
-.,..

~·-

D-4683

Standards for the Preparation
& Interchange of Data Sets

T. Z. Martin, M. D. Martin, R. L. Davis, R. Mehlman
M. Braun, M. Johnson

Version 1.1

October 3, 1988

PDS
• • o--•·----

Paletaly Daa System
--;rdSpaoe _ _,

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

TABLE OF CONTENTS

1. INTRODUCTION 1-1

1.1. DOCUMENT OVERVIEW 1-1

1.2. ACKNOWLEDGEMENTS 1-2

1.3. REFERENCES 1-2

2. DATA SET SUBMISSION PROCESS 2-1

2.L DATA SUPPLIERS .. 2-1

2.2. SUPPORT FOR DATA SET PREPARATION 2-1

2.3. PDS CONTACT PERSONNEL 2-1

2.4. PROCEDURE FOR DATA SET SUBMISSION 2-2

-. 2.4.1. Estimation 2-2

2.4.2. Specification 2-2

2.4.3. Preparation 2-2

2.4.4. Submission 2-3

2.4.5. Review 2-4

2.4.6. Rework 2-4

2.4.7. Signoff 2-4

3. DOCUMENTATION STANDARDS 3-1

3.1. RECOMMENDED FORMAT 3-1 ,,,__

3.2. EXAMPLES . 3-1

3.3. SOFTWARE DOCUMENTATION 3-1

3.4. DOCUMENTATION CONTENTS 3-2

4. CATALOG STANDARDS 4-1

4.1. PDS SCIENCE CATALOG ARCHITECTURE 4-1

4.2. ENTITY RELATIONSHIP MODEL 4-2

5. PDS NOMENCLATURE STANDARDS 5-1

5.1. PDS DATA NOMENCLATURE SYNTAX 5-1 -~
5.1.1. Construction of Terms . 5-2

5.1.2. Order of Terms within a Data Object Name 5-2

5.1.3. Specifiers 5-2

5.1.4. Descriptor Words 5-2

5.1.5. Class Words 5-3

..,..,. i

TABLE OF CONTENTS {CONT.)

5.1.6. Abbreviations

5.1.6.1. Abbreviation of PDS Formal Data Object Names

5.1.6.2. The Construction of Terse Data Element Names

5.2. PDS FILE NAME SYNTAX

5.2.1. Naming Rules

5.2.1.1. Standard File Extensions

5.3. DIRECTORY NAMING AND USAGE CONVENTIONS

6. DATA FORMAT STANDARDS

6.1. DATA FORMAT REPRESENTATION SYSTEMS

6.1.1. Predefined Structures

6.1.2. Keyword Structures

6.2. PDS OBJECT DESCRIPTION LANGUAGE (ODL)

6.2.1. ODL Objectives

6.2.2. ODL Concept .

6.2.3. Data Object Description

6.2.4. Data Objects Storage and Transportation

6.2.5. Object Class Hierarchies and Inheritance

6.2.6. Summary

7. MISCELLANEOUS STANDARDS

ii

7.1. TIME

7.1.1. Representations of Dates

7.1.2. Representations of Times

7.1.3. Dates and Times

7.1.4. Periods of Time

7.2. UNITS

7 .3. BINNING

7.4. SOFTWARE DEVELOPMENT

7.5. ANCILLARY GEOMETRIC INFORMATIO,N (SPICE FILES)

7.6. CARTOGRAPIC DATA

7.6.1. Inertial Reference Frame/Timetag/Units

7.6.2. Spin Axes and Prime Meridians

5-3

5-3

5-4

5-5

5-5

5-5

5....!6

6-1

6-1

6-1

6-1

6-2

6-2

6-2

6-3

6-3

6-5

6-6

7-1

7-1

7-1

7-2

7-2

7-2

7-2

7-4

7-4

7-5

7-6

7-7

7-7

·---=--"\.

TABLE OF CONTENTS (CONT.)

7.6.3. Reference Coordinates

7.6.4. Reference Surface

7.6.5. Map Resolution

7.6.6. Documentation

7.6.7. References

8. TOOLS

8.1. DATA SET SOFTWARE

8.2. PDS LABEL SOFTWARE

7-7

7-8

7-8

7-8

7-8

8-1

8-1

8-2

iii

APPENDICES

A. DATA INGESTION FROM PRESENT AND FUTURE MISSIONS

A.1. DRAFT PDS MISSION DATA INTERFACE LIST

A.2. WRITING THE PROJECT DATA MANAGEMENT PLAN ..

