = 2882 LABEL_RECORDS = 2

/* Pointers to Data Objects */ ^HISTORY = 3 ^SPECTRAL_QUBE = 5

/* Identification Data Elements */

MISSION NAME = "2001 MARS ODYSSEY" INSTRUMENT_HOST_NAME = "2001 MARS ODYSSEY" INSTRUMENT NAME = "THERMAL EMISSION IMAGING SYSTEM" **INSTRUMENT ID = "THEMIS"** DETECTOR ID = "VIS" MISSION_PHASE_NAME = "MAPPING" TARGET NAME = "MARS" PRODUCT ID = "V00013102RDR" PRODUCER ID = "ODY THM TEAM" DATA_SET_ID = "ODY-M-THM-3-VISRDR-V1.0" PRODUCT CREATION TIME = 2002-03-08T22:01:02 PRODUCT_VERSION_ID = "1.0" RELEASE ID = "0002" START_TIME = 2001-11-02T14:38:49.010 STOP TIME = 2001-11-02T14:38:56.010 SPACECRAFT CLOCK START COUNT = "689179165.000" SPACECRAFT CLOCK STOP COUNT = "689179172.000" START TIME ET = 57983993.192 STOP TIME ET = 57984000.192 $ORBIT_NUMBER = 00013$

/* History Object Structure */ OBJECT = HISTORY BYTES = 4096 HISTORY_TYPE = CUSTOM

```
INTERCHANGE_FORMAT = ASCII
END_OBJECT = HISTORY
```

OBJECT = SPECTRAL_QUBE

/* QUBE Structure */ AXES = 3 AXIS_NAME = (SAMPLE, LINE, BAND)

/* Core Description */ CORE_ITEMS= (1024, 576, 5) CORE_NAME = "CALIBRATED_SPECTRAL_RADIANCE" CORE_ITEM_BYTES = 2 CORE_ITEM_TYPE = MSB_INTEGER CORE_BASE = 0.003023635 CORE_MULTIPLIER = 7.868385E-08 CORE_UNIT = "WATT*CM**-2*SR**-1UM**-1" CORE_NULL = -32768 CORE_VALID_MINIMUM = -32752 CORE_LOW_INSTR_SATURATION = -32766 CORE_LOW_REPR_SATURATION = -32765 CORE_HIGH_INSTR_SATURATION = -32764

/* Observation Parameters */

FLIGHT_SOFTWARE_VERSION_ID = "1.0" COMMAND_SEQUENCE_NUMBER = 13 IMAGE_ID = 102 DESCRIPTION = "Example VIS image" INST_CMPRS_RATIO = 1.93 UNCORRECTED_START_SCLK_COUNT = "689179165.000" IMAGE_DURATION = 7.000 INST_CMPRS_NAME = "PREDICTIVE" FOCAL_PLANE_TEMPERATURE = 6.17 EXPOSURE_DURATION = 6.000 INTERFRAME_DELAY = 1.000 SPATIAL_SUMMING = 1 MD5_CHECKSUM = "d724f3012fc0ed96bea02f039dc70fd4"

/*Band Bins */

GROUP = BAND BIN

BAND_BIN_FILTER_NUMBER = (2, 5, 3, 4, 1) BAND_BIN_ BAND_NUMBER = (1, 2, 3, 4, 5) BAND_BIN_CENTER = (0.425, 0.540, 0.654, 0.749, 0.860) BAND_BIN_WIDTH = (0.049, 0.051, 0.053, 0.053, 0.045) BAND_BIN_UNIT = "MICROMETER" END_GROUP = BAND_BIN

END_OBJECT = SPECTRAL_QUBE

END

A.5 Example Label: IRBTR

An example IRBTR label is shown below:

```
PDS VERSION ID = PDS3
FILE NAME = "I00013007BTR.IMG"
RECORD TYPE = FIXED LENGTH
RECORD BYTES = 320
FILE RECORDS = 3605
LABEL RECORDS = 5
^{\Lambda}IMAGE = 6
MISSION_NAME = "2001 MARS ODYSSEY"
INSTRUMENT HOST NAME = "2001 MARS ODYSSEY"
INSTRUMENT_NAME = "THERMAL EMISSION IMAGING SYSTEM"
INSTRUMENT ID = "THEMIS"
DETECTOR ID = "IR"
MISSION_PHASE_NAME = "MAPPING"
TARGET_NAME = "MARS"
PRODUCT ID = I00013007BTR
PRODUCER ID = "ODY THM TEAM"
DATA SET ID = "ODY-M-THM-3-IRBTR-V1.0"
PRODUCT CREATION TIME = 2002-12-13T22:01:02
PRODUCT VERSION ID = "1.0"
RELEASE ID = "0001"
SOURCE PRODUCT VERSION ID = "1.0"
START TIME = 2001-11-02T14:38:30.010
STOP TIME = 2001-11-02T14:39:30.271
SPACECRAFT CLOCK START COUNT = "689179146.000"
SPACECRAFT CLOCK STOP COUNT = "689179206.067"
START TIME ET = 57983974.192
STOP TIME ET = 57984034.453
UNCORRECTED START SCLK COUNT = "689179146.000"
IMAGE DURATION = 60.067
ORBIT NUMBER = 00013
```

CENTER_LATITUDE = 37.1501 CENTER_LONGITUDE = 228.533 POSITIVE_LONGITUDE_DIRECTION = EAST SAMPLE_RESOLUTION = 0.106657 <KM>

```
LINE_RESOLUTION = 0.099384 <KM>
PIXEL_ASPECT_RATIO = 0.931809
PHASE_ANGLE = 69.1583
INCIDENCE_ANGLE = 67.2117
EMISSION_ANGLE = 2.85361
NORTH_AZIMUTH = 262.948
SLANT_DISTANCE = 428.399 <KM>
LOCAL_TIME = 15.2233
SOLAR_LONGITUDE = 329.633
SUB_SOLAR_AZIMUTH = 90.2889
```

