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Chapter 1 

INTRODUCTION 

This document is intended to serve the community of scientists and engineers responsible for 
preparing planetary science data sets for submission to the Planetary Data System. These sets 
include restored data from the era prior to PDS, mission data from active and future planetary 
missions, and data from earth-based sites. The audience includes personnel at PDS Discipline 
and Data Nodes, mission science investigators, and ground data system engineers including SFOC 
(Space Flight Operations Center) engineers. 

In order for a data set to be used by those not involved with its creation, certain supporting 
information must be available. That information enables effective data set access and interpretation. 
Therefore, standards of quality and completeness have been developed that a.re to be addressed 
before PDS will accept a data set for distribution to the science community. 

The interchange of data is increasingly important in planetary science. Electronic communica-
tion mechanisms have grown in sophistication. Data transfer that would have occurred by mailing 
tapes several yea.rs ago is now handled routinely over the Space Physics Analysis Network (SPAN). 
PDS will support the interpretation of a wide variety of transferred data by users with varying 
degrees of experience and available resources. Also, the use of new media for data storage and 
transfer such as CDROMs requires format standards to ensure readability and useability. The PDS 
has therefore developed a nomenclature that is consistent across discipline boundaries and stan-
dards for labeling data files. The 1986 PDS Interactive Data Interchange (IDI) workshop and the 
resulting compact disk product proved that a collection of science data from disparate disciplines 
can, once described in a uniform manner, be made readily accessible to a large group of users. 

The current standards are presented here. Minor changes to this standard are expected, and 
this document shall be updated to reflect such evolution. 

1.1 DOCUMENT OVERVIEW 
The overall organization of the document is shown in Figures 1-1 and 1-2. The document 

discusses three major topics related to data set preparation. The majority of the document is 
devoted to standards to be followed in submitting data. Another portion of the document describes 
the procedures to be followed in submitting data sets. The currently smallest portion of the 
document describes tools that are available to the planetary science community for use in the 
preparation or exchange of data sets. This last portion of the document will increase in size as 
more tools are developed by the Central Node and Discipline Nodes. 

Chapter 2 outlines the process of preparing and submitting data sets, and gives contacts for 
further information. In Chapter 3 standards for documenting data sets and documentation exam-
ples are presented. Chapter 4 describes catalog standards employed within PDS, and points to 
the structural model used for the PDS Catalog. Nomenclature standards that are used within the 
catalog are given in Chapter 5, along with naming conventions for files and directories. Chapter 
6 gives an overview of data format systems, and presents details of the Object Description Lan-
guage (ODL) which is the system employed by PDS for generation of PDS labels. Miscellaneous 
standards important to the planetary science community are given in Chapter 7, including time, 
units, cartography, and the system for modular treatment of geometry data known as the SPICE 
concept. Chapter 8 addresses tools that are available or forthcoming from PDS. Information that 
is relevant but peripheral to these chapters or is more detailed has been placed in the appendices. 

INTRODUCTION 1-1 



SPID DOCUMENT 

INTRODUCTION (CHAPTER 1) 

DATA SUBMISSION PROCEDURES (CHAPTER 2) 
-PRESENT & FUTURE MISSIONS (APPENDIX A) 
-PAST MISSIONS (APPENDIX B) 

STANDARDS (SEE DETAILED STANDARDS CHART) 

DATA PREPARATION TOOLS (CHAPTER 8) 
Figure 1-1: Major Components of the SPIDS Document 

A companion document to this one, the PDS Data Set Preparation Workbook, is being written 
to provide step by step guidance in assembling materials for submission to PDS. It will contain 
procedures for the generation of PDS labels, sources for reference material, and information about 
how to organize both data and the catalog information to accompany the data. 

1.2 ACKNOWLEDGEMENTS 
This work is the result of many individual efforts over the last five years. The authors would 

like to acknowledge the contributions of PDS Central and Integrated Science Testbed Node staff in 
general, and in particular the work of Chuck Acton, Fred Billingsley, Randy Davis, Elaine Dobinson, 
Eric Eliason, Ed Greenberg, Bill Henslin, John Johnson, Hugh Kieffer, Bob Mehlman, and Larry 
Soderblom. Valuable comments were incorporated from Ray Arvidson, Dave Childs, Tom Duxbury, 
Peter Ford, Greg Kazz, Bill Kurth, Tom Renfrow, Dick Simpson, and Jim Torson. 

1.3 REFERENCES 
The following reference sources are nientioned in this document: 
Batson, R. M., (1987) Digital Cartography of the Planets: New Methods, its Status and Future. 

Photogrammetric Engineering & Remote Sensing 53, 1211-1218. 
Consultative Committee for Space Data Systems (CCSDS) "Blue Book"; CCSDS 301.0-B-1; 

January 1987. 
Davies, M.E., et al (1986) Report of the IAU /IAG/COSPAR Working Group on Cartographic 

Coordinates and Rotational Elements of the Planets and Satellites: 1985 Celestial Mechanics 39, 
103-113. 

General Data Interchange Language, JPL Document D-3606, F. Billingsley, January 12, 1988 
Guide on Data Entity Naming Conventions; NBS Special Publication 500-149. 
Planetary Data System Data Dictionary; JPL D-4854; January 15 1988. 
Planetary Data System Guidelines for Project Data Management Plans; JPL D-5111; July 1 

1988. 
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Planetary Data System Software Management flan; JPL D-3487; May 3 1988. 
Planetary Data System Writing Conventions and Document Standards; March 31, 1988. 
SFD U Usage and Description; JPL D-5325; March 7 1988. 
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-CONTENTS (SECTION 3.4) 
- FORMATS AND WRITING CONVENTIONS (APPENDIX C) 
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-ARCHITECTURE (SECTION 4.1) 
-CONTENTS (APPENDIX E) 

NOMENCLATURE (CHAPTER 5) 
-DATA NAME SYNTAX (SECTION 5.1) 
-FILE NAME SYNTAX (SECTION 5.2) 
-DICTIONARY (APPENDIX F) 
-ABBREV/A TIONS LIST (APPENDIX G) 

DATA FORMATS (CHAPTER 6) 
-DATA REPRESENTATION (SECTION 6.1) 
-OBJECT DESCRIPTION LANGUAGE CONCEPTS (SECTION 6.2) 
-SFDU CONCEPTS (APPENDIX H) 
-ODL SPECIFICATION (APPENDIX I) 
-DATA UNITS (APPENDIX J) 
-DATA OBJECTS (APPENDIX K) 
-DATA OBJECT SAMPLES (APPENDIX L) 

MISCELLANEOUS (CHAPTER 7) 
-TIME (SECTION 7.1) 
-UNITS (SECTION 7.2) 
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Figure 1-2: Standards in the SPIDS Document 
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Chapter 2 

DATA SET SUBMISSION PROCESS 

This chapter describes the process for submitting data sets to the Planetary Data System. It 
describes the various types of data suppliers and PDS support for the preparation and submission 
process, and presents a checklist of procedural steps to be followed in the submission process. 

2.1 DATA SUPPLIERS 
Data sets are expected to enter the Planetary Data System in several ways: flight project data 

will be supplied according to agreements expressed in the Project Data Management Plans; some 
flight-relevant data will come directly from the Space Flight Operations Center (SFOC); restored 
and higher level data will be supplied by PDS Discipline and Data Nodes. 

2.2 SUPPORT FOR DATA SET PREPARATION 
Data set preparation by a flight project is negotiated between project personnel and the PDS. 

These agreements are documented in the flight project's Project Data Management Plan, which are 
signed off by both project and PDS management (See Appendix A). 

Restoration and preparation of existing flight and related data sets is undertaken principally 
by PDS Data Nodes associated with PDS Discipline Nodes. The data restoration is coordinated or 
overseen by the associated Discipline Node. Data Nodes exist as a data restoration entity only as 
long as necessary to transform the data set. Data Nodes function in cooperation with a Discipline 
Node on this temporary basis to treat a specific data set of interest to the community. Data Nodes 
are selected competitively on a regular basis. Refer to Appendix B. 

2.3 PDS CONTACT PERSONNEL 
Planetary Data System staff are available to help interpret and implement the guidelines, 

recommendations, and standards contained in this document. Specific contacts include: 

T.Z. Martin Jet Propulsion Lab Tel: (818)354-2178 
4800 Oak Grove Dr. N ASAMAIL: TZMARTIN 
Pasadena, CA 91109 SPAN: JPLPDS::TZMARTIN 
M/S 169/237 

M.D. Martin Jet Propulsion Lab Tel: (818)354-8751 
4800 Oak Grove Dr. N ASAMAIL: MIKEMARTIN 
Pasadena, CA 91109 SPAN: JPLPDS::MMARTIN 
M/S 233/208 

T. Duxbury Jet Propulsion Lab Tel: (818)354-4301 
4800 Oak Grove Dr. NASAMAIL: TDUXBURY 
Pasadena, CA 91109 SPAN: NAIF::TDUXBURY 
M/S 183/501 

M. Johnson Jet Propulsion Lab Tel: (818)354-1493 
(Mission 4800 Oak Grove Dr. NASAMAIL: MJOHNSON 
interface Pasadena, CA 91109 SPAN: JPLPDS::MJOHNSON 
issues) M/S 301-320 
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2.4 PROCEDURE FOR DATA SET SUBMISSION 
The process of submitting data to the PDS is similar in form whether done by a Discipline 

Node, a Data Node or a flight project, but the complexity and communication paths differ. 

2.4.1 Estimation 
It is essential that the scope of the data set preparation task be defined at the outset, because 

resources are allotted at that time. Scope changes during execution of the task will be difficult to 
handle. This document is intended to assist in scoping data preparation tasks. The scoping process 
is done in consultation with PDS personnel, who will be able to supply the level of effort needed 
in previous interactions, and who will know how much detail is needed in a task. 

2.4.2 Specification 
A task plan shall be prepared to describe the work to be done in data set preparation, including 

the tasks to be accomplished, the deliverables from the task, the schedule for this task, and the 
people responsible for the work and the deliverables. If the work is to be funded by the PDS 
then budget and other resource estimates must be included. The person responsible for the data 
preparation task needs to make sure that the following tasks are covered in the task plan: 
(1.) Documentation: writing text about the various aspects of the experiment (see Section 3.1 be-

low). Clarity of writing is important. The PDS strongly encourages the writing of experiment 
and instrument papers and journal articles, and use of these to satisfy PDS requirements. Ex-
isting· papers and articles should be used when available. Supplementary information may be 
needed when existing documentation is used, but does not provide all the needed information. 

(2.) Catalog data: preparation of information for the PDS Catalog. This material consists both of 
descriptive text and parameters, and will be used to give PDS user a view of the data set's 
many attributes and its applicability to his/her interests. In general, this catalog information 
is easy to prepare for those familiar with a data set. Nomenclature and definitions of these 
descriptive terms have been rigorously chosen and must be adhered to for uniformity across 
all disciplines and data sets. 

(3.) Software cleanup and coding: revision of existing software for clarity; new code to reformat 
data or adhere to standards. The data preparer should consider what software may be of 
benefit to other users, and avoid introduction of errors when revising software. 

( 4.) Data reformatting: executing code to put the data into required formats, units, and nomen-
clature. 

(5.) Production: organizing the data onto the submission media. 
( 6.) Quality assurance: checking what has been done prior to delivery. 

The task leader should assign responsibility and provide resources for persons doing the tasks, 
and design schedules. 

2.4.3 Preparation 
The following steps should be followed in the actual preparation of data sets: 

(1.) Determine primary data set content: a flight project will list its prime data sets in the Project 
Data Management Plan. See Appendix A. A Discipline or Data Node will follow the procedures 
described in Appendix B. 
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(2.) Determine ancillary data and software content: given a selected primary data set what ancillary 
data and/or software must be included with the data set in order for it to be a complete archive 
product. 

(3.) Develop the appropriate SFDU structure for the data set: Appendix H of this document 
describes the SFDU structure. For more information consult the document "JPL SFDU Usage 
and Description ( JPL D-5325)". The JPL Control Authority also provides consultation in the 
construction of SFDUs. New structures are registered with the JPL Control Authority. 

( 4.) Develop the appropriate catalog data for each section of the data set: these data will be a K 
class SFDU. This catalog data will be recorded via the use of PDS Catalog Templates. These 
templates are machine readable forms developed by the data management staff of the PDS. 
The data preparer can use them to know exactly what he should supply for catalog data. 
Consult the PDS Data Dictionary for the appropriate catalog template for that data set. If a 
catalog template does not exist then consult with the Central Node to develop the template. 
Development of new items will follow the PDS nomenclature standards described in Chapter 
5 of this document. The catalog templates provided by the Central Node will contain the 
catalog data elements required by PDS. The developer may wish to include additional items 
for clarity. 

(5.) Develop and describe the data format: Chapter 6 of this document describes the PDS data 
format standards. 

( 6.) Document the data description of the data set: Chapter 3 of this document describes the PDS 
documentation standards. 

(7.) Build the data set: The structure of the registered SFDU will show how the various pieces of 
the data set fit together as a whole. The data set will be written on computer readable media. 

2.4.4 Submission 
The prepared data set is sent to the PDS according to the agreed-upon schedule. Data sets 

are expected to be sent via standard media, such as: 
{1.) 1600 or 6250 bpi tapes 
(2.) transmitted over a network under.an error-checking protocol 
(3.) optical disk: WORM or CDROM 
( 4.) Typewritten documents and charts 

PDS labels (see Chapter 6) are to precede the data in the files. These labels identify the data 
and its format, and simplify data cataloging. Properly constructed, the PDS labels provide much 
of the information required for the loading of PDS catalog entries. Catalog updating thus can be 
automated. The labels will also be used when data are delivered from PDS; they provide a means 
of ensuring that the data are readable, and in fact enable automatic recognition or ingestion of 
data. 

The PDS recognizes that there may be instances where data are too voluminous to be refor-
matted to include the labels without substantial expense, or that such reformatting would required 
significant software modifications. The data preparer can negotiate to use detached labels in such 
situations. These are a separate set of label files which point to their associated data files (see 
Appendices I, J, K, and L ). 

The number of copies of the data required to be submitted to the PDS may depend upon the 
medium of choice, the volume, and the costs. In general, one copy should be supplied. The PDS 
will duplicate this as needed to support archive and distribution requirements. 

DATA SET SUBMISSION PROCESS 2-3 



2.4.5 Review 

The submitted data set shall be received by the designated Discipline Node or the Central 
Node and checked for format and completeness. The data set must include the following: the 
science data, the catalog data, the documentation of the data set, any appropriate software and its 
documentation, any appropriate ancillary information and several examples of the data. 

The Science Manager and Project Scientist shall select a peer review committee, and send the 
data set description and data examples to each member of the committee. The review committee 
shall include the Project Scientist or Science Manager or a substitute acceptable to both, a rep-
resentative from the Central Node, the responsible Discipline Node manager and representatives 
from other Nodes who have some familiarity with the type of data under review. 

The catalog data shall be verified by loading it into a development version of the Central Node 
catalog and shall be available to support queries for consideration during the peer review. 

The review shall be conducted in a manner consistent with current peer review practices for 
consideration of science analysis proposals. 

The review committee shall consider the data set format, content, documentation, ancillary 
data and software, and shall provide a written summary of all deliberations and conclusions. Each 
logical component of the data set shall be judged for inclusion or rejection, and if rejected, a clear 
indication of the reasons for rejection shall be provided. If a data set is rejected, the peer review 
committee will decide on a schedule for resubmission of the rejected component. Whenever possible, 
the explicit steps which must be ta.ken by the supplier to correct faults shall be enumerated. 

The review committee shall also .make recommendations regarding the set of information which 
constitutes the minimum orderable data set, the assignment of curatorial responsibility, and the 
disposition of the data set. These recommendations shall include a determination of the appropriate 
data processing level and quality tags to be assigned, its position in the data hierarchy ( on- line, o:ff-
line, etc.) the number of inventory copies, and other recommendations to the Data Administrator. 

Conflicts shall be resolved by mutual agreement of the PDS Project Manager, the Project 
Scientist, the Science Manager and the Discipline Node Manager. If the Discipline Node Manager 
is the data preparer, then conflicts will be resolved without his participation. 

2.4.6 Rework 

Discrepancies in the submitted material's quality, quantity, or continuity will be discussed with 
the supplier, and rework will be negotiated between the Discipline Node, PDS management, and 
supplier. It is hoped that frequent contact between the PDS representatives and suppliers will 
minimize the necessity of reworking submitted data. 

2.4. 7 Signoff' 
Satisfactory completion of a data preparation/submission task will be approved by the PDS 

management, reported to NASA management, and included in PDS publications. 
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Chapter 3 

DOCUMENTATION STANDARDS 

Accurate and complete documentation is required to make planetary data widely useable to the 
community; the absence of enforceable documentation standards has resulted in the existing level 
of difficulty in using many data sets. The documentation standards listed below are implemented 
by the PDS to ensure that all ingested data sets will be readily useable to the community at large. 

Note that documentation may include descriptive information that can appear to the PDS user 
as text in the catalog or as help. Information supplied by the data preparer will either be destined 
for catalogs or for stand-alone material. A summary of major PDS catalog entries is provided in 
Appendix E. 

3.1 RECOMMENDED FORMAT 
Documentation prepared for submission with data sets should follow the conventions described 

in PDS Writing Conventions and Document Standards, March 31, 1988. 
The documentation section of the submitted material is to be in the form of text, with tables 

and figures supplied as needed to clarify the subject. Electronically based documentation is strongly 
preferred, as much of this information will eventually be archived in that form (perhaps on optical 
disks), and be made widely available. Hardcopy material may be readable in some cases by PDS 
scanners; if the data preparer plans to submit hardcopy material, he should coordinate this with the 
Central Node staff in order to maximize the possibility of PDS's being able to scan the hardcopy 
material. 

Text files formatted in one of the major document processing protocols are strongly recom-
mended. The formats which PDS can easily handle are Runoff, TEX, Word, Wordperfect, Wordstar 
and Vi. Use one of these formats if your text processing software has the option of producing them. 

The data section of the sub_mitted material is to be in the form of computer-readable files if 
at all possible. Formatting information is given in Chapter 6. Non-electronic material can be read 
in some cases by PDS scanners as noted above. 

3.2 EXAMPLES 
Refer to Appendix D for examples of data set documentation. The Voyager PWS data were 

documented in the PDS label format as part of that team's submission of their data. Also included 
in that Appendix is text that was generated as part of a data set restoration effort by the Radiom-
etry Node of the Pilot PDS. That information was intended for use in an online VAX help file. 
Please note that in this case only very limited information was available about some aspects of the 
experiment. 

3.3 SOFTWARE DOCUMENTATION 
Software used to generate, process, and analyze the data set constitutes an important part 

of the submitted material. This part is frequently of interest to other investigators. The extent 
to which they use existing software depends very much upon the clarity and modularity of that 
software. PDS has developed software design and documentation standards intended to promote 
interchange of software tools. The data set preparer is strongly urged to follow these guidelines in 
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the development of new software, and to modify existing code comments where possible to meet 
the intent of the standard (see Appendix M). 

Documentation such as requirements, design, and user manuals, where available, are of interest 
to those who might adopt the software or need to do similar development. Please preserve this 
information for any software that may be inherited, or which has affected data processing. Also 
note that software intended for eventual use at a Discipline Node for general PDS users must be 
accompanied by appropriate systems engineering documentation: requirements, design, and user 
manuals. 

3.4 DOCUMENTATION CONTENTS 
The following categories of information are required for each data set submitted to the PDS. 

Brief examples of the kind of information desired are given; note that these examples are illustrative 
and lack the amount of detail generally appropriate. 
( 1.) Instrument information 

3-2 

(a.) Measured parameters; theory of operation 
What physical. parameters are sought? What is the mechanism by which these measure-
ments are obtained? 
Example: "The single measured parameter of the UVEX instrument is ultraviolet radiance 
within the 300 to 400 nm band." 
Example: "The instrument comprises a single optical. window that is also the wavelength-
defining filter, followed by a field-defining aperture, followed by a single bolometer detector 
chip. Signal output is related through calibration measurements of standard UV sources 
to UV radiance in the subject passband and limited by the field of view of the detec-
tor/ aperture combination." 

(b.) Sensitivity 
What are the limits, in physical units, of measurable parameters? 
Example: "The instrument response covers a usable range from 3 x lOE-11 gauss, which 
is the noise level for the standard 1 sec integration, to 8 x lOE-5 gauss, at which point a 
maximum data number (DN) level of 1024 is reached in the lowest gain state." 

( c.) Temporal/ spatial/ spectral resolution 
What are the inherent resolution limits of the experiment? 
Example: "With the filter wheel fixed, samples may be obtained as frequently as 0.01 
sec." 
Example: "The optical field of view is circular with a diameter of 2.5 milliradians." 
Example: "Spectral resolution is limited by the grating size to 0.6 nm within the 1200 -
1300 nm band, and to 1.0 nm in the 1300 - 1500 nm band." 

(d.) Modes of operation; typical sequencing; observational compromises 
What modes of operation are possible? What typical sequence of operations is performed 
during data gathering? What compromises limited effective usage of the instrument? 
Example: "The instrument may cycle through various filter wheel positions (see table) 
or sample continuously in any chosen filter position. A typical sequence involves cycling 
through both radiometric and photometry filters with a period of 10 sec. The advantage 
of obtaining multiple wavelengths is offset by the time taken to cycle through filters, and 
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the consequently slower permissible scan rate for the platform. Other instruments on the 
scan platform prefer rapid scan rates, and so data collection was often performed with 
filter cycles of 2-3 sec, and just 3 or 4 filter positions employed in the cycle." 

( e.) Calibration techniques; laboratory and in-flight behavior; techniques; problems 

(f.) 

How was calibration performed before or during operation of the instrument? How were 
these measurements employed during the data reduction process? 
Example: "Pre-flight calibration consisted of observations of blackbody targets in a ther-
mal vacuum chamber for various instrument temperatures. The radiance versus measured 
DN profiles were used to develop lookup tables used in the reduction of flight data from 
DN to radiance." 
Deviations from nominal performance 
What unforseen occurrences limited effective data gathering? What operations were taken 
to deal with these problems? 
Example: "The instrument's drive motor developed erratic behavior after 3 years in orbit, 
such that the internal reference plate viewing mode could not always be exercised reliably. 
In response, the team chose to use commanded reference viewing rather than automatic 
cyclical viewing; the plate was viewed less frequently, and consequently data obtained 
after July 1 1993 have only 2% photometric accuracy versus 1% prior to that time." 

(g.) Specifications 
What are the basic instrumental characteristics? 

(2.) Ancillary information 
(a.) History of development 

Trace the origin of the instrument or experiment and subsequent development that may 
be relevant to data interpretation. 

(b.) Team personnel and current contacts 

Who constituted the experiment team? Of those, who is currently a source of information? 
Who else has become a source? 

( c.) Bibliography - instrument and science 
What are the basic papers published by the team members relevant to this instrument? 
Where are the engineering specifications documented? 

( d.) Data reduction software requirements; approach; implementation 
What formal documentation of reduction software is available? 

( e.) Data analysis software; tools for treating data of this type 
What software exists to aid the user of this kind of data? Note: PDS encourages the 
submission of software tools along with data sets, provided these tools can be readily 
understood and portable. 

(f.) Catalog information - existing catalogs used with the data set 
Any set of information that would help a user browse, characterize, or otherwise subdivide 
the data set. Note that some of this information may be appropriately supplied in the 
PDS labels attached to the data. 

(g.) Data format information 
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This material is normally contained in PDS labels associated with the data set itself, but 
it is valuable to have this information available in several forms. 

The basic guideline for the content of documentation is, "Can this information be useful to a 
data user?" and "Is the material necessary, and is it sufficient?" There are many levels of inquiry 
possible regarding data sets, from the casual examination to the total reworking of a data set. What 
is useful therefore also varies. The intent of PDS is to err on the side of completeness; it is intended 
that calibration information, for example, be available to those who may want to reprocess data, 
or who question conclusions based on that calibration. 

How much volume of information is expected? The answer depends on what is available, and 
on what is useful. Iflittle is available, little is all that can be expected. If a great deal of information 
exists, then the answer is, "All that would be of interest and can be provided". 

The data set supplier may not have access to all the information we would like about the 
experiment or data. Information and people may no longer be available; tapes may have been 
recycled. There may be insufficient time or funding to do a complete job. These are the realities 
of J.>DS as well as the rest of planetary science. Our goal is to do the best we can to serve the 
community within given constraints. The same goal should be kept in mind by the data set preparer. 
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Chapter 4 

CATALOG STANDARDS 

The PDS is developing a general purpose catalog ( also known as a high level catalog) to 
encompass data sets from all disciplines of planetary science. As data come under the purview 
of PDS, appropriate catalog entries are made to recognize the existence of the new data. More 
detailed level catalogs give users insight into the nature of the data and provide information about 
time and spatial coverage or provide specialized browse data subsets. 

One important goal of this SPIDS document is to describe standards used in the development 
of these catalogs. This is done to aid the development of catalogs by flight project staff, who have 
similar catalog needs during mission operation. Since PDS will acquire these catalogs from the 
projects, it is of mutual interest to promulgate a standard approach to database design. 

The PDS has used relational database designs, and recommends the use of this database 
structure throughout the planetary community. Use of relational databases will simplify the transfer 
of information between flight projects, the science community, the PDS, and the NSSDC. 

4.1 PDS SCIENCE CATALOG ARCHITECTURE 
The PDS science catalogs contain meta-data which characterize and describe the PDS science 

data holdings. This information is organized logically into two levels: a high level and a detailed 
level. This distinction is made for efficiency to avoid unnecessary duplication of information. The 
following discussion uses a bottom-up approach to characterize the contents of the two catalogs 
and distinguish them from the underlying data the catalogs describe. 
( 1.) The Data Level 

The actual and processed measurements from the science and engineering instruments, as well 
as all of their derived data products, form the data level. 
(2.) The Detailed Level Catalog 

The next level up consists of detailed catalog information for the various disciplines. In a 
fully-configured PDS, there will be as many detailed-level catalogs as there are Discipline Nodes. 
Each catalog contains specific information about the data which is provided by that discipline. 
This discipline-specific information is needed both for correct interpretation of the data and for 
constraining searches. 
(3.) The High Level Catalog 

The high-level catalog contains generic information that cuts across all disciplines, and is 
therefore at a higher level of abstraction than the discipline-specific detailed-level catalogs. While 
the actual entries in the high-level catalog are discipline-specific, the information types are used 
to characterize all planetary data. 

It is important to realize that the actual values stored in the two catalogs are specific to the 
data set and discipline being described, even if that information is part of the high-level catalog. It 
is the information type rather than the content that determines what catalog level is appropriate. 
The parameter measured may be specific to a single discipline ( e.g., radiance or proton rate), but 
all disciplines measure parameters. Other information such as sampling intervals and the names of 
instrument subsystems also cross discipline boundaries, and are therefore present in the high-level 
catalog. Information is pushed down into the detailed-level catalog only when its type is specific 
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to a single discipline (such as the location of one reticle point of an image, or a range of brightness 
temperatures measured for an orbit sequence). Information which is even less general, such as the 
set of radiances which form an image, or the set of brightness temperatures measured in an orbit 
sequence, is considered to be data, and is not part of either catalog. 

An example using the Fields and Particles discipline magnetic field data can serve to illustrate 
the three levels. The magnetometer subsystem on Voyager recorded magnetic field intensities in 
three orthogonal directions. Those intensities are the data. The data acquired can be analyzed 
in hourly increments, and information such as the percentage of data available during that hour 
and the type of data contamination which affected that hour's data can be derived. Such hourly 
details are not available and perhaps not important for other disciplines' data, and so the hourly 
details are a type of information which is stored in the Fields and Particles Detailed-level Catalog. 
The processing histories of the various magnetometer data sets are also unique to those data sets. 
However, the type of information which describes those processing histories, such as the names of 
the programs used and the hardware environment which ran them, is important to the processing 
histories of all data. Thus, the magnetic field intensities are data, the hourly contamination infor-
mation is detailed-level catalog information, and the processing history description is high-level 
catalog information. 

Note that the volume of information available decreases from the data level up through each 
catalog level, and that there is a corresponding increase in the generality of the type of information 
available. 

4.2 ENTITY RELATIONSHIP MODEL 
The definition and structure of the entities used in the PDS Catalog is shown in Appendix E 

of this document. Database "entities" are broad groupings of information, and are comprised of 
specific database "elements". A definition of elements contained in each entity is available in the 
PDS Data Dictionary, D-4854. Submitters of PDS data sets will be given templates to record the 
appropriate catalog data with their data sets. The templates indicate the criticality of a particular 
element in relation to a specific entity. An element that is marked critical must be included in 
the catalog data for acceptance of that data set by PDS. Figure 4-1 shows the entity relationship 
model for the high level catalog. 

4-2 CATALOG STANDARDS 



I::'-; 
C) 

u:i .... 
()q 
s:: 

§ "1 

:i:,.. t 
'""' .. 

u:i .... 
()q 

=-I 
tot 

-0 a p, -0 
()q 

(/J 
n =-s p, 

t 

EARTHBASEINF 

EARTH BASES 

J 

INSTRUMENT 
HOSTS 

.I 

PlATFORMD 

PLATFORMS 

DATASETINFO ~VNODEMEDIA 

A •• cum,111 )> "IIMI ·~-..... , :::::v I 
·.,_ ...•.. : 

INSTITUTIONS 

i J 

SCINFO 

MISSIONS 

mfil.,; 

VECTOR.COMP 

'• ... ' I a I - 1<[••::1•t1y 
·:•:•->· 

;- ., 

f':],.:::;;~Vl'POSITIO~ 
E\ITSPATIAL 

.......... 

MISSINST 
.A:=:•, 

A "''-
- .• .. ::•::.=:-:-- -



4-4 CATALOG STANDARDS 



Chapter 5 

PDSNOMENCLATURESTANDARDS 

This Chapter describes the PDS nomenclat re standards, which define the set of rules for con-
structing data object names. The purpose of es ablishing a standard syntax for data names is to 
facilitate user access to a system's data. It is pa ticularly important to use common nomenclature 
in database management systems, where search s are made covering a variety of disciplines, tech-
niqu~s, and spacecraft missions. For a given da a object, it is intended that any user of a system 
will be able to construct the same unique data bject name by following these rules. 

The traditional method of assigning name to data objects is best described as a process of 
eclectic nonchalance. Data producers and user construct names that are individually meaning-
ful, perhaps following a personally preferred a breviation scheme; the name chosen by different 
individuals is usually not the same. Witness th widespread use of SC, SPC, S/C, etc., all mean-
ing SPACECRAFT. A solution was required fo PDS that would allow for the consistent naming 
of data objects- used in data dictionaries, catal gs, keywords, and documentation. The power of 
uniformity in namiµg cannot be over-stressed; i is fundamental to the comparison of data across 
discipline boundaries. 

Several organizations have succeeded in dev loping a procedures for assigning standard names 
to data objects. The method adopted by the P S is a derivative of the "OF language" developed 
by IBM. It also follows closely the publication uide on Data Entity Naming Conventions, NBS 
Special Publication 500-149. 

The objective of the PDS nomenclature stan ards is to create an environment wherein different 
individuals, working independently, will easily b able to construct the same name for a given data 
object. This objective, if achieved, would elimin te multiple names for the same object (synonyms), 
and duplicate names for different objects (homon ms); it would greatly simplify the task of browsing 
data dictionaries for those who are unfamiliar w th its· contents. 

The construction rules must yield data obj ct names which are easily grasped, are as consis-
tent as possible with the common usage within he science community, and are also logically and 
methodically constructed, ideally from a predefi ed dictionary of component terms. 

The standards described within this Chap er will be used in the PDS Catalog system and 
the PDS data file labels. The standards are als for use by submitters of data to the PDS in the 
creation of their mission catalogs and file labels. 

The PDS strongly urges adherence to the st ndards set forth here within the planetary science 
community. Products submitted to PDS are equired to use these standards. Note that the 
PDS Data Dictionary (a separate document, P S D-4854) is intended to be a growing document; 
definition revisions will be admitted to make th data elements more widely usable. The PDS will 
endeavor to add any needed items which are no in the dictionary. 

A substantial amount of effort by many pa ties has been invested in the development of these 
standards. It is hoped that the result is robust enough to be incorporated by other systems that 
deal with planetary data ( e.g., NSSDC, SFOC, d flight projects). 

5.1 PDS DATA NOMENCLATURE SY 
'I'he PDS Data Dictionary contains the st dard keyword names used to catalog PDS data 

products. An understanding of the syntax is ne essary for two purposes: 1) as an aid in finding an 
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already existing keyword and 2) creating a new keyword for inclusion in the data dictionary. 

5.1.1 Construction of Terms 
All terms should be constructed from standard ASCII alphanumeric characters and the under-

score character. No special characters (e.g.,"&","*", etc.) are permitted. Appendix M contains 
the valid character set. The first character of the first term of a name must be alphabetic. 

The PDS naming syntax is not case-sensitive. For example, all the following constructs rep-
resent the same object name: 
( 1.) spacecraft-event-time 
(2.) SPACECRAFT_EVENT_TIME 
(3.) Spacecraft..EvenLTime 

Be aware, however, that the system employed in some implementations might be case-sensitive 
(e.g., some "C" compilers). Care must be taken in such instances to avoid creating separate data 
objects whose names differ only by the case (i.e., upper or lower) of one or more of the constituent 
characters. 

5.1.2 Order of Terms within a Data Object Name 
In general, the grammar of a data object designator (name) is hierarchical; the most specific 

term is placed first, the next most specific, etc., terminating with the least specific or most general. 
For example, consider a phrase such as "the time of an event on the spacecraft". Removing the 
articles and prepositions yields "time event spacecraft". The most general term here is "time", and 
therefore will be placed last in the hierarchy. Next, ask the question "time of what?" Obviously, 
the answer is "time of an event", which indicates that "event" is more specific than "time". The 
question "what kind of an event?" is answered by "spacecraft", the most specific term. Therefore, 
the data object name will be spacecraft_event_time. 

A data object name starts with the most specific term, followed by a connector, the next most 
specific (i.e., more general) term, and so on, terminating with the least specific (i.e., most general) 
term. The terms in the name are connected by an underscore(-) or a hyphen(-). The underscore 
is the preferred connector and should always be used except where it is not supported by hardware 
or software. 

Words used in the nomenclature syntax are also categorized in three groups as SPECIFIERS, 
DESCRIPTORS or CLASS WORDS. The format of an object name is made up as follows: 

object name:= [SPECIFIER] [DESCRIPTOR] CLASS WORD 

5.1.3 Specifiers 
Specifiers are terms such as START, STOP, SPACECRAFT, INSTRUMENT, TARGET, etc. 

A specifier will generally be the first word of an object name. 

5.1.4 Descriptor Words 
The next term of a data object name should be chosen from a streamlined list of well-defined 

generic "descriptor words". Examples of descriptor words include angle, altitude, distance, location, 
radius and wavelength. This list is maintained by the PDS Data Administrator. See Appendix F 
for the current proposed descriptor word list. 

5-2 PDS NOMENCLATURE STANDARDS 



5.1.5 Class Words 
Class words usually comprise the rightmost word in a data object name. The class word 

identifies the bask "information type" of the data object, where information type includes both 
the data type (numeric, character, logical) and a size constraint. 