A.3. MECHANISM FOR CHANGE OUTSIDE OF STEPS 1 AND 2

B. DATA RESTORATION PROCEDURES

. B.1. DATA RESTORATION PRIORITIZATION

B.2. NASA REQUEST FOR DATA RESTORATION PROPOSALS

B.3. SELECTION OF DATA RESTORATION PROPOSALS

B.4. RESTORATION PROCESS

C. WRITING CONVENTIONS AND DOCUMENT STANDARDS

D. DATA SET DOCUMENTATION EXAMPLES

D.1. PLASMA WAVE DOCUMENTATION EXAMPLE

D.2. IRS DATA SET EXAMPLE

E. ENTITY DEFINITIONS AND STRUCTURES .

E.1. COORDINATE SYSTEM INFORMATION

E.2. DATA SET AND PRODUCT INFORMATION

E.3. EARTH BASE INFORMATION

E.4. EVENT INFORMATION . . .

E.5. INSTITUTION INFORMATION

E.6. INSTRUMENT INFORMATION

E.7. MISSION INFORMATION

E.8. NODE INFORMATION . .

E.9. PARAMETER INFORMATION

E.10. PERSONNEL INFORMATION

E.11. REFERENCE INFORMATION

E.12. SOFTWARE INFORMATION

E.13. SPACECRAFT INFORMATION

E.14. TARGET BODY INFORMATION

F. PDS CLASS AND DESCRIPTOR WORD DICTIONARY

F.1. INTRODUCTION

F.2. CLASS WORD DICTIONARY

iv

A-1

A-1

A-1

A-2

B-1

B-1

B-1

B-1

B-1

C-1

D-1

D-1

D-9

E-1

E-2

E-3

E-4

E-4

E-5

E-6

E-8

E-9

. E-10

. E-11

. E-12

. E-12

. E-13

. E-14

F-1

F-1

F-1

APPENDICES (CONT.)

F.3. DESCRIPTOR WORD DICTIONARY

F.4. PLURAL DESCRIPTOR WORDS ..

F.5. IDENTIFIED NON-DESCRIPTOR WORDS

G. PDS ABBREVIATION LIST

H. STANDARD FORMATTED DATA UNITS

H.1. INTRODUCTION

H.2. INFORMATION TRANSFER

H.3. DATA STRUCTURING

H.4. DATA DEFINITION

H.5. TERMINOLOGY

H.6. ODL IMPLEMENTATION OF SFDU'S

I. ODL IMPLEMENTATION AND SPECIFICATION

1.1. IMPLEMENTATION OF PDS OBJECT DESCRIPTION LANGUAGE

1.1.1. PDS Object Description Language

1.1.2. Data Unit Labels

1.1.2.1. SFDU Registration

1.1.2.2. Data Unit Format Description

1.1.2.3. Pointers to Objects

1.1.2.4. Data Unit Content Description

1.1.2.5. Object Descriptions

1.1.2.6. END Statement . .

1.1.3. Accessing Data Objects

1.1.3.1. Describing Classes of Objects

1.2. ODL SPECIFICATION

1.2.1. Definitions

1.2.2. Label Format

1.2.3. Object Statements

1.2.4. Attribute Assignment Statements

1.2.4.1. Keyword

1.2.4.2. Assignment Symbol

1.2.4.3. Value

F-2

F-9
. F-10

G-1

H-1

H-1

H-1

H-1

H-3

H-3

H-5

1-1

1-1

1-1

1-3

1-3

1-4

1-4

1-4

1-5

1-5

1-6

1-8

1-10

1-10

1-11

1-11

1-11

1-12

1-12

1-12

V

APPENDICES (CONT.}

1.2.5. Object Description Language Syntax Specification

1.2.5.1. Basic Elements of the Language

1.2.5.2. Lexical Elements

I.2.5.3. Syntactic Elements

1.2.5.4. Semantics

J. DATA UNIT FORMATS

J .1. RECOMMENDATIONS FOR USING RECORD FORMATS

J. 1. 1. Fixed Length Record Formats

J.1.2. Variable Record Formats

J .1.3. Stream Record Formats

J.1.4. Composite Files

K. DATA OBJECT DESCRIPTIONS

K.1. ELEMENTARY OBJECTS

K.1.1. Specification Qualifiers .