MINIMUM_BRIGHTNESS_TEMPERATURE = 191.483 MAXIMUM_BRIGHTNESS_TEMPERATURE = 246.457

BAND_NUMBER = 9 BAND_CENTER = 12.57 <MICROMETERS>

```
OBJECT = IMAGE
LINES = 3600
LINE_SAMPLES = 320
SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS = 8
OFFSET = 191.482925
SCALING_FACTOR = 0.215584
END_OBJECT = IMAGE
```

END

A.6 Example Label: VISABR

An example VISABR label is shown below:

```
PDS_VERSION_ID = PDS3
FILE_NAME = "V00013002ABR.IMG"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 2048
FILE_RECORDS = 289
LABEL_RECORDS = 1
^IMAGE = 2
```

```
MISSION_NAME = "2001 MARS ODYSSEY"
INSTRUMENT_HOST_NAME = "2001 MARS ODYSSEY"
INSTRUMENT_NAME = "THERMAL EMISSION IMAGING SYSTEM"
INSTRUMENT_ID = "THEMIS"
DETECTOR_ID = "VIS"
MISSION_PHASE_NAME = "MAPPING"
TARGET_NAME = "MARS"
```

PRODUCT ID = V00013002BTRPRODUCER_ID = "ODY_THM_TEAM" DATA SET ID = "ODY-M-THM-3-VISABR-V1.0" PRODUCT CREATION TIME = 2002-12-15T22:30:02 **PRODUCT VERSION ID = "1.0"** RELEASE ID = "0001" SOURCE PRODUCT VERSION ID = "1.0" START TIME = 2001-11-02T14:38:49.010 STOP_TIME = 2001-11-02T14:38:56.000 SPACECRAFT_CLOCK_START_COUNT = "689179165.000" SPACECRAFT CLOCK STOP COUNT = "689179172.000" START_TIME_ET = 57983993.192 STOP TIME ET = 57984000.192 UNCORRECTED START SCLK COUNT = "689179165.000" IMAGE DURATION = 7.000ORBIT NUMBER = 00013

```
CENTER_LATITUDE = 37.5317
CENTER_LONGITUDE = 228.597
POSITIVE_LONGITUDE_DIRECTION = EAST
SAMPLE_RESOLUTION = 0.019275 < KM >
LINE_RESOLUTION = 0.01928 < KM >
PIXEL_ASPECT_RATIO = 1.00027
PHASE_ANGLE = 68.6399
INCIDENCE_ANGLE = 67.4721
EMISSION_ANGLE = 1.76492
NORTH_AZIMUTH = 266.904
SLANT_DISTANCE = 428.342 < KM >
LOCAL_TIME = 15.2261
SOLAR_LONGITUDE = 329.633
SUB_SOLAR_AZIMUTH = 139.148
```

BAND_NUMBER = 3 BAND_CENTER = 0.654 <MICROMETERS> EXPOSURE_DURATION = 6.0 <MSEC> INTERFRAME_DELAY = 1.0 <SEC> SPATIAL_SUMMING = 1

OBJECT = IMAGE LINES = 576 LINE_SAMPLES = 1024 SAMPLE_TYPE = UNSIGNED_INTEGER SAMPLE_BITS = 8 END_OBJECT = IMAGE

END

A.7 Label Keyword Descriptions

FILE AND DATA IDENTIFICATION ELEMENTS

PDS_VERSION_ID

PDS version number for the label format. [PDS3]

RECORD_TYPE

Style of records in this file. ["FIXED_LENGTH"]

RECORD_BYTES

Number of bytes per record. [320 (for IREDR), 1024 (for VISEDR), 644 (for IRRDR), or 2048 (for VISRDR)]

FILE_RECORDS

Number of records in this file, including labels and data.

LABEL_RECORDS

Number of records used for label data; value does not include records in the Telemetry table or HISTORY object.

MISSION_NAME

Name of the mission including the THEMIS instrument. ["2001 MARS ODYSSEY"]

INSTRUMENT_HOST_NAME

Name of the host spacecraft for the THEMIS instrument. ["2001 MARS ODYSSEY"]

INSTRUMENT_NAME

Proper name of the instrument. ["THERMAL EMISSION IMAGING SYSTEM"]

INSTRUMENT_ID

Abbreviated name of instrument used to collect this image. ["THEMIS"]

DETECTOR_ID

Abbreviated name of camera used to collect this image. ["IR" or "VIS"]

MISSION_PHASE_NAME

Mission phase during which this image was collected. ["MAPPING"]

TARGET_NAME

The name of the target observed in the image. ["MARS"]

PRODUCT_ID

Unique identifier for each image commanded. ["AooooonnnEDR", "AooooonnnRDR", "IooooonnnBTR", or "VooooonnnABR"]

PRODUCER_ID

Identity of the producer of this dataset. ['ODY_THM_TEAM"]

DATA_SET_ID

Unique alphanumeric identifier of this dataset. ["ODY-M-THM-2-IREDR-V1.0", "ODY-M-THM-2-VISEDR-V1.0", "ODY-M-THM-3-IRRDR-V1.0", "ODY-M-THM-3-VISRDR-V1.0", or "ODY-M-THM-3-VISABR-V1.0"]

PRODUCT_CREATION_TIME

Time of creation of this QUBE on the ground (in UTC). [yyyy-mm-ddThh:mm:ss]

PRODUCT_VERSION_ID

Version identification of this QUBE.

RELEASE_ID

Identification of the original public release of this QUBE.