The use of a limited set of class words will: 
(1.) Eliminate the need for users and data processing software to constantly access a data dictionary 

to parse, interpret, query or display values. 
(2.) Add a greater level of structure and consistency to our nomenclature. 
(3.) Constrain the selection and use of data values. 
( 4.) Promote automated operations such as validity checking. 
(5.) Promote the development of intelligent software. 

Class words include DATE, FLAG, ID, MASK, NAME, NUMBER, RATIO, TIME, and TYPE. 
The various class words are defined in Appendix F. 

If no class word is used as the right-most word in an object name the term "value" 
is assumed to be the last term in a data object name. For example, one would 
construct MAXIMUM-EMISSION..ANGLE or SOLAR-CONSTANT, as opposed to MAXI-
MUM_EMISSION..ANGLE_VALUE and SOLAR_CONSTANT_VALUE. 

When the class word "count" would be appropriate, the object name can be abbreviated by 
making the descriptor word a plural. The plural form implies "the number of something", for 
example, "the number of bytes in a record". The PDS nomenclature syntax advises appending an 
"s" to a descriptor word to indicate the inverse of "per each" or "number of". 

For example: 

Data Object 

number of bytes in record 
number of records in file 
number of label records in file 
number of lines in image 
number of samples in line 
number of suffix bytes in line 

5.1.6 Abbreviations 

PDS name 

record_bytes 
fileJecords 
labeLrecords 
lines 
line..samples 
line..suffix_bytes 

There are twp aspects to abbreviations: the use of abbreviations in the formal "long" names 
assigned to data objects, and the construction of terse object names for use in processing environ-
ments where names are restricted to 7, 8, 10, 12, or some other number of characters. 

5.1.6.1 Abbreviation of PDS Formal Data Object Names 
The maximum length of a PDS formal data object name is 30 characters. The limitation of 

names to 30 characters i~ needed because of the limitations of the software engineering tools used 
by PDS. There are instances, therefore, when it becomes necessary to abbreviate terms within a 
name in order to comply with this limit. The rules for abbreviations are: 
(1.) Abbreviate only if necessary to fit a name within the 30 character limit. 
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(2.) When abbreviation is required, it should be performed from the right to the left (most general 
to most specific terms), and should stop as soon as the name-length restriction is met. 

(3.) The abbreviations for all dictionary terms are maintained by the PDS Data Administrator. 
There may be multiple allowable abbreviations for a number of terms. This is to support the 
construction of terse names of varying length (i.e., 12, 8, or maybe even 6 characters), while 
maintaining maximum readability. Each abbreviation, however, will be unique and correspond 
to one and only one full word. Appendix G contains the PDS Abbreviation List. 

5.1.6.2 The Construction of Terse Data Element Names 
The terse name for a given data object is based upon the "formal" full name of the object. As 

previously noted, different applications may impose different length restrictions on terse names (for 
example, the Britton-Lee Intelligent Database Machine (IDM) restricts terse names to a maximum 
length of twelve characters). Several different sets· of PDS terse names may thus be required. 

A list of twelve-character terse names for the data objects in the PDS Data Dictionary and 
PDS Catalog design is maintained by the PDS Data Management Team along with the list of 
thirty-character full names for those data objects. This terse name list is intended as a reference 
for use by database implementors at the PDS Nodes and by other PDS developers. 

For practical considerations, the PDS will not maintain multiple standardized lists of terse 
names. Rather, the PDS has adopted the following methodology for formation of terse names for 
PDS Version 1.0 applications: 
(1.) Terse names are constructed from full names. Wh~re a full name is short enough to meet the 

applicable name length restriction, the full name is used as the terse name except where data 
independence considerations dictate a different approach. For example: 

full name 
12-character terse name 
8-character terse name 

LAST_NAME 
LASTNAME 
LASTNAME 

(Note: Data independence considerations could motivate alternate choices for either or both 
of the terse names in this example.) 
Where a full name is longer than the applicable name length restriction, the full name is 
shortened using a word-by-word abbreviating approach. For example: 

full name 
12-character terse name 

INSTRUMENT -NAME 
INSTNM (only 6 chars. needed) 

(2.) Abbreviations used in terse names are selected from the PDS Abbreviations List, which is 
maintained by the PDS Data Administrator. For some words, this list provides multiple 
allowable abbreviations to facilitate the construction of the shorter (e.g., eight-character) terse 
names. 
In forming terse names for data objects which are included in the PDS Catalog schema - or 
for data objects which are to be added to the PDS Catalog schema - the need may arise for 
abbreviations which are not yet included in the PDS Abbreviations List. If this occurs, the 
PDS Data Administrator should be informed of the need. The Data Administrator will approve 
or suggest an alternate for the needed abbreviation, and will add approved new abbreviations 
to the Abbreviations List. 

(3.) In the process of word-by-word abbreviation of a name, the longest standard abbreviation 
for each word is used first. Once each of the words in a name has been abbreviated in this 
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manner, further abbreviation takes place using increasingly shorter standard abbreviations for 
each word until the applicable name length restriction is met. For example: 

full name 
12-character terse name 
8-character terse name 

INSTRUMENT_MODE_DESCRIPTION 
INSTMODEDESC 
INSMODDC (uses shorter abbreviations) 

( 4.) As a rule, a terse name is formed without dropping any words from the given full name. In 
extreme cases, it may not be possible to form a meaningful terse name of the required length 
without dropping a word from the name. In these cases, the word dropped should be the word 
in the full name which is least essential to conveying the meaning of the data object. 
For example, if it should become necessary to drop a word from the full name "COORDI-
NATE-SYSTEM-REF _EPOCH" in order to comply with a terse name length restriction, 
"REF," or REFERENCE, could be dropped. In this full name, REFERENCE is the word 
least essential to conveying the meaning of this data object. In this example, then, the terse 
name could be formed from abbreviations for the three remaining words, as follows: 

full name 
8-character terse name 

COO RD IN ATE-SYSTEM-REF _EPOCH 
CRDSYSEP 

(5.) Word separators (for example, underscores) in terse names enhance the readability of the 
names but are costly in terms of character. Because of this overhead and the resultant loss 
of information content in a terse name, word separators have not been used in the twelve-
character terse names in the design of the PDS Catalog IDM database. 

5.2 PDS FILE NAME SYNTAX 
In order to maintain compatibility with various computer architectures, file names should 

be chosen which utilize an eight character file name followed by a period and a three character 
extension. 

5.2.1 Naming Rules 
In cases where file names will contain an identification value constructed from the time tag or 

data object identifier, the following forms should be used: 
Pnnnnnnn.EXT 

where P is one of the following: 
C = The following value is a clock count value (C3345678.IMG). 
T = The following value is a time value (T870315.TAB) 
I = The following value is an Image..id (I242A03.IMG). 
N = The following value is a numeric file identification number (N003.TAB). 

5.2.1.1 Standard File Extensions 
The following file extensions shall be used wherever possible in the naming of Object Descrip-

tion Language data files. 

Text files (Standard ASCII text) 
Table file 
Image file 
Cube file 
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filename.TXT 
tablename. TAB 

imagename.lM G 
cubename.CUB 
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Label file objectname.LBL 
Data file (:without labels) objectname.DAT 
Formatted text files filename.DOC 
Compressed file imagename.IMQ 

The following file extensions shall be used for all Britton Lee IDM support files (ASCII) residing 
on the VAX system. 

Create tables (sql) 
Create indexes (sql) 
Store commands ( sql) 
Views(sql) 
Table data (ascii) 
Table permissions ( sql) 
Store permissions ( sql) 
Text type tables (key,seqno,text) 
IDMCOPY (by table) 
IDMDUMP (database backup) 
IDMFCOPY data file 
IDMFCOPY format file 
FREEFORM Screen 
Documentation 

tablename.CTB 
tablename.CDX 

commandname.SQL 
viewname.VUE 
tablename. TDT 
tablename. TPM 

commandname.SPM 
tablename. TXT 
tablename.D 

databasename.DBD 
tablename.FCD 
tablename.FMT 

screenname.FFS 
precisename.DOC 

5.3 DIRECTORY NAMING AND USAGE CONVENTIONS 
The use of directories on random access media allows individual data files to be logically 

grouped for efficient location and retrieval. Well chosen directory structures lead the user naturally 
through a hierarchy of more and more specific directories until the appropriate one is found. On 
the other hand, a poor directory structure can make it nearly impossible to find a data file on its 
media volume. Examples of poor directory choices are the inclusion of too many files at a single 
directory level (this makes it hard to find the target file, and can actually cause severe performance 
penalties in the case of CDROM media); or a selection where the directory key is not useful, such 
as the use of day-of month for example, resulting in data for different months being in the same 
directory. 

High level directories which. deal with data sets which cover the range of planetary science 
disciplines shall follow the standard NSSDC hierarchy for discipline and sub discipline organization. 
For planetary science this hierarchy is as follows: 

Planetary Science. (Directory name "PLANET") 
Planetary Body (Directory name = Mercury, Moon, Mars, Venus, Comet). 
Sub-discipline (Atmosphere, Ionosphere, Magnetosphere, Ring, Surface, Satellite (use satellite 
name instead if numerous files exist). 
Directories should be constructed to provide access to a "screenful" of file entries. Within large 

collections of similarly named files the groupings should be chosen to provide from 20 to 100 files per 
directory. Directory names will be assigned using the portion of the filename which encompasses 
all files in the directory, with "X's" used to indicate the range of values of actual filenames in the 
directory. As an example the directories for the Uranus Imaging CDROM disk will be as follows: 
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[ARIEL] 
[MIRANDA] 
(OBERON] 

- 40 files 
- 39 files 

18 files 
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[TITANIA] - 42 files 
[UMBRIEL] - 31 files 
[UNKNOWN] 4 files 
[URANUS.C2674XXX] - 4 files 
[URANUS.C2675XXX] - 6 files 
[URANUS.C2676XXX] - 3 files 
[URANUS.C2677XXX] - 31 files 
[URANUS.C2678XXX] - 57 files 
[URANUS.C2679XXX] - 65 files 

etc ... 
[U-RINGS.C2675XXX] - 82 files 
[U_RINGS.C2676XXX] 49 files 
[U-RINGS.C2678XXX] - 3 files 
[U-RINGS.C2679XXX] - 10 files 

etc ... 

Total 800 files 
The Uranus and U_RINGS target bodies are further subdivided into subdirectories containing 

specific groups of spacecraft_clock_count values. For example, the directory [URANUS.C2674XXX] 
contains image file names ranging from C2674702.IMG to C2674959.IMG. 
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Chapter 6 

DATA FORMAT STANDARDS 

This Chapter provides an overview of data format standards and describes the PDS Object 
Description Language, a label system to be used to describe the format, contents and relationships 
between PDS data units. Throughout this discussion, the term "data unit" is used to represent 
what is commonly termed a "file". 

6.1 "DATA FORMAT REPRESENTATION SYSTEMS 
Numerous data representation systems are in use or in development within the NASA science 

community. There is currently a major effort to develop the Standard Format Data Unit (SFDU) 
as an umbrella for registering and describing these formats. The SFDU architecture is described 
in Appendix H. 

A more specific set of descriptive information, generally applicable to a single data unit (file), 
is found in the user label or header label formats employed in many applications. Examples of such 
formats are the ANSI labelled tape, the Landsat tape format, FITS, VICAR2, FLATDBMS, and 
the Common Data Format (CDF). 

These formats can be differentiated as either predefined structures where a template is used to 
extract values from their assigned position, or keyword structures where a keyword or tag is used 
to identify the information about the data unit. 

6.1.1 Predefined Structures 
The ANSI standard label for magnetic tape is an example of a predefined label format. Also, 

most of the telemetry record formats used by JPL projects utilize predefined header formats. The 
predefined formats do not have to be fixed. They may actually consist of numerous templates, any 
one of which might be needed depending on some key found in an earlier portion of the header. 

These architectures are very efficient in certain processing environments, especially where data 
volume is critical. They are less attractive in open environments for several reasons. First, they 
are inflexible and rely on the assumption that the user is able to determine in advance everything 
that will ever be needed in the label. Second, they require external definition, either hard-coded 
within a processing program, stored in a dictionary or written down on paper. Third, they can 
be difficult to transport or interpret. In many cases the parameters are stored in machine specific 
binary format and may be extremely difficult to extract, even given a template describing the 
format and contents. 

6.1.2 Keyword Structures 
Keyword label systems present the descriptive information in text format. The Flexible Image 

Transport System (FITS) and Video Image Communication and Retrieval (VICAR2) label systems 
are used by the astronomy and planetary imaging communities to provide descriptive information 
to accompany files of digital data. Both systems are widely used in image processing environments. 

A major advantage of these systems is that the descriptive parameters and values are car-
ried with the data and can generally be typed out for inspection without sophisticated processing 
software. In addition, they are flexible, and new keywords can be added to meet changing require-
ments. Since the keywords and values are in ASCII text format, they can be easily processed on 
most computer hardware with any computer language. 
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6.2 PDS OBJECT DESCRIPTION LANGUAGE (ODL) 
The PDS Object Description Language (ODL) is a keyword structure derived from the FITS 

and VICAR2 formats. It differs from these systems in allowing longer keyword names, extended 
value types, and by separating labels with carriage control to make them easier to create or display. 

6.2.1 ODL Objectives 
The top level objective of the ODL development effort is to promote the use of planetary data 

by a wide science community. 
The ODL system is intended to provide a language to communicate data files between the 

PDS data management system and the users. This language will be used to present information 
about both the format and contents of a particular data file, and should also provide the capability 
to describe its relationships to other data files. 

Another important function of the ODL is to enable the automatic extraction of catalog el-
ements from the labels during the submission process to the PDS. Given appropriate la.belling 
and software, it should be possible to update catalog information pertaining to a data set's size, 
location, version, parameters, and help text. 

6.2.2 ODL Concept 
Space science data are almost always transported, stored and manipulated with the aid of 

computers. Because we use computers to store and retrieve space science data, we often tend to 
think of our data as files and records within the computer. But there are several reasons why the 
file/record model of data is not a good model for us to use: 
(1.) Files and records are what the computer manipulates, not what a human scientist wants to 

manipulate. The scientist wants to think in terms of images, spectra, maps, etc., but since 
data are arranged as files and records the scientist must make a translation - either mentally 
or through the use of software - between images, spectra, etc. and files/records. In the best 
of all worlds the scientist could deal directly with images and spectra without having to know 
much about how they are represented within the computer. (Let's call this issue "Level of 
Abstraction". We will give each issue below a name in parentheses so that, we can refer to it 
later). 

(2.) Files and records are (by design) very general concepts and in most computers records and files 
can hold almost any type of data conceivable. If you receive a file of data without being told 
what is in the file you will probably have a difficult time determining what the file contains. 
To determine what is in a file you need two types of information that are often not supplied 
with the file: 
(a.) The format of data within the file: Are the data arranged as an array of binary numbers, 

ASCII text strings, or what? 
(b.) The content of the file: What do these numbers or strings represent? Are they an image, 

a map or what? 
(3.) An individual who creates a file determines the content and format of that file, and it is not 

uncommon to find the same type of data ( say an image) represented in different formats by 
different users. ( Format and Content). 

( 4.) Any relationships between data in one file and data in other files are difficult to determine. For 
instance, how do you know when two different types of files contain images that are compatible 
(i.e., that can be compared one to the other)? There is often no way to tell just from looking 
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at the files; you need some sort of external information to tell you if the image files have the 
same format and a comparable content. (Data Relationships) 

(5.) File formats, record formats, even the format of individual data items (e.g., floating point 
numbers) differ between brand X computer and brand Y computer, making it difficult to 
transport data files from one machine to another. (Portability) 
An alternative to the file/record model of data is the concept of the data base. The principal 

data base model these days is the relational model and some commercial relational DBMSs are in 
use in space science data applications. However many types of space science data including images, 
spectra and maps cannot be effectively stored within or retrieved from commercial relational DBMSs 
because they are designed to handle only simpler data types like integer scalar numbers and text 
strings. 

6.2.3 Data Object Description 
Objects are entities that can be perceived and examined by man or machine. Space scientists 

examine many objects including planets, atmospheres, rings, moons, magnetic fields, etc. Often 
we cannot see or feel these objects directly; instead we rely upon other objects like spacecraft 
and scientific instruments to provide us with data. The instrument data are actually objects also, 
objects that can be subjected to scientific analysis like images, spectra, time-series and tables. 
An instrument data stream is often jumbled up with other instrument data streams and with 
spacecraft status streams during transmission from the spacecraft to the ground, but typically one 
of the first things scientists do with data streams from their instruments when they receive them is 
to reconstitute the data objects ( the images, spectra, etc.) that the instrument actually collected. 
Thereafter most analysis is performed on these data objects, and the output of analysis programs 
is more data objects ( calibrated images, maps, etc.). 

A note of caution is necessary here: we use the term data object to mean two different things. 
The word can mean: 
( 1.) The class of an object: Image, spectra, etc. The class of an object identifies key aspects of the 

object that determine how the data object will be interpreted and analyzed. "Object class" is 
to objects what "data type" is to low-level data in a programming language like FORTRAN 
(FORTRAN data types include integer, real, complex, and character). 

(2.) An instance of an object: an actual data object that can be manipulated and analyzed. An 
example would be the Voyager 1 wide-angle camera image shuttered at time T ( there is only 
one such image). Each instance of an object belongs to one and only one object class; in our 
example, the camera image might belong to a class named RAW VOYAGER IMAGE. There 
may be hundreds or thousands of instances of a particular class of object. 
Generally we will use the term "object" without specifying whether we mean class or instance, 

but the context should make it clear which we mean. 

6.2.4 Data Objects Storage and Transportation 
As with any type of computer data, a data object is nothing more than a collection of bits. 

Typically those bits are arranged into more meaningful types of data like numbers, text strings, 
etc, and those numbers and text strings are arranged into data objects like images, spectra, maps, 
etc. When we want to store or transport data objects we place them into "data units". Data units 
are essentially containers for data objects. A data unit may contain a single object, several objects 
of the same class or several objects of different classes. An example of several objects of the same 
class would be a data unit containing a number of Voyager images. An example of several objects 

DATA FORMAT STANDARDS 6-3 



from different classes would be a data unit containing a Voyager image plus a histogram of that 
image (the image and the histogram are two different classes of objects). 

We often implement data units as files but a data unit is more than a file because it must 
contain or point to information that describes the object(s) within the data unit. A data unit 
provides, either directly or indirectly, documentation on each of its objects, both in human terms 
and computer terms. By "directly", we mean that the data unit may contain a "label" that contains 
this documentation. By "indirectly" we mean that the data unit may contain only a reference to 
a database containing such documentation. The decision as to whether a data unit contains a full 
label or only a pointer to the necessary documentation is left to the person generating the data 
unit (who must weigh issues like the overhead involved, how recipients will use the data unit, etc.). 

Each object within a data unit requires documentation both at the class level and at the 
instance level. The following information is needed to describe a class of objects: 

(1.) A name that uniquely identifies the object class and the relationship between this object class 
and other objects classes. The methods of constructing object class names and specifying class 
relationships are discussed later in this paper. 

(2.) A description of the format of the data object in terms that a human can understand and 
utilize. Taking a Voyager camera image as an example, the format information we need is that 
each such image consists of 800 scan lines with 800 samples per scan line and each sample is 
assigned an integral gray-level value in the range O - 255. All of this information is determined 
by the specific characteristics of the Voyager cameras, and none of this information specifies 
the way in which we will store the image within the computer: a class description is always 
independent of the way in which the objects within that class will be implemented. 

For each instance of an object it is also useful, but not mandatory, to have the data unit 
include information that describes the content of the object. 

The content of a data object is a function of the instrument object that created the data object 
and the real-world object which the instrument was examining, so we need information that ties 
data object, instrument object, and real-world object together. This holds equally true for data 
objects that are output by a data analysis program rather than directly by an instrument: data 
objects that are created by programs should be annotated with a history of the processes to which 
the data object has been subjected. 

One of the chief ways of specifying data content is through time stamping, and most descrip-
tions of data object content will contain the time at which the data object was created. To illustrate 
further the concept of identifying data content, let's continue the example of a Voyager camera im-
age: useful information on content would include the identity of the target at which the instrument 
was pointed when the data object was created (Jupiter, Titan, Uranus, etc) and a synopsis of the 
instrument state at the time the picture was shuttered (the filter through which the image was 
taken, gain state, etc.). 

Along with the information describing the format and content of each data object we need 
information that describes how the data objects are represented within the data unit. Since data 
units are manipulated directly by computers, this description needs to be in terms that computers 
can understand and utilize. Thus computers retrieving or receiving a data unit will know how the 
originator arranged the objects and the bits within the data units. This information must include: 

(1.) The location of each object within the data unit. This can be achieved through the use of 
pointers that point to the beginning of each data object within the unit, or similar mechanisms. 

(2.) A description of how the data object is broken into records and into underlying data types 
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like integers, characters, etc. Continuing with our Voyager camera image as an example, if we 
receive a data unit containing such an image we need to know that each scan line is contained 
within a 800-byte fixed length record and that each sample is encoded as an 8-bit unsigned 
integer quantity. 

(3.) If an object contains data types like integers, reals, and text strings that are machine-
dependent, we need to know the conventions used for encoding such values on the originating 
computer so that if the receiving computer has different formats for those data types it can 
recognize the incompatibility and hopefully translate the received values into its own corre-
sponding data types. 
To achieve the full potential of the object-orientation we need a standard way of describing the 

format and content of data objects and data units. Since part of the information about form and 
content is designed for use by humans while the other part is designed for use by computers, it is 
useful to devise a language that is readable and writable by both humans and computers. We call 
such a language an Object Description Language. The PDS has developed an Object Description 
Language (ODL) which is described in detail in Appendix I. 

6.2.5 Object Class Hierarchies and Inheritance 
As mentioned previously, each instance of a data object belongs to one and only one object 

class. One of the most powerful concepts of an object-oriented approach is that object classes can 
be arranged into a hierarchy with classes in the lower levels of the hierarchy inheriting properties 
from their ancestors higher up in the hierarchy. This is called "class inheritance" and to see how it 
works let us develop a rough cut of the first level of a hierarchy for space science data objects: 

IMAGE 
SPECTRUM 
TIME_SERIES 
TABLE 
HISTOGRAM 
MAP 
Descriptions of the formats of objects in the above classes can be expressed in an ODL, but 

the descriptions are necessarily vague: we cannot specify that every image will have X scan lines 
and Y samples per line because different cameras produce images with different values for X and 
Y. We solve this problem by providing only a template of the object format description for these 
high-level object classes. For example, a description of the class IMAGE might contain something 
like the following (given below in a pseudo-ODL): 

LINES 
LINE_SAMPLES 

= positive integer 
= positive integer 

This template indicates that for every image object the number of lines per image and the 
number of samples per line must be included in the format description. The text to the right of 
"=" is to be replaced with a value of the appropriate type. 

We can now use this template to create new classes that are "subclasses" of class IMAGE. By 
"subclass" we mean that the class shares the characteristics of other images but differs in salient 
ways, namely that it has specific values for the variables in the template that may be different 
from the values for other classes. Using class IMAGE as an example: the cameras aboard different 
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spacecraft produce images of different sizes so that we need to define one subclass for each type of 
spacecraft. The object class hierarchy for images might then look like this: 

-IMAGE 
- MARINEIL9 IMAGE 
- VIKING IMAGE 
- VOYAGER IMAGE 
- etc. 

We can tailor subclasses in two ways: we can fill in template values for attributes that were in-
herited, or we can add new attributes that weren't inherited. We cannot, however, ignore attributes 
that are inherited. The format description of class VOYAGER IMAGE might include something 
like the following, again specified in our pseudo-ODL: 

LINES 
LINE-SAMPLES 
SAMPLE_BITS 

= 800 
= 800 
=8 

The first two pseudo-ODL lines above fill in template values inherited from class IMAGE. The 
third line adds a new attribute that is specific to class VOYAGER IMAGE. 

The hierarchy can be extended as far as it is useful to take it. For example, when data objects 
are analyzed the processing programs used typically produce new data objects that are related to, 
but different from, the input objects. This leads us to extensions in the hierarchy like the following: 

- VOYAGER IMAGE 
- RAW VOYAGER IMAGE 
- DESPIKED VOYAGER IMAGE 
- CALIBRATED VOYAGER IMAGE 
- etc. 

The name of a class should reflect the class's place in the hierarchy. For example, the class 
name CALIBRATED VOYAGER IMAGE indicates the complete inheritance chain of calibrated 
Voyager image data objects. 

6.2.6 Summary 
The object-oriented data model uses the data object as the principal thing that is being stored, 

transported and manipulated (as opposed to files and records). Data objects are encapsulated 
in data units whenever they are stored or moved. Data units contain or point to descriptive 
information on· the following: 
(1.) The data format of the object, expressed in terms that a scientist can understand 
(2.) The data content of the object 
(3.) The location and format of each data object within the data unit, in terms that a computer 

can understand 
Therefore, the object-oriented approach resolves the following issues concerning the file/record 

model of data raised earlier: 
(1.) Level of Abstraction: Data objects represent data at the level at which scientists work - images, 

spectra, etc. - as opposed to the level at which computers work (i.e., files and records). It is 
more natural for the scientist to manipulate objects than files and records. 
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(2.) Format and Content: Data objects are encased in data units and data units provide, directly 
or indirectly, a description of the format of the data object - both in human terms and in 
computer terms - plus a description of the content of the object. Each data object belongs to 
a class and the format, as described in human terms, is the same for all objects within a class, 
thus classes provide a means for achieving uniformity since everyone who generates an object 
of a particular class will have to format and describe that object in the same way. 

(3.) Data Relationships: Relationships between data objects are expressed through class hierarchies 
and inheritance. A class inherits the attributes of all its ancestors in the class hierarchy. 
Therefore it is easy to tell that an object of class MERCATOR MAP is related to an object of 
class SINUSOIDAL MAP because they are both subclasses of class MAP. It is also easy to tell 
that there is no direct relationship between a MERCATOR MAP object and a UV SPECTRUM 
object since they do not share ancestors in the hierarchy. Class format descriptions written in 
an ODL can be used to determine whether or not two classes of objects are compatible (they 
may or may not be compatible even when they share the same ancestors). 

( 4.) Portability: Objects and data units are more portable than files because of the descriptive 
information that is contained in or that is pointed to by the data unit. A receiving computer 
can look at the format descriptions for the objects within a data unit and determine whether 
or not the objects are in a format that are compatible with that computer. If they are not, 
and there is appropriate software available, the objects can be transformed into the proper 
data format by the receiving machine . 
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Chapter 7 

MISCELLANEOUS STANDARDS 

7.1 TIME 

The representation of time within a database is of particular concern, since time is often used to 
constrain searches. PDS has adopted the ISO 8601 standard entitled "Data element and interchange 
formats - Representations of dates and times" for this purpose , and applies it a.cross all disciplines 
in order to give the ca.ta.log generality. The standard is UTC (Universal Time Coordinated). 

The 8601 standard covers the representation of the following: 

(1.) Dates consisting of year, month and day-of-month 

( 2.) Dates consisting of year and day-of-year 
(3.) Dates consisting of year, week-of-year and day-of-week 

( 4.) Clock times consisting of hours, minutes and seconds, including local time, UTC and alternate 
time zones 

(5.) Periods of times 
This proposal calls for adoption of a subset of the representations allowed by the 8601 standard. 

It is important to note that the 8601 standard covers only ASCII representations of dates and 
times. For binary representations of dates/times we propose that the PDS adopt the time code 
format standards recommended by the Consultative Committee for Space Data Systems (CCSDS) 
in document CCSDS 301.0-B-l (Blue Book), January 1987. 

7.1.1 Representations of Dates 

Dates sha.11 be represented as either year, month and day-of-month or as year and day-of-year 
using the full 8601 format, which has the fields separated by dash characters. 

Year, Month and Day of Month: 

Complete year, month and day-of-month: ccyy-mm-dd. 8601-compliant representations of 
dates as numbers only (ccyymmdd, etc) a.re not allowed under this proposal. The 8601 standard 
requires a.11 digits of a field to be specified, using leading zeros as needed. For example the following 
is not a legal format for August 1, 1988: 1988-8-1; the proper representation is 1988-08-01. 

Year, month and day-of-month for dates in the current century: yy-mm-dd. 8601-complia.nt 
representations where year and/or month fields a.re omitted (for example the use of -dd to represent 
a date within the current year and month) are not a.llowed under this proposal. 

Year and Day of Year: 

Complete year and day of year: ccyy-ddd. The 8601 standard requires a.11 digits of a field to 
be specified, using leading zeros as needed. For example the following is not a legal format for 
February 1, 1988: 1988-32; the proper representation is 1988-032. 

Year and day of year for dates in the current century: yy-ddd. We strongly recommend 
specifying the full four-digit year rather than the two-digit year-of-century. 
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7.1.2 Representations of Times 
Times shall be represented as hour, minute and seconds using the full 8601 format. The hour, 

minutes and seconds consist of three two-digit fields separated by colons and modulo 24, 60 and 60, 
respectively. The seconds field may optionally have a fractional part; if a fractional part to seconds 
is specified, a period shall be used as the decimal point and not the European-style comma. 
Local Time: hh:mm:ss.s 
UTC Times: hh:mm:ss.sZ 
Alternate Time Zone (Relative to UTC): hh:mm:ss.s+n 
where n is the number of hours from UTC. 

7.1.3 Dates and Times 
Dates and times shall consist of any legal representation of date and any legal representation 

of time separated by the letter T. For example: 

ccyy-mm-ddThh:mm:ss.s 
ccyy-mm-ddThh:mm:ssZ 
yy-dddThh:mm:ss+ 7 

7.1.4 Periods of Time 
(To Be Supplied) 

7.2 UNITS 

represents a date and local time 
represents a date/time in UTC 
represents a date and time in Pacific Daylight Time 

The uniform psage of units is essential in a broadly-based catalog system, for obvious reasons. 
One cannot search for all the instruments covering 400 to 700 nm wavelength if some of the entries 
are in Angstroms and some in microns. The PDS Data Dictionary Report ( a separate document, 
PDS D-4854) will define desired units for each database element used in the system. The standard 
is SI, Systeme Internationale. Therefore note that micrometers are preferred over microns, for 
example. There are a few exceptions to SI units to allow for consistency with the community 
standard usage. These exceptions are documented in the data dictionary. 
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The following summary of SI unit information is extracted from the Chicago Manual of Style. 
Base units - As the system is currently used, there are seven fundamental SI units, termed 

"base units": 

UNIT ABBREVIATION 

length meter m 
mass kilogram kg 
time second s 
electric current ampere A 
thermodynamic temperature kelvin K 
amount of substance mole mol 
luminous intensity candela cd 

SI units are all written in lowercase style; abbreviations are also lowercase except for those 
derived from proper names. No periods are used with any of the abbreviations in the international 
system. 

Derived units - In addition to the base units of the system, a host of derived units, which 
stem from the base units, are also employed. One class of these is formed by adding a prefix, 
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters, 
and a millisecond is .001 (that is, 1/1,000) second. The prefixes in current use are as follows: 

SI PREFIXES 

Factor Prefix SymlJol Factor Prefix SymlJol 

101s exa E 10-1 deci d 
101s peta p 10-2 centi C 
1012 tera T 10-3 milli m 
109 giga G 10-6 micro µ 
106 mega M 10-9 nano n 
103 kilo k 10-12 pico p 
102 hecto h 10-15 femto f 
101 deka da 10-18 atto a 

Although, for historical reasons, the kilogram rather than the gram was chosen as the base unit, 
prefixes are applied to the term gram instead of the official base unit: megagram (Mg), milligram 
(mg), nanogram (ng), etc. 

Another class of derived units consists of powers of base units and of base units in algebraic 
relationships. Some of the more familiar of these are the following: 

area 
volume 
velocity 
acceleration 
density 
luminescence 

UNIT 

square meter 
cubic meter 
meter per second 
meter per second squared 
kilogram per cubic meter 
candela per square meter 

Many derived SI units have names of their own: 
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SYMBOL 
m2 
m3 

m/s 
m/s2 

kg/m3 

cd/m2 
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UNIT SYMBOL EQUIVALENT 
frequency hertz Hz cycles per second 
force newton N kilogram-meters per second squared 
pressure pascal P newtons per square meter 
energy joule J kilogram-meter 
power watt W joules per second 
quantity of electricity coulomb C ampere-second 
electric potential volt V watts per ampere 
capacitance farad F coulombs per volt 
electrical resistance ohm volts per ampere 

Use of figures with SI units - In the international system it is considered preferable to use only 
numbers between 0.1 and 1,000 in expressing the quantity of any SI unit. Thus the quantity 12,000 
meters is expressed 12 km, not 12,000 m. So too, 0.003 cubic centimeters is preferably written 3 
mm3 , not 0.003 cm3 • 

For the decimal point, the international system permits either a dot {the British and American 
practice) or a comma (the French practice). Note that the comma is not used in international work 
to mark off groups of three digits in large numbers: if such figures cannot be avoided, spaces are 
left between the groups of three-to the right of the decimal point as well as to the left: 

31 000 000 0.000 000 31 

7.3 BINNING 
Certain derived data sets are worth curating because of their high value and wide applicability. 

Examples of these are maps of basic physical parameters such as albedo, thermal inertia, elevation, 
etc. that have been derived from measurements. It has been demonstrated by both the Lunar and 
Mars Consortium efforts that a uniform choice of binning or sampling intervals is of crucial value 
for the intercomparison of such data sets, and in fact makes such comparison simple if the data 
sets are available in a common database. We recommend here that if such data sets are developed 
for planetary bodies the data be binned in a simple cylindrical coordinate system, and that the 
bin sizes be binary multiples of 1 degree. Thus bin sizes of 0.25, 0.5, 1.0, 2.0, 4.0 degrees would 
be desirable. High density data sets may be easily re-binned in this scheme to intercompare with 
lower resolution data. See also Section 7.6 for cartographic standards. 

7.4 SOFTWARE DEVELOPMENT 
The PDS has developed a set of coding standards, which are essential in the design of any 

large software-dependent system. These standards are detailed in the PDS Software Management 
Plan {D - 3487); parts of that document appear also here in Appendix M for reference; adoption 
of these standards in the development of new code will enhance the future usage of that material 
by anyone and will smooth its incorporation into the PDS if such software is of interest to data 
users. It is not expected that existing code accompanying data sets will in general be converted. 
In the case of data processing software of archival interest, changes to the actual code structure are 
in fact dangerous. Comments, however, should be added to existing code to improve readability. 
Several document reader software tools are being developed within PDS to extract comments from 
code. Refer to Appendix M also for standards regarding commenting. 

Please note that software which is being generated to implement the basic operational functions 
of the PDS {such as data retrieval, data preparation, and data delivery) must follow very stringent 
development guidelines; these have been detailed in the PDS Software Management Plan. 
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7.5 ANCILLARY GEOMETRIC INFORMATION (SPICE FILES) 
In the past, geometric information for spacecraft experiments has been supplied to the teams 

through a central project facility that runs the appropriate software. There is a trend towards 
decentralization of this function, for several reasons. The data set supplier associated with future 
missions will encounter this concept, and it will affect what they need to pass on to PDS. Therefore, 
an introduction is provided below to the revised approach to generation of geometric data. 