K.1.1.1. Length Sp-ecification

K.1.1.2. Binary Integer Specifications

K.1.1.3. Signed Versus Unsigned

K.1.1.4. Floating Point Formats

K.1.1.5. Bit String Data

K.1.2. Object Format Specifications

K.1.3. Explicit Definitions of Elementary Objects

K.2. AGGREGATE OBJECTS

K.3. COMPOUND OBJECTS

vi

K.3.1. TEXT Object Format

K.3.2. TABLE Object Format

K.3.3. IMAGE Object Format

K.3.4. QUBE Object Format .

K.3.4.1. Qube Terminology

K.3.4.2. Label Keywords Describing the File Containing a Qube Object

K.3.4.3. Basic Qube Object Keywords

K.3.4.4. Qube Axis Keywords

1-13

1-13

1-13

1-14

1-15

J-1

J-2
J-2
J-3
J-3
J-3
K-1

K-1

K-2

K-2

K-2

K-2

K-2

K-3

K-3

K-4

K-5

K-5

K-5

K-6

K-8

.K-10

.K-10

.K-12

.K-12

.K-12

APPENDICES (CONT.)

K.3.4.5. Qube Core Keywords

K.3.4.6. Qube Prefix/Suffix Keywords

K.3.4.7. Projection Keywords

K.3.5. History Object Format

K.3.5.1. History Entry . . .

K.3.5.2. Tree of Processes .

K.3.6. History Object Processing

L. SAMPLE ODL LABELS

L.l. SAMPLE TEXT FILE LABEL

L.2. SAMPLE TABLE FILE LABELS

L.3. SAMPLE IMAGE FILE LABELS
L.4. SAMPLE CUBE FILE LABEL

M. PDS CODING STANDARDS

M.l. COMMENTS

M.2. PROGRAMMING STYLE

M.3. EXPLICIT TYPING ...

M.4. NAMING CONVENTIONS

M.5. LANGUAGE SPECIFIC PRACTICES

M.5.1. PDS FORTRAN Coding Standards

M.5.2. PDS C Coding Standards

M.6. VALID CHARACTER SET .

.K-14

.K-15

.K-15

.K-16

.K-16

.K-17

.K-17

L-1

L-1

L-2

. L-10

. L-15

M-1

M-2
M-3
M-4
M-5
M-5
M-5
M-7
M-9

vii

LIST OF FIGURES

1-1 Major Components of the SPIDS Document 1-2

1-2 Standards in the SPIDS Document • 1-3

4-1 High-Level Catalog Schema 4-3

H-1 Structured TLV Data Object H-2

H-2 Delimiting by Marker H-2

H-3 Product with DDP H-4 --,

H-4 TLV Encoded Structure H-4

H-5 Taxonomy H-5

H-6 CCSDS I Class Unit Instance H-6

1-1 Structure of a Data Unit 1-2

1-2 Object Access Software Layers 1-7

J-1 Forms of Record Types J-1

K-1 Diagram of an "Image Cube" .K-10

K-2 Diagram of Processing History for a File .K-17

K-3 Textual Description of Processing History for a File .K-18

.~

viii

Chapter 1

INTRODUCTION

This document is intended to serve the community of scientists and engineers responsible for
preparing planetary science data sets for submission to the Planetary Data System. These sets
include restored data from the era prior to PDS, mission data from active and future planetary
missions, and data from earth-based sites. The audience includes personnel at PDS Discipline
and Data Nodes, mission science investigators, and ground data system engineers including SFOC
(Space Flight Operations Center) engineers.

In order for a data set to be used by those not involved with its creation, certain supporting
information must be available. That information enables effective data set access and interpretation.
Therefore, standards of quality and completeness have been developed that a.re to be addressed
before PDS will accept a data set for distribution to the science community.

The interchange of data is increasingly important in planetary science. Electronic communica-
tion mechanisms have grown in sophistication. Data transfer that would have occurred by mailing
tapes several yea.rs ago is now handled routinely over the Space Physics Analysis Network (SPAN).
PDS will support the interpretation of a wide variety of transferred data by users with varying
degrees of experience and available resources. Also, the use of new media for data storage and
transfer such as CDROMs requires format standards to ensure readability and useability. The PDS
has therefore developed a nomenclature that is consistent across discipline boundaries and stan-
dards for labeling data files. The 1986 PDS Interactive Data Interchange (IDI) workshop and the
resulting compact disk product proved that a collection of science data from disparate disciplines
can, once described in a uniform manner, be made readily accessible to a large group of users.