SOURCE_PRODUCT_VERSION_ID

Version identification of the QUBE from which this product was derived; available in IRBTR and VISABR.

START_TIME

The time of data acquisition of the leading edge of the detector array (filter 1), even if filter 1 is not downlinked; the difference of STOP_TIME minus START_TIME may not be equivalent to IMAGE_DURATION. Value given in spacecraft event time (SCET), UTC format. [yyyy-mm-ddThh:mm:ss.fff]

STOP_TIME

The time of the end of data acquisition calculated from the sum of the UNCORRECTED_SCLK_START_COUNT and IMAGE_DURATION; given in spacecraft event time (SCET), UTC format. [yyyy-mm-ddThh:mm:ss.fff]

SPACECRAFT_CLOCK_START_COUNT

The value of the spacecraft clock at the time of data acquisition of the leading edge of the detector array (filter 1), even if filter 1 is not downlinked; the difference of SPACECRAFT_CLOCK_STOP_COUNT minus SPACECRAFT_CLOCK_START_COUNT may not be equivalent to IMAGE_DURATION. Value given in seconds.

SPACECRAFT_CLOCK_STOP_COUNT

The time on the spacecraft clock at the end of data acquisition (in seconds) calculated from the sum of the UNCORRECTED_SCLK_START_COUNT and IMAGE_DURATION.

START_TIME_ET

The time of data acquisition of the leading edge of the detector array (filter 1), even if filter 1 is not downlinked; the difference of STOP_TIME_ET minus START_TIME_ET may not be equivalent to IMAGE_DURATION. Value given in spacecraft event time (SCET), ET format.

STOP_TIME_ET

The time of the end of data acquisition calculated from the sum of the UNCORRECTED_SCLK_START_COUNT and IMAGE_DURATION; given in spacecraft event time (SCET), ET format.

ORBIT_NUMBER

Spacecraft orbit during which this image was observed.

QUBE STRUCTURE & CORE DESCRIPTION (QUBEs only)

AXES

Number of dimensions (axes) of the QUBE. [3]

AXIS_NAME

Names of axes in physical storage order. [(SAMPLE, LINE, BAND)]

CORE_ITEMS

The length of each of the three axes of the core in pixels.

CORE_NAME

Name of the value stored in core of QUBE. ["RAW_DATA_NUMBER" (for EDR) or "CALIBRATED_SPECTRAL_RADIANCE" (for RDR)]

CORE_ITEM_BYTES

Core element size in bytes. [1 (for EDR), 2 (for VISRDR), or 4 (for IRRDR)]

CORE_ITEM_TYPE

Core element type. [MSB_UNSIGNED_INTEGER (for EDR), MSB_INTEGER (for VISRDR), or SUN_INTEGER (for IRRDR)]

CORE_BASE

The offset value of the stored data; the CORE_BASE value is added to the scaled data (see CORE_MULTIPLIER) to reproduce the true data. For IRRDR QUBEs, see also BAND_BIN_BASE.

CORE_MULTIPLIER

The constant value by which the stored data is multiplied to produce the scaled data; the CORE_BASE value is added to the scaled data to reproduce the true data. For IRRDR QUBEs, see also BAND_BIN_MULTIPLIER.

CORE_UNIT

Unit of the value stored in the core of QUBE. ["DIMENSIONLESS" or "WATT*CM**-2*SR**-1*UM**-1"]

CORE_NULL

Value assigned to "invalid" or missing data.

CORE_VALID_MINIMUM

Value of the minimum valid core data in an RDR QUBE.

CORE_LOW_REPR_SATURATION

Value of representation saturation at the low end in an RDR QUBE.

CORE_LOW_INSTR_SATURATION

Value of instrument saturation at the low end in an RDR QUBE.

CORE_HIGH_REPR_SATURATION

Value of representation saturation at the high end in an RDR QUBE.

CORE_HIGH_INSTR_SATURATION

Value of instrument saturation at the high end in an RDR QUBE.

SUFFIX DESCRIPTION (QUBEs only)

SUFFIX_ITEMS

The dimensions of available suffix planes following the order given in AXIS_NAME keyword. [(1, 1, 0)]

SUFFIX_BYTES

The allocation in bytes of each suffix plane defined. [4]

AXIS_SUFFIX_NAME

Name of "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBES. [HORIZONAL_DESTRIPE (for SAMPLE suffix planes) or VERTICAL_DESTRIPE (for LINE suffix planes)]

AXIS_SUFFIX_ITEM_BYTES

Size of "axis" suffix plane elements in bytes, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [2]

AXIS_SUFFIX_ITEM_TYPE

"Axis" suffix plane element type, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [MSB_INTEGER]

AXIS_SUFFIX_BASE

Base value of "axis" suffix plane item scaling, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs.

AXIS_SUFFIX_MULTIPLIER

Multiplier for "axis" suffix plane item scaling, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs.

AXIS_SUFFIX _VALID_MINIMUM

Value of the minimum valid "axis" suffix plane data, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFA#]

AXIS_SUFFIX _NULL

Value assigned to "invalid" or missing data in an "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFB#]

AXIS_SUFFIX _LOW_REPR_SATURATION

Value of representation saturation at the low end in an "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFC#]

AXIS_SUFFIX _LOW_INSTR_SATURATION

Value of instrument saturation at the low end in an "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFD#]

AXIS_SUFFIX _HIGH_REPR_SATURATION

Value of representation saturation at the high end in an "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFF#]

AXIS_SUFFIX _HIGH_INSTR_SATURATION

Value of instrument saturation at the high end in an "axis" suffix plane, where "axis" can be either SAMPLE or LINE in IRRDR QUBEs. [16#FF7FFFE#]

OBSERVATION PARAMETERS (QUBEs only)

FLIGHT_SOFTWARE_VERSION_ID

Indicates version of instrument flight software used to acquire image. ["1.00"]

COMMAND_SEQUENCE_NUMBER

Numeric identifier for the sequence of commands sent to the spacecraft which include this image.