SPICE is a formalism for treating geometric and other ancillary information pertinent to the 
understanding of science data returned from instruments on planetary spacecraft. Those familiar 
with ground data systems supporting past NASA planetary missions may envision the SPICE sys-
tem as, in part, a functional replacement for the Supplementary Experiment Data Record (SEDR) 
component. 

An objective of the implemented SPICE system is that it, with the addition of the downlink 
science instrument data from the spacecraft, will contain all of the information needed to recover 
the full scientific value of the returned science instrument data, and it will facilitate correlations of 
individual instrument data sets with data from other instruments on the same or other spacecraft. 

The SPICE concept is being executed within the larger context of the Planetary Data System, 
as it is within this environment that the full benefit of these concepts may be obtained. In turn, 
substantial replication of the PDS system architecture, including SPICE, within flight project 
environments will further extend these benefits. 

The primary SPICE data sets, called "kernels", are those which contain the fundamental and 
irreducible set of ancillary information. Kernels are composed of information which comes from 
the most knowledgeable sources of such information, which has anticipated use within the SPICE 
system, and which have been structured, formatted and cataloged to PDS standards. 

The name SPICE is an acronym ( coined by Hugh Kieffer of the USGS in Flagstaff) from which 
reference to the kernels is made as follows: 

S - Spacecraft ephemeris, or more generally, location of the observer, as a function of time. 
P - Planet, satellite, comet or asteroid ephemerides, or more generally, location of the target 
bodies being observed, as a function of time. The P kernel also logically includes principal 
physical, dynamical and cartographic "constants" related to the target bodies, such as spin 
axis orientation and size and shape specifications. 
I - Instrument description kernel. Contains descriptive and operational data peculiar to a 
particular instrument. Some examples of information included in the I kernel are mounting 
alignments, internal timing characteristics, geometric and radiometric calibration data and 
descriptions of operating modes. Note that I kernels, like the "constants" part of the P kernel, 
contain data that are largely time invariant. 
C - Pointing kernel. The name derives from historical use of the letter C to refer to a 3x3 
matrix defining pointing of a spacecraft's scan platform in inertial coordinates. The C kernel 
contains time tagged pointing angles for the (or a) major spacecraft structure on which science 
instruments are mounted. Pointing data for a specific instrument are obtained by combining 
appropriate portions of an I kernel with the C kernel. 
E - Events kernel. The foundation and principal contents are derived from the Integrated 
Sequence of Events (ISOE file) used to produce actual spacecraft commands. The E kernel is 
then augmented with real-time commands and "notebook entries" from scientists and those 
monitoring data system and spacecraft performance. The E kernel and portions of the I kernel 
are the only SPICE system elements focussed beyond purely geometric information. 
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The "SPICE" acronym might better have been named "SPICES" since there is one additional 
and equally important component: SOFTWARE. The SPICE kernels alone do provide the data 
needed to interpret science instrument data sets, traditionally called Experiment Data Records, or 
EDRs. Pragmatically, though, provision to the user community of only the SPICE kernels would be 
shortsighted and unacceptable. Instead, the SPICE formalism specifies that the user community 
also be provided with the software needed to both read the kernels and, subsequently, compute 
the principal observation geometry parameters and retrieve related ancillary data needed to help 
evaluate the EDRs. 

With these components of SPICE now identified, a premise and a major operational axiom 
fundamental to SPICE should be stated. 

PREMISE: The proliferation of inexpensive, high speed micro and mini computers and ad-
vances in data distribution technology facilitate the distribution of computation functions where 
appropriate. 
AXIOM: The ability to compute observation geometry parameters and to retrieve easily allied 
ancillary experiment data is considered at least equivalent to having such data precomputed for 
the end user. 
This leads to the last major design concept of SPICE, which is the transfer of the capability 

and responsibility for computation of derived ancillary information (SEDR parameters, and more) 
to the end user - the scientist or PI team or engineering team. 

Briefly summarized, then, the SPICE System Specification provides for the production at 
JPL of the elemental data files called kernels, and a portable software library, called the "toolkit", 
containing subroutines to read those kernels and compute most of the observation geometry param-
eters needed to aid interpretation of science instrument data sets. The toolkit software, including 
test/demonstration programs, is distributed to PI teams, with assistance from JPL. The PI teams 
integrate this toolkit software with their own analysis programs, functionally replacing that element · 
of their software which used to read a SEDR tape. 

Once a mission is underway, as new kernels are produced they are cataloged on a computer 
system accessible by PI teams. The PI may "order" all or selected kernels, and use these at his 
home site to compute or extract the geometry and related ancillary information of interest. The 
user does this according to his own schedule, and for only the specific time spans of interest. The 
user can fold in his own related software or otherwise change what is now his own "SEDR factory." 
(Changing SPICE toolkit software is not recommended.) 

Further and more comprehensive discussion of these ideas, and details of SPICE component 
specifications will be published in a SPICE Primer at a later date. 

7.6 CARTOGRAPIC DATA 
The following cartographic data standards were developed through an iterative process involv-

ing both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of 
the PCWG are also on the key IAU committees which set these same standards for international 
adoption; therefore, the PDS adopted cartographic standards are consistant with the IAU stan-
dards. The PDS, rather than making unilateral decisions on cartographic data standards, looks to 
the PCWG as the controlling body for these standards within NASA and the PDS. It is recognized 
that the IAU continually reviews its standards and may, at some time, make a change affecting the 
cartographic standards. If this happens, the PDS will work with the PCWG and decide its course 
of action at that time. 

A driving force for standards is to enhance the exchange and correlation of data sets between the 
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same instrument at different times and between different instruments and missions. The adoption 
of these cartographic standards, as with other standards, is a compromise between technical purity, 
tradition, standard practices, previous standards and potential costs associated with changes. Cost 
impact was an important consideration for some planetary bodies. The IAU standard for plane-
tographic longitude definition rather than planetocentric was adopted because of traditional use. 
Therefore, technical purity may be compromised by these standards; however, data exchange and 
correlation is still enhanced by the adoption of these standards. 

For historical reasons, Mars and Earth are exceptions to many of these standards, as noted 
below. The giant, gaseous planets (Jupiter, Saturn, Uranus, and Neptune), having no visible 
solid surfaces, are not explicitly covered by these standards, but the question of planetocentric vs. 
planetographic latitude for these bodies may need to be addressed in the future. 

7.6.1 Inertial Reference Frame/Timetag/Units 

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the "J2000" 
system) is the standard inertial reference frame. The Earth Mean Equator and Equinox of Besselian 
1950 (JD 2433282.5) is to be supported because of the wealth of previous mission data referenced 
to this system. The transformations between the two systems are to be available. Time tagging 
of data using UTC in Year, Month, Day, Hour, Minute and decimal Seconds is the standard, with 
Julian Date being supported. SI metric units, including decimal degrees, are the standard. 

7 .6.2 Spin Axes and Prime Meridians 

The !AU-defined spin axes and prime meridians relative to the J2000 Inertial Reference 
System are the standard for planets, satellites and asteroids where these parameters are defined. 
For other planetary bodies, definitions of spin axes and prime meridians determined in the future 
should have the body-fixed axes aligned with the principal moments of inertia, with the North Pole 
defined as along the spin axis and above the Invariable Plane. Where insufficient observations exist 
for a body to determine the principal moments of inertia, coordinates of a surface feature will be 
specified and used to define the prime meridian. It is expected that some small, irregular bodies 
may have chaotic rotations and will need to be handled on a case-by-case basis. 

7 .6.3 Reference Coordinates 

The Cartographic latitude and longitude are the standard reference coordinates. These coor-
dinates are for a vector from the body center-of-figure to the surface. Latitude is measured from 
-90 degrees at the South Pole to +90 degrees at the North Pole. Longitude has values from 0 to 
360 degrees and is always positive. Longitude is measured from the prime meridian using the same 
convention as for the IAU Planetographic longitude. 

Mars and Earth are exceptions; Planetographic latitude is the standard for these bodies. The 
long history associated with this definition and the volume of data and derived data products using 
this convention makes a change to Cartographic coordinates impractical. 

The proposal to adopt the Cartographic coordinate definitions has been made to the 
IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Potential Elements of the 
Planets and Satellites by IAU /PCWG members. The final resolution on adopting these coordinate 
definitions has not been decided at this time. 
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7.6.4 Reference Surface 
The Digital Terrain Model (DTM), giving body radius as a function of Cartographic latitude 

and longitude in a sinusoidal equal-area projection, is the standard. Mars is to be an exception 
where Planetographic latitude is to be used. Spheroids, ellipsoids and harmonic expansions giving 
analytic expressions for radius as a function of Cartographic coordinates are to be supported. 

The Digital Image Model (DIM) giving body "brightness" in a specified spectral band or 
bands as a function of Cartographic latitude and longitude in a sinusoidal equal-area projection, 
and associated with the surface radius values in the DTM, is the standard. Mars is to be an 
exception where Planetographic latitude is to be used. DIMs registered to spheroids, ellipsoids 
and harmonic expansions are to be supported. 

7 .6.5 Map Resolution 
The spatial resolution of a map will use 1 / 2n degrees as the standard. The vertical resolution 

will use 1 x 10m meters as the standard, with m and n chosen to preserve all the resolution inherent 
in the data. 

7 .6.6 Documentation 
The PCWG and PDS support the concept of adopting these cartographic data standards to 

promote data interchange and reduce confusion and errors. To eliminate unnecessary misinterpre-
tation of data, the PCWG strongly encourages that liberal documentation describing the standards 
and conventions used be attached to all PDS data products. 

Both the adoption of the standards and the documentation of these standards and of the 
conventions associated with the data sets are important. 

7.6.7 References 
The following two references give more detail on the cartographic data standards: 

(1.) Davies, M.E., et al (1986) Report of the IAU /IAG/COSPAR Working Group on Cartographic 
Coordinates and Rotational Elements of the Planets and Satellites: 1985 Celestial Mechanics 
39, 103-113. 

(2.) Batson, R. M., (1987) Digital Cartography of the Planets: New Methods, its Status and Future. 
Photogrammetric Engineering & Remote Sensing 53, 1211-1218. 
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Chapter 8 

TOOLS 

A considerable quantity of software is being or has been developed under PDS support for use 
external to the system. There are routines that have been built to handle specific data sets. There 
are programs to expedite data interchange and to deal with database management. 

The software exists in various states of development, from simply planned to completed. The 
list that follows is intended to guide the user in locating items of interest. Further information 
will be provided in subsequent versions of this document and can also be found by interrogating 
the PDS online catalog, once it is operational; the authors should be contacted regarding current 
status. 

8.1 DATA SET SOFTWARE 
The Navigation Ancillary Information Facility (NAIF), which is developing and promulgating 

the SPICE concept (see Section 7.5) provides a software toolkit that is the very essence of the 
SPICE approach - the software allows the user to take control of geometry information relevant 
to his/her experiment data. The toolkit allows manipulation of SPICE kernels and calculation 
of geometric information of interest. Other available software includes a documentation reader. 
Further information is available through the authors or directly from Charles Acton at JPL. 

The Radiometry Testbed Node of PDS has developed software for the treatment of radiometry 
and spectroscopy data. These packages, known as the XG and SPECIO systems, provide access to 
data from certain experiments on Mariner 6, 7, 9, and Viking, with constrained searches based on 
geometry or the measured parameters themselves. The systems run under TAE and are designed 
for portability to VAX computers. For further information contact Robert Gurule or Hugh Kieffer 
at: 

US Geological Survey 
2255 N. Gemini Dr. 
Flagstaff AZ 86001 
(602) 527-7038 

The Reflectance Spectroscopy Subnode at the Planetary Geosciences Division of the Hawaii 
Institute of Geophysics is developing a data management system for spectral data that will run on 
an IBM AT. It is intended to be a replicable system, with hardware, software, and data sets readily 
duplicated at user sites. Contact Tom McCord at (808) 948-6488. 

The Central Node of PDS has developed a program to manipulate and display digital image 
data from CDROM or magnetic disks on IBM PC, XT, AT or compatible machines. It was 
developed specifically to enhance the usage of PDS CDROMs by the community. The source code 
(in "C") can be ordered or delivered electronically. For further information contact Mike Martin 
at the address in the second chapter of this document. 

The JPL Imaging Testbed Node has been developing image processing programs that run on 
IBM PC AT computers. These perform a wide variety of functions and were modeled on routines 
available initially only through the Image Processing Lab at JPL. For further information contact 
Mike Martin or Sue La Voie. 
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8.2 PDS LABEL SOFTWARE 
PDS labels can be created easily with any text editor and mated with data files. The recip-

ients of labeled data sets may choose, however, to treat the labels with software that places label 
information into catalogs or displays or prints it. PDS personnel have been developing routines to 
extract label information and parsers that can act on the content. 

Automated loading of catalog information from labeled data sets is an important PDS devel-
opment activity. Routines to perform this function are being implemented at the Central Node at 
JPL. Of particular interest is the template approach, in which model labels for specific data sets 
are prepared for developers, who then "fill in the blanks" with the relevant catalog data. Please 
contact the PDS Central Node's Data Management Team for information. 

8-2 TOOLS 

,.,,._ 



Appendix A 

DATA INGESTION FROM PRESENT AND FUTURE MISSIONS 

The negotiation with a Flight Project leading to the approval of the Project Data Manage-
ment Plan (PDMP) by PDS is lengthy and involves Flight Project, PDS, PSDSG, NSSDC, NASA 

-~" Headquarters and other science participation. This procedure identifies the various steps involved, 
the groups and organizations involved and their responsibilities leading to the PDS approval of a 
Flight Project PDMP. This procedure insures proper science and data administration involvement 
in identifying the Flight Project data sets to be prepared for delivery to the PDS and allows the 
PDS to identify the resources needed to properly support these data sets. 

_...._ 

.,,._,~ 

.....:.--;., 

A.1 DRAFT PDS MISSION DATA INTERFACE LIST 
(1.) The PDS Mission Interface Team (MIFT) obtains an in-depth listing and description of all 

known mission products from the Project Interdisciplinary Scientist for Data Management and 
Archive or equivalent Project position (referred to as IDS/DMA). MIFT, in conjunction with 
the PDS Data Administrator, produces a PDS resource estimate for each product. 

(2.) 
(3.) 

(4.) 

The PDS MIFT gives this data products list and supporting data to the PDS Project Scientist. 
The PDS Project Scientist distributes the MIFT supplied information to the PSDSG, the 
NSSDC and the appropriate PDS Node Scientists for review. The PDS Project Scientist, 
PSDSG, NSSDC and Node Scientists may contact each other, the PDS MIFT and members 
of the Project for additional information and clarification. 
The PDS Project Scientist convenes a meeting including the PSDSG, the PDS Project Man-
ager, the NSSDC, participating Node Scientists, the PDS MIFT and invited members of the 
Project. This group produces the Draft Mission Data Interface List. This list reflects both 
scientific and resource management scrutiny and may include additional data products not 
identified by the Project if needed. 

A.2 WRITING THE PROJECT DATA MANAGEMENT PLAN 
(1.) The PDS Guidelines for Project Data Management Plans (PDMP), JPL Document D-5111, 

is provided to the Flight Project prior to drafting the PDMP. The PDS MIFT submits the 
Draft List to the Project through the IDS/DMA for inclusion into the Draft PDMP. This Draft 
PDMP is distributed for review to the Project including the Project Science Group (PSG), 
the PDS, the NSSDC, the PSDSG, etc. 

(2.) The Project IDS/DMA, assisted by the PDS MIFT, presents this Draft PDMP to the Project 
PSG and to NSSDC. The PDS MIFT resolves all PDS Interface related issues raised within its 
level of authority. Some issues affecting resources and schedule would be resolved at a higher 
level. 

(3.) The PDS Project Manager convenes a meeting of all interested parties (the PSDSG, PDS 
Project Scientist, PDS Node Scientists, PDS MIFT, Project PSG members including the 
IDS/DMA, NSSDC members, etc.) to air all unresolved issues and make the final data 
set/product identification. 

(4.) This Final List is submitted to the Project by the PDS MIFT through the IDS/DMA for 
inclusion in the Final PDMP which is approved by the PDS Project Manager and the NSSDC 
Director. 
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A.3 MECHANISM FOR CHANGE OUTSIDE OF STEPS 1 AND 2 
The following mechanisms are in place for additional comment, criticism, or change of the PDS 

negotiation: 
(1.) Review the matter directly with the PDS Project Scientist and Manager and with the NSSDC 

Director for resolution. 
(2.) Review the matter with the Planetary Science Data Steering Group (PSDSG) for consideration. 

This group has direct review authority for the PDS and has direct recommendation access to 
the NASA Code EL PDS Program Manager. 

(3.) Review the matter with the Project IDS/DMA, Scientist or Manager for action by the NASA 
Program Manager and/or Scientist for the Project who have direct recommendation access to 
the NASA Code EL PDS Program Manager. 
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Appendix B 

DATA RESTORATION PROCEDURES 

The identification and prioritization of data sets to be restored are based upon the needs of 
existing and future flight projects as well as current and future data analysis programs. The PDS 
does not have the breadth of oversight or responsibility of the Solar System Exploration Projects 
and Programs to make this identification and prioritization on its own. Therefore, NASA Program 
management and the PSDSG, which is chartered to advise NASA on science data issues, play the 
lead role in this activity. This procedure describes the steps, groups involved and their responsibility 
leading to the selection of proposals for data restoration. 

B.1 DATA RESTORATION PRIORITIZATION 
(1.) The NASA Code EL Planetary Science Data Steering Group (PSDSG) has the lead responsi-

bility and is supported by the PDS Project Scientist, the PDS Node Scientists and the Flight 
Project Scientists. A Priority List is generated, based upon PSDSG provided philosophy and 
criteria, which identifies desired data to be restored by Body, Spacecraft and Instrument. Ad-
ditional data discrimination of Classification and Observation Category may also be necessary. 
This list is reviewed and updated annually. 

(2.) The PSDSG gives the Priority List to the NASA Code EL PDS Program Manager. 

B.2 NASA REQUEST FOR DATA RESTORATION PROPOSALS 
(1.) The NASA Code EL PDS Program Manager releases a request for data restoration proposals 

annually which includes the PS DSG provided Priority List as well as data restoration guidelines 
and standards supplied by the PDS Data Administration Plan. 

(2.) Proposals for data sets not on the Priority List will also be considered. 
(3.) NASA Code EL sends all submitted proposals to the PDS Project Manager. 

B.3 SELECTION OF DATA RESTORATION PROPOSALS 
(1.) The PDS Project Manager heads a review board supported by the PDS Project Scientist, Node 

Scientists and the PSDSG to select proposals within PDS resources. 
(2.) The PDS Project Manager negotiates the contracts, which are let from JPL, with the data 

restoration proposers. 

B.4 RESTORATION PROCESS 
(1.) The PDS Science Manager monitors the delivery of scheduled data products. 
(2.) Delivered data is validated by the PDS Central Node staff or designated Discipline Node 

personnel for completeness, continuity and standards, and data integrity. The details of this 
peer review process are given in Section 2.4.5. 

(3.) The PDS Project Manager provides the NASA Code EL PDS Program Manager with a per-
formance assessment of all data restoration activities annually. 
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Appendix C 

WRITING CONVENTIONS AND DOCUMENT STANDARDS 

The writing conventions and document standards for documents accompanying data sets being 
submitted to PDS are still being developed. The conventions and standards for use by PDS 
personnel on system development documents can be found in the document Planetary Data System 
Writing Conventions and Documentation Standards, March 31, 1988. 
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Appendix D 

DATA SET DOCUMENTATION EXAMPLES 

The following material provides two complete examples of data. set documentation for PDS 
data. submission. The first was prepared for submission to PDS. The second was intended for use 

,,,_,_. as a. help file and is included as an example of content. 

D.1 PLASMA WAVE DOCUMENTATION EXAMPLE 
The following documentation was submitted during prototyping of the "template" process 

for automatic loading of catalog information for a. data. set. The Voyager PWS data. set supplier 
provided information to fill in requested parts of the template. 

I* Template: PDS Dataset Catalog Input Template 
I* Note: The following templates form part of a standard 
I* set for the submission of a single dataset 
I* to the PDS. 
I* The following hierarchy was redone to reflect 
I* templates completed for this example 
/* Hierarchy: DATASETHLCAT 
I* DATASETINFO 
/* DSPARMINFO 
I* SCDATASET 
I* DSPROCESSING 
I* 
OBJECT 
DATA_SET_ID 

'* I* Template: 
I* Note: 
I* 
I* 

= DATASETHLCAT 
= "VG2-U-PWS-2-S4 OSEC" 

Dataset General Information Temp! te 
This template is to be completed f 
dataset cataloged in the PDS. 

= DATASETINFO 

(J 
OBJECT 
DATA_SET_NAME = "VOYAGER 2 URANUS PLASMA WAVE RECEIVER 

TARGET_NAME 
TARGET_TYPE 
START_EVENT_TIME 
STOP_EVENT_TIME 
DATA_OBJECT_TYPE 
RELEASE_DATE 
PROCESSING_TIME 
PROCESSING_LEVEL_ID 

EDITED SPEC 4.0SEC" 
= URANUS 
= PLANET 
= 1986-01-23TOO:OO:OO.OOOZ 
= 1986-01-31TOO:OO:OO.OOOZ 
= "TIME SERIES" 
= 1988-03-10 
= 1988-02-14 
= 2 <CODMAC> 

I* The following 
FULL_NAME 
INSTITUTION_NAME 
REFERENCE_KEY_ID 
PIN_SOFTWARE_FLAG 

attribute is the dataset provider 
= "DR WILLIAMS. KURTH" 
= "UNIVERSITY OF IOWA" 
= 11 N/A 11 

= y 
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DETAIL_CATALOG_FLAG = Y 
I• 
DATA_SET_DESCRIPTION = "This data set consists of 4-second 
edited, wave electric field intensities from the Voyager 2 Plasma Wave 
Receiver spectrum analyzer obtained in the vicinity of the Uranian 
magnetosphere. For each 4-second interval, a field strength is 
determined for each of the 16 spectrum analyzer channels whose center 
frequencies range from 10 Hertz to 56.2 kilo-Hertz and which are 
logarithmically spaced in frequency, four channels per decade. Data 
are edited, but not calibrated. Calibration look-up software and 
tables are provided for use with this data 
set." 
I• 
CONFIDENCE_LEVEL_NOTE = "This data set includes all available 
spectrum analyzer data available within the interval of time covered. 
The data set has been cleaned as best possible for periodic noise 
spikes due to a stepper motor operating on another experiment. Other 
possible sources of noise which have not been eliminated include 
random, bursty noise in the 178-Hertz channel due to impulsive noise 
sources such as attitude control thrusters. The attitude control 
thrusters also result in random noise spikes in all channels below 1 
kiloHertz, with the most intense bursts occurring in the lowest for 
channels, below about 60 Hertz. Also, a failure in the Voyager 2 
flight data system a few months after launch has decreased the 
sensitivity and the calibration accuracy of the upper 8 spectrum 
analyzer channels (i.e. 1 kiloHertz and higher) . 11 

END_OBJECT = DATASETINFO 

b-2 

I• 
I• 
I• 
I• 
I• 

Template:Dataset Parameter Information Template 
Note: This template shall be repeated for each 

dataset, sampling parameter pair utilized 
by a dataset in the PDS. · 

I• 
OBJECT = DSPARMINFO 
SAMPLING_PARAMETER_NAME = TIME 
SAMPLING_PARAMETER_RESOLUTION = 4.0 
MINIMUM_SAMPLING_PARAMETER = 11 N/A 11 

MAXIMUM_SAMPLING_PARAMETER = 11 N/A 11 

SAMPLING_PARAMETER_INTERVAL = 4.0 
MINIMUM_AVAILABLE_SAMPLING_INT= 4.0 
SAMPLING_PARAMETER_UNIT = SECOND 
DATASET_PARAMETER_NAME = "PLASMA WAVE SPECTRUM" 
NOISE_LEVEL = 5.E-6 
DATASET_PARAMETER_UNIT = "VOLT/METER" 
END_OBJECT = DSPARMINFO 
I• Another Dataset Parmeter 
OBJECT 
SAMPLING_PARAMETER_NAME 
SAMPLING_PARAMETER_RESOLUTION 

= DSPARMINFO 
= "FREQUENCY" 
= .25 
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MINIMUM_SAMPLING_PARAMETER = 1.0 
MAXIMUM_SAMPLING_PARAMETER = 4.75 
SAMPLING_PARAMETER_INTERVAL = .25 
MINIMUM_AVAILABLE_SAMPLING_INT= .25 
SAMPLING_PARAMETER_UNIT = "LOG HERTZ" 
DATASET_PARAMETER_NAME = "PLASMA WAVE SPECTRUM" 
NOISE_LEVEL = 5.E-6 
DATASET_PARAMETER_UNIT = "VOLT/METER" 
END_OBJECT = DSPARMINFO 
I• 
/• Template: 
/• Note: 

Spacecraft Dataset Template 

I• 
This template shall be completed if the 
dataset is associated with a spacecraft. 

I• 
OBJECT 
SPACECRAFT_ID 
INSTRUMENT_ID 
END_OBJECT 
I• 

= SCDATASET 
= VG2 
= PWS 
= SCDATASET 

I• Template: 
/• Note: 
I• 

Dataset Processing Information Template 
This template shall be completed for the 
most meaningful previous source dataset 

I• used to produce this dataset. 
I• 
OBJECT = DSPROCESSING 
SOURCE_DATA_SET_ID = "VG2-U-PWS-2-EDR" 
SOFTWARE_NAME = 11 N/A 11 

END_OBJECT = DSPROCESSING 
END_OBJECT = DATASETHLCAT 
/• Template:PDS Catalog Spacecraft Instrument Input Template 
/• Note: The following templates form part of a standard 
/• set for the submission of a spacecraft instrument 
/• to the PDS .. 
I* The following hierarchy was redone to reflect the actual 
/• templates completed for this example 
/• Hierarchy: SCINSTINFO 
I* SCINSTOFFSET 
I* INSTELEC 
/• INSTDETECT 
/• INSTMODE 
/• INMODEPARM 
/• INMODEPARM 
I• 
OBJECT = SCINSTINFO 
SPACECRAFT_ID 
INSTRUMENT_ID 
I• The following 
DATA_SET_ID 
INSTRUMENT_NAME 

= VG2 
= PWS 

attribute applies to a NAIF dataset 
= 11 N/A 11 

= "PLASMA WAVE RECEIVER" 
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INSTRUMENT_TYPE 
/• The following 
PDS_USER_ID 
I• 

= 11 PLASMA WAVE SPECTROMETER" 
attribute applies to the data provider 

= WKURTH 

INSTRUMENT_DESCRIPTION = "The Plasma Wave Receiver on Voyager 
consists of both a 16-channel spectrum analyzer covering the range of 
10 Hertz to 56.2 kiloHertz and a wideband waveform receiver which 
returns the waveform of waves in the frequency range of 40 Hertz to 12 
kiloHertz. The spectrum analyzer provides data on a continual basis 
with a maximum temporal resolution of one spectrum per 4 seconds. The 
waveform receiver returns 4-bit samples of the electric field measured 
at a rate of 28,800 samples per second. Because of the very high data 
rate, the waveform samples must be transmitted in the same manner as 
the Voyager imaging information. At J~piter, some 10,000 48-second 
waveform frames were obtained. At Saturn and Uranus, the number of 
frames obtained was very small due to the lower telecon rates available 
at the greater distances of those planets. 11 

I• 
INSTRUMENT_CALIBRATION_DESC = "The Voyager plasma wave receiver 
spectrum analyzers were calibrated by first establishing a relationship 
between input voltage (of a sine wave at the filter center frequency) 
and output voltage and second by measuring the effective bandwidth of 
the filter. The bandwidth is measured by inputting a random noise 
signal of known spectral density and by measuring the output voltage 
which, by the first part of the calibration, is related to the rms 
voltage of a sine wave. Dividing the equivalent sine wave voltage 
squared by the input spectral density gives a bandwidth. This 
procedure is repeated for each of the frequency channels. A special 
calibration problem exists for the upper 8 frequency channels (1 
kiloHertz and above) due to a failure in the Voyager 2 Flight Data 
System. An in-flight recalibration was attempted using a Solar type 
III radio burst observed by both Voyager 1 and 2. The recalibration 
has known deficiencies, but it has been impossible to date to improve 
on them." 
I• 
OPERATIONAL_CONSID_DESC = "The primary operational considerations 
of the PWS include maintaining the proper operating mode and obtaining 
waveform samples as often as the spacecraft tape recorder/downlink 
capabilities allow. The standard instrument mode is with Waveform 
Power On and Input Gain State Hi. For encounter periods, this 
corresponds to GS3GAINHI/WFMPWRON. Since there has never been a period 
when the signal levels were so high as to require the Low input gain 
state, and it is highly unlikely that such levels will ever be 
encountered, Low Input Gain State should never be selected. As long as 
there is power margin available, it is most straightforward to leave 
the Waveform Receiver Power on. The power consumption is less than 0,5 
Watt for this section, hence, the power savings afforded by turning it 
off is not large. The most involved operational consideration is 
providing for the transmission of waveform data to the ground. At 
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Jupiter, the majority of the waveform data could be sent directly to 
the ground via the 115200 bps downlink. This capability disappeared 
after Jupiter, however, because of the greater distance to the 
spacecraft, hence, lover telecom rates. Since operating the A/D 
converter at a rate less than 28800 Hertz vould result in aliasing, it 
is necessary to record the data at the 115200 bps rate on the 
spacecraft tape recorder using the appropriate data mode and playback 
the recorded data at a lover rate, commensurate vith the link 
capabilities. Again, choice of the proper playback mode is required. 
Since the data modes available on the spacecraft are highly dependent 
on mission phase, these modes are not described here." 
I• 
SCIENTIFIC_OBJECTIVES_SUMMARY = "The primary science objective of the 
Voyager plasma vave investigation is to make the first surveys of the 
plasma and lov frequency radio vave spectra in the magnetospheres of 
the outer planets: Jupiter, Saturn, Uranus, and Neptune. Plasma vaves 
participate in a fundamental manner in the dynamics of planetary 
magnetospheres and in the interactions of that magnetosphere vith the 
external solar vind and internal perturbations such as those induced by 
satellites interior to the magnetosphere. Plasma vaves also provide 
diagnostic information about the plasma environment near the planets 
including such parameters as electron density and sometimes 
temperature. The instrument is also sensitive to lov frequency radio 
emissions and, therefore, acts as a lov frequency extension to the 
Planetary Radio Astronomy investigation. Radio vaves are often the 
only means of remotely observing regions of plasma not accessible to 
the spacecraft and also lead to remote diagnostics of plasma 
conditions. The plasma vave receivers are also sensitive to the 
results of small dust particles impacting on various parts of the 
spacecraft at high velocities and, hence, provide a direct measure of 
the rate of impact, the density of the dust, and an estimate of the 
mass distribution of dust in the vicinity of the large planets, 
especially those vith rings and otherwise dusty environments. Finally, 
the Plasma Wave Receiver vill characterize the plasma vave and radio 
vave spectrum of the outer heliosphere and perhaps beyond, extending 
our understanding of solar vind plasma processes and wave-particle 
interactions to several tens of Astronomical Units." 
I• 
INSTRUMENT_HEIGHT = 4.8 <centimeter> 
INSTRUMENT_LENGTH = 31.8 <centimeter> 
INSTRUMENT_MANUFACTURER_NAME = "UNIVERSITY OF IOWA" 
INSTRUMENT_MASS 
INSTRUMENT_SERIAL_NUMBER 
INSTRUMENT_WIDTH 
START_TIME 
I• 

= 1.4 <kilogram> 
= SN003 
= 18.5 <CENTIMETER> 
= UNKNOWN <build date> 

/• Template: 
I• Note: 

Spacecraft Instrument Offset Information Template 
This template is to be completed for each 
platform used for instrument positioning. 
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OBJECT 
PLATFORM_OR_MOUNTING~NAME 
CONE_OFFSET_ANGLE 
CROSS_CONE_OFFSET_ANGLE 
TWIST_OFFSET_ANGLE 
INSTRUMENT_MOUNTING_DESC 
END_OBJECT 
I• 

= SCINSTOFFSET 
= "SPACECRAFT BUS" 
= 11 N/A 11 

= 11 N/A 11 

= 11 N/A 11 

= 11 N/A 11 

= SCINSTOFFSET 

/• Template: 
/• Note: 
I• 

Instrument Electronics Information Template 
This template is to be completed for each 
instrument if applicable. 

I• 
OBJECT = INSTELEC 
I• Note: Electronics id same as instrument id when no sub-system exists. 
ELECTRONICS_ID = 11 PWS 11 

I• 
ELECTRONICS_DESCRIPTION = "The PWS electronics system consists of 
three basic sections. The first is the power supply system which 
regulates and filters the 28 volt, 2400 Hertz spacecraft power supply 
and provides DC voltages to the remainder of the instrument 
electronics. The second section is the spectrum analyzer which 
consists of two banks of 8 narrow-band filters, each and two 
logarithmic detectors, each of which provides an analog voltage 
proportional to the log of the signal strength delivered to the 
detector from any of the eight filters it services. The analog outputs 
from these two compressors, as they are called, are sent to the Flight 
Data System of the spacecraft for conversion to an 8-bit digital value. 
The spacecraft steps the inputs to the two compressors periodically 
(once per 0.5 seconds in GS3 or encounter mode) so that signal 
strengths in each of the 16 channels is measured over a 4-second 
interval. The third section consists of a single broadband filter of 
40 Hertz to 12 kiloHertz, an automatic gain controlled amplifier, and a 
4-bit A/D converter. This section digitizes the electric field 
waveform at a 28800 Hertz rate. The output amplitude is controlled by, 
the automatic gain control in order to keep the signals within the 
useful range provided by the 4-bit digitization." 
END_OBJECT = INSTELEC 

D-6 

I• 
/• Template: 
/• Note: 
I• 

Instrument Detectors Information Template 
This template is to be completed for each 
detector utilized by a instrument. 

I• 
OBJECT 
DETECTOR_ID 
DETECTOR_TYPE 
DETECTORS 
MAXIMUM_WAVELENGTH 
MINIMUM_WAVELENGTH 

= INSTDETECT 
= "PWS ANTENNA" 
= "DIPOLE ANTENNA" 
= 1 
= 11 N/A 11 

= 11 N/A 11 
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NOMINAL_OPERATING_TEMPERATURE = 25 <c> 
I• 
INSTRUMENT_DETECTOR_DESC = "The PWS uses a pair of 10 meter 
antenna elements as a balanced dipole antenna. The two elements are 
extended from the spacecraft at right angles to each other. (The 
elements are shared with the Planetary Radio Astronomy instrument, 
which uses them as a pair of monopoles so that measurements of the 
degree of right and left hand circular polarization can be made.) The 
PWS measures the voltage difference between the two elements which, 
when coupled with the effective length of the antenna system--7.07 m) 
yields an electric field strength in units of volt/meter. The antenna 
system has the usual dipole antenna pattern which yields nearly -4•pi 
steradians in its field of view, although there is a range of fields of 
view where the detector response drops dramatically as one expects from 
a dipole pattern. 11 

SENSITIVITY_DESCRIPTION = "The PWS antenna, used as a balanced 
dipole with an effective length of 7.07 meters gives a sensitivity to 
fluctuating (wave) electric fields down to the range of 5.E-6 
volt/meter. 11 

TEMPERATURE_TRANSLATION_DESC = 11 N/A 11 

END_OBJECT = INSDETECT 
I• 
/• Template: 
/• Note: 
I• 
I• 

Instrument Mode Information Template 
This template is to be completed for each 
mode that a instrument may be configured. 