The current standards are presented here. Minor changes to this standard are expected, and
this document shall be updated to reflect such evolution.

1.1 DOCUMENT OVERVIEW
The overall organization of the document is shown in Figures 1-1 and 1-2. The document

discusses three major topics related to data set preparation. The majority of the document is
devoted to standards to be followed in submitting data. Another portion of the document describes
the procedures to be followed in submitting data sets. The currently smallest portion of the
document describes tools that are available to the planetary science community for use in the
preparation or exchange of data sets. This last portion of the document will increase in size as
more tools are developed by the Central Node and Discipline Nodes.

Chapter 2 outlines the process of preparing and submitting data sets, and gives contacts for
further information. In Chapter 3 standards for documenting data sets and documentation exam-
ples are presented. Chapter 4 describes catalog standards employed within PDS, and points to
the structural model used for the PDS Catalog. Nomenclature standards that are used within the
catalog are given in Chapter 5, along with naming conventions for files and directories. Chapter
6 gives an overview of data format systems, and presents details of the Object Description Lan-
guage (ODL) which is the system employed by PDS for generation of PDS labels. Miscellaneous
standards important to the planetary science community are given in Chapter 7, including time,
units, cartography, and the system for modular treatment of geometry data known as the SPICE
concept. Chapter 8 addresses tools that are available or forthcoming from PDS. Information that
is relevant but peripheral to these chapters or is more detailed has been placed in the appendices.

INTRODUCTION 1-1

SPID DOCUMENT

INTRODUCTION (CHAPTER 1)

DATA SUBMISSION PROCEDURES (CHAPTER 2)
-PRESENT & FUTURE MISSIONS (APPENDIX A)
-PAST MISSIONS (APPENDIX B)

STANDARDS (SEE DETAILED STANDARDS CHART)

DATA PREPARATION TOOLS (CHAPTER 8)
Figure 1-1: Major Components of the SPIDS Document

A companion document to this one, the PDS Data Set Preparation Workbook, is being written
to provide step by step guidance in assembling materials for submission to PDS. It will contain
procedures for the generation of PDS labels, sources for reference material, and information about
how to organize both data and the catalog information to accompany the data.

1.2 ACKNOWLEDGEMENTS
This work is the result of many individual efforts over the last five years. The authors would

like to acknowledge the contributions of PDS Central and Integrated Science Testbed Node staff in
general, and in particular the work of Chuck Acton, Fred Billingsley, Randy Davis, Elaine Dobinson,
Eric Eliason, Ed Greenberg, Bill Henslin, John Johnson, Hugh Kieffer, Bob Mehlman, and Larry
Soderblom. Valuable comments were incorporated from Ray Arvidson, Dave Childs, Tom Duxbury,
Peter Ford, Greg Kazz, Bill Kurth, Tom Renfrow, Dick Simpson, and Jim Torson.

1.3 REFERENCES
The following reference sources are nientioned in this document:
Batson, R. M., (1987) Digital Cartography of the Planets: New Methods, its Status and Future.

Photogrammetric Engineering & Remote Sensing 53, 1211-1218.
Consultative Committee for Space Data Systems (CCSDS) "Blue Book"; CCSDS 301.0-B-1;

January 1987.
Davies, M.E., et al (1986) Report of the IAU /IAG/COSPAR Working Group on Cartographic

Coordinates and Rotational Elements of the Planets and Satellites: 1985 Celestial Mechanics 39,
103-113.

General Data Interchange Language, JPL Document D-3606, F. Billingsley, January 12, 1988
Guide on Data Entity Naming Conventions; NBS Special Publication 500-149.
Planetary Data System Data Dictionary; JPL D-4854; January 15 1988.
Planetary Data System Guidelines for Project Data Management Plans; JPL D-5111; July 1

1988.

1-2

Planetary Data System Software Management flan; JPL D-3487; May 3 1988.
Planetary Data System Writing Conventions and Document Standards; March 31, 1988.
SFD U Usage and Description; JPL D-5325; March 7 1988.