IMAGE_ID

Numeric identifier for this image within the onboard command sequence.

DESCRIPTION

Description of image written by mission planner.

INST_CMPRS_RATIO

The ratio of the size, in bytes, of the uncompressed data file to the compressed data file.

UNCORRECTED_SCLK_START_COUNT

The spacecraft clock value (in seconds) when the instrument was commanded to acquire an observation. This can differ from the SPACECRAFT_CLOCK_START_COUNT (or the other START_TIME keywords) by as much as 4 seconds, depending on which bands are acquired in the image.

IMAGE_DURATION

The length of time (in seconds) required to collect all frames of all bands in the downlinked image.

INST_CMPRS_NAME

The type of compression applied to the VIS data and removed before storage in the image QUBE. ["NONE" or "DCT" or "PREDICTIVE"]

FOCAL_PLANE TEMPERATURE

Temperature in Kelvin of the VIS camera focal plane array at the time of the observation.

EXPOSURE_DURATION

The length of time the VIS detector array is exposed per frame in an image; given in milliseconds.

INTERFRAME_DELAY

The time between successive frames of a VIS image; given in seconds.

SPATIAL_SUMMING

Onboard spatial average of NxN set of pixels, where N is the value of the keyword. SPATIAL_SUMMING = 1 implies that no spatial averaging has been applied to the VIS image. [1 or 2 or 4]

GAIN_NUMBER

The gain value of the THEMIS IR camera; a multiplicative factor used in the analog to digital conversion.

OFFSET_NUMBER

The offset value of the THEMIS IR camera; the offset value multiplied by a constant voltage is added to the measured voltage in the analog to digital conversion.

TIME_DELAY_INTEGRATION_FLAG

Status of onboard algorithm which applies a temporal average of successive lines in an IR image; when enabled, THEMIS TDI averages 16 detector rows to equal one line in an IR image. ["ENABLED" or "DISABLED"]

MISSING_SCAN_LINES

The total number of scan lines missing from an IR image when it was received at Earth.

MD5_CHECKSUM

A 128-bit checksum identification of the data portion of the QUBE. Corruption of the data QUBE will result in a different value when the MD5 algorithm is reapplied as compared to the value stored in the keyword. An example of the source code applied by ASU is available in SRC/BIN/md5_qube.pl. A complete definition of the MD5 algorithm is available at http://www.ietf.org/rfc/rfc1321.txt. ["fd2781d05bdc0215dc87a0f41035ad77"]

BAND-BINS (QUBEs only)

BAND_BIN_FILTER_NUMBER

List of filter numbers corresponding to each layer (band) contained in the image; up to 10 entries possible for IR images and up to 5 entries possible for VIS images. The filter number describes the physical location of the band in the detector array; filter 1 is on the leading edge of the detector array.

BAND_BIN _BAND_NUMBER

List of band numbers corresponding to each layer (band) contained in the image; up to 10 entries possible for IR images and up to 5 entries possible for VIS images. The band number is equivalent to the instrument band number listed in Table 1, Section 2.2 of this document (THM-SDPSIS).

BAND_BIN_CENTER

List of wavelength values corresponding to each layer (band) contained in the image; up to 10 entries possible for IR images and up to 5 entries possible for VIS images.

BAND_BIN_WIDTH

Calculated full width, half maximum (in micrometers) for each band listed in the BAND_BIN_ BAND_NUMBER.

BAND_BIN_UNIT

Unit which applies to the values of the BAND_BIN_CENTER keyword. ["MICROMETER"]

BAND_BIN_BASE

The offset value for the stored data of each band listed in the BAND_BIN_BAND_NUMBER. The BAND_BIN_BASE value is added to the scaled data (see BAND_BIN_MULTIPLIER) to reproduce the true data.

BAND_BIN_MULTIPLIER

The constant value by which the stored data of each band listed in the BAND_BIN_BAND_NUMBER is multiplied to produce the scaled data; the BAND_BIN_BASE value is added to the scaled data to reproduce the true data.

GEOMETRIC PARAMTERS (IMAGEs only)

CENTER_LATITUDE

Approximate latitude on the planet Mars at the image center.

CENTER_LONGITUDE

Approximate longitude on the planet Mars at the image center.

POSITIVE_LONGITUDE_DIRECTION

The direction of positive longitude for the coordinate system of the given CENTER_LONGITUDE measurement.

SAMPLE_RESOLUTION

The horizontal size of a pixel at the center of the image as projected onto the surface of the target; units are given with the value.

LINE_RESOLUTION

The vertical size of a pixel at the center of the image as projected onto the surface of the target; units are given with the value.

PIXEL_ASPECT_RATIO

Ratio of the height (LIINE_RESOLUTION) to the width (SAMPLE_RESOLUTION) of the projection of the pixel onto the surface of the target.

PHASE_ANGLE

The angle between the Sun, surface, and THEMIS at the time the image was acquired.

INCIDENCE_ANGLE

The angle between the Sun and a "normal" drawn perpendicular to the surface of the planet at the center of the image for the time the image was acquired. An INCIDENCE_ANGLE of approximately 0° indicates that the Sun was directly overhead at the time the image was acquired.

EMISSION_ANGLE

The angle between THEMIS and a "normal" drawn perpendicular to the planet's surface at the center of the image. For nadir observations, EMISSION_ANGLE will be approximately 0° .

NORTH_AZIMUTH

The clockwise angle from an imaginary three o'clock axis to the North polar axis where the origin of both axes is at the center of a pixel at the center of the image.