OBJECT 
INSTRUMENT_MODE_ID 

= INSTMODE 
= 11 GS3GAINHI/WFMPWRON 11 

I* The follow 3 
DATA_PATH_TYPE 
DATA_PATH_TYPE 
DATA_RATE 
DATA_RATE 
SAMPLE_BITS 
SAMPLE_BITS 
FOV_SHAPE_NAME 
FOVS 

duplicate entries are being remodeled at this time. 
= "REAL-TIME PLAYBACK" 
= "RECORDED DATA PLAYBACK" 
= 32 <bps> 
= 115200 <bps> 
= 8 <bits> 
= 4 <bits> 
= 11 DIPOLE11 

= 1 
GAIN_STATE_ID = 11 HI 11 

HORIZONTAL_FOV = 11 2•PI 11 ??? FLOAT 
/• Next value may be horizontal_fov 
HORIZONTAL_PIXEL_FOV = 11N/A 11 

INSTRUMENT_POWER_CONSUMPTION = 1.6 <watt> 
SCAN_RATE = 11 N/A 11 

/• Next value may be verticle _fov 
VERTICAL_FOV = 11 2•PI 11 ??? FLOAT 
VERTICAL_PIXEL_FOV = 11 N/A 11 

I• 
INSTRUMENT_MODE_DESCRIPTION = "The PWS instrument gain is high and 
the waveform receiver power is on. This is the normal encounter 
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operating mode of the instrument and places it in its most sensitive 
input gain state with the waveform receiver section turned on. The 
fact that the waveform receiver power is on does not guarantee that 
waveform data. is available. The spacecraft is in the GS-3 data mode 
which cycles the plasma wave spectrum analyzer so· that a complete 
spectrum is obtained every 4 seconds." 
I• 
/• Template: Instrument Mode Parameters Information Template 
/• Note: This template is to be completed for each 
/• mode parameter a instrument utilizes. 
I• 

~JECT -- INMODEPARM 
INSTRUMENT_PARAMETER~NAME = "WAVE ELECTRIC FIELD INTENSITY" 
INSTRUMENT_PARAMETER_UNIT = "VOLT/METER" 
MINIMUM_INSTRUMENT_PARAMETER = 5.E-6 
MAXIMUM_INSTRUMENT_PARAMETER = 5.E-1 
NOISE_LEVEL = 5.E-6 

INIMUM_SAMPLING_PARAMETE; --=--411!ffA1oif'-~--· ....._.,,,.. 

MAXIMUM_SAMPLING_PARAMETER = "N/A',11 '"S 
MINIMUM_-AVAILABLE_SAMPLIN'G~INT= 4.0 <sec> 
SAMPLING_PARAMETER_INTERVAL = 4.0 <sec> 

~---1- LING_PARAMETER_NAME =· "TIME" 4i-
SAMPLING_PARAMETER_RESOLUTION = 4.0 <sec> 

'---'..-,u::acLING_PARAMETER_UNIT = "SECOND" 
I• 
INSTRUMENT_PARAMETER_DESC = "A measured parameter equaling the 
electric field strength in a specific frequency passband (in MKS unit: 
volts/meter) measured in a single sensor or antenna." 

'l:ND _ JECT = INMODEP ARM 
/• An tt 
/• Thi s b 
/• Steve Hu es 

lRIMUM_SAMPLING_PARAMETER = 1.0----·-· 
MAXIMUM_SAMPLING_PARAMETER = 4.75 
MINIMUM_AVAILABLE_SAMPLING_INT= .25 <sec> 
SAMPLING_PARAMETER_INTERVAL = .25 <sec> 

LING_PARAMETER_NAME = "FREQUENCY" 
SAMPLING_PARAMETER_RESOLUTION = .25 <sec> 
SAMPLING_PARAMETER_UNIT = "LOG HERTZ" 

D_OBJECT = INMODEPARM 
7• Another instrument mode parameter 
OBJECT = INMODEPARM 
INSTRUMENT_PARAMETER_NAME = "ELECTRIC FIELD COMPONENT" 
INSTRUMENT_PARAMETER_UNIT = "VOLT/METER" 
MINIMUM_INSTRUMENT_PARAMETER = 5.E-6 
MAXIMUM_INSTRUMENT_PARAMETER = 5.E-1 
NOISE_LEVEL = 5.E-6 
MINIMUM_SAMPLING_PARAMETER = 3.47E-5 
MAXIMUM_SAMPLING~PARAMETER = 3.47E-5 
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MINIMUM_AVAILABLE_SAMPLING_INT= 3.47E-5 <sec>, 
SAMPLING_PARAMETER_INTERVAL = 3.47E-5 <sec> 
SAMPLING_PARAMETER_NAME = "TIME" 
SAMPLING_PARAMETER_RESOLUTION = 3.47E-5<sec> 
SAMPLING_PARAMETER_UNIT = "SECOND" 
INSTRUMENT_PARAMETER_DESC = "A measured parameter equaling the 
electric field strength (e.g. in milli-volts per meter) along a 
particular axis direction. 11 

-mm_OBJECT 
END_OBJECT 
END_OBJECT 

= INMODEPARM 
= INSTMODE 
= INSTINFO 

/• Template: PDS Catalog References Input Template 
I• Note: 

'* I• 

The folloving templates form part of a standard 
set for the submission of a Publication References 
to the PDS. 

I• 

'* 
The folloving hierarchy was redone to reflect the actual 
templates completed for this example 

I• Hierarchy: REFERINFO 
I• 
I• 

REFERAUTHOR 
REFERAUTHOR 

I• 
OBJECT 
DOCUMENT_TOPIC_NAME 

JOURNAL_NAME 
PUBLICATION_DATE 
REFERENCE_DESCRIPTION 
REFERENCE_KEY_ID 
I• 

= REFERINFO 
= "A PLASMA WAVE INVESTIGATION FOR THE 

VOYAGER MISSION" 
= "SPACE SCIENCE REVIEWS" 
= 1977 
= "SCARF, F. L., AND D. A. GURNETT" 

= "SCARF 77 11 

I• Template: Reference Authors Information Template 
I• 
I• 

Note: This template is to be completed for each 
author associated vith the publication. 

I• 
OBJECT 
FULL_NAME 
END_OBJECT 
/• another author 
OBJECT 
FULL_NAME 
END_OBJECT 
END_OBJECT 
END_OBJECT 

D.2 IRS DATA SET EXAMPLE 

= REFERAUTHOR 
= 11 F. L. SCARF" 
= REFAUTHOR 

= REFERAUTHOR 
= "D. A. GURNETT" 
= REFERAUTHOR 
= REFERINFO 
= DATASETHLCAT 

The following text was generated as part of a data set restoration effort by the Radiometry 
Node of the Pilot PDS. This information was intended for use in an online VAX help file. Please 
note that only very limited information was available about some aspects of the experiment. 

1 IRS 
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The Mariner 6 and 7 Infrared Spectrometer experiment. 
2 INSTRUMENT 

The IRS instrument is comprised of a 10-inch Dall-Kirkham telescope feeding a pair of circular-
variable filter spectrometers. Channel 1 covers 4.0 to 14.3 microns, detected by a HgGe detector 
at 22K, cooled by a Joule-Thomson cryostat. Channel 2 covers 1.9-6.0 microns; detection is by a 
PbSe detector at 175K, with radiative cooling. Wavelength resolution is 0.5-1.0%. 

For detailed information see the instrument paper in REFERENCES. 
2TEAM 

Information accurate as of 1984: 

Principal investigator for IRS: 
Dr. George C. Pimentel 
Dept. of Chemistry 
Univ. of California, Berkeley CA 94720 
{415) 642-6330 

Co-investigators: 

D-10 

Dr. Kenneth Herr 
Aerospace Corp. 
El Segundo CA 
{213) 648-5620 
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2 COVERAGE 
· Detailed information on coverage is available in the IRS data file as geometry for each spectrum 

footprint. The geometry is contained in a header preceding each spectrum. Summary information 
is given below. 

Mariner 6 Mariner 7 

Arrival date of July 31 1969 Aug. 5 1969 
closest approach 

Julian date 2440433.7216 2440438.7089 

Areocentric solar 199.8 202.8 
longitude (Ls) 

Time of closest 5h 19m 06.8s 5h Om 49.5s 
approach (UTC) 

Altitude of closest 3428.91 km 3428.35 km 
approach 

Tangential velocity 8.03 km/sec 7.90 km/sec 
of s/c at closest 
approach 

Latitude of subsolar -8.12 deg -9.30 deg 
point at C/A 

Longitude of subsolar 303.32 deg 356.00 deg 
point 

Longitude of terminator 33.32 deg 86.00 deg 
at equator at C/A 

The size of the instrument field of view (a slit) is 2.07 by 0.10 degrees, or 36.1 by 1.75 millira-
dians. Multiplying the latter set of numbers by the range for a given spectrum yields the footprint 
size, in the same units as the range. 

NOTE: the Mariner 6 instrument returned 108 Channel 2 (near-IR) spectra; no Channel 1 
data were returned because the Joule-Thomson cryostat failed to cool the detector. The Mariner 
7 instrument operated successfully in both channels and returned 130 spectra in each channel. 
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2 DATAJ'ORMAT 
IRS data are arranged as a single set of 512 spectra; there are first 36 calibration spectra, 

followed by 122 Mariner 6 spectra, followed by 354 Mariner 7 spectra: 

Record Spectra Nos. Channel Instrument Subject 
----------------------------------------------------------------
1-22 (negative) 1,2 2 (Mar. 7) BB calibration 
23-36 (negative) 2 1 (Mar. 6) BB calibration 
37-158 14-290 2 1 space, Mars 
159-323 2-274 2 2 space, Mars 
324-512 2-274 1 2 space, Mars 
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Each spectrum is accompanied by a header containing spectrum number, instrument number, 
channel number, spacecraft clock count, geometry information, and target blackbody temperature 
in the case of calibration data. The header consists of 30 floating point numbers. The spectra are 
each a set of 740 :floating point numbers, ranging in value between about -10. to +99.999. The 
header format is as follows: 

Word Item 

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

20 

21 
22 

26* 
27-30 

* 

Instrument number (1 = Mar. 6; 2 = Mar. 7) 
Channel number (1 = 4-14 microns; 2 = 1.9-6 microns) 

Spectrum number 
GMT hour 
GMT minute 
GMT second 

(neg. for calibration) 

Encounter relative time: minutes 
Encounter relative time: seconds 
Spacecraft clock count 
Latitude of slit center intercept on planet 
Longitude of slit center intercept on planet 
Latitude of slit north end intercept on planet 
Longitude of slit north end intercept on planet 
Latitude of slit south end intercept on planet 
Longitude of slit south end intercept on planet 
Emission angle (degrees) for slit center intercept 
Incidence angle (degrees) for slit center intercept 
Phase angle (degrees) for slit center intercept 
Angle (degrees) betveen slit center intercept 

and planet center as seen from spacecraft 
Time past local sunset at slit center intercept 

(hours and tenths) 
Slant range (km) to slit center intercept 
Altitude of tangent ray above planetocentric sphere 

for non-intercepting vievs 
Wavelength interval per spectrum point, left 

segment (betveen left and central spike) 
Wavelength (microns) of first point in left segment 
Wavelength interval per spectrum point, right 

segment (betveen central and right spike) 
Wavelength (microns) of point 350 in spectrum 
Spare 

These items have been derived from the spectra and vere 
not included originally in the data set. See DECALIBRATI0N. 
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2 CALIBRATION 
Pre-flight calibration of the IRS instruments consisted of obtaining spectra of blackbody 

sources at varying temperatures in the range 77-300K, as well as absorption spectra of NH3, CH4, 
H2O, CO2, and polystyrene with a high-temperature source. See the instrument paper under 
REFERENCES. Several blackbody calibration spectra at various target temperatures are available 
in the data file; they are the first spectra in the set, flagged by having negative spectrum numbers. 
2 DECALIBRATION 

Wavelength calibration information in flight was derived from observations of polystyrene 
film, which has many absorption features in the range of interest. The polystyrene spectrum 
was superimposed on the target (Mars) spectrum each 12th time. Unfortunately, these spectra 
are unavailable at the present time in digital form. The spikes that occur in all the spectra are 
introduced by allowing broadband radiation onto the detector at certain rotational positions of the 
circular variable filters. Ostensibly, these spikes represent wavelength fiduciaries. Thus, for Mariner 
6(7), the spikes mark 1.88(1.88) microns and 3.72(3.69) microns for the shortwave part of channel 2, 
and 3.04(2.99) and 6.14(6.00) microns on the longwave side. Channel 1 is similarly marked; the first 
spike is at 3.89(3.86) microns, the middle spike at 7.92(7.88). The longwave segment of channel 1 
uses the middle spike as 7.21(7.37) microns and the third spike as 14.69(14.45). However, it will be 
found that the spikes do not relate reproducibly to the locations of atmospheric CO2 features; there 
is a small jitter in the relative locations. Wavelength information can also be derived from the known 
positions of these CO2 atmospheric features in the Mars data; this is probably the most accurate 
and dependable scheme. However, the only sharp CO2 features occur in the shortwave segment of 
channel 2 spectra. We have used the 2.0 and 2.69 micron features to derive the wavelength scale 
for this segment when possible; the parameters thus found are stored in header locations 23 and 
24. For all other spectra, the wavelength parameters are found by extracting the location of the 
spikes and assigning them the wavelengths noted above (from the instrument paper). 

Flux decalibration was performed by in-flight observations of an internal blackbody every 12th 
spectrum. The sequence of data acquisition was: BB calibration, 5 Mars spectra, polystyrene + 
Mars spectrum, 5 Mars spectra, BB calibration, etc. There was no significant change in photometric 
performance in flight, as measured by blackbody calibrations. 

Although information is present in the instrument paper (figure 5) that would permit decali-
brating the intensity scale, and detector response curves are also available for detectors of the kind 
used, we have not applied such corrections to the spectra because of the resulting uncertainties. 
For many purposes the overall shape of the spectra is of lesser importance; the thermal region spec-
tra have good blackbody calibration spectra available that will permit assessment of instrumental 
effects (these are the first spectra in the file). 
2 GEOMETRY 

Position of the IRS FOV relative to the television experiment: 

TV-B 
TV-A 
IRS 

Cone 

-0 deg. 1'50" 
+0 14'50" 
-3 53'12" 

Cross-cone 

+0 deg. 0'30" 
+0 9'31 11 

+1 33'42" 

It is not stated whether these values apply to both spacecraft. 
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Groundtrack geometry information for the IRS data set is contained in the data file together 
with the spectra themselves. See DATA-FORMAT for specific information. Available parameters 
are: 

GMT TIME; 
LATITUDE: 
LONGITUDE: 

TIME RELATIVE TO ENCOUNTER; 
NORTH, SOUTH ENDS OF SLIT AND CENTER 

II II II II II II 

EMISSION ANGLE AT SURFACE INTERCEPT (SLIT CENTER) 
SOLAR INCIDENCE ANGLE AT SURFACE INTERCEPT 
SOLAR PHASE ANGLE AT SURFACE INTERCEPT 
ANGLE FORMED BY INTERCEPT POINT, SPACECRAFT, AND PLANET CENTER 
TIME PAST LOCAL SUNSET AT INTERCEPT POINT 
RANGE OF SPACECRAFT FROM SURFACE INTERCEPT 
ALTITUDE OF TANGENT RAY ABOVE PLANETOCENTRIC SURFACE (WHEN 

INSTRUMENT IS NOT POINTED AT PLANET) 

Original longitudes supplied were east longitude, in the NA3 system operative in 1969. We 
have converted the latitudes and longitudes to the post-Viking system, incorporating both the 
redefinition of zero longitude and the relocation of the Martian pole. Longitudes are now west 
longitudes. For details of the major changes that occurred after Mariner 9 (the Viking alteration 
is minor), see the article by de Vaucouleurs in REFERENCES. 
2 SOFTWARE 

The only software available is the small set ofIDL routines developed in 1984-5 by T.Z. Martin 
as this data set was incorporated into the PDS. They permit printing the header information, 
printing individual spectra, and plotting spectra to a Tektronix graphics terminal. 

IRSOP: 

IRSPLOT: 

a program to read the IRS data and print header contents or 
individual spectra. 

a program to plot spectra to a graphics terminal. The spec-
trum, channel, and instrument number will be requested; it will 
be helpful to have available a printout of the headers obtained 
with IRSOP. Subsequent spectra can be overplotted on the first, 
in different colors if the capability· exists. The program sends 
escape codes to inform the terminal emulation software (ESC140 
on the NEC APC computer) to change color. These codes may 
be changed as desired to suit other configurations. 
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2 REFERENCES 
The following references will be of value to the researcher interested in the IRS instrument and 

data set; these are the main papers published by the team. 
1. "Mariner Mars 1969 IR Spectrometer"; K.C. Herr, P.B. Forney, and G.C. Pimentel, Applied 

Optics 11, 493 (1972). 
2. "Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner IR 

Spectrometer"; G.C. Pimentel, P.B. Forney, and K.C. Herr, J. Geophys. Res. 79, 1623 (1974). 
3 "Martian topography from the Mariner 6 and 7 IR spectra"; K.C. Herr, D. Horn, J.M. McAfee, 

and G.C. Pimentel, Astron. J. 75, 883 (1970). 
4 "Evidence for solid carbon dioxide in the upper atmosphere of Mars"; K.C. Herr and G.C. 

Pimentel, Science 167 , 47 (1970). 
5. "The composition of the Martian atmosphere: minor constituents"; D. Horn, J_.M. McAfee, A. 

M. Winer, K.C. Herr, and G.C. Pimentel, Icarus 16, 543 (1972). 
6. "IR absorptions near three microns recorded over the polar cap of Mars"; K.C. Herr and G.C. 

Pimentel, Science 166, 496 (1969). 
The following final report for JPL contract 951722 contains the best known geometry infor-

mation for the data set and certain information about calibration. It is identical to the microfiched 
information available from the NSSDC: 

"Infrared Spectrometer Mariner Mars 1969 - Data Format Report"; May 11970, G.C. Pimentel 
and K.C. Herr, University of California Space Sciences Laboratory Series 11 Issue 44, Berkeley, 
California 94720. 

Reference for the old and new latitude/longitude system for Mars: 
"Mariner 9 areographfo coordinate system"; G. de Vaucouleurs, M.E. Davies, and F.M. Sturms, 

J. Geophys. Res. 78, 4395 (1973). 
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Appendix E 

ENTITY DEFINITIONS AND STRUCTURES 

This Appendix defines and presents the structure of each data entity contained in the PDS 
Entity-Relationship model. For each entity, a general textual description is followed by a data 
structure chart in indented-list format. Each structure chart identifies by name all of the groups 
and elements which comprise a particular entity and shows the hierarchical relationship between 
the components of the entity. Where an entity includes multiple occurrences of a group or an 
element, the designator (m) appears with the name. The definitions of groups and elements can 
be found in the PDS Data Dictionary. This appendix supersedes the entity structure found in the 
preliminary Planetary Data System Data Dictionary, D-4854, which was published on January 15, 
1988. 

Entity Name 

coordinate system information 
data set and product information 
earth bases information 
event information 
institution information 
instrument information 
instrument host information 
mission information 
node information 
parameter information 
personnel information 
platform information 
reference information 
software information 
spacecraft information 
target body information 
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E.1 COORDINATE SYSTEM INFORMATION 

The coordinate-system-information entity defines a reference coordinate system. 

Level Group/Element Structure 

1 coordinate system id 
1 coordinate system name 
1 coordinate system center name 
1 coordinate system ref epoch 
1 coordinate system description 
1 vector component information group (m) 

2 vector component id 
2 vector component type 
2 vector component type desc 
2 reference target name 
2 reference object name 
2 unit 
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E.2 DATA SET AND PRODUCT INFORMATION 

The data-set-and-product-information entity describes the contents and history of a data set 
or a data product. It uniquely identifies the data set or product as well as the producer of the data. 
It describes the data set or product in terms of its sampling, resolution, and physical or measured 
parameters and identifies references relating to the data set or product. It identifies the storage 
location and physical format of the stored data set or data product. In addition, where applicable 
and available, it provides information about the processing software and antecedent data used to 
produce the data set or product. 

Note that for PDS Catalog purposes the notion of "data sets" includes the SPICE kernels 
produced by the Navigation Ancillary Information Facility (NAIF) at JPL. 

Level Group/Element Structure 

1 data set identification group 

1 

1 

1 

1 
1 
1 
1 
1 

1 

2 data set name 
2 data set id 
2 data set description 
2 target identification group (m) 

3 target name 
2 event time range 

3 start event time 
3 stop event time 

2 data object type 
2 release date 

2 
2 
2 
2 

2 
2 
2 
2 

2 
2 
2 
2 

2 
2 

data set measurement group 
measurement source desc 
measurement atmosphere desc 
measurement standard desc 
measurement wave calbrt desc 

data producer group 
full name 
institution name 
processing level id 
processing level desc 

data processing history group (m) 
source data set id (m) 
software name 
release date 
processing time 

confidence level note 
document reference key id 
pin software flag 
detail catalog flag 
data set instrument group (m) 

instrument host id (m) 
instrument id 

reference key id (m) 
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E.3 EARTH BASE INFORMATION 

The earth-base-information entity describes earth bases and associates them with institutions 
and nodes. 

Level Group/Element Structure 

1 earth base id 
1 earth base name 
1 node id 
1 institution name 

E.4 EVENT INFORMATION 

The event-information entity defines the approximate location and time of an observed event. 
It defines the location of the event with an initial position vector and, wp.ere appropriate, a spatial 
extent. 

Level Group /Element Structure 

1 event identification group 
2 
2 

3 
2 
2 
2 
2 
2 
2 

event name 
event type 

event type description 
target name 
start event time 
data set id 
stop event time 
instrument id 
instrument host id 

1 event location group 
2 spatial coverage group 

3 maJCimum latitude 
3 minimum latitude 
3 maximum longitude 
3 minimum longitude 

2 position vector group 
3 coordinate system id 
3 vector component id 1 
3 vector component 1 
3 vector component id 2 
3 vector component 2 
3 vector component id 3 
3 vector component 3 
3 local hour angle 
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E.5 INSTITUTION INFORMATION 

The institution-information entity provides the name of an institution. 

Level Group/Element Structure 

1 institution name 
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E.6 INSTRUMENT INFORMATION 

The instrument-information entity describes the characteristics of an instrument, including its 
mounting location, the scientific objectives for which it was designed, the observations in which it 
took part, the physical parameters measured by the instrument and sampling information required 
for the interpretation of instrument data values. 

Each instrument consists of a set of subsystems. These subsystems are the detectors, optics, 
electronics and other components which define the system used to gather data. For a spacecraft-
based instrument the set of subsystems is fixed, although only some parts of it may be used for any 
given observation (for example, only one of two available detectors may be in use at a particular 
time). This fixed set of subsystems which forms a spacecraft-based instrument is identified by a 
serial number, a name, and an identification. Many laboratory- or observatory-based instruments, 
however, do not consist of a fixed set of subsystems but are defined by the set of subsystems in use 
when particular data observations were made. In these cases, there is no defined instrument-specific 
identifying information other than the type of the instrument and the name of the laboratory and 
institution. 

Level Group /Element Structure 

1 instrument identification group 
2 instrument id 
2 instrument name 
2 instrument host id 
2 instrument host type 
2 instrument type 

1 instrument desc 
1 pds user id 
1 data set id 
1 start time 
1 instrument data set group (m) 

2 instrument parameter name 
2 data set parameter name 
2 important instrument parms 

1 scientific objectives summary 
1 instrument calibration desc 
1 instrument mode group (m) 

2 instrument mode id 
2 gain state id 
2 data path type 
2 instrument power consumption 
2 instrument mode desc 
2 section id ( m) 

1 instrument section information group (m) 
2 section id 
2 horizontal pixel fov 
2 vertical pixel fov 
2 horizontal fov 
2 vertical fov 
2 fov shape name 
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2 data path description 
2 data rate 
2 scan rate 
2 sample bits 
2 fovs 
2 filter number ( m) 
2 detector id (m) 
2 telescope id ( m) 
2 electronics id (m) 

1 filter group 
2 filter name 

'~ 
2 filter number 
2 filter type 
2 minimum wavelength 
2 maximum wavelength 
2 center filter wavelength 
2 measurement wave calbrt desc 

1 instrument detector group (m) --, 
2 instrument detector desc 
2 detector id 
2 detector type 
2 detector aspect ratio 
2 minimum wavelength 
2 maximum wavelength 
2 nominal operating tern perature 
2 sensitivity desc 
2 temperature translation desc 

1 instrument optics group (m) 
2 optics desc 
2 telescope group 

----"' 3 telescope id 
3 telescope diameter 
3 telescope f number 
3 telescope focal length 
3 telescope resolution 
3 telescope serial number 

...._,, 3 telescope t number 
3 telescope t number error 
3 telescope transmittance 

1 spacecraft mounting information group ( m) 
2- platform or mounting name 
2 instrument mounting desc 
2 cone offset angle 
2 cross cone offset angle 
2 twist offset angle - 1 earthbase mounting information group (m) 
2 platform or mounting name 
2 latitude 
2 longitude 
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2 instrument mounting desc 
1 instrument physical characteristics group 

2 instrument mass 
2 instrument length 
2 instrument width 
2 instrument height 
2 instrument serial number 
2 instrument manufacturer name 

1 instrument electronics group 
2 electronics id 
2 electronics desc 

1 operational considerations desc 
1 reference key id (m) 

E. 7 MISSION INFORMATION 

The mission-information entity provides a high-level description of a solar system mission or 
project and its objectives and characterizes each of its phases. 

Level Group /Element Structure 

1 mission name 
1 mission desc 
1 mission institution group (m) 

2 institution name 
2 start time 
2 stop time 

1 mission objectives summary 
1 mission phase group (m) 

2 mission phase name 
2 mission phase type 
2 mission phase desc 
2 spacecraft id 
2 target name 
2 target type 
2 start event time 
2 stop event time 

1 reference key id (m) 
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E.8 NODE INFORMATION 

The node-information entity provides information about a PDS Node. It identifies the Node 
Manager, the address of the Node and the institution at which the Node resides. 

Level Group/Element Structure 

1 node name 
1 node id 
1 institution name 
1 discipline name 
1 node manager group 

2 pds user id 
1 node contact group 

2 pds user id 
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E.9 PARAMETER INFORMATION 

The parameter-information entity provides information about instrument and data set param-
eters. 

Level Group/Element Structure 

1 data set parameter group 
2 data set id 
2 sampling parameter name 
2 sampling parameter resolution 
2 minimum sampling parameter 
2 maximum sampling parameter 
2 sampling parameter interval 
2 minimum available sampling int 
2 sampling parameter unit 
2 data set parameter name 
2 noise level 
2 data set parameter unit 

1 instrument section parameter group 
2 instrument id 
2 instrument host id 
2 section id 
2 sampling parameter name 
2 sampling parameter resolution 
2 minimum sampling parameter 
2 maximum sampling parameter 
2 minimum available sampling int 
2 sampling parameter unit 
2 instrument parameter name 
2 noise level 
2 instrument parameter unit 
2 minimum instrument parameter 
2 maximum instrument parameter 
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E.10 PERSONNEL INFORMATION 

The personnel-information entity provides information about personnel associated with the 
PDS, including electronic and mailing addresses, a time-tagged affiliation history identifying the 
mission or task roles performed by a given person, the individual's institutional affiliations and his 
or her area of expertise. 

Level Group/Element Structure 

1 pds user id 
1 full name 
1 telephone number 
1 fts number 
1 mailing address line 
1 discipline name 
1 expertise area group (m) 

2 expertise area id 
2 expertise area desc 

1 affiliation group 
2 mission group (m) 

3 spacecraft id 
3 instrument id 
3 mission name 
3 role group (m) 

4 expertise area id 
4 specialty name 
4 role name 
4 start time 
4 stop time 
4 scientist funding id 

2 task group (m) 
3 task name 
3 role group (m) 

4 expertise area id 
4 specialty name 
4 role name 
4 start· time 
4 stop time 
4 scientist funding id 

2 institution group (m) 
3 institution name 
3 scientist funding id 
3 start time 

1 node id 
1 start time 

2 electronic mail group (m) 
3 electronic mail id 
3 electronic mail type 
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3 preference id 

E.11 REFERENCE INFORMATION 

The reference-information entity identifies documents which are referenced elsewhere in the 
PDS. Along with the traditional bibliographic information needed to reference journal articles, it 
provides information which will assist in referencing non-journal documents such as JPL-internal 
or other institution-internal documents. 

Level Group/Element Structure 

l reference key id 
l document topic name 
l publication date 

2 author group (m) 
3 full name 

l journal name 
l reference desc 

E.12 SOFTWARE INFORMATION 

The software-information entity provides information about software available through the 
PDS. This includes information about the input data requirements, the input and output pa-
rameters which may be chosen, the output data and their formats and the required hardware and 
operating system environment. It identifies each program and its algorithms, along with the person 
to contact for additional information or for copies of the software. 

TBD 
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E.13 SPACECRAFT INFORMATION 

The spacecraft-information entity describes the characteristics of a given spacecraft, including 
spacecraft operational information, information about instrument platforms on the spacecraft, and 
reference information. 

Level Group/Element Structure 

1 spacecraft id 
1 spacecraft name 
1 spacecraft desc 
1 launch date 
1 platform information group (m) 

2 platform or mounting name 
2 platform or mounting desc 

1 spacecraft operations group (m) 
2 spacecraft operations type 
2 start event time 
2 stop event time 

1 reference key id (m) 
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E.14 TARGET BODY INFORMATION 

The target-body-information entity provides information which characterizes a particular solar 
system target body, such as the Sun, a planet, a satellite, an asteroid, or a comet. This includes 
various physical parameters and orbital parameters for the body. Along with each data value, this 
entity identifies the source of the data value, which, for example, may be a document, an institution 
or an individual. 

Note that the most accurate ephemeris information for a given body is available in the ap-
propriate SPICE kernel produced by the Navigation and Ancillary Information Facility (NAIF) at 
JPL. 

Level Group/Element Structure 

1 target identification group 
2 target name 
2 target type 

1 target physical information group 
2 primary body name 
2 rings 
2 ring system summary 
2 mean radius 
2 a axis radius 
2 b axis radius 
2 c axis radius 
2 flattening 
2 mass 
2 mass density 
2 mean surface pressure 
2 minimum surface pressure 
2 maximum surface pressure 
2 mean surface temperature 
2 minimum surface temperature 
2 maximum surface temperature 
2 surface gravity 
2 bond albedo 
2 magnetic moment 

1 target orbit group 
2 rotation period 
2 obliquity 
2 pole right ascension 
2 pole declination 
2 synodic revolution period 
2 sidereal revolution period 
2 mean orbital radius 
2 orbital semimajor axis 
2 orbital eccentricity 
2 orbital inclination 
2 ascending node longitude 
2 periapsis argument angle 
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2 secondary body name (m) 
1 target parameter information group 

2 target parameter name 
2 target parameter uncertainty 
2 target parameter epoch 
2 data source id 
2 data source desc 
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Appendix F 

PDS CLASS AND DESCRIPTOR WORD DICTIONARY 

F.1 INTRODUCTION 
In the PDS naming syntax, the words forming a name are composed of specifiers (first, last, 

start, stop), descriptor words (which describe what is being measured or presented in the value field) 
and class words (which identify the gross data type of the object). Names are constructed using 
these word components from left to right, from most specific (the leftmost word) to most generic 
(the rightmost word). The following lists identify the current set of class words and descriptor 
words for use in PDS object naming. Appendix G provides a list of standard abbreviations for 
these words and other specifiers used in the PDS data dictionary. 

F .2 CLASS WORD DICTIONARY 
count 

date 

description 

flag 

group 

id 

mask 

name 

A numeric value indicating a current total or tally of an entity. 
The class word count is implied by the use of plural descriptor 
words such as lines, bytes or bits. 

Example: LINES= 800 (interpreted as LINE-COUNT= 800). 

A representation of time in which the smallest unit of measure is 
a day. The value is expressed in one of the standard forms. 

Example: NATAL-DATE= 1959-05-30. 

A textual account. 

Example: "instrumenLdescrip_tion" 

A boolean condition indicator, limited to two states. 

Example: PRESSURE-VALVE-FLAG=TRUE. 

Names a collection- or aggregation of elements. 

Example: IMAGEJDENTIFICATION_GROUP. 

A shorthand alphanumeric notation representing the common 
term used for an entity. 

Example: SPACECRAFTJD = VGl 

An unsigned numeric value representing the bit positions within 
an element value. 

Example: SAMPLE_BIT_MASK = 2#00011111#. 

A literal value representing the common term used to name an 
element. 

Example: SPACECRAFT_NAME=MAGELLAN. 
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note 

number 

ratio 

text 

time 

type 

value 

A textual expression of opinion, an observation, or a criticism; a 
remark. 

Example: DATASET..NOTE = "This is a good dataset". 

A number associated with an object. 

Example: FILTER..NUMBER = 5 

The relation between two quantities with respect to the number 
of times the first contains the second. 

Example: SIGNAL-TO-NOISE-RATIO = 45.67 

A free form text string of undefined content. 

Example: OPERATIONALUSAGE_TEXT = "Description of 
the operational usage of this instrument ... ". 

A value which measures the point of occurrence of an event ex-
pressed as date and time in one of the standard forms. 

Example: HAPPY-HOUR-TIME=1987-06-21Tl 7:30:30.0 

A literal which represents a major predefined category. 

Example: TARGET_TYPE=PLANET. 

A numeric value representing a generic term for the amount or 
quantity of an entity whe.re a more specific term is not defined. 
This is the default class word for names not terminated with a 
class word. 

Example: SURFACE_TEMPERATURE = 98.6 would be 
interpreted as SURFACE-TEMPERATURE-VALUE. 

F.3 DESCRIPTOR WORD DICTIONARY 

For Descriptor Words of a scientific nature ( as opposed to the computer systems-oriented 
words such as "bits"), the definitions are intended to convey the meaning of each word within the 
context of planetary science and thus to facilitate the standardization of nomenclature within the 
planetary science community. 

Certain descriptor words may have more than one meaning, depending upon the context in 
which they are used. It is believed that it is appropriate to include these words and their (multiple) 
definitions in the list, and that the context- will suggest which definition is applicable in a given 
case. 

In some cases (such as "elevation"), the usage example given for the Descriptor Word may 
contain just the word itself. In general, however, the Descriptor Word is one of several components 
of a data object's name. 

' "Plural Descriptor Words" are a special component of the PDS Nomenclature Standards. A 
list of these words follows the body of the Descriptor Words list. 
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Formerly used ( or proposed) descriptor words which have been superceded by other words are 
also enumerated at the end of the main Descriptor Words list. 

albedo 

altitude 

angle 

axis 

azimuth 

bandwidth 

base 

channel 

circumference 

coefficient 

Reflectivity of a planetary surface or particle. 

Example: "bond_albedo" 

The distance above a reference surface measured normal to that 
surface. Note: see "elevation" and "height". Altitudes are not 
normally measured along extended body radii, but along the di-
rection normal to the geoid; these are the same only if the body 
is spherical. 