INTRODUCTION

_,......;

.-

STAN ARDS

DOCUMENTATION (CHAPTER 3)
-CONTENTS (SECTION 3.4)
- FORMATS AND WRITING CONVENTIONS (APPENDIX C)
-EXAMPLES (APPENDIX D)

CATALOG (CHAPTER 4)
-ARCHITECTURE (SECTION 4.1)
-CONTENTS (APPENDIX E)

NOMENCLATURE (CHAPTER 5)
-DATA NAME SYNTAX (SECTION 5.1)
-FILE NAME SYNTAX (SECTION 5.2)
-DICTIONARY (APPENDIX F)
-ABBREV/A TIONS LIST (APPENDIX G)

DATA FORMATS (CHAPTER 6)
-DATA REPRESENTATION (SECTION 6.1)
-OBJECT DESCRIPTION LANGUAGE CONCEPTS (SECTION 6.2)
-SFDU CONCEPTS (APPENDIX H)
-ODL SPECIFICATION (APPENDIX I)
-DATA UNITS (APPENDIX J)
-DATA OBJECTS (APPENDIX K)
-DATA OBJECT SAMPLES (APPENDIX L)

MISCELLANEOUS (CHAPTER 7)
-TIME (SECTION 7.1)
-UNITS (SECTION 7.2)
-BIN SIZE (SECTION 7.3)
-SOFTWARE (SECTION 7.4)
-GEOMETRY (SECTION 7.5)
-CARTOGRAPHY (SECTION 7.6)
-SOFTWARE CODING (APPENDIX M)

Figure 1-2: Standards in the SPIDS Document

INTRODUCTION 1-3

-"-\

1-4 INTRODUCTION

,..-.

Chapter 2

DATA SET SUBMISSION PROCESS

This chapter describes the process for submitting data sets to the Planetary Data System. It
describes the various types of data suppliers and PDS support for the preparation and submission
process, and presents a checklist of procedural steps to be followed in the submission process.

2.1 DATA SUPPLIERS
Data sets are expected to enter the Planetary Data System in several ways: flight project data

will be supplied according to agreements expressed in the Project Data Management Plans; some
flight-relevant data will come directly from the Space Flight Operations Center (SFOC); restored
and higher level data will be supplied by PDS Discipline and Data Nodes.

2.2 SUPPORT FOR DATA SET PREPARATION
Data set preparation by a flight project is negotiated between project personnel and the PDS.

These agreements are documented in the flight project's Project Data Management Plan, which are
signed off by both project and PDS management (See Appendix A).

Restoration and preparation of existing flight and related data sets is undertaken principally
by PDS Data Nodes associated with PDS Discipline Nodes. The data restoration is coordinated or
overseen by the associated Discipline Node. Data Nodes exist as a data restoration entity only as
long as necessary to transform the data set. Data Nodes function in cooperation with a Discipline
Node on this temporary basis to treat a specific data set of interest to the community. Data Nodes
are selected competitively on a regular basis. Refer to Appendix B.

2.3 PDS CONTACT PERSONNEL
Planetary Data System staff are available to help interpret and implement the guidelines,

recommendations, and standards contained in this document. Specific contacts include:

T.Z. Martin Jet Propulsion Lab Tel: (818)354-2178
4800 Oak Grove Dr. N ASAMAIL: TZMARTIN
Pasadena, CA 91109 SPAN: JPLPDS::TZMARTIN
M/S 169/237

M.D. Martin Jet Propulsion Lab Tel: (818)354-8751
4800 Oak Grove Dr. N ASAMAIL: MIKEMARTIN
Pasadena, CA 91109 SPAN: JPLPDS::MMARTIN
M/S 233/208

T. Duxbury Jet Propulsion Lab Tel: (818)354-4301
4800 Oak Grove Dr. NASAMAIL: TDUXBURY
Pasadena, CA 91109 SPAN: NAIF::TDUXBURY
M/S 183/501

M. Johnson Jet Propulsion Lab Tel: (818)354-1493
(Mission 4800 Oak Grove Dr. NASAMAIL: MJOHNSON
interface Pasadena, CA 91109 SPAN: JPLPDS::MJOHNSON
issues) M/S 301-320

DATA SET SUBMISSION PROCESS 2-1

2.4 PROCEDURE FOR DATA SET SUBMISSION
The process of submitting data to the PDS is similar in form whether done by a Discipline

Node, a Data Node or a flight project, but the complexity and communication paths differ.

2.4.1 Estimation
It is essential that the scope of the data set preparation task be defined at the outset, because

resources are allotted at that time. Scope changes during execution of the task will be difficult to
handle. This document is intended to assist in scoping data preparation tasks. The scoping process
is done in consultation with PDS personnel, who will be able to supply the level of effort needed
in previous interactions, and who will know how much detail is needed in a task.