SLANT_DISTANCE

A measure of the distance from the spacecraft to the target body at the center of the image; this value is the spacecraft altitude if the emission angle is 0° .

LOCAL_TIME

The local time on Mars at the center of the image relative to a division of the Martian day into 24 equal parts. A single Martian day is slightly longer than 24 hours and 37 minutes.

SOLAR_LONGITUDE

The position of Mars relative to the Sun as measured in degrees from the vernal equinox; also known as heliocentric longitude.

SUB_SOLAR_AZIMUTH

The clockwise angle from an imaginary three o'clock axis with the origin at the center of a pixel at the center of the image to the Sun at the time the image was acquired.

IMAGE STRUCTURE & DATA DESCRIPTION(IMAGEs only)

UNCORRECTED_SCLK_START_COUNT

The spacecraft clock value (in seconds) when the instrument was commanded to acquire an observation. This can differ from the SPACECRAFT_CLOCK_START_COUNT (or the other START_TIME keywords) by as much as 4 seconds, depending on which bands are acquired in the image.

IMAGE_DURATION

The length of time (in seconds) required to collect all frames of all bands in the downlinked image.

MAXIMUM_BRIGHTNESS_TEMPERATURE

Maximum brightness temperature value measured within the image.

MINIMUM_BRIGHTNESS_TEMPERATURE

Minimum brightness temperature value measured within the image.

BAND_NUMBER

Identifies from which band in the source RDR this image was derived; see Table 1, Section 2.2 of this document (THM-SDPSIS).

BAND_CENTER

The wavelength value of the band contained in the image; units are given in $\langle \rangle$ with the value.

EXPOSURE_DURATION

The length of time the VIS detector array is exposed per frame in an image; given in milliseconds.

INTERFRAME_DELAY

The time between successive frames of a VIS image; given in seconds.

SPATIAL_SUMMING

Onboard spatial average of NxN set of pixels, where N is the value of the keyword. SPATIAL_SUMMING = 1 implies that no spatial averaging has been applied to the VIS image. [1 or 2 or 4]

LINES

Total number of data pixels along the vertical axis of the image.

LINE_SAMPLES

Total number of data pixels along the horizontal axis of the image.

SAMPLE_TYPE

Data storage representation of a pixel value [UNSIGNED_INTEGER]

SAMPLE_BITS

Stored number of bits in a single pixel value.

OFFSET

The offset value of the stored data; the offset value is added to the scaled data to reproduce the true data.

SCALING_FACTOR

The constant value by which the stored data is multiplied to produce the scaled data; the offset value is added to the scaled data to reproduce the true data.

A.8 HISTORY Object Items and Examples

The HISTORY data object is described within the THM-EDR and THM-RDR labels by the following keywords:

BYTES

Number of bytes in the HISTORY object.

HISTORY_TYPE

Identifies the software compliance of the HISTORY object format. [CUSTOM]

INTERCHANGE_FORMAT

Identifies the manner in which the HISTORY object data items are stored. [ASCII]

Each program that operates on the data product will generate a new "history entry" and will concatenate the new entry onto the existing HISTORY object. All HISTORY objects follow this basic format, where the values have been replaced with keyword descriptions:

GROUP	= The name of the program that generated the history entry.
DATE_TIME	= Date and time, in UTC standard format, that the program was executed. [yyyy-mm-ddThh:mm:ss]
SOFTWARE_DESC	= Program generated description and execution notes.
VERSION_ID	= Program version number.
USER_NAME	= Username and name of computer. ["smith@east"]
USER_NOTE	= User supplied brief description of program; may be blank.
GROUP	 Used to delineate the statements specifying the parameters of the program; will not be present if additional keywords are not required. [PARAMETERS]
KEYWORD	= Value.
END_GROUP	= [PARAMETERS]
END_GROUP	= The name of the program that generated the history entry.
END	

Specific examples of the HISTORY objects used in THEMIS QUBEs are shown below.

THM-EDR HISTORY OBJECT

GROUP	= SFDU2CUBE
DATE_TIME	= 2002-02-15T13:15:00
SOFTWARE_DESC	= "Translation of data format from SFDU into raw image
	QUBE (THM-EDR). Removes SFDU headers and

—	= 689179206-4
END_GROUP	= SFDU2CUBE
IR-RDR HISTORY OBJECT	
DATE_TIME	 = CAL_IR_IMAGE = 2002-02-15T13:20:00 = "Calibration of a raw, infrared image (IREDR). Uses DN, gain, and offset values from raw image with the instrument response function and a calibration flag image (IREDR); returns a calibrated spectral radiance image (IRRDR) in (W cm-2 str-1 μm-1)."
—	= 1.0 = "murray@olympus" = ""
GROUP IREDR_FILE IR_IMG_CAL_QUBE_ IRF_FILE TEMP2RAD_FILE CALIB_FLAG_IMAGE CALIB_FLAG_DN	= "/themis/calib/irf_fit_all_v3.0_tv6_1_2_v3.0" = "/themis/calib/temp_rad_v4"
STRAYLIGHT_XDEL' STRAYLIGHT_YOFFS STRAYLIGHT_DEFOO	R = 1 N = 2 = -7.66 X = 3 Y = 3 X = 9 Y = 9 ETRY = "Reconstructed" TA = (0, 0, 3, 3, 3, 3, 1, 1, 0, 0)