Example: "spacecraft-altitude" 

A measure of the geometric figure formed by the intersection of 
two lines or planes. Note: element definitions for angles should 
include origin and relevant sign conventions where applicable. 

Example: "maximum_emission_angle" 

A straight line with respiect to which a body or figure 1s 
symmetrical. 

Example: "or bi taLsemimajor _axis" 

One of two angular measures in a spherical coordinate system. 
Azimuth is measured in a plane which is normal to the princi-
pal axis, with increasing azimuth following the right hand rule 
convention relative to the positive direction of the principal axis. 
PDS adopts the convention that an azimuth angle is never signed 
negative. The point of zero azimuth must be defined in each case. 

Example: "sub_solar_azimuth" 

The range within a band of wavelengths, frequencies or energies. 

Example: "radar_bandwidth" 

A quantity to be added to a value. 

A band of frequencies or wavelengths. 

The length of any great circle on a sphere. 

A numeric measure of some property or characteristic. 
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component 

constant 

consumption 

contrast 

declination 

density 

deviation 

diameter 

distance 

duration 

F-4 

1) The part of a vector associated with one coordinate; 2) A 
constituent part. 

Example: "event-velocity ..x_component" 

A value that does not· change significantly with time. 

The usage of a consumable. 

Example: "instrument-power-consumption" 

The degree of difference between things having a comparable 
nature. 

Example: "maximum_spectral_contrast" 

An angular measure in a spherical coordinate system, declination 
is the arc between the Earth's equatorial plane and a point on a 
great circle perpendicular to the equator. Positive declination is 
measured towards the Earth's north pole, which is the positive 
spin axis per the right hand rule; declinations south of the equator 
are negative. The orientation of the Earth's equator must ·be 
specified; either the B1950 or J2000 reference coordinate system. 
PDS adopts J2000 as the default. (See also "right_ascension" .) 

Example: "declination" 

1) The mass of a given body per unit volume. 2) The amount of 
a quantity per unit of space. 

Example: "mass-density" 

Degree of deviance. 

The length of a line passing through the center of a circle or a 
circular object. 

Example: "telescope-diameter" 

A measure of the linear separation of two points, lines, surfaces, 
or objects. See also "altitude," which refers to a specific type of 
distance. The use of the word "distance" supercedes the use of 
the word "range" as a measure of linear separation (see definition 
of "range" below). 

Example: "slant-distance" 

A measure of the time during which a condition exists. 

Example: "instrument..exposure_duration" 
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eccentricity 

elevation 

epoch 

error 

factor 

fov 

flattening 

fraction 

frequency 

A measure of the extent to which the shape of an orbit deviates 
from circular. 

Example: "orbitaLeccentricity" 

1) The distance above a reference surface measured normal to 
that surface. Elevation is the altitude of a point on the physical 
surface of a body measured above the reference surface; height 
is the distance between the top and bottom of an object. 2) An 
angular measure in a spherical coordinate system, measured pos-
itively and negatively on a great circle normal to the azimuthal 
reference plane. The zero elevation point lies in the azimuthal 
reference plane, and positive elevation is measured towards the 
direction of the positive principal axis. (See also "azimuth".) 

Example: "elevation" 

A specific instance of time selected as a point of reference. 

Example: "coordinate..system_reference..epoch" 

The difference between an observed or calculated value and a 
true value. 

Exam pie: "telescope-t..number _error" 

A quantity by which another quantity is multiplied or divided. 

Example: "samplingJactor" 

(Acronym for "field_oLview") The angular size of the field viewed 
by an instrument or detector. Note that a field may require 
multiple field-0Lview measurements, depending upon its shape 
(e.g., height and width for a rectangular field). 

Example: "horizontalJov" 

A measure of the geometric oblateness of a solar system body, de-
fined as the ratio of the difference between the body's equatorial 
and polar diameters to the equatorial diameter, or "(a-c)/a." 

Example: "flattening" 

The non-integral part of a real number. See "base". 

The number of cycles completed by a periodic function in unit 
time. 
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gravity 

height 

inclination 

index 

interval 

latitude 

length 

level 

line 

location 

F-6 

The gravitational force of a body, nominally at its surface. 

Example: "surface_gravity" 

The distance between the top and bottom of an object. 

Example: "scaledJmage-height" 

The angle between two intersecting planes, one of which is 
deemed the reference plane and is normally a planet's equato-
rial plane as oriented at a specified reference epoch. 

Example: "ringJnclination" 

An indicator of position within an arrangement of items. 

1) The intervening time between events. 2) The -distance be-
tween points along a coordinate axis. See also "duration" for 
time intervals. 

Example: "samplingJnterval" 

Multiple definitions exist for latitude. PDS looks to NASA's 
Planetary Cartography Working Group to provide specific rec-
ommendations for definition of this term. (See also "longitude".) 

Example: "minimumJatitude" 

A measured distance or dimension. See also "height" and 
"width". 

Example: "telescope_focalJength" 

The magnitude of a continuously varying quantity. 

Example: "noiseJevel" 

1) A row of data within a two-dimensional data set. 2) A narrow 
feature within a spectrum. 

Example: "mailing_addressJine-1" 

The position or site of an object. 

Example: "documentJocation" 
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longitude 

mass 

moment 

obliquity 

parameter 

password 

percentage 

period 

pressure 

Differing definitions for planetocentric- and planetographic- lon-
gitude exist, and these definitions in turn depend on the definition 
of East or North. PDS looks to NASA's Planetary Cartography 
Working Group to provide specific recommendations for defini-
tion of this term. (See also "latitude".) 

Example: "maximumJongitude" 

A quantitative measure of a body's resistance to acceleration. 

Example: "instrumenLmass" 

The product of a quantity (such as a force) and the distance to 
a particular point or axis. 

Example: "magnetic_.moment" 

Angle between a body's equatorial plane and its orbital plane. 

. Example: "obliquity" 

A variable. 

Example: "maximum-physical-parameter" 

An alphanumeric string which must be entered by a would-be 
user of a computer system in order to gain access to that system. 

Example: "accounLpassword" 

A part of a whole, expressed in hundredths. 

Example: "data_coverage_percentage" 

The duration of a single repetition of a cyclic phenomenon or 
motion. 

Example: "rotation-period" 

Force per unit area. 

Example: "mean_surface_atmospheric_pressure" 
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righLascension 

radiance 

radius 

range 

rate 

resolution 

scale 

summary 

temperature 

title 

F-8 

( right_ascension) The arc of the celestial equator between the 
vernal equinox and the point where the hour circle through the 
given body intersects the Earth's mean equator reckoned east-
ward, in degrees. The Earth mean equator and equinox shall 
be as defined by the IAU as the 'J2000' reference system unless 
noted as the 'B1950' reference system. 

Example: "righLascension" 

A measure of the energy radiated by an object. 

Example: "spectrumJntegrated..radiance" 

The distance between the center of and a point on a circle, sphere, 
ellipse or ellipsoid. 

Example: "meanJnner..radius" 

Numeric values which identify the starting and stopping points 
of an interval. Note: the use of the word "distance" supercedes 
the use of the word "range" as a measure of linear separation 
(see definition of "distance" above). 

Example: "AXIS..n_BIN _RANGE" "emission_angle..range" 

The amount of change of a quantity per unit time. 

Example: "nominal..spin..rate" 

A quantitative measure of the c;1,bility to distinguish separate 
values. 

Example: "sampling_parameter..resolution" 

A proportion between two sets of dimensions. 

Example: "map_scale" 

An abridged description. 

Example: "scientific_objectives..summary" 

The degree or intensity of heat or cold as measured on a thermo-
metric scale. 

Example: "mean..surface_temperature" 

A descriptive heading or caption. 

Example: "sequence_title" 

PDS CLASS AND DESCRIPTOR WORD DICTIONARY 



transmittance 

unit 

wavelength 

width 

The ratio of transmitted to incident energy. 

Example: "telescope_transmittance" 

A determinate quantity adopted as a standard of measurement. 

Example: "unit" 

The distance that a wave travels in one cycle. 

Example: "minimum_wavelength" 

The distance between two sides of an object. See also "height" 
and "width." 

Example: "scaledJmage_width" 

F.4 PLURAL DESCRIPTOR WORDS 

axes 

bits 

bytes 

columns 

detectors 

fovs 

images 

items 

The number of axes within a qube data object. 

A count of the number of bits within an elementary data item. 

Examples: "ELEMENT..BITS," "sample_bits" 

A count of the number of bytes within a record, or within a sub-
component of a record. 

Example: "RECORD-BYTES" 

A count of the number of distinct data elements within a row in 
a table. 

A count of the number of detectors contained, for example, in a 
given instrument. 

Example: "detectors" 

A count of the number of different fields of view characteristic of 
an instrument or detector 

Example: "fovs" 

A count of the number of images contained, for example, in a 
given mosaic. 

Example: "mosaicJmages" 

A count of the number of data elements along a specified axis of 
a data array. 
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lines 

parameters 

points 

records 

ririgs 

rows 

samples 

units 

A count of the number of data occurrences in an image array. 

A count of the number of parameters in a given application. 

Example: "required-parameters" 

A count of the number of points (i.e., data samples) 0<:curring, 
for example, within a given bin. · · ' 

Example: "bin_points" 

' ' A count of the number of physical or logical records within a file 
or a subcomponent of a file. 

Example: "FILE-RECORDS" 

A count of the number of rings associated with a given solar 
system body. 

Example: "rings" 

A count of the number of data occurrences in a table. 

A count of the number of data elements in a line of an image 
· array or a set of data. 

Example: "sequence-Samples" 

A count of the number of units of a particular type 

Example: "media-units" 

F.5 IDENTIFIED NON-DESCRIPTOR WORDS 
The following words are not to be used as descriptor words. For each word, the list below 

explains why the word was not included in the descriptor words list and provides an alternative 
which is a recognized PDS descriptor word. 

code 

date/time 

definition 

divisor 

F-10 

Ambiguous. Use "id" instead. 

Unnecessary. Use "time" alone in naming fields which may carry 
both date and time information, or which carry only time infor-
mation (i.e., fields which provide information in units not greater 
than hours). Use "date" alone only in naming fields which are to 
carry only date information (i.e., fields which provide information 
only down to the level of days). 

Unnecessary. Use "description" instead. 

Unnecessary. Use "factor" instead. 
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field_of_ view 

identification 

increment 

indicator 

information 

mode 

multiplier 

comment 

order 

origin 

position 

right-ascension 

Awkward. Use "fov" instead. 

Too long. Use "id" instead. 

Unnecessary. Use "interval" instead. 

Unnecessary. Use "id" or "state" instead. 

Ambiguous. Use "description" instead. (Note: "information" is 
used as a descriptor word in the names of Data Dictionary entity 
names on an exception basis). 

Unnecessary. Use "description" or "id," as appropriate, together 
with mode ( e.g., mode_description or modeJd). 

Unnecessary. Use "factor" instead. 

Unnecessary. Use "note" instead. 

The descriptor word should be id, type, or description, as in 
storage_order_description. 

The descriptor word should be description or group, as in pro-
jection_origin_grou p. 

Unnecessary. Use "location" instead. 

Awkward. Use "ra" instead. 
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Appendix G 

PDS ABBREVIATION LIST 

The following is "Version A" (February 3, 1988) of the PDS Standard Abbreviations List, 
which replaces the November 12, 1987 Preliminary Version. Version A reflects the PDS Data Design 
Team's comments on the previous version. The Standard Abbreviations List is a component of the 
PDS Nomenclature Standards, which are explained in this document. 

The Abbreviations List provides one or more standard abbreviation(s) for every word which 
appears in any of the data object names in the PDS Data Dictionary, as well as for other words 
needed in PDS applications. Each abbreviation listed is unique. Where "(DROP)" appears in 
place of an abbreviation, the word is to be dropped - rather than abbreviated - when necessary in 
a given application. 

The list is not expected to require any additional editing, except to ADD new words and their 
abbreviations, or to ADD new abbreviations for words already on the list. Thus, the list should be a 
trustworthy source of standard abbreviations for use throughout PDS Version 1.0 implementation. 

The Abbreviations List is maintained by the PDS Data Management Team at JPL. 

FULL WORD ABBR #1 

acceptance acptnc 
account acct 
address addr 
affiliation a:ffil 
albedo alb 
algorithm alg 
altitude alt 
and (DROP) 
angle ang 
anomaly anom 
antecedent antcdt 
approach aprch 
area ar 
argument arg 
ascending ascndg 
aspect aspct 
associated assctd 
atmosphere atmos 
atmospheric atmsc 
author auth 
authority authty 
availability avlbty 
available avlbl 
average avg 
axis axs 
azimuth az 

PDS ABBREVIATION LIST 

ABBR #2 

acpc 
act 
adr-. 
afl 

an 
anm 
ant 
apch 

asc 
asp 
ascd 
atms 
ate 
aut 
athy 
avl 
avbl 

ABBR #3 

acp 

apr 

asd 
atm 

aty 
av 
avb 
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FULL WORD ABBR #1 ABBR #2 ABBR #3 

band bnd bd 
bin bn 
hit ht 
body bod 
bond hon 
brightness brgtns btns -
browse brows bws bs 
byte byt 
calibration calhrt calb cal 
carrier car 
catalog cat 
center ctr 
channel chan chi ch 
characteristic char 
clarity clrty clar clr 
clock elk 
closest clst els 
code cod 
comment cmt 
component comp cmp 
compromise cmprms cmps cps 
computer cmptr -::~ cmpr 
condition cond end 
cone en 
confidence confid conf cnf 
consideration consid cnsd csd 
consumption cnsp esp 
contact cntct cont ctt 
contamination ,. contam cntm ctm 
contrast contr cnr 
control ctrl ctl 
conversion conv cnv 
coordinate coord crd cd 
coordinator coordr crdr err 
count cnt ct 
coverage covrg cvrg cvg 
cross crs 
customer cust cus 
data dta da 
date dt 
day dy 
declination dee 
defining defog defg dfg 
definition defn dfn 
delimiting delim dlm 
density dnsty dens dns 
description desc dsc de 
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FULL WORD ABBR #1 ABBR #2 ABBR #3 

detector <let 
diameter diam dia 
discipline disc dis 
distance dist dst 
document doc 
duration duratn dur du 
dynamic dynam dyn 
earth eth 
east est 
eccentricity ecc 
electronic electnc elec elc 
elevation el 
emission emiss emsn em 
entry entr etr 
environment env 
ephemeris eph 
epoch epc ep 
error err 
event evt ev 
experimenter exprmtr xptr xpr 
expertise exprts xpts xps 
exposure exposr exp ex 
facility facil fad fac 
factor fact fct 
feature featr ftr 
field fild fil 
field-of-view fov 

- fields-particles fp 
filter fl.tr fir 
first fst 
flag fig fl , 
flattening flatng fltn fin 
flood fld fd 
focal fcl 
format frmt fmt 
frame frm 
from fr -c-
full 
function func fnc 
gain gn 
geometry gmtry geom gom 
gravity grav grv 

---"\. 
group grp 
guidance guidnc guid gdn 
hardware hw 
height ht 
hierarchy hier hir 
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FULL WO}J.D ABBR #1 ABBR #2 ABBR#3 

history hist hst 
home hm 
horizontal horiz hor 
hour hr 
hourly hrly hry 
identification id 
image img 

,:;-

imaging imng imn 
implementation impl imp 
incidence incdnc inc 
inclination incl inl 
information info inf 
initial init ini 
mner in 
input inp 
institution instn ist 
instruction instruc istc isc 
instrument instr inst ins 
integrated integd itgd itd 
interval int iv 
item itm 
journal jrnl jl 

.julian jul ju: 
kernel knl 
key ky 
laboratory lab 
language lang Ian 
last 1st 
latitude lat 
launch Inch lch 
length len 
level lvl lv 
light It 
limb lmb 
line lin 
list lis 
local lei --location loc 
longitude Ion 
magnetic magntc mgnc mgc 
mail ml 
mailing ming mlg 
manager mgr 
manufacturer mfr 
map mp 
mass 
maximum ma.x ma. 
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FULLWORD ABBR #1 ABBR #2 ABBR #3 

mean mn 
measured meas ms 

-. measurement measmt msmt mst 
media med 
memory memry mem 

_..._, method mthd mth 
middle mid 
midnight mdnt mdt 

- midsequence midseq msq 
' . minimum min mi 

mission msn 
mode mod 

~, model mdl 
moment momnt momt mmt 
mosaic mos _,.,_ 
motion motn mot 
mounting mtg 
naif nf 
name nam nm 
native natv Iitv 
navigation navgtn nav 
node nod nd 
noise ns 
nominal nom 
north nor no 
note nt 
notebook ntbk nbk -- number num 
object obj 
objective objctv ojtv oj 
obliquity obliq oblq obq 
observation obs 
observatory obsvty oby 
of (DROP) 
offset ofst ost 
operating oprtg optg opg - operation oprtn op 
operational optl opl 
optics optcs opes ope 

- or (DROP) 
' orbit orb 

orbital orbtl orbl or - order ord 
orientation orientn ortn orn 
outer out ot 

-, output outp otp 
page pg 

PDS ABBREVIATION LIST G-5 



FULL WORD ABBR #1 ABBR #2 ABBR #3 

parameter parm par pm 
password pswd pw 
path pth 
peak pk 
percentage prctg pctg pct 
periapsis peri pps --period per 
personnel prsnnl psnl psl 
phase phs ps 
physical phys phy ph 
pixel pix 
planet plnt pla 
platform pltfm plat plt 
point pnt pt 
pointing pntg ptg' 
pole pol 
position pos 
power pwr 
precession precesn pcsn pen 
preference prefmc pref prf 
pressure pres prs 
primary prim pri 
prime pme 
principle prncpl pcj)l pd 
privilege privlg pvlg pvg 
process proc pre 
processing procg prcg prg 
producer prdr pdr 
product prdct prdt prd 
production prdctn prdtn pm 
profile profl prfl prl 
program pgm 
programming pgmg pgg 
projection prjctn prjtn prj 
publication pub 
quality qual qly 
query qry 
radiance radnc rdnc rdc 
radiometry rdmtry rdm 
radius rad 
range mg 
rate rat 
ratio rto 
rationale ratnle rtl 
received rcvd red 
reference ref rf 
region rgn 

G-6 PDS ABBREVIATION LIST 



FULL WORD ABBR #1 ABBR #2 ABBR #3 

registration regis reg 
release relse rels rls 
remote remt rmt 
request rqst rqs 
required req 
requirement rqmnt rqmt rq 

-._4_ research rsrch rsch rsh 
resolution res rl 
resonance resnc rsnc rsc 
reticle retcl ret 
revolution rev rv 
right-ascension ra 
ring rg 
role rol 
rotation rot 
sample smpl smp 
sampling samplg samp smg 
satellite sat 
scale scl 
scaled scld scd 
scan sen 

-, schedule sched sch 
scientific sctf 
secondary secdry sdry sdy 

....., selection sel 
semi sm 
semi major smaj smj - sensi ti vi ty sens sns 
sequence seqnce seq sq 
serial serl srl 
series ser 
set 
shape shp 
sheet sht 
shipping shipg shpg spg 
shutter shtr shr 
sidereal sidrl sid 
size sz 
slant slnt slt 
software SW 

solar sol 
source srce src 
south sou so 
spacecraft SC 

spacecraft-clock sclk sck 
spatial spatl sptl stl 
special sped spcl spl 
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FULL WORD ABBR #1 ABBR #2 ABBR #3 

specialty speclty spty sty 
spectral spctrl sprl spr 
spectroscopy spctrsy spsy ssy 
spectrum spctrm spct spc 
spin spn 
stabilization stabzn stbn sbn 
staff stf 
standard std 
start st 
state stte stt 
status stat sts 
stop stp sp 
storage stor str 
sub sh 
subnode sbnod sbnd 
subsystem -, ss 
subtask sbtsk stsk stk 
summary sumry smry smy 
supplier suplr supp sup 
support suprt spt 
surface srfc srf 
synodic syndc syn 
system sys sy 
target trgt tgt 
task tsk 
telephone phone phn 
telescope tlscp tlsc tl 
temperature temp tmp 
time tm 
title ttl 
topic topc tpc 
total tot 
translation trnsl tnsl tnl ---
transmittance tnsmtc tmtc tmc 
triaxial tria.xl trxl txl 
true tru 
twist twst twt 
type typ 
unit unt un 
usage usg 
user usr 
validity vldty vldy vdy 
value val vl 
vector vect vec 
velocity veloc vel 
vendor vndr vnd 
version vrsn vrs 
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FULL WORD ABBR #1 ABBR #2 ABBR #3 

vertical vert vrt 
view vw 
volume vol 
wavelength wave wvl wl 
weight wght wgt wt 
west wst WS 

width wid wd 
..--::-,,_ 
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Appendix H 

STANDARD FORMATTED DATA UNITS 

H.1 INTRODUCTION 
The following is an introduction to the SFDU concept, by John Johnson and Ed Greenberg 

of JPL. More complete reference information is available in the "blue book": Standard Formatted 
Data Units - Structure and Construction Rules, Consultative Committee for Space Data Systems 
Publication #CCSDS 620.0-B-1. An example of the way PDS is currently implementing the SFDU 
is given in Appendix L. 

H.2 INFORMATION TRANSFER 
The Standard Formatted Data Unit (SFDU) concept provides the protocols needed to enable 

the transformation of the discipline-oriented data users of today into a distributed confederated 
world wide scientific information network of the future. 

The SFDU Concept provides: 
(1.) a means for globally defining and identifying data products, 
(2.) a means for aggregating instances of science, ancillary and meta data into data products, and 
(3.) a means for administering the data product definitions and description to ensure their access-

ability and understanding. 
The SFDU methodology promotes documentation rigor through the administrative services 

provided by the CCSDS Member Agency Control"Authorities (CA). These CAs thus become focal 
points for the acquisition of "meta data" ( data about data). The data registration procedures 
establish a global data identification mechanism, which combined with standard data labelling and 
aggregation conventions, enables the comprehensive self identification 'process needed to support 
meaningful data interchange. The SFDU concept focuses on the standard labeling of data to enhance 
the transmission, storage, and manipulation of the data contained therein. The contents may be 
in any arrangement. that can be expressed in a precise way. 

The taxonomy of information transfer ranges from single data elements to completely identified 
and defined products. A data element is an individually named item of data that is used in a 
processing algorithm as a singular data parameter, variable, or attribute. Elements are collected 
and structured into data objects (aggregations of elements or groups) and units (aggregations of 
objects) with identifying SFDU labels. A data product consists of units containing not only the 
data, but data formats and representations, data element dictionaries, cataloging information, etc. 

H.3 DATA STRUCTURING 
A Type-Length-Value Object (TLVO) is a self identified and self delimited data object which 

follows CCSDS labelling rules. A structured TLV Data Object is shown in Figure H-1. It consists 
of a fixed length label followed by a variable length value field. The basic structure of the object 
is given in the figure below. The two fields of the label are: a) the TYPE field (which includes the 
reference name of the description of the value field) and, b) the LENGTH field (which provides the 
length of the value field). The value field may contain data elements or embedded TLVOs. 

In the TYPE field, the Control Authority Identifier (CAID) identifies the CA office which 
maintains the format definition. The VERSION (V) field gives the structure of the label, the 
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Type 

Length 

Value 

CAID V C SP DDPID 

Length of value 

Data Elements 
or 

more TL V Objects 

Figure H-1: Structured TLV Data Object 

12 bytes 

8 bytes 

CLASS (C) field gives a high level classification of the content of the value field, and SP denotes 
two spare characters. The Data Definition Package Identifier (DDP ID) uniquely defines (within a 
CA) the package which contains the complete definition of the data object. The CA ID and The 
DDP ID together ( called the Control Authority and Data Definition Package Identifier or ADI) 
provide globally unique identification and definition of the object. 

Structuring (aggregation) of data is done currently in two ways: by envelope (length) and by 
reference. Envelope aggregation is depicted in the previous diagram; that is, the LENGTH field is 
known at the time of creation of the object. As shown, the value field may consist of data elements, 
in which case the ADI identifies the appropriate Data Description Package (DDP). Alternately, it 
may contain additional TLVOs. In other words, TLVOs may be nested arbitrarily deeply, forming 
data products or Standard Formatted Data Units (SFDU). 

If a data product, consisting of several classes of objects where the total length is not known, 
is to be created, then aggregation by reference is used. An example of aggregation by reference is 
delimiting by marker. This is shown in Figure H-2. 

T CCSD12000001 
I 

T CCSD2R000003 

-
L length T NJPL2I001234 - L length 

-
T CCSD2R000003 L length - V Collection . . . -IJII JI •-111111 

V L length -V data -
Collection 

V Information 

Start Data End 
Figure H-2: Delimiting by Marker 

The diagram shows type (T), length (L), and value (V) fields of a set of objects making up 
a data product. The CA ID "CCSD" indicates that what follows is in SFDU format. Embedded 

H-2 STANDARD FORMATTED DATA UNITS 



within the CCSD objects are Start and End (CLASS=R) labels, each of which describe the makeup 
of the object. The format of the R class value field is named as 0003, which within the CCSDS 
domain indicates a "keyword=value" format and specific semantics. The markers bracket a series 
of data objects (CLASS=I), the total length of which is not known at the beginning of product 
creation. 

H.4 DATA DEFINITION 

The Data Definition Package (DDP) structure and content is the subject of current study by 
the CCSDS. The intent is to supply the data product user with the conceptual or logical description 
of the data as well as the format and representation of the data. This information will be packaged 
with the data such that a suite of standard software, conforming to SFDU recommendations, at the 
user's installation can transform the data to conform to his machine architecture and can present 
standard views for applications. 

The content of the DDP will include the following categories of information: 

(1.) Self identification information which contains the ADI of the TLVO whose value field is defined 
by this DDP. This may also include references to specific DEDs and DDRs. 

(2.) Data Entity Dictionaries (DED) which enable semantic information to be expressed. 

(3.) Data Definition Records (DDR) which contain the data object formats and representations 
which enable syntactic information to be interchanged among the elements of a heterogeneous 
information system. 

The packaging of the DDP is shown in Figure H-3. In this example, a CLASS F object has 
been added to the beginning of the sample product shown previously. 

This Class F Unit contains several embedded TLV objects each containing one of the sections 
of the DDP. In this way, the first logical piece of information received by the software suite is the 
identification and definition of the remainder of the product. One element of the DDP object is 
the CA ID /DDP ID of the data object that is defined. Thus the DDP can be loaded into a library 
and accessed whenever a CLASS I object of the same ID is received. 

In the case of archives, the DDP information may be kept with the data and sent along with 
any order, enhancing the long term usefulness of the data. 

H.5 TERMINOLOGY 

The literature on SFDUs use a specialized vocabulary to describe the SFDU concept. The 
following definitions are provided to explain the terms. 

A DATA ENTITY is a logical collection of data that has a separate and distinct existence and 
objective. There are three types of data entities: data elements, data objects, and data products. 

A DATA ELEMENT is the smallest named item or items of data for a given application. 

TYPE-LENGTH-VALUE (TLV) is a method for the self-identification and delimiting of data. 
In this method, the TYPE identifies the specification governing the data within the VALUE. This 
specification establishes the order of appearance of the data elements with the data object and 
their data representation. The LENGTH expressed the size of the VALUE. The VALUE is the 
data. See Figure H-4. 

The TYPE and LENGTH together form a LABEL while the VALUE field contains the data. 
The label and data together form a DATA OBJECT. 
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T 

L 

V 

CCSD12000001 

T 

L 

V 

T 

L 

V 

LENGTH 

CCS01 F000001 

LENGTH 

EMBEDDED 
TLVOs FOR OED 

ANDDDR 
INFORMATION 

CCSD1 R000003 

LENGTH 

COLLECTION 
INFORMATION 

START 

I 
I 

NON-LABELLED 
DATA 

ENTITIES 

DATA 

Figure H-3: Product with DDP 

TYPE 

LENGTH 

VALUE 

Figure H-4: TLV Encoded Structure 

T CCSD1 R000003 

L LENGTH 

- V COLLECTION 
INFORMATION -

END 

t 
LABEL 

DATA 
I 

I l 
A TYPE-LENGTH-VALUE OBJECT (TLVO) is a TLV structured data object. A STAN-

DARD FORMATTED DATA OBJECT (SFDO) is a TLVO that follows the specific CCSDS struc-
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turing and labelling recommendations. 

A CLASS UNIT is a collection of TLVOs that are aggregated for or by a specific application. 
A CLASS UNIT is recognized by the appearance of an ADI = CCSD000l and any legal class ID. 

A DATA PRODUCT or DATA UNIT is a collection of CLASS UNITS that are aggregated for 
transfer to or from a remote user process or archive. A STANDARD FORMATTED DATA UNIT 
(SFDU) is a data unit that consists of objects (and nested SFDUs) aggregated by the CCSDS 
recommended construction rules. The start of a product is recognized by the appearance of an ADI 
= CCSD000l and a class ID = Z. 

Consider Figure H-5. 

CCSD I 0001 
LENGTH 

NJPLl0017 
LENGTH 

e1 e2 e3 e4 ... 
e1 e2 e3 e4 ... 

NJPL I 0017 
LENGTH 

e1 e2 e3 e4 ... 
e1 e2 e3 e4 ... 

Figure H-5: Taxonomy 

................. 
i 

TLVO (SFDO) 
! : 
! 
! 

Data Elements i 
: i 

••••••••••••••• = .................................... .: 

Class Unit 

A DATA INSTANCE is a specific occurrence of values of a data entity. 
The object depicted in Figure H-6, consists of two TLVOs containing instance identification 

information (typically used by a data catalog system) and data bits (perhaps an image). They are 
aggregated by the CCSDllO0000l label, forming a cohesive class unit. In each case, the length 
(L) field gives the length of the value (V) field. Note that a class unit typically contains all of the 
data objects necessary to process the science data, including calibration data, navigation data, etc. 
Data units range in complexity from simple messages, to entire collections of space acquired data 
plus ancillary and meta data from a mission. 

The method described for formulating a data product for interchange is to assemble all of the 
required data in the desired order and construct an "envelope" or container that aggregates the 
combination, binding the enclosed data into a named and delimited data product. It is required 
that the labeling technique utilized in the "envelope" be globally recognizable and interpretable to 
ensure that the contents of the data product are readable. 

The CCSDS requires that all data products be labelled using a CCSDS approved and registered 
data description. 

H.6 ODL IMPLEMENTATION OF SFDU'S 
There are still uncertainties involving the final implementation of the SFDU architecture. In 

order to minimize the effect of small changes in the SFDU's which will naturally occur over the 
development and implementation stage, PDS will use a minimal implementation of the SFDU 
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T CCSD1I000001 

L 24621 

T NJPL1K002468 

L 601 

V (CATALOG 
DATA) 

V 

T NJPL1100TLM1 

L 23980 

V BITS 

Figure H-6: CCSDS I Class Unit Instance 

registration scheme for archival data products. This SFDU (shown below) will indicate that the 
data file uses ODL labels to present data descriptiye infoqnation a.bout the data unit. 

This label will constitute the first label record of an ODL labelled file. 
NJPLlI00PDSlnnnnnnnn = PDS-8FDU_LABEL where: 

H-6 

NJPL 

1 

I 

00 

PDSl 

nnnnnnnn 

is the JPL control authority. 

version id, indicating that the sfdu length is represented as an 
ASCII string. 

class id, indicating that this is an information or. data object class 
ofSFDU. 

are reserved characters filled with ASCII zeros. 

is the data definition record identifier, identifying the SFDU for-
·mat as being a STANDARD PDS LABELLED :file, with em-
bedded format specification statements. This format supercedes 
(and is a superset of) the PDS0 SFDU label on current data files. 

is the length of the file in ASCII numerals; if this value is un-
known use 00000000. 
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Appendix I 

ODL IMPLEMENTATION AND SPECIFICATION 

1.1 IMPLEMENTATION OF PDS OBJECT DESCRIPTION LANGUAGE 
This section provides a description of the implementation of the Object Description Language 

and a detailed specification for the language. 

1.1.1 PDS Object Description Language 
In the object-oriented approach the principal data entity that is stored and transported is the 

data object. Examples of data objects are images, spectra and maps. For each object we need to 
have the following information: 
(1.) A description of the format of an object in terms a scientist can understand ( scan lines, samples, 

etc). This description is done at the object class level and it is the same for every object in 
the class. 

(2.) A description of the content of the object. This description must be at the object instance 
level and will be different for every instance. 
Data objects are encapsulated within data units for storage and transportation. For each data 

unit we need the following information: 
(1.) A description of the format of the data unit: is it a file or does it have some other organization? 

If it is a file, are the records fixed or variable length, how long are the records, etc. 
(2.) A description of the content of the data unit. If there are two or more data objects within the 

data unit and the descriptive information is the same for all the objects, then that descriptive 
information can be moved up to the level of description of the data unit. 

(3.) The location of each data object within the data unit. 
All the descriptive information on data units and the objects within them is put into a "label" 

for the data unit. A label may be "embedded" - enclosed within the data unit itself - or "detached" 
- located in a separate label file that is associated with the data unit. 

Figure I-1 shows the relationships between data units, objects, labels and the descriptive infor-
mation about data units and objects contained within the label (The figure shows an "embedded" 
label). 

The PDS has developed the Object Description Language (ODL) to uniformly express infor-
mation about objects and data units. Data unit labels, both embedded and detached, are created 
using this ODL. The ODL is used to describe objects and data units to both humans and com-
puters so it is implemented much like a computer language: it is readable and writable by human 
beings but it can be readily parsed into a more efficient format which a computer can manipulate. 
We describe only the basics of the PDS Object Description Language in this section. A complete 
description of the syntax of the ODL is given in Section 2 of this Appendix. 

An ODL object description has the following basic format: 
OBJECT= objecL.name 

One or more statements in the Object Description Language 
END_OBJECT 
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DATA UNIT 

LABEL 

Description of 
Data Unit Format and Content 

Description of 
Object Format and Content 

Pointers to Objects 

1 

OBJECTS 

Figure 1-1: Structure of a Data Unit 

For descriptions of object instances, "object-name" is a name assigned by the person creating 
the object description. It must be unique within the scope of the data unit within which the object 
is contained. Thus if there are three image objects within a data unit, each image must be assigned 
a different object name. This ensures that we can unambiguously identify each object within a 
data unit. · 

The statements within an object description all have the same general format: 

name= value 

where "name" is the name of a particular attribute of the object and "value" is the value of the 
attribute for this object instance. An attribute name can be 1 to 32 characters in length. The first 
character of a name must be alphabetic but the remaining characters, if any, may be any of the 
following: 

Alphabetic characters. The ODL makes no distinction between uppercase and lower case 
alphabetic characters in names or anywhere other than within quoted text strings; 

The decimal digits O - 9; 

The underscore character(-)-
The creator of a class of objects determines to a large degree which attributes are associated 

with those objects. Attribute names are not chosen arbitrarily; there is a PDS naming convention 
that specifies what an attribute name will look like and even which words to use in attribute names. 
These naming conventions are discussed in a Chapter 5. 