	1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000, 1.000, 0.000,
STRAYLIGHT_PERC	$\begin{array}{l} 1.000, 0.000) \\ \text{CENT} &= (0.00, 0.00, 2.00, 4.50, 6.00, 5.50, 5.00, 5.00, 0.00, \\ & 0.00) \end{array}$
END_GROUP	= PARAMETERS
END_GROUP	= CAL_IR_IMAGE
VIS-RDR HISTORY OBJECT	
GROUP DATE_TIME SOFTWARE_DESC	 = CAL_VIS_IMAGE = 2003-07-01T13:45:00 = "Calibration of a raw, visible image (VISEDR). Calibration includes 8-bit to 11-bit decoding, removal of instrumental effects, and conversion to spectral radiance (W cm-2 str-1 micron-1). The instrumental effects considered are detector bias, shutter smear, stray light, and variations in pixel sensitivity (i.e., 'flatfield' effects). Spectral radiance is calculated from the exposure time and decoded, instrumentally corrected DN levels of the raw image, using conversion factors (BAND_BIN_SENSITIVITY) derived by comparing the VIS data set to Hubble Space Telescope measurements."
VERSION_ID USER_NAME USER_NOTE	= 2.00 = "@" = ""
FLATFIELD_FILE FLATFIELD_FILE_D STRAY_LIGHT_FILI STRAY_LIGHT_FILI STRAY_LIGHT_REM BAND_BIN_SENSIT BAND_BIN_SENSIT	_FILE = "/themis/data/dezero1_coeffs.txt" _FILE_DATE = 2003-04-03T21:19:21 = "/themis/data/flat_framese2.prof1.fits" DATE = 2003-02-08T11:19:302003-06-05T04:17:04 E = ""/themis/data/destray2_frame1_v4.fits E_DATE = 2002-11-23T13:28:392003-06-06T16:12:37 MOVAL_VERSION = 6 IVITY = (78914.0, 66211.0, 58084.0, 32892.0, 47535.0) IVITY_UNITS = "(DN*MSEC**-1) per (WATT*CM**-2*SR**-1*UM**-1)"
END_GROUP END_GROUP	= PARAMETERS = SFDU2CUBE

ERRATA HISTORY OBJECT

GROUP DATE_TIME SOFTWARE_DESC	 = ERRATA_ODTIE_0001_1_1 = "2002-11-11T00:00:00" = "SFDU2CUBE version 1.56 update includes several modifications to the headers of all THEMIS EDR QUBEs. This SFDU2CUBE version also includes improved sfdu stream processing of corrupted packets. The keyword RELEASE_ID was added to the PDS label attached to all THEMIS EDR QUBE objects.
ERRATA_ID USER_NAME USER_NOTE END_GROUP	Associated ERRATA_ID: ODTVE_0001-1.1" = "ODTIE-0001-1.1" = "murray@olympus" = "" = ERRATA_ODTIE_0001_1_1

A.9 Telemetry Table Structure (tlm.fmt)

COLUMNS	= 41
ROW_BYTES	= 46
INTERCHANGE_FORMAT	= BINARY
DESCRIPTION	= "

The TLM table stores the THEMIS telemetry parameters downlinked with all IR images in the housekeeping telemetry data frame. One record in the TLM table represents one housekeeping telemetry data frame. For each requested IR image, one housekeeping telemetry data frame is collected immediately preceding the first image data frame, another is collected every 2048 data frames (68.267 seconds) throughout the image, and a final one is collected after the last image data frame.

Bytes 7, 9-(bits 1-6), 11-(bits 12,4, 9-16), 41, 43-(bits 1-4), and 44-(bits 1-2) are spares reserved for future use with a value set to either 0 or 1. Valid values are defined between [] in the column description, as appropriate."

OBJECT	= COLUMN
NAME	= SYNC
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 1
BYTES	= 2
DESCRIPTION	= "Indicates frame synchronization at the beginning of each
	frame. [1111 0000 1100 1010]"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= IMAGE ID
DATA TYPE	= MSB UNSIGNED INTEGER

START_BYTE BYTES DESCRIPTION END_OBJECT	 = 3 = 1 = "Number of image counted sequentially within each orbit." = COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	 = COLUMN = TELEMETRY_TYPE = MSB_UNSIGNED_INTEGER = 4 = 1 = "Identifies packet within datastream as a telemetry frame. [0000 1111] = frame from start or middle of an image [0000 1110] = frame from end of image" = COLUMN
OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	 = FRAME_COUNT = MSB_UNSIGNED_INTEGER = 5 = 2 = "Frame count from start of image acquisition; increments by 2048 for telemetry frames collected in the middle of the
END_OBJECT	image." = COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	= COLUMN = SPARE7 = MSB_UNSIGNED_INTEGER = 7 = 1 = "Reserved for future use" = COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	<pre>= COLUMN = IMAGE_LENGTH = MSB_UNSIGNED_INTEGER = 8 = 1 = "Command value used to define the final size of the image in frames; final image is determined using: ((IMAGE_LENGTH+1)*256)-240. [1:255]" = COLUMN</pre>
OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE	= BAND_ENABLED = MSB_BIT_STRING = 9

BYTES DESCRIPTION	= 2= "Bit-word defining the band mask used for this image."
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	<pre>= BIT_COLUMN = SPARE9_1 = MSB_UNSIGNED_INTEGER = 1 = 6 = "Reserved for future use" = BIT_COLUMN</pre>
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	 = BIT_COLUMN = BAND_MASK = MSB_UNSIGNED_INTEGER = 7 = 10 = "Flag indicating whether the band is ON [1] or OFF [0]; one bit per band, stored numerically according to band number (e.g. bit 7 = Band 1, bit 8 = Band 2 bit 16 = Band 10)." = BIT_COLUMN
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	 = COLUMN = IRS_STATUS = MSB_BIT_STRING = 11 = 2 = "Bit-word defining calibration flag and latchup status for this image; see individual bit items below"
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	 = BIT_COLUMN = CALIB_FLAG_PRIMARY = MSB_UNSIGNED_INTEGER = 1 = "Status of calibration flag primary motor control (from IRS). [0] = Closed [1] = Open" = BIT_COLUMN
—	_
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	= BIT_COLUMN = SPARE11_2 = MSB_UNSIGNED_INTEGER = 2 = 1 = "Reserved for future use"