Values in ODL statements can be either scalar (a single value) or array (a one or two dimen-
sional set of values). Scalar data types are: 

1-2 

Integer 
Real 
Unitized real 
Literal 
Text 

(example: 
(example: 
(example: 
(examples: 
(example: 

123) 
123.456) 
123.456 <KM/SEC> 
ORANGE, ' 1 : 1' ) 
''Now is the time'') 
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Clock time (example: 1987/10/26-22:03:45.6 <OTC>) 
Object names (example: INTEGER, REAL, etc) 

The ODL data types are described in greater detail in Appendix K. 

Arrays are collections of scalar values separated by commas and optionally enclosed within 
parentheses. For example: 

(123.0, 456.1, 789.2) 

Here is an example of an object description for an instance of a histogram: 

OBJECT = SAMPLE-HISTOGRAM 
ITEMS= 200 
ITEM_TYPE = INTEGER 
ITEM-BITS = 32 

END_OBJECT 

This description indicates that the particular histogram object known by the name SAM-
PLE-HISTOGRAM contains the counts for 200 separate things and that the counts of these things 
are contained within an array of 200 integer values, with each integer value being 32 bits long. An 
equivalent FORTRAN 77 type declaration for this object would be: 

INTEGER *4 SAMPLE_HISTOGRAM(200) 
ODL descriptions of objects are used in two rather different ways: either they can describe an 

entire class of objects, thus serving as templates when individuals want to create objects of this 
class, or they can describe an instance of the object. We have so far discussed only the later case -
where the description is for an instance of an object; a discussion of descriptions for object classes 
appears later in this section. 

1.1.2 Data Unit Labels 
When objects are placed into data units the description of each object is placed into the data 

unit's label. For embedded labels, the label must be the first thing within the data unit. There are 
up to six parts to an embedded label, and by convention they appear in the order given here: 

(1.) SFDU registration 

(2.) Data unit format description 
(3.) Pointers to objects 
( 4.) Data unit content description 

(5.) Object descriptions 
(6.) END statement 

1.1.2.1 SFDU Registration 
Most PDS data units will have a 20-byte Standard Format Data Unit (SFDU) registration 

ID in the first 20 bytes of the label (and hence the data unit). This SFDU ID is encoded as a 
statement in the ODL with the following format: 

nnnnnnnnnnnnnnnnnn = SFDU-LABEL 
where nn .. nn is the 20-byte SFDU ID. SFDU IDs are issued by a special SFDU control authority 
and the rules for constructing SFDU IDs, as well as the procedure for getting an ID from a control 
authority, are discussed elsewhere (see Section 6.1 and Appendix E). The SFDU ID must begin 
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in the first column of the first line of the label (and the data unit). An example of an SFDU 
registration statement is: 

NJPLlI00PDSl00000000 = SFDU-LABEL 
Additional descriptive material about the SFDU architecture is contained in Appendix H. 

1.1.2.2 Data Unit Format Description 
A data unit's format description presents the salient characteristics of the data unit which 

must be known to properly open and read the data unit with a computer (usually through the 
computer's file management system). For example, the following ODL statements are used to 
describe the format of data units contained within files: 

REC0RO_TYPE = FIXED or VARIABLE 
REC0RD_BYTES = 
FILE_REC0RDS = 
LABEL_RECORDS = 

length of record (maximum length for variable records). 
number of records in file 
number of records in label 

As you can see in the example above, the format of a data unit is described in the same way as 
the format of a data object: through a set of statements in the ODL. In fact, specific types of data 
units -like files - are nothing more than objects of class DATA-UNIT. This reveals the true nature 
of data units: they are objects created expressly to hold other data objects during transport and 
storage. The class descriptions for data units are contained in object description libraries, along 
with the descriptions of other types of objects. 

1.1.2.3 Pointers to Objects 
It is usually useful to have a pointer within a data unit to each of the data objects within the 

data unit. This permits more rapid retrieval of the individual data objects. These pointers are 
expressed in the ODL using the following notation: 

-object_name = location 
In a file the location is given as an integer representing the starting record number of the 

object, measured from the beginning of the file. Pointers are also useful for describing the location 
of individual components of a data object and for pointing to a detached label. An example of the 
latter is 

-object_STRUCTURE = "file_name" 
where "object" is the name of the object being described and "file..name" is the name of the 
detached label file containing the description. 

1.1.2.4 Data Unit Content Description 
A data unit may contain ODL statements that describe the content of the data unit and 

its objects. Typically these ODL statements are derived by factoring ODL statements about the 
content of the data objects within the data unit: if there are ODL statements describing the 
content of data objects that are common to all the data objects within the data unit, then these 
ODL statements can be moved out of the object descriptions and into the data unit description. An 
example would be an image and a histogram of that image p~ckaged into the same data unit: rather 
than putting the same information about image content into both the image object and histogram 
object descriptions, it is sufficient to state that information once in the data unit description. 
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1.1.2.5 Object Descriptions 
A label contains an object description for each of the objects within the data unit. This will 

include information about both the format and content of the data object. 
There are three ways to specify object descriptions in labels. Firstly, for objects of a non-

varying class - a class where the object format is fully defined by the class template so that all 
objects of the class are identical in format - it is sufficient to identify the object by reference, that 
is by simply naming the class of the object in the following manner: 

OBJECT= MIRANDA! 
CLASS= VOYAGER_IMAGE 

END_OBJECT 
This is an acceptable description of the format of the object, although the receiver of such an 

object would have to consult an object definition library to fetch the template giving the details 
on the format of objects of class VOYAGERJMAGE. 

Secondly, for objects from a class with varying attributes - a class where the values for some 
attributes are not fully specified in the class template and therefore must be specified for each 
and every instance - the alternative is to name the object class and then supply the values for all 
varying attributes: 

OBJECT= SAMPLE_HISTOGRAM 
CLASS = HISTOGRAM 
ITEMS = 200 
ITEM_TYPE = INTEGER 
ITEM_BITS = 32 

END_OBJECT 
Values for any varying attributes of an object must be specified when a description of such 

an object is created, but at the discretion of the creator of an object description some or all of 
the non-varying attributes may also be specified in the description. Supplying all the attributes, 
both varying and non-varying, is good practice for data that is to be widely distributed because it 
means the object can be processed without first having to retrieve the object's class template from 
an object description library. 

Lastly, if the object does not belong to a pre-existing class of objects you omit the reference 
to an object class and then include values for all attributes in the object description: 

OBJECT= SAMPLE_HISTOGRAM 
ITEMS = 200 
ITEM_TYPE = INTEGER 
ITEM_BITS = 32 

END_OBJECT 

1.1.2.6 END Statement 
Each label must end with an ODL statement of the form: 
END 

This statement signifies the end of the label; computer-aided label processing will always terminate 
at this statement. 
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1.1.3 Accessing Data Objects 
The PDS will develop and distribute some of the basic software needed for handling data objects 

and data object descriptions written in the ODL. In particular the PDS will supply software for: 
(1.) Opening a data unit 
(2.) Extracting the label from a data unit 
(3.) Parsing ODL statements in the label 
( 4.) Providing information about the objects within a data unit 
(5.) Providing access to the data objects within a data unit 
The software developed by PDS will enable data objects and data units to be manipulated in three 
environments: 
(1.) Human User Environment - This is the simplest kind of object processing, where we present 

the text of a data unit label to the user on a CRT screen and the user reads and "processes" 
the label information to determine the objects within the data unit and how to manipulate 
them. To facilitate this type of processing we have purposely made the ODL easy for humans 
to read and to understand. 

(2.) Programming Environment - This is where information extracted from labels is used within 
programs written by users. User programs will have access to the description of the data unit, 
to the descriptions of the data objects within the data unit, and to the data objects themselves. 
This capability will be implemented through a series of calls in the host language and perhaps 
through a pre-processor as well. The initial host language for this capability will be Fortran 
77 and the initial implementation will be for VAX/VMS computer systems. 

(3.) Smart Software Environment - This is the environment where information in a label tells 
"smart" software how to process the data unit and the data objects within it. Two candidates 
for smart object processing software have been identified: 
(a.) Data ingest: Software for PDS central and discipline nodes that reads the labels attached 

to data flowing into the node to determine how to transfer the' data into the node catalog 
or database. 

(b.) Data display: Software that uses labels to determine how to display the data to which 
the labels are attached. For example, the software might know to display spectra ( or 
other single- dimension data) as a line graph on a graphics terminal and images ( or other 
two-dimensional data) on an image display device. 

The object access software to be developed is depicted in Figure 1-2. 
The processing is divided into six levels. Processing starts at level 1 and works its way to 

higher levels. You will note that the human user environment bypasses some of the higher levels 
because the brain is being called upon to do those jobs. Following is a description of each of the 
levels: 

1-6 

Level 1 - Open a Data Unit and Read in Label Records 
This level opens a data unit, finds its label - either embedded or detached - for the data 
unit and reads in records containing label lines. 

Level 2 - Get All the Lines Within a Record 
In the case where labels are attached to the front of data it is often the case that multiple 
label lines are packed into a single record. For example, this is the case with the Voyager 
Image labels on the CD ROM where the records are 836 bytes long to match the size of 
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the image records. In this case software is needed to strip out all the label lines in an 
input record. There must be an integral number of label lines in an input record. 

Level 3 - Build Statements from Lines 
The basic entity for label processing is the label statem.ent. A label statement can take up 
a part of a line ( there might be a comment on the end of the line) or it can span multiple 
lines. Software at this level builds statements out of one or more input lines. 

Level 4 - Parse and Evaluate Statements 
Once a statement has been assembled we can parse the statement. The result of parsing 
a label is: 

(i.) A list containing the name and value( s) for each attribute extracted from the data 
unit description portion of the label; 

(ii.) A list containing the name and class of each object within the data unit plus the 
pointer, if any, to the object; 

(iii.) For each object, a list containing the name and value(s) for each attribute extracted 
from the object description. 

Level 5 - Provide Access to Data About Objects 
At this level the information about objects gathered during parsing is made available to 
users. There are two ways in which this information will be provided: 
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(i.) As output on a screen that provides m~ers directly with information about the objects 
within the data unit; 

(ii.) Through subroutine calls to user programs and smart software. 
. Subroutines will be available to provide at least the following capabilities: 

(i.) Determining which objects are within a data unit (returns the number of data objects 
plus the name, class and pointer for each object); 

(ii.) Getting the value for any attribute of a specified object. 
Level 6 - Access to Objects 

At this level access to the data objects within a data unit is provided. This capability is 
provided only through software subroutine calls. Subroutines will be available for retriev-
ing all or part of an object so that it can be manipulated by the host program. Software 

. will also be available for writing objects to a file, although this software will be available 
sometime after the retrieval software is completed. 

I.L3.1 Describing Classes of Objects 
We noted above that object descriptions can define either an instance of an object (which is 

what they do when the descriptions appear within labels) or an entire class of objects. This section 
discusses object descriptions for object classes, which we will often call "class templates". A new 
class template must be developed when a new class of objects is created. The class template is 
placed into an object description library where it can be retrieved by those who want to create a 
description for instances of that class. Essentially when you create an instance of an object you 
do so by taking the class template and, if necessary, filling in the blanks within the template. 
We expect that the creation of an object description from a class template will be done using a 
PDS-supplied computer program for writing labels. 

Object descriptions for object instances and object classes share the same ODL format dis-
cussed previously. How then do you know whether a particular object description is to be inter-
preted as a template for a class of objects or as a description of an instance of an object? As 
with the distinction between the concepts of class and instance, the context helps make it clear. 
Any object description within a data unit label - either embedded or detached - is a description 
of an instance of an object. Object descriptions for classes of objects don't appear in labels; they 
typically appear only within libraries of class descriptions that are accessible to people and software 
who are creating new objects or seeking further information on data objects they have received. 
Class templates contain other objects that define each attribute of the object. The general format 
of a class template is: 
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OBJECT= object_class 
OBJECT• first_attribute_name 

Description of first attribute 
ENO_OBJECT 
OBJECT= second_attribute_name 

Description of second attribute 
END_OBJECT 

EHD_OBJECT 
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The outermost object being defined here is the class template. The object class specified in 
the first OBJECT statement gives the name of the class of object and it must be unique within 
the PDS. Inside the class are other object descriptions that serve as attribute templates. There is 
one of these attribute templates for each attribute of the data object. Let's look at an example. 
We have previously shown the format description for an instance of class HISTOGRAM: 

OBJECT= SAMPLE_HISTOGRAM 
CLASS = HISTOGRAM 
ITEMS = 200 
ITEM_TYPE = INTEGER 
ITEM_BITS = 32 

END_OBJECT 

Now let's look at the class template for class HISTOGRAM: 

OBJECT= HISTOGRAM 
OBJECT= ITEMS 

TYPE = INTEGER 
VALUE = 1 .. * 
DESCRIPTION= "The number of bins within the histogram" 

END_OBJECT 
OBJECT= ITEM_TYPE 

TYPE = OBJECT 
VALUE = {INTEGER, REAL} 
DESCRIPTION = "The data type of the bins within the histogram" 

END_OBJECT 
OBJECT= ITEM_BITS 

TYPE = INTEGER 
VALUE = 1 .. * 
DESCRIPTION= "The length of each bin item, in bits." 

END_OBJECT 
END_OBJECT 

The name of the outermost object gives us the class name HISTOGRAM. Within the HIS-
TOGRAM object are three attribute templates that provide information about the three attributes 
that are needed to describe a histogram. These three attributes are ITEMS, ITEM-TYPE and 
ITEM_BITS. In essence this class template says that you can specify any histogram by supplying 
values for these three attributes. 

An attribute template always contains three ODL statements that define the attribute. These 
statements define the following: 
(1.) TYPE- Specifies the type of value expected for this attribute. Must be one of the recognized 

ODL data types. 

(2.) VALUE- The value or range of values for the attribute. If a single value is specified then it is 
the value for every instance of the object. If a range of values or a list of values is given then a 
value within the range of values ( or selected from the list of values) must be specified for each 
object instance. An attribute with a single value is called "non-varying"; an attribute with a 
range or list of values is called "varying". An object class with one or more varying attributes 
is called a varying object class. When a description for an instance of a varying object class 
is specified values for all varying attributes must be specified in t.he format description of the 
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object. All three of the attributes in our histogram example are varying, which says that they 
must appear in the definition for the object that we called SAMPLE-HISTOGRAM. 

(3.) STRUCTURE - A text string containing an English description of the attribute. This text 
can be displayed by the software that builds object descriptions to the human user to help 
them understand what is expected of them when supplying an attribute value. 

The PDS will build software that provides the following capabilities for creating and manipu-
lating class templates: 

(1.) Creating an object class template: A program will query users for the name of each attribute 
and for the type, value and description of each attribute, building the attribute templates and 
the class template and, upon completion, inserting the class template into an object description 
library. 

(2.) Accessing an object description library and extracting a class template for a specified class of 
object. 

(3.) Parsing a class template for use by the software described below. It is expected that this will 
be the same parser that is used when processing data unit labels. 

( 4.) Printing the description for a class of object using the class template as a guide. 
(5.) Creating a description of an instance of an object by using the class description for a template, 

querying the user to supply appropriate values for each of the varying attributes and writing 
out the object description in ODL. 
PDS will create the initial object description libraries ( and define the rules for accessing them), 

define an initial hierarchy of object classes, and create class templates for the initial object classes. 

I.2 ODL SPECIFICATION 

I.2.1 Definitions 
The following terms are used in the label specification material. 
Attribute - An important characteristic of an object that is included within the object's de-
scription within a label. Some attributes describe the physical characteristics of the data (the 
number of channels in a spectrum, for example) and others describe the contents of the data 
( the target of an image, for example). 
Comments - Each line may optionally include a comment. The comment begins with a 
slash/asterisk pair (/*) and terminates with the end of the line on which it appears. A 
comment can be terminated prior to the end of the line with "* /" if it is necessary to embed a 
comment in an entry line. Comments may not be continued to another line. It is allowable to 
have lines that contain only comments (such lines begin with the comment indicator and the 
comment extends for the entire line). Blank lines are also allowed between any two statements 
within a label. 

Keyword - The name of an attribute. Synonymous with "element name" as used in the PDS 
data dictionary. 
Label - A group of statements in the PDS Object Description Language which conveys infor-
mation about a data unit and the objects within it. 
Line - An ASCII text string terminating with a carriage return, line feed sequence. Any line 
may contain a comment (see below). 
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Object - A data entity that is contained within a data unit and th&,t is described in the data 
unit's label or in an ancillary label. .;;·~ 
Pointer...:. A pointer is a type of ODL statement that specifies one of the following: the location 
of a subsidiary data object within the current data object; the name of another data unit that 
contains data objects described in the current label; or the name of a data unit containing an 
ancillary label that further describes the current object. 
Statement - A complete sentence in the Object Description Language. A statement may be 
entirely contained on one line or it may require several lines. 
Value - A numeric, literal or string constant that represents the value of the named attribute 
for a particular object. 

1.2.2 Label Format 
A label consists of "statements" in the Object Description Language. The label begins with 

the first line of the file that contains it and ends with a line that contains only the word END. Any 
characters following the END but prior to the start of the data records are ignored. If the label 
record containing the END line is padded out to some fixed length, it is recommended that the 
ASCII space character be used for padding.· 

Within a label there are three types of ODL statements: object statements, attribute as-
signment statements and pointer statements. Object statements provide a shell around attribute 
assignment statements to indicate which data object the attributes are describing. 

1.2.3 Object Statements 
An object statement has the following format: 

OBJECT= name 
(one or more ODL statements) 

END_OBJECT {= name} 

·. ·,, .. -

The "name" within the object statement is used to identify a specific data object within the 
data unit. All the attribute assignment statements contained within an object statement describe 
this data object. Pointer statements within the object statement point to other objects that are 
constituents of this object or to other data units that contain the object or information about 
the object. Object statements can also contain other object statements, providing a hierarchical 
nesting of objects. 

1.2.4 Attribute Assignment Statements 
An assignment contains the name of an attribute and the value of that attribute for the object 

which the assignment statement is describing. Assignment statements have the following format: 

keyword= attribute-value 
The layout of each assignment is essentially free-form: blanks and tabs are typically ignored. 

Specifically, blanks or tabs before a name, between the name and the assignment ( =) symbol, 
between the assignment symbol and the value, or after the value are ignored. · 

Because different types of terminals and printers have different ways of treating tab characters, 
it is recommended that tabs not be used in a label; use the blank character instead. 
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1.2.4.1 Keyword 

The keyword is equivalent to the element name in the PDS data dictionary. It is the formal 
PDS identifier for the data value. Keywords in the ODL are not limited to any set length but other 
PDS systems do have limitations on name lengths, so it is recommended that keywords not exceed 
30 characters in length. 

1.2.4.2 Assignment Symbol 

The name and value must be separated by an "=" sign. 

1.2.4.3 Value 

The value field may contain a numeric, a literal, a text string, or a parenthesized list of values. 
(1.) Numeric Values- Numeric values can be signed or unsigned decimal or non-decimal integers or 

real numbers. Real number values must have an explicit decimal point in them and they may be 
represented in unscaled notation (like 3.14159) or in scaled (scientific) notation (like 31.4159E-
1 ). There is no specific limitation on the magnitude of number that can be represented nor 
is there a limitation on the precision with which a floating point number can be represented; 
however, the computer on which the label will be processed typically imposes restrictions on 
magnitude and precision and users must be aware of these when building labels. A numeric 
value can optionally be followed by a units designator. The units value is enclosed in angle 
brackets. 

Example of a numeric value followed by a units designator: 
VELOCITY= 16.578 <KM/SEC> 

Integer values can also be represented in bases other than base 10. Any number base from 2 
(binary) to 16 (hexadecimal) is allowed. 
(2.) Literals - Literals are text fields following the same construction rules as names, or text fields 

enclosed in apostrophes if they contain special characters. Apostrophes may not be embedded 
in literals. Literals are used to indicate one value drawn from a finite ( and usually rather 
small) set of possible values. For example, FILTER= BLUE could be used to indicate that 
the blue filter for a particular instrument, out of a set of BLUE, RED and GREEN filters, has 
been selected. It is recommended that literal names be kept to 30 characters or less. 

(3.) Dates and Times- Dates and time values can be represented explicitly in the ODL. The date 
can be given as either year, month and day of month or as year and day of year. Times are 
given as hours, minutes and seconds. There are provisions for specifying UTC time and for 
specifying a time in a time zone other than Greenwich. 

( 4.) Text Strings - Strings may be any length and may consist of any sequence of printable ASCII 
characters, tabs or blanks enclosed in double quotes. Strings continue until a terminating 
double quote symbol is encountered. Double quote characters may not be embedded within 
quoted strings. 
As noted, text strings are not limited in length and they often span two or more label lines. 
When the text string is read into the computer the text string is converted into one long string 
of characters according to the following rules: 
(a.) If the last character of a text string line is neither a"-" nor a"&" then one blank character 

will be placed between the last word of the line and the first word on the next line. If 
there are blank or tab characters after the last word of a line or before the first word of a 
line, they are ignored. This is the standard convention for written English text. 
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(b.) If the last character of a line is a "-" (hyphen) character then the hyphen is removed 
and there will be no space between the last non-blank character on a line and the first 
non-blank character on the next line. 

(c.) If the last character of a line is an "&" (ampersand) then the ampersand is removed and 
the first characters of the next line will be placed immediately after the character before 
the ampersand, regardless of whether that character is blank or non-blank. 

(d.) You can explicitly indicate the end of a line of text by inserting a new-line indicator - \n 
- into a text string. For example, the ODL text string: 
"This is the first line \n And this is the second." 
will result in the following: 
This is the first line 
And this is the second. 

(5.) Aggregate Values - An attribute value may be either a scalar - a single value of one of the 
types described above - or an aggregrate value which is built up from individual scalar values. 
There are two types of aggregrate values allowed: arrays and sets. Arrays can be either one-
or two-dimensional and all the elements of the array must be of the same data type (integer, 
real, date/time, literal or string). Arrays are specified in a way that makes the row and column 
orientation explicit and the elements of an array are always retained in the order in which they 
are given. A set is collection of zero, one or more values drawn from a superset of discrete 
values. Because they must be discrete values, only literals and integers are allowed as elements 
of a set (but you can't mix literal and integer values within a single set). The null set is also 
allowed. The order in which the elements of a set are given is not important. 

1.2.5 Object Description Language Syntax Specification 
In the following syntax specification, brackets ("[" and "]") are used to indicate components 

that are optional: brackets by themselves mean that there can be either zero or one occurrence of 
the components that appear within the brackets; an asterisk ("*") immediately after the closing 
bracket means that zero, one or more occurrences of the components in the brackets may appear; 
and a plus sign ("+") immediately after the closing bracket indicates that one or more occurrences 
of the components should appear. The vertical line ("I") means 'or'. 

1.2.5.1 Basic Elements of the Language 

digit 
extended_digit 
letter 
character 
separator 

1.2.5.2 Lexical Elements 

word 
name 
symbol 
sign 

integer 

:= 0-9 
:= 0-9, A-F, a-f 
:= A-Z. a-z 
:= any printing ASCII character plus tab 
:= space, tab, comma 

:= letter [letter I digit]* 
:= word L word]* [_ unsigned_integer] 
:= [character]+ 
:= + I -
:= [sign] [digit]+ 
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unsigned_integer .- [digit]+ 
extended_integer .- [extended_digit]+ 

real 
unscaled_real 
scaled_real 

date 
year_doy 
year_month_day 
year 
month 
day 
doy 

time 
local_time 
utc_time 
zoned_time 
hour_min_sec 
hour 
minute 
second 

date_time 

1.2.5.3 Syntactic Elements 

label 

1-14 

statement 

object_stmt 

attribute_stmt 
keyword 
attribute_value 
scalar_value 

array _value 
one_dim_array 
two_dim ... array 

set_value 
set_element 

:= unscaled_real I scaled_real 
.- [sign] [digit]+. [digit]• I [sign] . [digit]+ 
:= unscaled_real Ele integer 

:= year_doy I year_month_day 
:= year - doy 
:= year - month - day 
:= unsigned_integer 
:= unsigned_integer 
:= unsigned_integer 
:= unsigned_integer 

.- local_time I utc_time I zoned_time 
:= hour_min_sec 
:= hour_min_sec Z 
:= hour_min_sec sign hour 
.- hour: minute: second 
:= unsigned_integer 
:= unsigned_integer 
:= unsigned_integer [. unsigned_integer] 

: = date T time 

. - statement• 
END 

:= object ... stmt attribute_stmt I pointer_stmt 

:=OBJECT= name 
statement• 

END_OBJECT [= name] 

:=keyword= attribute_value 
:= name 
.- scalar_value I array_value 
.- integer_value I real_value 

literal_value I text_string 
:= one_dim_array I two_dim_array 

set_value I range_value 
date_time_value I 

:= ( scalar_value [separator scalar_value]•) 
:= ( one_dim_array 

[one_dim_array]• 
one_dim_array) 

:= { set_element [separator set_element]•} I{} 
:= literal_value I integer_value 
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integer_value 

radix 
real_value 
range_value 
date_time_value 
literal_value 

:= integer I integer units_expression 
radix I extended_integer I 

:= unsigned_integer 
:= real I real units_expression 
:= integer_value .. integer_value 
:= date I time I date_time 
:= name I ' symbol ' 
:= 11 symbol 11 text_string 

units_expression := < units [units_operator units]•> 
units 
units_operator 

pointer_stmt 
pointer_value 
file_name_value 
position_value 

1.2.5.4 Semantics 

:= name 
:= * I I I A 

:= A name= pointer_value 
:= file_name_value I position_value 
:= literal_value 
:= unsigned_integer 

This subsection discusses basic semantic aspects of the ODL as defined above. 
(1.) Dates and Times - The formats for dates and times in the ODL are a subset of the formats 

defined by the International Standards Organization recommendations on representations of 
dates and times as given in standard ISO /DIS 8601. 
The year can be either a full specification of year Anno Domini (i.e., 1989) or it can be given 
modulo 100 (i.e., 89). If it is given in the later format, then it is interpreted to be a year in the 
current century. We strongly recommend that only full year specifications be used in labels. 
The month should be a number between 1 and 12. The day of month should be a number in 
the range 1 to 31, as appropriate for the particular month and year. The day-of-year should 
be in the range 1 to 365, or 366 in leap years. 
Hours should be in the range 0 to 23. Minutes should be in the range Oto 59. Seconds should 
be a number greater than or equal to 0.0 and less than 60.0. 

(2.) Number Representations - A radix for an integer value that is given in non-decimal format 
should be in the range 2 to 16. The most common radix values are 2 (binary), 8 (octal) and 
16 (hexadecimal). 
There is no defined maximum magnitude or precision for numbers specified in the ODL. In 
general, the actual range and precision of numbers that can be represented will be different 
for each kind of computer used to read or write a label. Developers of label reading/writing 
software will document the magnitude and precision of numbers that can be represented with 
their software on various computers. When label reading software cannot represent a number 
of the magnitude specified for a value in a label, then the software shall report that condition 
as an error to the user. 

(3.) Array Representations- All elements of an array must have the same value type (integer, real, 
date/time, literal or string.) Two-dimensional arrays are represented with a block structure 
that makes explicit the row-column relationships of the data; it is incumbent upon any software 
that processes a two-dimensional array to preserve this row-column relationship. 

( 4.) Set Representations - The elements of a set must be either be all literals or all integers: 
intermixing the two is not permitted. There is no requirement to retain the order of set 
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elements when they are. processed by label-reading software. 
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Appendix J 

DATA UNIT FORMATS 

The implications of file and record formats vary with the operating system being used. MS-
DOS and UNIX systems do not have any special file or record formats and merely maintain a file 
length indicator in the directory. Basically, the files c;1,re considered to be a stream of bytes which the 
user's application program must interpret. Control of record structures is performed for text files 
by interpreting carriage return and/or line feed sequences as record delimiters. Operating systems 
such as VAX VMS provide dozens of unique file formats. It is recommended that file formats unique 
to a specific operating systems not be used for archival storage of PDS data products. 

The basic keywords which identify file formats are RECORD-TYPE and RECORD-BYTES. 
The RECORD_TYPE shall be either FIXED-LENGTH, VARIABLEJ,ENGTH or STREAM as 
shown in Figure J-1. 

FIXED_LENGTH 
RECORD_BYTES 

VARIABLE_LENGTH 
------RECORD_BYTES------

LENGTH 
LENGTH 

STREAM 
RECORD_BYTES (optional) 

CR/LFI 

Figure J-1: Forms of Record Types 

The RECORD..BYTES parameter indicates the rna.ximum number of 8-bit bytes in each record 
within the file. For FIXED-LENGTH files the RECORD-BYTES parameter is the record length. 
For VARIABLE-LENGTH records the RECORD-BYTES parameter is the maximum number of 
data bytes ( excluding the 2-byte length indicator) in any record in the file. For STREAM records, 
the RECORD_BYTES parameter is optional and, if specified, indicates the maximum length of 
any record, including the terminating carriage return/line feed characters. 
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J.1 RECOMMENDATIONS FOR USING RECORD FORMATS 
The choice of the proper record format is determined by the applications for /by which the 

data will be used. In general, fixedJength records are well-suited to the storage of binary data files, 
such as images, binary tables or qubes, which are expected to be used or transported in structured 
environments. VariableJength files are less transportable and require special software to read, and 
therefore are discouraged except for instances where they may optimize storage efficiency or access. 
An example of such an application is the compressed image format being used for CD ROM storage. 
In this case the variable length structure allows "semi-random" access to any line in an image so 
that the entire file need not be decompressed whenever a portion of an image is needed. Stream 
formats should be used for text files and ASCII tables, to optimize storage efficiency and for ease 
of transportation to different computer architectures. The use of stream formats for binary data 
is discouraged. First, the stream record delimiters may occur as instances of valid data within 
a binary data file and second, large streams of binary data without delimiters can cause system 
buffers to overflow in record-oriented (VAX) systems. 

RECORD TYPE fixed 

Data form 
Environment 
Volume 
Media 

binary 
structured 
large 
tape,disk 

J .1.1 Fixed Length Record Formats 

variable 

binary 
very-structured 
very large 
disk 

stream 

ascii 
ad-hoc 
modest 
electronic,others 

Fixed length record formats include two major categories, one where the fixed physical length 
maps directly to the logical length (that is, one physical record for each image line, or one physical 
record for each table record); and one where the fixed length is arbitrary, and provides only a 
physical unit of data for input/output operations, to facilitate processing the file. 

The former approach is recommended, to make it easier to understand the file structure and 
to provide fairly simple file access with a variety of applications. In this approach, objects within a 
file are all stored in integral multiples of the basic logical data record length (RECORD-BYTES). 

In the latter case the record type might more appropriately be called UNDEFINED, however, 
in practice users generally call them FIXED-LENGTH and use this length as a buffer size for in-
put/output operations. The FITS format is an example of this application of the FIXED.LENGTH 
record type. FITS files consist of fixed length records of 2880 bytes each ( the lowest common de-
nominator of all byte and word sizes on computer systems in use during the 1970's ). The label 
records at the beginning of a FITS file indicate how the physical records are to be interpreted 
as data records. Within the FITS structure data records are packed into as many of these 2880 
byte physical records as are needed. There is no filler added between logical records; the next 
logical record begins in the next byte of the current physical record throughout the file. A slightly 
different approach is taken in the USGS Flagstaff image file formats. All files are written as 512 
byte physical records ( the VAX internal record storage size) and logical records are packed into as 
many as are needed for a logical record; however, the remainder of that 512 byte record is not used, 
and the next logical record begins in the next 512 byte physical record. This allows for extremely 
fast access to image lines embedded in an image file, since a program can directly and immediately 
access the beginning of any logical record. In the FITS structure, additional computations would 
be required to find the correct physical record, translate that into a VAX block (blocks are 512 
bytes per block) and position to the starting byte ofthe logical record within the buffer. 
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Both of these approaches require that the user perform somewhat complex buffer maintenance 
procedures to correlate logical and physical records. 

J .1.2 Variable Record Formats 

A second category of record type is variable length. Each variable length record begins with 
a binary length field followed by the data. The variable length type is the default for files created 
with the VAX text editor. There are 2 commonly used forms, records with carriage control and 
without carriage control. Variable length records with carriage control begin with the 2 byte length 
field and are terminated by a HEX 0A (line feed). These records can not be used with binary data 
files. Variable length records without carriage control use can be used to store binary data. 

PDS data files using variable length records should follow the CDROM and VAX VMS con-
ventions where the records are preceded by a 2 byte (swapped or unswapped) integer which defines 
the length of the record with no carriage control. 

NOTE: This is complicated slightly because the actual number of bytes following the length 
field is always an even number, thus all variable length records are an even number of bytes on 
the media. The reader software must physically read an extra pad byte if the length field is odd, 
unless the system software handles this (as on the VAX). Variable length records will be used for 
compressed data files, but their use in other situations is discouraged. 

J .1.3 Stream Record Formats 

Stream records consist of ASCII text delimited with a carriage..return and/or line_feed se-
quence. The handling of these two ASCII codes on different computers and in communicating 
them between computers is quite different. On the other hand, stream files are the only type which 
can generally be transmitted safely on TEXT oriented communications facilities like TELEMAIL, 
NASAMAIL, or VAXMAIL. They are also usually editable with standard text editors. Fixed and 
variable length files pose many problems for ASCII text transmission and processing systems. 

J .1.4 Composite Files 
Composite files utilize a STREAM format label file which points to the data file, which may be 

fixed, variable or stream. The rule for interpreting the label file is that it does not describe itself. 
All descriptive entries apply to the file(s) pointed to by the label file: Thus a RECORD-TYPE = 
FIXED_LENGTH keyword in a LABEL file refers to the record type of the data file, not to the 
LABEL file itself. Composite label files should always carry the file extension ".LBL" so that they 
may be identified by processing software. 

The following examples show the major parameters for the three record types. Note the 
pointers (-objecLname = record_number) to the starting location of objects. If the object is 
actually stored in another file, then the pointer will give the file name, not the record number (see 
the COMPOSITE FILE example). 

FIXED LENGTH FILE 

RECORD_TYPE 
RECORD_BYTES 
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= FIXED_LENGTH 
= 836 
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FILE_RECORDS = 806 
LABEL_RECORDS = 3 
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE 
-IMAGE_HISTOGRAM = 4 
-ENGINEERING_SUMMARY 
-IMAGE 

VARIABLE LENGTH FILE 

= 6 
= 7 

RECORD_TYPE = VARIABLE 
RECORD_BYTES = 836 I* interpret as max record bytes 
FILE_RECORDS = 806 
LABEL_RECORDS = 56 
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE 
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-IMAGE_HISTOGRAM = 57 
-ENCODING_HISTOGRAM = 59 
-ENGINEERING_SUMMARY = 62 
-IMAGE = 63 

STREAM FILE 

= STREAM RECORD_TYPE 
FILE_RECORDS = 806 I• if available, othervise 

COMPOSITE FILE 

/• determine based on parsing 
/• the file. 

RECORD_TYPE = FIXED_LENGTH 
RECORD_BYTES = 836 
FILE_RECORDS = 806 
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE 
-IMAGE = 'IMAGE.DAT' 
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Appendix K 

DATA OBJECT DESCRIPTIONS 

Data objects are categorized as elementary, aggregate or compound objects. 