END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	<pre>= BIT_COLUMN = CALIB_FLAG_REDUNDANT = MSB_UNSIGNED_INTEGER = 3 = 1 = "Status of calibration flag redundant motor control (from IRS). [0] = Closed [1] = Open" = BIT_COLUMN</pre>
OBJECT	= BIT_COLUMN
NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	= SPARE11_4 = MSB_UNSIGNED_INTEGER = 4 = 1 = "Reserved for future use"
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	<pre>= BIT_COLUMN = LATCHUP_SENSITIVITY = MSB_UNSIGNED_INTEGER = 5 = 1 = "Latchup control circuit sensitivity state (from IRS). [0] = Low [1] = High"</pre>
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	<pre>= BIT_COLUMN = LATCHUP_TRIGGER = MSB_UNSIGNED_INTEGER = 6 = 1 = "Latchup protection circuit status (from IRS). [0] = Off [1] = On"</pre>
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = BIT_COLUMN = RICE = MSB_UNSIGNED_INTEGER = 7 = 1 = "Status of onboard, lossless compression algorithm [0] = Enabled

END_OBJECT	[1] = Disabled" = BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	<pre>= BIT_COLUMN = TDI_ENABLE = MSB_UNSIGNED_INTEGER = 8 = 1 = "Status of onboard Time Delay Integration (TDI) algorithm [0] = Off [1] = On" = BIT_COLUMN</pre>
OBJECT	= BIT_COLUMN
NAME	= SPARE11_9
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	= 9
BITS	= 8
DESCRIPTION	= "Reserved for future use"
END_OBJECT	= BIT_COLUMN
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= SECONDARY_MIRROR_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 13
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Secondary mirror temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PRIMARY_MIRROR_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 14
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Primary mirror temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= FLAG_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER

START_BYTE	= 15
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Calibration flag assembly temperature."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= 16 = 1 = -50 = 0.3195 = "C"
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= COLUMN = IR_TEMP = MSB_UNSIGNED_INTEGER = 17 = 1 = -50 = 0.3195 = "C"
OBJECT	<pre>= COLUMN</pre>
NAME	= BEAMSPLITTER_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 18
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Dichroic beamsplitter assembly temperature."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= TERT_MIRROR_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 19
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"

DESCRIPTION END_OBJECT	= "Tertiary mirror temperature." = COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= IRIS_1_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 20
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Infrared Imaging System (IRIS) housing temperature from
END_OBJECT	sensor 1."
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION	<pre>= COLUMN = IRIS_2_TEMP = MSB_UNSIGNED_INTEGER = 21 = 1 = -50 = 0.3195 = "C" = "Infrared Imaging System (IRIS) housing temperature from sensor 2."</pre>
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= BAFFLE_TEMP
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 22
BYTES	= 1
OFFSET	= -50
SCALING_FACTOR	= 0.3195
UNIT	= "C"
DESCRIPTION	= "Main baffle temperature."
END_OBJECT	= COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= CONVERTER_P12V
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 23
BYTES	= 1
OFFSET	= -1.4634
SCALING_FACTOR	= 0.09565
UNIT	= "VOLT"
DESCRIPTION	= "+12V voltage measurement at DC/DC converter."
END_OBJECT	= COLUMN

OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= 24 = 1 = -1.439 = 0.02869 = "VOLT"
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= 25 = 1 = -15.752 = 1.0295 = "mAMP"
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= 26 = 1 = -2.0488 = 0.1339 = "VOLT"
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION	<pre>= COLUMN = LMS12_P5V = MSB_UNSIGNED_INTEGER = 27 = 1 = -3.05 = 0.366 = "mAMP" = "+5V current measurement of the latchup protected part, LMS12."</pre>
END_OBJECT OBJECT NAME DATA_TYPE START_BYTE	= COLUMN = COLUMN = EEPROM_P5V = MSB_UNSIGNED_INTEGER = 28

BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION	 = 1 = -3.15 = 0.37 = "mAMP" = "+5V current measurement of the latchup protected part, EEPROM."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION	 = COLUMN = TEC_TEMP = MSB_UNSIGNED_INTEGER = 29 = 1 = 0.8019 = -0.05241 = "VOLT" = "TE cooler temperature voltage; can be converted into temperature using the Table 8 in THEMIS Command and Data Format Description (SBRC document number Y2393-0007)."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	<pre>= COLUMN = IRIS_P5V = MSB_UNSIGNED_INTEGER = 30 = 1 = -38.67 = 2.6124 = "mAMP" = "+5V current measurement of IRIS electronics, not latchup protected." = COLUMN</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT OBJECT NAME DATA_TYPE START_BYTE BYTES	<pre>= COLUMN = TOTAL_P5V = MSB_UNSIGNED_INTEGER = 31 = 1 = "The total +5V current count for all boards." = COLUMN = COLUMN = TEC_P5V = MSB_UNSIGNED_INTEGER = 32 = 1</pre>
OFFSET SCALING_FACTOR	= -19.33