Elementary objects 

Aggregate objects 

Compound objects 

K.1 ELEMENTARY OBJECTS 

data item types like INTEGER, REAL, CHAR-
ACTER, TIME, BIT..STRING, identified by 
ITEM-TYPE or TYPE key words. 

the values of the homogeneous arrays, like HIS-
TOGRAM and SPECTRUM, identified by pres-
ence of the ITEMS keyword in the object 
definition. 

composed from elementary and aggregate ob-
jects, e. g., TABLE, IMAGE, QUBE, TEXT, 
HISTORY 

The data type definition segments of the ODL label structure use a simple syntax to define the 
data types of stored data values. The data format specifications indicate to the parser the type of 

.~ data in a field, the starting byte location and the length in _bytes. An optional format specification 
can be given for use in displaying data item values. Within all the object descriptions, the byte, bit 
and record POSITIONS count from 1, and from le-ft to right where applicable. 

Data values may be represented within data files in ASCII or BINARY format. The ASCII 
storage format is much simpler to transfer between different hardware ~ystems and often between 
different application programs on the same computer. 

On the other hand, all numerics are stored and manipulated internally in binary numeric types; 
thus ASCII data values must be converted to internal formats before they can be processed. In 
addition, the ASCII representation of most numeric values requires more storage space than does 
the binary format. For example, each 8 bit pixel v~ue in an image file would require 3 bytes if 
stored in ASCII format. 

The current specification uses the same set of d_ata types for both ASCII and binary data 
values. The basic interpretation of whether a data value is stored in ASCII or BINARY format 
within the data record is derived from the object type. For TEXT and TABLE objects the default 
representation is that the data type is stored in an ASCII format. For the IMAGE, CUBE and 
QUBE object types the default representation is that the data value is stored in binary format. 

The following data types can be specified: 

INTEGER 

REAL 

BIT-STRING 

COMPLEX 

DATA OBJECT DESCRIPTIONS 

A signed integer value [default = 4 bytes]. 

A real (floating point) value [default = 4 bytes]. 

Used to represent information defined at the bit 
level. 

A complex value. Usage not currently defined. 
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CHARACTER (or STRING) 

TIME 

K.1.1 Specification Qualifiers 

A text string. 

Time value. Only the ASCII format is currently 
defined. 

Additional qualifiers can be used to explicitly state the length or representation format for 
binary values. 

K.1.1.1 Length Specification 
The interpretation of binary fields is normally determined by the field length (BYTES or BITS) 

parameter, thus an integer field specified with a bytes value of 2 would be interpreted as a 16-bit 
signed binary value. The length can also be specified by appending a byte count to the end of the 
type specification (-1, _2, -4 or _8). 

INTEGER_! 
INTEGER_2 

A signed 1 byte integer value. 
A signed 2 byte integer value. 

K.1.1.2 Binary Integer Specifications 
There are two widely used formats for integer representations in 16-bit and 32-bit binary fields. 

These are the most-significant-byte first (MSB) and least-significant-byte first (LSB) architectures. 
The MSB architectures are used on IBM main-frames, many UNIX minicomputers (SUN, Apollo) 
and Macintosh computers. The LSB architectures are used on VAX systems and IBM PCs. The 
default interpretation for ODL files is the MSB architecture. Therefore files written on VAX or 
IBM PC hosts should specify LSBJNTEGER for the field type of binary integers, or use synonyms 
for LSB, which are VAX and IBMPC. Alternatively the structure definition can be initiated with 
a HARDWARE-TYPE keyword indicating MSB or LSB is to be used for all fields in the structure. 

LSBJNTEGER A signed 4-byte integer value in least-significant-
byte-first order. 

VAXJNTEGER-2 A signed 2-byte integer value in least-significant-
byte-order. 

K.1.1.3 Signed Versus Unsigned 
The default binary integer is a signed value in 2's complement notation. Alternatively, the 

TYPE field may have the term "UNSIGNED-" prepended to the specification. 

UNSIGNEDJNTEGER_l 
UNSIGNEDJNTEGER_2 

An unsigned 1 byte integer value. 
An unsigned 2 byte integer value. 

K.1.1.4 Floating Point Formats 
The standard representation for floating point numbers is as defined in ANSII/IEEE 754. 

Floating point values which use other representations should preface the type parameter with 
an identification of the host machine. In the case of VAX double precision floating point, two 
representations are used, the standard DOUBLE and a "G" format. The "G" format will be 
specified as VAXG-DOUBLE. The hardware specification can be set for an entire object definition 
by using the HARDWARE_TYPE keyword in the STRUCTURE definition. 

K-2 

VAX-REAL A real (floating point) value [default = 4 bytes]. 
in VAX format. 
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VAX..DOUBLE (or REAL-8) An 8 byte double precision floating point value. 
Doubles should be used if the precision required 
for a numeric value exceeds 7 digits. 

VAXG..DOUBLE 

K.1.1.5 Bit String Data 

A special type to handle the VAX G-type double 
precision. 

A BIT..STRING is used as a container to hold and process individual bit item values. A 
BIT:..STRING can be a 1~byte, 2.:byte or 4-byte field, much like a binary INTEGER. Extrac.tion of 
BIT..STRING data for 2-byte and 4-byte fields is dependent on the host architecture, and follows 
the specifications of the integer representation supplied above. In processing bit values within a 
BIT_STRING, any necessary conversions (from MSB first to LSB first, for example) should be 
done before extracting the individual bit items. This will assure that bit fields are not fragmented 
due to differences in the hardware architecture. The default bit string is MSB first. Therefore 
files written on VAX or IBM PC hosts should specify LSB-BIT..STRING for the field type of 
binary integers. Alternatively the structure definition can be initiated with a HARDWARE-TYPE 
keyword indicating MSB or LSB is to be used for all fields in the structure. 

Data objects defined within a BIT-STRING must be of the type INTEGER or UN-
SIGNED..INTEGER. Bit locations are assigned counting from left to right, starting with bit 1. 

BIT..STRING-2 Specifies an item of 16-bits (equivalent to an UN-
SIGNED_INTEGELI) containing sub-items de-
fined at the bit level. 

Specifies an item of 32-bits (equivalent to 
an LSB-UNSIGNED..INTEGER) containing sub-
items defined at the bit level. 

K.1.2 Object Format Specifications 
This discussion is a great simplification of the data format specification question. It only 

addresses fundamental types. The data format specification is used to determine the format for 
display of a data value. A 4 byte binary integer can store values in the range of -2,14 7,483,648 to 
2,147,483,647 however the actual values stored in the field may only range from -9999 to 9999. 
In this case it is convenient to specify the output length with a format statement "I5" where I 
indicates that the value is an integer and 5 indicates the number of display positions ( one for the 
sign and 4 for the numeric value). 

The following FORTRAN data format specifications will be used: 

where:· 

Aw 

Iw 

Fw.d 

Ew.d[Ee] 

Character (alphanumeric) data value. 

Integer value. 

Floating point value, displayed in decimal format. 

Floating point value, displayed in exponential format. 
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w = Total number of positions in the output field (including sign, decimal point or 
"E"). 

d = Number of positions to the right of the decimal point. 
e = Number of positions in exponent length field. 

K.1.3 Explicit Definitions of Elementary Objects 
Where the non-standard data types described above cannot be used, special data type spec-

ifications may be defined. These definitions shall be specified as in the General Data Interchange 
BINREP format (Section 5.3.3.3, JPL Document D3606, F. Billingsley, 1988-01-12), but cast in 
the ODL object structure definition format. 

The keywords to use in describing these non-standard data types are: 

COMPLEMENT 
EXCESS 
BASE 
SIGN 
EXPONENT 
MANTISSA 
EXPONENTJHGN 
ORDER 
INVERT 
IMPLICIT 

Representing 0, 1 or 2's complement. 
in decimal integer form. 
which is raised to the exponent - excess power. 
bit position of sign. 
bit positions of exponent. 
bit positions of mantissa. 
bit position of sign exponent. 
bit positions of bits making up integer value field. 
bit positions in which the "ls" and "Os" are inverted. 
flag indicating an implicit 1 bit in the mantissa. 

The numerical value represented is: 
(Sign)Mantissa * Base** Exponent_Sign(E)Cponent - Excess) 
The values in sign, exponent, mantissa, exponent-sign, and order are ASCII numbers indicating 

the bits in which the parameter occurs, msb first, separated with commas. The leftmost bit is 
designated bit 1. The notation m .. n may be used to designate the range of bit positions m to n, 
inclusive. 

Excess is the excess (base 10) coding of the exponent. 
The examples below show the definition of a VAX INTEGER and DOUBLE using this notation. 

OBJECT 
TYPE 
COMPLEMENT 
SIGN 
ORDER 

END_OBJECT 

OBJECT 
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TYPE 
COMPLEMENT 
BASE 
EXCESS 
SIGN 
IMPLICIT 
MANTISSA 
EXPONENT 

= VAX_INTEGER 
= TEMPLATE 
= 2 
= 25 
= (26 .. 32,17 .. 24,9 .. 16,1 .. 8) 

= VAX_REAL 
= TEMPLATE 
= 2 
= 2 
= 128 
= 9 
= TRUE 
= (2 .. 8, 25 .. 32, 17 . . 24) 
= (10 .. 16,1) 
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NOTE 

END_OBJECT 

= 11Byte values AB CD EF GH are converted to 
CD AB GH EF, where there is a one-bit sign 
followed by an 8 bit exponent, 
followed by a 23 bit mantissa. 11 

K.2 AGGREGATE OBJECTS 

Aggregate objects consist of homogeneous arrays of elementary objects. Aggregate objects are 
identified by the ITEMS keyword in the object definition. 

The following example illustrates a HISTOGRAM object: 

OBJECT = IMAGE_HISTOGRAM 
ITEMS = 256 
ITEM_BITS = 32 
ITEM_TYPE = INTEGER 
END_OBJECT 

K.3 COMPOUND OBJECTS 

Compound objects represent collections of elementary and aggregate objects. Five major 
compound object types have been identified: 

a format for documents 

a flat file of ASCII and/ or binary values 

a special array for images (special case of QUBE) 

TEXT 

TABLE 

IMAGE 

QUBE an array for multi-dimensional data files with optional prefix and 
suffix data in each dimension 

HISTORY a format for cumulative ASCII keyword processing histories 

K.3.1 TEXT Object Format 

The default text object consists of ASCII text in STREAM format with each line separated 
by a carriage return/line feed pair. Lines should be 71 characters or less, and there should be no 
embedded control characters other than the form feed ( control-L) and tab characters ( Control-I). 

Example of a TEXT object: 

NJPL1I1OOPDS1OOOOOOOO = SFDU_LABEL 
RECORD_TYPE = STREAM 
OBJECT = TEXT 
END_OBJECT 
END 
Now is the time for all good men to come to the aid of their 
labels. 
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K.3.2 TABLE Object Format 
A PDS TABLE object is a uniform collection of records containing ASCII and/or binary value 

fields, as described in the label. If all of the fields are ASCII, the table has FORMAT = ASCII, and 
it may have stream (the default) or fixed-length records. Otherwise it has FORMAT = BINARY 
and it MUST have fixed-length records. 

If a table has ASCII format and stream records, the records are terminated with carriage 
return / line feed pairs. The most widely used form has fields separated by commas, and text items 
enclosed in double quotes. This kind of table can be processed by nearly all data management 
systems. It is recommended for PDS tables which are expected to be used with commercial data 
management or data analysis software. 

The basic file structure is defined by the following keywords: 

FORMAT 

RECORD-TYPE 

FILE-RECORDS 

The type or representation of data stored in the 
table. The default table format is ASCII, indicat-
ing that values are stored as ASCII text. Tables 
may also have FORMAT= BINARY where data 
i terns are stored in binary ( or mixed binary and 
ASCII) format. 

The default RECORD-TYPE of an ASCII table 
is STREAM, while that of a BINARY table is 
FIXED-LENGTH. The parameters which define 
a BINARY TABLE are identical to those for an 
ASCII TABLE, except the default meaning of the 
column type refers to a binary storage format. For 
example, INTEGER column type in a BINARY 
TABLE would indicate a signed 4 byte (32 bit) 
binary value. 

The number of physical records. 
Keywords used to define table contents are as follows: 

TABLE-RECORD..BYTES 

ROWS 

TABLE-RECORD-ROWS 

ROW..BYTES 

ROW_COLUMNS 

The number of bytes in a fixed-length table 
record. 

The number of logical table entries. 

The number of table rows contained in a single 
table..record. 

The number of bytes in each table row. 

The number of items of information in each table 
row. 

Keywords used to define the data objects (columns) within the table are: 
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NAME 

TYPE 

The name of a data item or column in a table row. 

The data type of the data item, INTEGER, 
REAL, DOUBLE, CHARACTER, STRING, 
TIME, BIT-STRING. See Appendix K for a de-
scription of valid data types. 
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FORMAT 

START-BYTE or START _BIT 

BYTES or BITS 

BYTE or BIT 

UNIT 

NOTE 
Example of an ASCII TABLE file: 

NJPL1I1OPDS10OOO00OO 
RECORD_TYPE 
OBJECT 

FORMAT 
ROWS 
ROW_COLUMNS 
OBJECT 

TYPE 
END_OBJECT 
OBJECT 

TYPE 
END_OBJECT 
OBJECT 

TYPE 
END_OBJECT 

END_OBJECT 
END 
11111, 22.22, "ABCDE 11 

22222, 33. 33, "FGHIJ" 
33333, 44. 44, "KLMNO" 

Example of a BINARY TABLE file: 

NJPL1I100PDS100000000 
RECORD_TYPE 
RECORD_BYTES 
-TABLE 
OBJECT 

FORMAT 
ROWS 
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A Fortran representation of the format statement 
needed to read or write the data item. See Ap-
pendix K for a description of valid formats 

The byte or bit position ( counting from 1) of the 
beginning of the data item within the row. 

The number of bytes or bits containing the data 
item. 

The byte or bit position ( counting from 1) of a 1-
byte or 1-bit data item within a row. BYTE may 
substitute for the 2 statements START _BYTE 
= n and BYTES = 1. BIT may substitute for 
START _BIT = n and BITS = 1. 

The units of measure of the data item. 

Descriptive notes about the data item. 

= SFDU_LABEL 
= STREAM 
= TABLE 
= ASCII 
= 3 
= 3 
= COLUMN_! 
= INTEGER 

= COLUMN_2 
= REAL 

= COLUMN_3 
= CHARACTER 

= SFDU_LABEL 
= FIXED_LENGTH 
= 10 
= 'TABLE.DAT' 
= TABLE 
= BINARY 
= 3 
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ROW_COLUMNS 
OBJECT 

TYPE 
START_BYTE 
BYTES 

END_OBJECT 
OBJECT 

TYPE 
START_BYTE 
BYTES 

END_OBJECT 
OBJECT 

TYPE 
START_BYTE 
BYTES 

END_OBJECT 
END_OBJECT 
END 

K.3.3 IMAGE Object Format 

= 3 
= COLUMN_! 
= REAL 
= 1 
= 4 

= COLUMN_2 
= INTEGER_2 
= 5 
= 2 

= COLUMN_3 
= INTEGER 
= 7 
= 4 

The image object format is designed for simple two-dimensional arrays from imaging type 
instruments ( cameras, radar, etc.). For fixed format image files there may be a label group, a 
header object, a history object, the image object, and a trailer object, each of which will require 
a separate definition. In addition, it is common for the data records to have either prefix or suffix 
bytes with each record of data, representing time tags, line numbers or engineering parameters 
specific to a certain line of data. ·. · 

The physical and logical structure of any of these files can be defined with the following label 
parameters: 

RECORD-TYPE 

RECORD..BYTES 

FILE-RECORDS 

LABEL-RECORDS 

K-8 

Image objects may have FIXED-LENGTH, 
VARIABLE-LENGTH or STREAM records. 
FIXED_LENGTH is the default. Images in 
STREAM format would have to have ASCII item 
types. 

The record length parameter represents the phys-
ical length of each record in the file. It also rep-
resents the DEFAULT logical record length for 
components of the file. 

The file records parameter represents the number 
of physical records within the file with each record 
having a length equal to the RECORD..BYTES 
value. 

· Number of records containing PDS text la-
bels. Generally the label area will be filled 
so that the labels consume a multiple of the 
RECORD-BYTES parameter. 
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LABEL..RECORD..BYTES Length of each label record. This parameter de-
faults to the RECORD-BYTES if no value is pro-
vided. 

These parameters provide a framework within which the logical file structure is built. The most 
common situation is that the record components have logical length values which are equal to the 
physical values, HOWEVER, the physical length values can be overridden for any component of 
an image file by specifying a "componenLRECORD_BYTES" parameter. 

The data format keywords for the IMAGE object are: 

IMAGE..RECORDS 

IMAGE..RECORD-BYTES 

LINES 

LINE-PREFIX-BYTES 

LINE-SAMPLES 

SAMPLE-BITS 

SAMPLE_TYPE 

SAMPLE..BIT-MASK 

LINE_SUFFIX_BYTES 

TRAILER-RECORDS 

TRAILER-RECORD-BYTES 

DATA OBJECT DESCRIPTIONS 

Number of records containing image data. 

Length of each line record. This parameter de-
faults to the RECORD_BYTES if no value is pro-
vided. This value must be an integral number of 
8-bit bytes. 

Number of lines in image. Normally equal to IM-
AGE-RECORDS value. 

Number of bytes of data which precede the image 
data in each line record. 

Number of sample values contained in each line 
record. 

Number of bits of data comprising one sample 
value. Common values are 1 (bit), 4 (nibble), 8 
(byte), 16 (halfword), 32 (fullword). 

Data type of sample values, where the default is 
unsignedJnteger. Other data types are defined in 
Appendix K.l. 

A bit pattern representation indicating which bits 
are active in the SAMPLE value. For exam-
ple "SAMPLE-BIT-MASK = 2#00011111#" in-
dicates that only the lower 5 bits of each sample 
value contain valid data. 

Number of bytes of data which follow the last 
sample value in a line record. 

Number of records which follow the last image 
line record in a file. 

Length of each trailer record. This parameter 
defaults to the RECORD-BYTES if no value is 
provided. 
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K.3.4 QUBE Object Format 

The qube object type is a generalization of the image object type to data objects with an 
unlimited number of dimensions. It is distinguished from an ordinary multi-dimensional array by 
its capacity for arbitrary prefix and suffix data in each axis. (See terminology below.) The image 
object type is a special case of the qube object type. 

The primary motivation for the qube object is the spectral image cube generated by the imaging 
spectrometer class of instruments, a class with a growing number of members. For these cubes, the 
principal use of the prefix and suffix capability will be to include "backplanes" of associated data 
(geometry parameters, quality codes, etc.) in the qube. It may also be used for engineering data 
accompanying image lines. 

A typical file of such data will contain a PDS label, a history object, optional header and/or 
other objects, and a qube object. The label will contain descriptions of the structure of the most 
important parts of the file, and pointers to supplementary labels containing details about the 
less-often-used parts. 

K.3.4.1 Qube Terminology 

Note the distinction between qube, cube and the various image cubes. Because of its frequent 
occurrence, the image object type is identified as a special case of the qube object type. See Figure 
K-1 for a diagram of an "Image Cube". 
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STILL LIFE OF IMAGE-CUBE WITH 
SIDE- & BACK-PLANES 

CORE 

CORE SUFFIX 
--REGION 

~Q:' 

SPATIAL SUFFIX 
REGION 

Figure K-1: Diagram of an "Image Cube" 
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Qube 

Cube 

Image cube 

Spectral image cube 

Image 

Item 

Sample 

Axis 

Core 

Prefix 

Suffix 

Backplane 

Si deplane 

Corner 

Co-cube 

Bin 

DATA OBJECT DESCRIPTIONS 

A multi-dimensional array with optional prefix 
and suffix areas in each dimension. (final name 
still open). 

A qube of 3 dimensions 

A cube of multiple images 

An image cube one of whose dimensions is wave-
length (band) 

A qube of 2 spatial dimensions: sample and line 

An elementary object ( data element) in the multi-
dimensional array, or in its prefix or suffix regions. 

synonym for item in an image 

A dimension of a qube 

The "central" region of a qube corresponding to 
the prjncipal type of data in all axes. The core is 
"homogeneous", i.e. all elements are of the same 
type. A qube with prefix or suffix elements will 
be "heterogeneous". 

ltem(s) preceding the core along an axis of a qube 
( also prefix region, prefix plane, etc.) 

Item( s) .following the core along an axis of a qu be 
( also suffix region, suffix plane, etc.) 

A plane of a cube perpendicular to the 3rd dimen-
sion with index greater than the highest index of 
any plane in the core 

A plane of a cube perpendicular to either the 1st 
or 2nd dimension with index outside the index-
range of the core 

Region of a qube corresponding to prefix/suffix 
indices in two or more axes. Corner regions are 
normally left empty. 

Backplanes or sideplanes of a cu be in a separate 
file ( these generally have no core; planes are of 
different items on the same space) 

A 1 to N dimensional region in the "true physical 
space" with finite extent along one or more axes 
represented by an element in the core of a qube. 

K-11 



K.3.4.2 Label Keywords Describing the File Containing a Qube Object 
RECORD_TYPE Viteral] 

FIXED.LENGTH 
RECORD-BYTES [integer] 

record length in bytes 
FILE-RECORDS [integer] 

total number of records in file 
LABEL-RECORDS [integer] 

number of records in label 

K.3.4.3 Basic Qube Object Keywords 
TYPE [literal] 

QUBE - multidimensional array with optional prefix/suffix data in all dimensions 
IMAGE - synonym for 2-d qube of sample and line dimensions 

AXES [integer] 
• number of dimensions in the cube 

STORAGE_TYPE [literal] 
name describing the sequence of items in the qube (the following are for image cubes). 

BAND_SEQUENTIAL (BSQ) 
BAND-INTERLEAVED-BY-LINE (BIL) 
BAND-INTERLEAVED-BY-PIXEL (BIP) 
plus various tiled and compact forms (TBD). 

ITEM_TYPE [literal] 
interpretation of data item (must be compatible with ITEM_BITS below) 
applies to all items in core and is default for prefix/suffix (See Appendix K.1) 
INTEGER, UNSIGNED-INTEGER, REAL, COMPLEX, CHAR[ACTER], 
BIT-8TRING, ASCII-INTEGER, ASCILREAL, ... (default: INTEGER) (see DATA 
TYPE SPECIFICATIONS above) 

ITEM-BITS [integer] 
item length in bits (usually n*8) 
applies to all items in core and is default for prefix/suffix 

K.3.4.4 Qube Axis Keywords 
AXIS-NAME (vector of literals] 

name of each axis e.g. (SAMPLE, LINE, BAND) {applies to core] 
AXIS_UNIT [vector of literals] 

physical units of each axis [applies to core] 
AXIS-NOTE [vector of text] 
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descriptions lengthier than NAME & UNIT 
AXIS..ITEMS [vector of integers) 

length of each axis, e.g. (128,128,83) 
AXIS-BYTES if not integral number of items 

PREFIX..ITEMS (vector of integers} 
prefix length of each axis ( default 0) 
PREFIX-BYTES in not integral number of items 

CORE..ITEMS (vector of integers) 
length of each axis within core {defaults to AXIS..ITEMS - PREFIX..ITEMS - SUF-
FIX..ITEMS) 

SUFFIX-1TEMS (vector of integers} 
suffix length of each axis ( default O) 
SUFFIX-BYTES if not integral number of items 

[The rest of the keywords in this section apply to the core only] 

For uniform axes representing physical variables (e.g. wavelength): 

AXIS..INTERVAL [vector of reals) 
increment between successive bins or grid points along each axis (1. is the default, 0. 
indicates a descrete set) 

and choice of one of the following pairs of keywords: 

AXIS_START (vector of reals) 
outer edge of first bin of core {def 0) 

AXIS-STOP [vector of reals) 
outer edge of last bin of core {def 0) 

AXIS-FIRST (vector of reals) 
central value of first bin of core 

AXIS_LAST (vector of reals] 
central value of last bin of core 

For non-uniform axes or spatially undersampled data (i is axis number): 

AXISi-BIN_RANGE [vector of pairs of reals) 
range along axis for each bin 

or 

AXISi-BIN _START [ vector of reals} 
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starting value (along axis) for each bin 
and 

AXISi..BIN_STOP [vector of reals] 
stopping edge ( along axis) for each bin 

or 

AXISLBIN-CENTER [vector of reals] 
central value for each bin 

and 
AXISLBIN-WIDTH [vector of reals] 

width for each bin 

K.3.4.5 Qube Core Keywords 
CORE-NAME [literal] 

name of principal data item ( e.g. Brightness) 
CORE_UNIT ~iteral] 

physical units of principal data item ( default: dimensionless) 
CORE-NOTE [text] 

description lengthier than NAME and UNIT 
CORE..BIT_MASK [binary integer] 

e.g. 2#01111111# for 7 bit item in byte 

The following 3 keywords describe the relationship between the data stored in the core and the 
"true" physical values they represent. Only one of CORE-MULTIPLIER and CORE-DIVISOR 
may be present. All 3 keywords have default values. 

''true'' value= base+ (stored value* multiplier) 

or 

''true'' value= base+ (stored value/ divisor) 
CORE-BASE [real] 

base value to be added to stored value ( default 0.) 
CORE_MULTIPLIER [real] 

multiplier of stored value ( default 1.) 
CORE-DIVISOR {real] 

divisor of stored value ( default 1.) 

CORE-EXCLUDE-VALUE [type specified by ITEM-TYPE] 
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value denoting missing or null or "fill" or bad data ( default is minimum numeric value 
allowed by hardware for type and length of item) 
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CORE_EXCLUDE_RANGE [vector of 2 values of type specified by ITEM_TYPE] 
algebraic minimum and maximum of range of values to be excluded from consideration 
as "valid" data ( may be reserved for flagging various kinds of invalidity, to be described 
more fully in text) 

The following four keywords are optional items - possibly vectors of values, one for each band in 
core - perhaps maintained in the cube header. 

CORE..MINIMUM [type indicated by ITEM_TYPE] 
CORE-MAXIMUM [type indicated by ITEM-TYPE] 
CORE-MEAN [type indicated by ITEM-TYPE] 
CORE..STANDARD-DEVIATION [type indicated by ITEM-TYPE] 

K.3.4.6 Qube Prefix/Suffix Keywords 
In the following definitions, i = axis number, and j = "PRE" or "SUF". 
AXISLjFIX_N AME [ vector of literals] 

= name of each prefix/suffix item, e.g. AXIS..3-SUFFIX-NAME = (LATITUDE, LON-
GITUDE, PHASE..ANGLE) 

and similar.vector-valued keywords corresponding to Core keywords: UNIT, NOTE, ITEM_TYPE, 
BIT-MASK, BASE, MULTIPLIER, DIVISOR, MINIMUM, MAXIMUM, MEAN, STAN-
DARD-DEVIATION, EXCLUDE-VALUE . 

K.3.4. 7 Projection Keywords 
The following keywords apply to the image plane of qube. 
PROJECTION-NAME [literal] 

cartographic projection 
NULL 
SIMPLE-CYLINDRICAL 
MERCATOR 
LAMBERT-CONFORMAL 
POLAR-STEREOGRAPHIC 
SINUSOIDAL..EQU AL..AREA 
POINT-PERSPECTIVE (view) 
etc. 

PROJECTION-NOTE [text] 
PROJECTION:..ORIGIN [vector of 2 reals] 

origin of map (lat/~on) 
PROJECTIQN_ORIGIN..LOCATION [vector of 2 reals] 

first line and sample relative to origin 
PROJECTION-RESOLUTION [unitized real] 
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resolution of map, e.g. deg/pixel or km/pixel 
PROJECTION..ELLIPTICITY [real] 

ellipticity of object 
POSITNE_LONGITUDE [literal] 

EAST, WEST 
STANDARD-PARALLELS [vector of reals] 
CENTER-LONGITUDE [real] 
CENTER-LATITUDE [real] 
LONGITUDE-RANGE [vector of reals] 
LATITUDE-RANGE {vector of reals] 

K.3.5 History Object Format 
A history object is a collection of text describing the processing performed to generate a data 

object. It consists of a series of history entries, one for each process the data has been subject to, 
followed by an END statement. 

K.3.5.1 History Entry 
Each history entry is a sub-object of the history object. The entry consists of a series of 

keyword=value statements, each terminated by CR/LF, beginning with OBJECT and ending with 
END_OBJECT. One group of statements, the process parameters, form a nested object within the 
entry. All statements follow the syntax of the Object Description Language (ODL) used in the 
data unit label. For example: 
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OBJECT= FILT8B 
VERSION_DATE = 1986-08-15 
VEaSION_HUMBER = 2.3 
OBJECT= PARAMETER_GROUP (or PARAMETERS) 

FILTER= NPE 
LINE= 256 
SAMPLE= 256 
NULL• 0 
FRACTION =.7 
FROM= input_file 
TO= output_file 

END_OBJECT 
DATE_TIME • 1988-08-08T08:08:08 
NODE• GRUMPY 
USER= "Snov Vhite" 
PROGRAM_NOTE • "High pass filter" 

USER_NOTE = "Eliminate noise from 
Ganymede global mosaic" 

[comments,*= statement 
required] 

[•value is process name] 
[•program version date] 
[version number] 
[•program parameters: 
names not necessarily in PDS 
dictionary; values might be 
homogeneous vectors.] 

[•] 
[•run date a time] 
[•(net) name of computer] 
[ •username] 
[•program-generated 

description] 

[•user input] 

DATA OBJECT DESCRIPTIONS 
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-PREDECESSOR= a (or {a1,a2, ... }) 

-sucCESS0R = b 

END_OBJECT 

K.3.5.2 Tree of Processes 

[•pointer(s) to predecessor 
entry(s) (record number(s))] 

[•pointer to successor entry, 
to be added when that 
entry is created] 

[•] 

The entire History Object has a kind of tree structure, with the file containing it as the root 
of the tree, and the branches extending backwards in time, rather like human ancestor trees, but 
where there can be one, two or more parents! There are branch points at each file merge step 
(i.e. when two or more input files combine to form one output file in some process.) The entries 
are therefor doubly linked by pointer statements for computer traceability. (See sample entry 
above.) The FROM and TO parameters, if used, also provide traceability, but it is indir~ct, and 
the parameter names may vary from program to program. In addition, an indentation technique 
is employed for human readability. A sample diagram of processing history is given in Figure K-2. 
A sample indented list is given in Figure K-3. 
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I 
Process h 

has2 
output files 

Figure K-2: Diagram of Processing History for a File 

K.3.6 History Object Processing 
The following rules should be applied to help make the history object more human-readable: 

(1.) At each non-merge step, insert a blank line before adding the new entry. Do not indent. 
(2.) At each merge step, insert 2 blank lines, and indent merged entries by 1 space. 
(3.) A restriction of 75 characters per line will allow histories of up to 5 levels to be expressed 

in indented form with a maximum line length of 80 characters. (The indentation could be 
suppressed if there were more than 5 levels.) 
Each application program should invoke history routines (to be provided) to: 
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Only OBJECT 
and 
END_OBJECT 
statements are 
shown here 

END 

OBJECT= d 
... history of file D 
END OBJECT 

OBJECT= g 

7 
. . ·. history of file G _J 
END OBJECT 

OBJECT= e 
... history of file E 
END OBJECT 

OBJECT= f 

History of Rle G 

. . . history of file F History of Rle H 
END OBJECT 

OBJECT= i 

OBJECT= h 
... history of file H 
END OBJECT 

... last (current) entry in history of file I 
END OBJECT 

Figure K-3: Textual Description of Processing History for a File 

(1.) Update history objects in memory by adding a new history entry OR 
(2.) Copy history object of input file to output file and append new history entry OR 
(3.) Merge history objects of multiple input files (as in II above) and write to output file, appending 

new history entry 
Each program should also: 

(1.) Supply a descriptive "program..note" to be included in the entry. 
(2.) Provide for user input of "user..notes" to be included in the entry. 
(3.) Maintain a version date to be included in the entry. 
(4.) Optionally maintain a version number according to standards to be adopted. 
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Appendix L 

SAMPLE ODL LABELS 

The following examples present ODL label sets for a variety of different data object types. 
They represent a working prototype implementation of the ODL label structure. 

L.1 SAMPLE TEXT FILE LABEL 
This label set precedes the description of the Voyager image documentation contained on the Uranus 
Image Disk. 

NJPL1IOOPDS100000000 
RECORD_TYPE 
OBJECT 
FORMAT 
END_OBJECT 
SPACECRAFT_NAME 
MISSION_PHASE 
INSTRUMENT_NAME 
END 

SAMPLE ODL LABELS 

= SFDU_LABEL 
= STREAM 
= TEXT 
= TEX 

= VOYAGER_2 
= URANUS_ENCOUNTER 
= {NARROW_ANGLE_CAMERA,WIDE_ANGLE_CAMERA} 



L.2 SAMPLE TABLE FILE LABELS 
Delimited ASCII Table of Spectral Reflectance Values: 

Note that start-byte and bytes parameters are not needed since all values are delimited with 
commas and each row comprises one record. 

L-2 

NJPL1IOOPDS100006664 = SFDU_LABEL 
RECORD_TYPE = STREAM 
OBJECT = TABLE 

FORMAT = ASCII 
ROWS = 125 
ROW_COLUMNS = 3 

OBJECT = WAVELENGTH 
TYPE = REAL 

END_OBJECT 
OBJECT = REFLECTANCE 

TYPE = REAL 
END_OBJECT 
OBJECT = ERROR 

TYPE = REAL 
END_OBJECT 

FILE_NOTE = "Data is taken from 'The Galilean 
Satellites: New Near-Infrared Spectral Reflectance (0.65-2.5 
microns) and a .325-.5 micron Summary', Clark and McCord; Icarus, 
vol. 41, 323-329 (1980). Figure 13, Ganymede Leading. The 
reflectivity is the geometric albedo scaled to 1.0 at 1.02 
microns." 
END 

.350000, .488778, .022660 

.375000, .590744, .011475 

.400000, .632155, .012826 

.433000, .752500, .011015 

.466000, .783059, .008976 

.500000, .869610, .007633 

.533000, .918507, .004766 

.566000, .955278, .001062 

.600000, .973874, .005927 

.633000, 1.010833, .006079 

.666000, 1.021557, .009361 

AND SO ON ••• 

SAMPLE ODL LABELS 

/ 
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PWS Binary Data File: 
Note that there are many files with the same record structure so the structure definition is 

stored in a single STRUCTURE file and referenced in the labels for the individual data files. 
Labels for data file PWS072.TAB: 

NJPL1IOOPDS101033180 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
LABEL_RECORDS 
ATABLE 
SPACECRAFT_NAME 
MISSION_PHASE 
TARGET_NAME 
INSTRUMENT_NAME 
INSTRUMENT_MODE 
SPACECRAFT_EVENT_TIME 
OBJECT 

FORMAT 
ROWS 
ASTRUCTURE 

END_OBJECT 
END 

= SFDU_LABEL 
= FIXED_LENGTH 
= 48 
= 21525 
= 32 
= 33 I* Location of start of table in records. 
= VOYAGER_! 
= JUPITER_ENCOUNTER 
= JUPITER_MAGNETOSPHERE 
= PLASMA_WAVE_SPECTROMETER 
= SPECTRUM_ANALYZER 
= 1979-072TOO:OO:OOZ 
= TABLE 
= BINARY 
= 21493 
= 'VGRPWSEL.FMT' 

Contents of referenced structure file VGRPWSEL.FMT: 

NJPL1IOOPDS100000000 = SFDU_LABEL 
RECORD_TYPE = STREAM 
I* STRUCTURE TABLE FOR VGRPWS ELECTRIC WAVEFORM DATA 
OBJECT 

TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 

SAMPLE ODL LABELS 

= YEAR 
= VAX_INTEGER 
= 1 
= 2 
= I4 
= "YEAR OF 1900" 
= YEAR 

= HOUR 
= VAX_INTEGER 
= 3 
= 2 
= 14 
= "HOUR OF YEAR STARTING AT 24" 
= HOUR 

= SECOND 
= VAX_INTEGER 
= 5 
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BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 
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OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 
FORMAT 
NOTE 

END_OBJECT 

OBJECT 
ITEMS 
TYPE 
START_BYTE 

= 2 
= I4 
= "SECOND OF HOUR" 
= SECOND 

= MILLI 
= VAX_INTEGER 
= 7 
= 2 
= 13 
= "MILLISECOND OF SECOND" 
= MILLI 

= FDS_MOD16 
= VAX_INTEGER 
= 9 
= 2 
= IS 
= "FDS MODULO 65536 COUNT" 
= FDS_MOD16 

= FDS_MOD60 
= VAX_INTEGER 
= 11 
= 2 
= I2 
= "FDS MODULO 60 COUNT" 
= FDS_MOD60 

= FDS_LINES 
= VAX_INTEGER 
= 13 
= 2 
= 13 
= "FDS LINE COUNT (1-800)" 
= FDS_LINES 

= INSTRUMENT_MODE 
= VAX_INTEGER 
= 15 
= 2 
= 12 
= "DATA FORMAT MODE (0-31)" 
= INSTRUMENT_MODE 

= CHANNEL 
= 16 
= VAX_INTEGER 
= 15 

SAMPLE ODL LABELS 



........,., 

BYTES 
FORMAT 
NOTE 

END_OBJECT 
END 

SAMPLE ODL LABELS 

= 2 
= I6 
= "UNCALIBRATED E-FIELD CHAN n" 
= CHANNEL 
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Pointer Label to an ASCII Table of Image Parameters: 

NJPL1IOOPDS100000000 = SFDU_LABEL 
I• This label describes the structure of the Index Table on each Voyager 
/• Image CDROM. The table contains one row for each image file on the 
I* CDROM. 
RECORD_TYPE 
FILE_RECORDS 
RECORD_BYTES 
-IMAGE_INDEX_TABLE 
OBJECT 
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FORMAT 
ROWS 
ROW_BYTES 
SFDU_LABEL 
SPACECRAFT_NAME 
MISSION_PHASE_NAME 
NOTE 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

EHD_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

EHD_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

EHD_OBJECT 

= FIXED_LENGTH 
= 6538 
= 512 
= 'IMGINDEX.TAB' 
= IMAGE_INDEX_TABLE 
= ASCII 
= 6538 
= 512 
= NJPL1IOOPDS103347456 
= VOYAGER_2 
= URANUS_ENCOUNTER 
= "Flat Table File of Voyager Image Information" 
= SPACECRAFT_NAME 
= CHARACTER 
= 1 
= 9 

= MISSION_PHASE_NAME 
= CHARACTER 
= 13 
= 16 

= TARGET_NAME 
= CHARACTER 
= 31 
= 8 

= IMAGE_ID 
= CHARACTER 
= 39 
= 10 

= IMAGE_NUMBER 
= REAL 
= 51 
= 8 

I* FDS COUNT 

SAMPLE ODL LABELS 



OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
TYPE 
START_BYTE 
BYTES 

END_OBJECT 

OBJECT 
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= IMAGE_TIME 
= TIME 
= 61 
= 19 

= EARTH_RECEIVED_TIME 
= TIME 
= 81 
= 19 

= INSTRUMENT_NAME 
= CHARACTER 
= 101 
= 19 

= SCAN_MODE_ID 
= CHARACTER 
= 121 
= 7 

= SHUTTER_MODE_ID 
= CHARACTER 
= 129 
= 7 

= GAIN_MODE_ID 
= CHARACTER 
= 132 
= 7 

= EDIT_MODE_ID 
= CHARACTER 
= 145 
= 7 

= FILTER_NAME 
= CHARACTER 
= 153 
= 7 

= FILTER_NUMBER 
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TYPE = INTEGER 
START_BYTE = 161 
BYTES = 7 

END_OBJECT 

OBJECT = EXPOSURE_DURATION 
TYPE = REAL 
START_BYTE = 169 
BYTES = 7 

END_OBJECT 

OBJECT = NOTE 
· TYPE = CHARACTER 

START_BYTE = 177 
BYTES. = 80 

END_OBJECT 

OBJECT = IMAGE_VOLUME_ID ,__ 

TYPE = CHARACTER 
START_BYTE .;, 257 
BYTES = 8 

END_OBJECT 

OBJECT = IMAGE_FILE_NAME 
TYPE = CHARACTER 
START_BYTE = 269 
BYTES = 48 

END_OBJECT 

OBJECT = BROWSE_VOLUME_ID -. 
TYPE = CHARACTER 
START_BYTE = 317 
BYTES = 8 

END_OBJECT 

OBJECT = BROWSE_FILE_NAME 
TYPE = CHARACTER 
START_BYTE = 329 
BYTES = 48 -END_OBJECT 

END_OBJECT = IMAGE_INDEX_TABLE 
END 

·-_,: 
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Binary Table of Voyager Magnetometer Values: 

NJPL1IOOPDS111395180 = SFDU_LABEL 
HARDWARE_TYPE = VAX 
RECORD_TYPE = FIXED_LENGTH 
RECORD_BYTES = 24 
FILE_RECORDS = 474800 

~- LABEL_RECORDS = 50 
OBJECT = TABLE 

FORMAT = BINARY 
ROWS = 474750 
ROW_COLUMNS = 5 
OBJECT = TIME 

TYPE = DOUBLE 
START_BYTE = 1 
BYTES = 8 
FORMAT = 'F13.3' 

END_OBJECT 
OBJECT = BX 

TYPE = REAL 
START_BYTE = 9 
BYTES = 4 
FORMAT = 'F12.4' 

END_OBJECT 
OBJECT = BY 

TYPE = REAL 
START_BYTE = 13 
BYTES = 4 
FORMAT = 'F12.4' 

END_OBJECT 
OBJECT = BZ 

TYPE = REAL 
START_BYTE = 17 
BYTES = 4 
FORMAT = 'F12.4' - END_OBJECT 

OBJECT = BT 
TYPE = REAL 
START_BYTE = 21 
BYTES = 4 
FORMAT = 'F12.4' 

END_OBJECT 
END_OBJECT 
END 
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L.3 SAMPLE IMAGE FILE LABELS 
NOAA Elevation File: 

NJPL1IOOPDS105529580 = 
RECORD_TYPE = 
RECORD_BYTES = 
FILE_RECORDS = 
LABEL_RECORDS = 
-ENGINEERING_HEADER = 
-IMAGE = 
OBJECT = 

RECORDS = 
END_OBJECT 
OBJECT = 

LINES = 
LINE_SAMPLES = 
SAMPLE_BITS = 

END_OBJECT 
FILE_NOTE = 

SFDU_LABEL 
FIXED_LENGTH 
1920 
2880 
1 
2 
3 
ENGINEERING_HEADER 
1 

IMAGE 
2879 
1920 
8 

II 

NOAA 30-second elevation averages were scaled to a range from 0 
(sea level, lowest elevation) to 255 (highest elevation) so that 
each scaled value corresponds to a 15 meter interval. The data 
are arrayed in four files with the following longitudinal 
boundaries in degrees vest longitude: 125 to 109, 109 to 100, 
100 to 86, 86 to 66 degrees. Each file corre·sponds to a latitude 
range from 25 to 49 degrees north. Within each file each record 
corresponds to the northernmost latitude and the first sample in 
each record corresponds to the westernmost longitude. This file 
contains the Western region, 125 to 109 degrees vest longitude." 
END 
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Ocean Data System Image File: 

NJPL1IOOPDS100263148 = SFDU_LABEL 
/* FILE CHARACTERISTICS 
RECORD_TYPE = FIXED_LENGTH 
RECORD_BYTES = 512 
FILE_RECORDS = 514 
LABEL_RECORDS = 2 
OBJECT = IMAGE 

LINES = 512 
LINE_SAMPLES = 512 
SAMPLE_BITS = 8 

END_OBJECT 
/* IMAGE DESCRIPTION 
SPACECRAFT_NAME = NIMBUS_7 
TARGET_NAME = EARTH 
INSTRUMENT_NAME = COASTAL_ZONE_COLOR_SCANNER 
NOTE = "A CHLOROPHYLL CONCENTRATION IMAGE FROM THE 
SANTA BARBARA AREA. SCALE INCLUDED. 1 PIXEL IS ABOUT 1 KM 
SQUARE. II 

END 

SAMPLE ODL LABELS L-11 



Voyager Plasma Wave File: 
This file is identified as an image in this example. 

NJPL1IOOPDS100822252 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
LABEL_RECORDS 
-ENGINEERING_SUMMARY 
-IMAGE 
OBJECT 

BYTES 
STRUCTURE 

END_OBJECT 
OBJECT 

LINES 
LINE_SAMPLES. 
LINE_PREFIX_BYTES 
LINE_SUFFIX_BYTES 
SAMPLE_BITS 
SAMPLE_BIT_MASK 

END_OBJECT 
SPACECRAFT_NAME 
MISSION_PHASE_NAME 
TARGET_NAME 
FRAME_ID 
FRAME_PERIOD 
SPACECRAFT_CLOCK_COUNT 
SPACECRAFT_EVENT_TIME 
INSTRUMENT_NAME 
INSTRUMENT_MODE 
INSTRUMENT_SAMPLING_RATE 
INSTRUMENT_LOST_SAMPLES 
END 
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= SFDU_LABEL 
= FIXED_LENGTH 
= 1024 
= 802 
= 2 
= 3 
= 4 
= ENGINEERING_SUMMARY 
= 1024 
= 'VGRPWS.LBL' 

= IMAGE 
= 800 
= 1600 
= 220 
= 4 
= 4 
= 2#1111# /• NIBBLES IN TIME ORDER 

= VOYAGER_! 
= JUPITER_ENCOUNTER 
= JUPITER_MAGNETOSPHERE 
= 16269.49 
= 48 <SECONDS> 
= 16269.49 /• FLIGHT DATA SYSTEM (FDS) 
= 1979/060-12:24:36 <UTC> /•FRAME BEGINNING 
= PLASMA_WAVE_SPECTROMETER 
= WAVEFORM_RECEIVER 
= 28800 /• SAMPLES PER SECOND 
= 128 /• LOST AT END OF EACH LINE 
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Voyager CDROM Image File: 

NJPL1IOOPDS100000000 = SFDU_LABEL 
/• FILE FORMAT AND LENGTH 
RECORD_TYPE = VARIABLE_LENGTH 
RECORD_BYTES = 836 
FILE_RECORDS = 860 
LABEL_RECORDS = 54 
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE 
-IMAGE_HISTOGRAM = 55 
-ENCODING_HISTOGRAM = 57 
-ENGINEERING_TABLE = 60 
-IMAGE = 61 
SPACECRAFT_NAME = VOYAGER_1 
MISSION_PHASE_NAME = SATURN_ENCOUNTER 
TARGET_NAME = TITAN 
IMAGE_ID = '1516S1-002' 
IMAGE_NUMBER = 34909.12 /•FLIGHT DATA SUBSYSTEM (FDS) 
IMAGE_TIME = 1980-11-11T19:52:34Z 
EARTH_RECEIVED_TIME = 1980-11-11T21:19:46Z 
NOTE = "ROUTINE MULTISPECTRAL LONGITUDE COVERAGE" 
INSTRUMENT_NAME = WIDE_ANGLE_CAMERA 
SCAN_MODE = '3:1' 
SHUTTER_MODE = BOTSIM 
GAIN_MODE = LOW 
EDIT_MODE = '1:1' /•FULL RESOLUTION 
FILTER_NAME = CH4_JS 
FILTER_NUMBER = 0 
EXPOSURE_DURATION = 15.3600 <SECONDS> 
/• DESCRIPTION OF THE DATA OBJECTS CONTAINED IN FILE 
OBJECT 

ITEMS 
ITEM_TYPE 
ITEM_BITS 

END_OBJECT 
OBJECT 

ITEMS 
ITEM_TYPE 

.· ITEM_BITS 
END_OBJECT 

OBJECT 
BYTES 
-sTRUCTURE 

END_OBJECT 
OBJECT 

ENCODING_TYPE 
LINES 
LINE_SAMPLES 
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= IMAGE_HISTOGRAM 
= 256 
= VAX_INTEGER 
= 32 

= ENCODING_HISTOGRAM 
= 511 
= VAX_INTEGER 
= 32 

= ENGINEERING_TABLE 
= 242 
= 'ENGTAB.LBL' 

= IMAGE 
= HUFFMAN_FIRST_DIFFERENCE 
= 800 
= 800 

it 
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LINE_SUFFIX_BYTES 
SAMPLE_TYPE 
SAMPLE_BITS 
SAMPLE_BIT_MASK 
-LINE_SUFFIX_STRUCTURE 

END_OBJECT 
END 
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= 36 
= UNSIGNED_INTEGER 
= 8 
= 2#11111111# 
= 'LINESUFX.LBL' 
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L.4 SAMPLE CUBE FILE LABEL 
The following label is from a Sample Cube file. Note that just about everything necessary to 

interpret this data is included in the labels, including references to people with more information. 

NJPL1IOOPDS100000000 
I* File structure 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
LABEL_RECORDS 

/• Pointers to objects 

~QUBE 

= SFDU_LABEL 

= FIXED_LENGTH 
= 512 
= 5320 
= 8 

= 9 

/• Qube object description 

OBJECT = QUBE I* object type serves as name 

I* Data structure and description 

STORAGE_TYPE = BAND_SEQUENTIAL 
AXES = 3 
AXIS_ITEMS = (128,128,83) 
ITEM_BITS = 16 
ITEM_TYPE = VAX_INTEGER I• actually unsigned 
AXIS_NAME = (SAMPLE,LINE,BAND) 
AXIS_UNIT = (, ,MICRONS) 
AXIS_INTERVAL = (, ,0.) '* discrete bands 
AXIS3_BIN_CENTER_VALUE = ( 

.1 .713 .725 .738 .751 .764 .116 .789 .802 .815 

.827 .84 .853 .866 .878 .891 .904 .917 .929 .942 

.955 .968 .98 1.006 1.031 1.057 1.082 1.108 1.133 1.158 
1.184 1.209 1.235 1.26 1.286 1.311 1.337 1.362 1.387 1.413 
1.438 1.464 1.489 1.515 1.54 1.566 1. 591 1. 617 1.642 1.668 
1.693 1. 719 1. 744 1.11 1.795 1.821 1.846 1.872 1.897 1.923 
1.948 1.974 1.999 2.025 2.051 2.076 2.102 2.127 2.153 2.178 
2.204 2.229 2.255 2.281 2.306 2.332 2.357 2.383 2.408 2.434 
2.46 2.485 2.511) 

CORE_ITEMS = (128,128,83) 
CORE_NAME = "NORMALIZED REFLECTANCE" 
CORE_UNIT = DIMENSIONLESS 
CORE_DIVISOR = 10000 
CORE_EXCLUDE_VALUE = -32000 

/• Instrument and target description 

SPACECRAFT_NAME 
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= GALILEO 
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INSTRUMENT_NAME = NIMS /• Near Infrared Mapping Spectrometer 
TARGET_BODY = GANYMEDE 
NOTE = II 

GANCUB: Synthetic Ganymede Cube (17mar87) 

(by Robert Singer, with additions by Roger Clark and Bob Mehlman) 
GANCUB is a synthetically generated 3-dimensional data set (image 
cube) of the type to be returned by mapping spectrometers such as the 
NIMS instrument on Galileo. The spatial information (the first two 
array dimensions) is based on a small section of a Voyager image of 
Ganymede, taken in the longest wavelength filter (orange, I believe). 

The third (spectral) dimension consists of one spectrum per spatial 
pixel. These spectra originated from 25-30 near-IR laboratory 
spectra c-o.7 to 2.5 um) of ice, minerals, and ice-mineral mixtures, 
and were converted to NIMS wavelengths. A small amount of random 
noise was added to the lab spectra before assignment to each pixel in 
the image to more closely simulate actual NIMS data, but the net 
effect is still quite smooth, probably smoother than will be realized 
with actual spacecraft measurements. A spectrum was assigned for 
each pixel based on the closest match between Voyager orange albedo 
and the -o.7 um reflectance of the spectra. (These albedos did not 
vary much so they were stretched to fill the range.) For the ice 
spectra, this depends most heavily on the grain size and level of 
contamination. Some clay minerals and amorphous hydrous weathering 
products (palagonites) are also spectrally represented. There are 
small exposures of olivine and pyroxene as well, for variety. 

Most d~ta words in the file range from Oto 10,000, corresponding to 
normalized spectral values from 0. to 1.0 with a significance of 
about .002. There are a few small negative values. There are also 
1437 fill values of ~32,000 corresponding to missing pixels in the 
lab spectra. 

References: 
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Roger N. Clark 
U.S. Geological Survey, Mail Stop 964 
Box 25046, Federal Center 
Denver, CO 80225 
Phone: 303/236-1332, x1212 (secy), x1411 
Telemail: RNCLARK 

Robert Singer 
Lunar and Planetary Laboratory 
Space Sciences Bldg. 
University of Arizona 
Tucson, AZ 85721 
Phone: 602/621-4573 
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Bob Mehlman (software) 
UCLA/IGPP 
Los Angeles, CA 90024 
Phone: 213/825-2434, -3123 
Telemail: RMEHLMAN 
SPAN: GRUMPY: : RMEHLMAN, ISSAC: : RMEHLMAN 11 

END_0BJECT 
END 

SAMPLE ODL LABELS L-17 



---, 

L-18 SAMPLE ODL LABELS 



Appendix M 

PDS CODING STANDARDS 

The purpose of these standards is to facilitate the creation of highly readable and maintainable 
code. This standard will: 
(1.) Increase portability to a new host environment. 
(2.) Allow mechanical processing of computer programs (i.e., a documentation reader). 
(3.) Provide for new personnel to learn easily about existing software. 
( 4.) Facilitate reuse of program segments. 

It is important for the software engineer to understand the philosophy behind the standards. 
The following coding standards are not absolute rules, nor are they meant to hinder the engineer's 
productivity. By following standards, the goals listed above can be obtained, leading to a more 
maintainable and readable product. Moreover, these Standards are not exhaustive; additions to the 
Standard shall occur throughout the development phase. Therefore, it is just as important for the 
software engineer to follow the spirit of the Standard as it is to follow the letter of the Standard. 

The following code development standards address comments, programming style, explicit 
typing, naming conventions, language specific practices, common software, and software engineering 
notebooks. Each guideline is followed by a brief paragraph motivating the guideline. Occasionally, 
a stylistic motivation is given which indicates that the choice was arbitrary; however, the choice 
shall be used to keep the code consistent. 

PDS application software shall be organized as a hierarchy of software components: 
(1.) Function 
(2.) Program 
(3.) Segment 
(4.) Unit 
(5.) Module 

In this hierarchy, a function is the largest and most general component and a module is the 
smallest and most detailed. 

Each software component shall have the following format: 
Component (parameter 1, parameter2, ... ) followed by: 
(1.) Header block 
(2.) Parameter declarations and descriptions 
(3.) Local variable declarations and descriptions 
( 4.) Code body 
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M.1 COMMENTS 
Comments shall occur at the following places in a software component: 

(1.) A header which is surrounded by the comment symbol as a block shall highlight the beginning 
of a software component. Additionally, it is recommended that the higher level software 
component should contain one more boundary line on both the top and bottom sides than the 
next lower level. This header format applies to all levels of software components. 

********************************************************************* 
* 
* Component subname [(var1[,var2[ ... J])] 

* Change history: (date, author, summary) 
* Overview: (what it does) 
* Invocation example: 
* Detailed description: (processing logic) 
* Internal/external references 
* Author and institution 
* Version and date: 
* Logical--units on input 
* Logical--units on output 
* Limitations 

* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

********************************************************************* 
Motivation: The header contains the essential sections necessary to document a software 
component. These sections are formatted so that the documentation reader can extract them. 
Moreover, the format chosen separates the header from the rest of the software component. 

(2.) Logical blocks of code shall be commented in block format. The majority of components should 
be decomposable into blocks. A typical block may be a nested if block, loop, or procedure 
initialization statements. Comments describing logical blocks of code shall be surrounded by 
starred boxes for emphasis. 
Motivation: Code is described best in logically cohesive blocks than by many over-commented 
lines. Boxing in comments aids visually in the separation of blocks throughout the code. 

(3.) Comment blocks at the same software component level shall be aligned on the same column. 
In general, comments of individual statements shall be aligned, especially for those statements 
logically related. Individual lines of code shall be commented only when the comment does 
more than just echo the statement coded. In general, it should not be necessary to comment 
many individual lines of code, since most statements belong to a logical block. The following 
shall be a guide to comment individual lines of code: 
(a.) The statement performs a complete function. 
(b.) The programmer determines that specific information is required for general software 

understandability. 
( c.) The comment is required to explain programming language or structure construct idiosyn-

crasies. 
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(d.) The programmer intends to further clarify nesting levels by commenting the beginning 
and ending statements of a particular block of code. 

( e.) The statement is setting default values or error flags where additional comments are 
required to state the function. 

Motivation: Over-commenting ruins the readability of code and burdens the reader with 
unnecessary details . 

. ( 4.) Comments shall reflect what the code is doing. 

Motivation: Inaccurate comments are worse than no comments. An inaccurate description 
of the code can become a major problem in debugging and maintaining code, especially when 
the reader relies on descriptions instead of actual code. 

(5.) The structure of the code shall be directly traceable from the structure of the design. 
Motivation: The traceability of the code from structure charts is a direct check on the design 
process. If the code deviates drastically from the charts, this signals that either the coding 
was done incorrectly, or that the design is faulty. 

(6.) Local variables shall be described and declared in a separate section before any executable 
statements by a line or two of description. 
Motivation: Similar to describing parameters, local variables must also be described and 
declared together to complete the documention of the software component. 

M.2 PROGRAMMING STYLE 
Stylistic issues address choosing a single consistent way of performing an operation when 

there are multiple acceptable solutions. Stylistic c~iwentiohs may seem to burden the programmer 
especially when his style does not agree with the imposed Standard. However, stylistic conventions 
allow easier mechanical processing of programs if the conventions are follo;wed. Moreover, a standard 
programming style enhances program readability, since the reader doesn't need to readjust to a 
different programming style. 

(1.) The recommended size of a PDS module shall be 100 lines of code or less. Programmers shall 
follow the following rule that a component shall have one purpose, described in the overview 
section of the header. Moreover, the overview shall not consist of a compound subject (i.e., no 
"and" in it). If it does, then the component shall be split. 
Motivation: Limiting the scope of a subroutine to one purpose maximizes program modularity 
and cohesion. 

(2.) Multiple entry and exit points shall not be allowed. 
Motivation: Multiple entry and exit points go against the philosophy of structured program-
ming. If the structured design is done correctly, the code should reflect one entry and one exit 
point. In general, multiple exit points are unnecessary, since flag setting and branching can 
often solve the problem and multiple entry points can be replaced by writing separate routines. 

(3.) The use of goto statements shall be limited. 
Motivation: Extensive use of goto statements goes against the philosophy of structured design 
and programming. Its use contributes to a non-top-down programming style that can be best 
described as spaghetti code. A common instance where the legitimate use of gotos may occur 
is: branching to an error or exit routine, so that multiple return statements are avoided. 
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( 4.) Indentation shall reflect the logical structure of the code. Levels of nesting shall be set apart 
by four columns per indentation. Moreover, each statement that ends a structure shall appear 
in the same column as the statement that started the structure. Example: 

do var = el, e2, e3 
statement l 
statement 2 
statement 3 

end do 
Motivation: Code that is indented well reflects the logic of a program much better than 
non-indented code. Four columns is recommended for the length of indentation, since it ~s 
recognized easily and does not waste line space. 

( 5.) Constants shall be defined through the use of C define statements or FORT RAN parameter 
statements, and contained in separate include files. The use of numerals in the code shall be 
kept to a minimum. Exception: When initializing variables, it is easier to use numerals. 
Motivation: By defining constants and maintaining them in include files, individual programs 
will not need to be modified due to changed constants. 

(6.) Blank lines shall be used to separate code from comments. 
Motivation: This improves readability. / 

(7.) Spaces shall be used to separate variables in parameter lists, equations, and other programming 
statements. 
Motivation: This improves readability. 

(8.) If a statement is too long to fit on a line comfortably, the continued statement shall be indented 
the same amount as the previous line. 
Motivation: This improves readability. 

(9.) When code is commented out, additional comments shall be added telling when and why the 
code has been changed. Commented out code shall be set off by marks, i.e., ** old ** . 
Motivation: Many times code is commented out on the fly and therefore not well documented. 
Code should be documented at all stages of development including its maintenance phase. 
Commented out code shall be made distinguishable from code that is in use. 

(10.) Complicated expressions shall be transformed into several simple expressions aligned on sepa-
rate lines. 
Motivation: The C language allows the programmer to encode complicated and efficient ex-
pressions at the expense of clarity and readability. To help future readers understand the entire 
expression it is appropriate to break the expression down into small, clear subexpressions. This 
can also provide more space for individual comment. 

M.3 EXPLICIT TYPING 
All variables and functions shall be explicitly typed. Each variable shall be declared separately 
by the use of a type statement, i.e., real, integer, etc. 
Motivation: Many languages consider explicit typing a standard feature. This feature virtu-
ally eliminates bugs due to the failure of declaring variables. 
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M.4 NAMING CONVENTIONS 
(1.) Variable name and file name length shall be dictated by the machine. 

Motivation: PDS does not put a restriction of the size of a variable or file name. Therefore, 
the maximum variable name size shall be determined by the limitation of the machine. 

(2.) All global variable and software component names shall be unique in the first six characters. 
Motivation: This ensures unique names for global variables and software components. 

(3.) A software component naming scheme shall exist which categorizes components into appropri-
ate programming areas. 

(4.) 

Example: Prefixes in software component names: slibgetline or slib_getJ.ine, where the prefix 
slib tells this routine it belongs to the system library. 
Motivation: The scheme shall facilitate the identification of software components throughout 
the system. 
The following file extensions shall be used: 
(a.) .FOR - FORT RAN source code files 
(b.) .INC - FORTRAN include file 
( c.) .C - C source code files 
(d.) .H - C include file 
(e.) .COM - VAX DCL command files 
(f.) .OBJ - VAX object files 
(g.) .EXE - VAX executable files 
(h.) .MAR - VAX MACRO assembly code files 
Motivation: The use of standard terminology facilitates the system build process. 

(5.) Descriptive variable names shall be used. One or two character variable names shall be avoided. 
Exception: array indices, loop counter variables, etc. 
Motivation: Comprehension of variables is enhanced. 

M.5 LAN GU AGE SPECIFIC PRACTICES . 
The following sections define the language specific coding standards for the FORTRAN and C 

programming languages. 

M.5.1 PDS FORTRAN Coding Standards 

(1.) In general, PDS applications software written in FORTRAN shall be restricted to the 
ANSI FORTRAN 77 (X3.9-1978) Standard to make the code more transportable and con-
sistent. Extensions to the ANSI FORTRAN 77 Standard involving do loops, do while loops, 
include files, and lower case shall be available to programmers. These extensions show the 
structure of the code more clearly than the ANSI counterparts. Since applications shall be 
shared between Nodes, transportability shall be a major concern. Therefore, a precompiler 
shall be provided in order to translate all non-ANSI extensions into ANSI FORTRAN 77. 
PDS EXTENSIONS to ANSI FORTRAN 77: 
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Common and Parameter Statements. Common and Parameter statements shall be placed 
in separate include files. These files shall be included by means of the include statement in 
any software component that uses the Common or Parameter statements. The syntax of the 
include statement shall be include filename/list. The /list qualifier is optional and directs the 
compiler to list the include file with the rest of the source file in the list file. These two types 
of include files shall be distinguishable by using the prefixes com.. and par_ followed by the 
filename.inc. The com-filename.inc. shall contain the type declarations of all the common 
block variables followed by the declaration of the common block itself. The par_filename.inc. 
shall contain alternating type declarations and Parameter statements. 

Motivation: Ensures that the declarations of a common block will be unique, since all 
references made to it shall be through the declaration in the include file. 

Implicit None. The implicit none statement shall be used in the declaration section. 
Motivation: This helps find any variables that are not explicitly declared. 

Unnamed Common. Unnamed Common shall not be used. 
Motivation: The use of unnamed Common is incompatible in a large user group. Using 
two or more software components containing unnamed Common blocks with different 
contents can cause unpredictable results. 

Labeled Loops. Do loops without statement labels shall be preferred over labeled do loops. 
Example of: do loops without labels: 

do var = el, e2, e3 

end do 

Example of: do loops with labels: 
do label var = el, e2, e3 

label end do 

do for var = el; e2, e3 

end for 

Motivation: It delineates the structure of the program and avoids the use of statement 
labels. 

Do While. Do while loops shall be preferred over labeled if blocks. 
Example of: do while loops: 

do while var = el, e2, e3 do while var = el, e2, e3 

end do end while 

Motivation: While loops express the structure of a program better than labeled if blocks. 
·Block If. The block if construct shall be preferred over the logical if () then: 

block if: logical if: 
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if() then 
if statements 

else 
else statements 

end if 

if() then 
if statements 

if not() then 
else statements 

Motivation: The block if statement is more concise and easier to follow. 
FORTRAN shall be written in either upper- or lowercase. 

Motivation: Only the uppercase character set is defined in the ANSI FORTRAN 77 
standard. Lowercase FORTRAN statement will be translated into uppercase. 

M.5.2 PDS C Coding Standards 

This section provides standard coding guidelines for programs written in C. In order to make 
the C applications code as portable as possible, VMS-unique system features shall not be used in 
PDS applications code. 

In addition to the following guidelines, the standard reference for coding in C shall be THE C 
PROGRAMMING LANGUAGE by Kernighan and Ritchie, (Prentice-Hall,1978.) 
(1.) Structure member names. All structure member names shall be unique. 

Motivation: The standard C definition does not bind a member name to the structure 
that contains it. 

(2.) Structure/Union assignment. Not all compilers allow structure/union assignment. To ac-
comodate differences in compilers, the following shall be used: Define a symbol (STRASS) 
"structure assignment" in system.h to indic~te whether structure/union assignment is allowed. 
Example: 

struct str a,b; 

#if STRASS 
a= b; 

#else 
bytncpy( (char*)a, (char *)b, sizeof(str) ); 

#endif 
(bytncpy is a function that copies a given number of bytes from b to a.) 

(3.) Passing a structure or a union as a function argument. Structures or unions shall not be passed 
as functional arguments. The & operator shall be used to pass a pointer to them instead. 

Motivation: This shall enhance portability; structure and unions may be passed as an 
argument only in newer compilers. 

( 4.) Labels and gotos. In cases where a goto is unavoidable, labels shall be in upper case, and 
placed starting in column 1 with the following colon on the same line. 

Example: goto OUTLOOP; 

OUTLOOP: statement; 
Motivation: Stylistic. 
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(5.) Typedef. New data type names created by using the typedef statement shall be in upper case. 
Example: typedef int LENGTH; 
Motivation: Stylistic. 

(6.) Pointer array. Pointer array arguments shall be defined as *X[ ], not **X. Pointer array 
variables shall be defined as **X. 

Motivation: Stylistic 
(7.) Character set differences. Dependence on the ASCII character code set shall be avoided; 

use standard library functions to determine character type, and perform upper /lower case 
conversion. One may assume that the characters 'O' through '9', 'a' through 'z', and 'A' 
through 'Z' are consecutive. 

Motivation: This feature enhances portability. 
(8.) Allocation of storage for character strings. Character string allocation shall use the form 

"MAXLEN + 1" to emphasize the real length of the string including the end of string terminator 
at the end. 

Example: Allocate storage for a character string of 80 characters: 

# define MAXLEN 80 
char str(MAXLEN + 1] 

Motivation: Stylistic. 

(9.) Octal vs. hexadecimal constants. If binary representation is needed, hexadecimal constants 
shall be used instead of octal. 

Motivation: Hexadecimal constants are wore suited for modern 16- and 32-bit computer 
architectures. •'• - · 

(10.) Unsigned char and unsigned long. Unsigned char and unsigned long shall not be used. 
Motivation: Portability. Unsigned char and unsigned long are not available on some 
compilers. 

(a.) Pointer arguments. All pointer arguments to a function shall be cast to the proper type. 
Example: the standard function strcpy takes two char pointers: 

strcpy( ( char * )dest, ( char *)source ); 
Motivation: The internal forms (or even the size) of pointers to different objects may be 
different. Therefore, it is safer to use the cast operator. 

(11.) Pointer arithmetic. Pointer arithmetic shall be limited to a single dimensioned arrays. -
Motivation: Portability. In general, the numeric value of a pointer is CPU dependant. 

(12.) Pointer conversion. Pointer conversion shall be explicitly stated by a cast operator. 
Motivation: A voids future programming problems. This guideline agrees in spirit of 
explicitly declaring variables. 

(13.) Type sizes. Be aware that the size of pointer and int types are not always the same. (Example: 
VAX/VMS C uses 2 bytes for int and 4 bytes for pointers.) Care must be taken to use the 
correct size. Ensure that arguments and function return values are of the correct size. 

M-8 

Motivation: Portability. Programs developed on systems in which int and pointer types 
are the same size fail to work when ported to systems with different sizes. 
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(14.) Placemrnt of braces. The two braces { } used to delimit a compound statement shall be 
indente(i on the same column. Example: 

(15.) 

(16.) 

(17.) 

if (i > 0 ) 
{ 

if-part; 
} 
else 
{ 

else-part; 
I } 

M!tivation: It is easier to trace a program with matching levels of delimiters (braces) 
thr one with uneven levels. 

Function definitions. If a function returns anything, then what is returned shall be explicitly 
definedi, even if it is the default type, int. 

Mbtivation: This features increases program readability and forces the programmer to 
thtnk about the type of value the function shall return. 

Assign~ent operators. The following obsolete assignment operators shall not be used: =+, 
=--, I =*' =/' =%' =>> ' =<<' =&' =, =I 

Mptivation: These assignment operators are obsolete and have been replaced by operator 
= /type operators. 

Condi4onally compiled integration code. All temporary statements which will only survive to 
integr 'ion testing shall be surrounded by the following conditional compilation control lines: 

#if def integration 
statements; 

#endif 
B~ inserting or not inserting the statement #define integration at the beginning of the 
soµrce file or in an include file,the integration statements can be compiled or not compiled. 
M~tivation: This provides programmers with a standard method of introducing tempo-
rj~ code into the integration environment without affecting the standard code. 

(18.) Abbreyiated variable names shall be separated by underscore. Example: max..i.nt for maxi-
mum ipteger. 

M.6 VA ID CHARACTER SET 

Motivll tion: Readability of variables is enhanced. 

This s ction contains the valid character set that must be used in the construction of PDS 
terms. I 

a b c d e f g h i j k 1 m n o p q r s t u v w x y z 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

1 2 3 4 5 6 7 8 9 0 _ 
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