UNIT DESCRIPTION END_OBJECT	= "mAMP"= "+5V current measurement of TE cooler."= COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= IRIS_N12V
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 33
BYTES	= 1
OFFSET	= -25.14
SCALING_FACTOR	= 2.30
UNIT	= "mAMP"
DESCRIPTION	= "-12V current measurement to the IRIS."
END_OBJECT	= COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= IRIS_P12V
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 34
BYTES	= 1
OFFSET	= -64.71
SCALING_FACTOR	= 4.23
UNIT	= "mAMP"
DESCRIPTION	= "+12V current measurement to the IRIS."
END_OBJECT	= COLUMN
OBJECT	<pre>= COLUMN</pre>
NAME	= IRS_N12V
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 35
BYTES	= 1
OFFSET	= -27.93
SCALING_FACTOR	= 2.413
UNIT	= "mAMP"
DESCRIPTION	= "-12V current measurement to the IRS."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION END_OBJECT	= "mAMP"= "+12V current measurement to the IRS."= COLUMN
OBJECT	= COLUMN

NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	 = LATCHUP_V1 = MSB_UNSIGNED_INTEGER = 37 = 1 = "Comparator output voltage count used to determine state of V1 latchup current; compare count to boundaries: <50 = FAULT, >220 = OKAY." = COLUMN
OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES OFFSET SCALING_FACTOR UNIT DESCRIPTION	= VNSTRIP = MSB_UNSIGNED_INTEGER = 38 = 1 = 0.38986
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	 = COLUMN = LATCHUP_5V = MSB_UNSIGNED_INTEGER = 39 = 1 = "Comparator output voltage count used to determine state of 5V IRIS latchup current; compare count to boundaries: <50 = FAULT, >220 = OKAY."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	 = COLUMN = LATCHUP_V2 = MSB_UNSIGNED_INTEGER = 40 = 1 = "Comparator output voltage count used to determine state of V2 latchup current; compare count to boundaries: <50 = FAULT, >220 = OKAY."
END_OBJECT	= COLUMN
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	<pre>= COLUMN = SPARE41 = MSB_UNSIGNED_INTEGER = 41 = 1 = "Reserved for future use" = COLUMN</pre>
OBJECT	= COLUMN

NAME DATA_TYPE START_BYTE BYTES DESCRIPTION END_OBJECT	 = TEC_SHUTDOWN_TEMP = MSB_UNSIGNED_INTEGER = 42 = 1 = "Comparator output voltage count us ed to determine TE cooler temperature shutdown; compare count to boundaries: <50 = FAULT, >220 = OKAY." = COLUMN
OBJECT	= COLUMN
NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	= DIGITAL_WATCHDOG
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	<pre>= BIT_COLUMN = SPARE43_1 = MSB_UNSIGNED_INTEGER = 1 = 4 = "Reserved for future use" = BIT_COLUMN</pre>
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = 5 = 1 = "Status of TE cooler temperature. [0] = Overtemp [1] = OK"
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = BIT_COLUMN = IRIS_OVERCURRENT = MSB_UNSIGNED_INTEGER = 6 = 1 = "Latchup status of IRIS protected parts current. [0] = Overcurrent [1] = OK"
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT	= BIT_COLUMN = LMS_OVERCURRENT = MSB_UNSIGNED_INTEGER = 7

BITS DESCRIPTION	 = 1 = "Latchup status of LMS12 current. [0] = Overcurrent [1] = OK"
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT END_OBJECT	<pre>= BIT_COLUMN = EEPROM_OVERCURRENT = MSB_UNSIGNED_INTEGER = 8 = 1 = "Latchup status of EEPROM current. [0] = Overcurrent [1] = OK" = BIT_COLUMN = COLUMN</pre>
OBJECT NAME DATA_TYPE START_BYTE BYTES DESCRIPTION	 = COLUMN = IRIS_STATUS = MSB_BIT_STRING = 44 = 1 = "Bit-word indicating calibration flag or latchup status from IRIS electronics."
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	<pre>= BIT_COLUMN = SPARE44_1 = MSB_UNSIGNED_INTEGER = 1 = 2 = "Reserved for future use" = BIT_COLUMN</pre>
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	<pre>= BIT_COLUMN = LATCHUP_TRIGGER = MSB_UNSIGNED_INTEGER = 3 = 1 = "Latchup protection circuit status (from IRIS). [0] = On [1] = Off"</pre>
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS	= BIT_COLUMN = LATCHUP_SENSITIVITY = MSB_UNSIGNED_INTEGER = 4 = 1

DESCRIPTION END_OBJECT	 "Latchup control circuit sensitivity state (from IRIS). [0] = High [1] = Low" = BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION END_OBJECT	 = BIT_COLUMN = CALIB_FLAG_PRI_OPEN = MSB_UNSIGNED_INTEGER = 5 = 1 = "Status of calibration flag primary limit switch for open position (from IRIS). [0] = Open [1] = Not open" = BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = BIT_COLUMN = CALIB_FLAG_PRI_CLOSE = MSB_UNSIGNED_INTEGER = 6 = 1 = "Status of calibration flag primary limit switch for closed position (from IRIS). [0] = Closed
END_OBJECT	[1] = Not closed " = BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = BIT_COLUMN = CALIB_FLAG_RDT_OPEN = MSB_UNSIGNED_INTEGER = 7 = 1 = "Status of calibration flag redundant limit switch for open position (from IRIS). [0] = Open [1] = Not open"
END_OBJECT	= BIT_COLUMN
OBJECT NAME BIT_DATA_TYPE START_BIT BITS DESCRIPTION	 = BIT_COLUMN = CALIB_FLAG_RDT_CLOSE = MSB_UNSIGNED_INTEGER = 8 = 1 = "Status of calibration flag redundant limit switch for closed position (from IRIS). [0] = Closed [1] = Not closed "
END_OBJECT	= BIT_COLUMN

END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= END_SYNC
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 45
BYTES	= 2
DESCRIPTION	= "Indicates frame synchronization at the end of each frame.
	[1010 1011 1000 1100]"
END_OBJECT	= COLUMN