2.4.2 Specification
A task plan shall be prepared to describe the work to be done in data set preparation, including

the tasks to be accomplished, the deliverables from the task, the schedule for this task, and the
people responsible for the work and the deliverables. If the work is to be funded by the PDS
then budget and other resource estimates must be included. The person responsible for the data
preparation task needs to make sure that the following tasks are covered in the task plan:
(1.) Documentation: writing text about the various aspects of the experiment (see Section 3.1 be-

low). Clarity of writing is important. The PDS strongly encourages the writing of experiment
and instrument papers and journal articles, and use of these to satisfy PDS requirements. Ex-
isting· papers and articles should be used when available. Supplementary information may be
needed when existing documentation is used, but does not provide all the needed information.

(2.) Catalog data: preparation of information for the PDS Catalog. This material consists both of
descriptive text and parameters, and will be used to give PDS user a view of the data set's
many attributes and its applicability to his/her interests. In general, this catalog information
is easy to prepare for those familiar with a data set. Nomenclature and definitions of these
descriptive terms have been rigorously chosen and must be adhered to for uniformity across
all disciplines and data sets.

(3.) Software cleanup and coding: revision of existing software for clarity; new code to reformat
data or adhere to standards. The data preparer should consider what software may be of
benefit to other users, and avoid introduction of errors when revising software.

(4.) Data reformatting: executing code to put the data into required formats, units, and nomen-
clature.

(5.) Production: organizing the data onto the submission media.
(6.) Quality assurance: checking what has been done prior to delivery.

The task leader should assign responsibility and provide resources for persons doing the tasks,
and design schedules.

2.4.3 Preparation
The following steps should be followed in the actual preparation of data sets:

(1.) Determine primary data set content: a flight project will list its prime data sets in the Project
Data Management Plan. See Appendix A. A Discipline or Data Node will follow the procedures
described in Appendix B.

2-2 DATA SET SUBMISSION PROCESS

(2.) Determine ancillary data and software content: given a selected primary data set what ancillary
data and/or software must be included with the data set in order for it to be a complete archive
product.

(3.) Develop the appropriate SFDU structure for the data set: Appendix H of this document
describes the SFDU structure. For more information consult the document "JPL SFDU Usage
and Description (JPL D-5325)". The JPL Control Authority also provides consultation in the
construction of SFDUs. New structures are registered with the JPL Control Authority.

(4.) Develop the appropriate catalog data for each section of the data set: these data will be a K
class SFDU. This catalog data will be recorded via the use of PDS Catalog Templates. These
templates are machine readable forms developed by the data management staff of the PDS.
The data preparer can use them to know exactly what he should supply for catalog data.
Consult the PDS Data Dictionary for the appropriate catalog template for that data set. If a
catalog template does not exist then consult with the Central Node to develop the template.
Development of new items will follow the PDS nomenclature standards described in Chapter
5 of this document. The catalog templates provided by the Central Node will contain the
catalog data elements required by PDS. The developer may wish to include additional items
for clarity.

(5.) Develop and describe the data format: Chapter 6 of this document describes the PDS data
format standards.

(6.) Document the data description of the data set: Chapter 3 of this document describes the PDS
documentation standards.

(7.) Build the data set: The structure of the registered SFDU will show how the various pieces of
the data set fit together as a whole. The data set will be written on computer readable media.

2.4.4 Submission
The prepared data set is sent to the PDS according to the agreed-upon schedule. Data sets

are expected to be sent via standard media, such as:
{1.) 1600 or 6250 bpi tapes
(2.) transmitted over a network under.an error-checking protocol
(3.) optical disk: WORM or CDROM
(4.) Typewritten documents and charts

PDS labels (see Chapter 6) are to precede the data in the files. These labels identify the data
and its format, and simplify data cataloging. Properly constructed, the PDS labels provide much
of the information required for the loading of PDS catalog entries. Catalog updating thus can be
automated. The labels will also be used when data are delivered from PDS; they provide a means
of ensuring that the data are readable, and in fact enable automatic recognition or ingestion of
data.

The PDS recognizes that there may be instances where data are too voluminous to be refor-
matted to include the labels without substantial expense, or that such reformatting would required
significant software modifications. The data preparer can negotiate to use detached labels in such
situations. These are a separate set of label files which point to their associated data files (see
Appendices I, J, K, and L).

The number of copies of the data required to be submitted to the PDS may depend upon the
medium of choice, the volume, and the costs. In general, one copy should be supplied. The PDS
will duplicate this as needed to support archive and distribution requirements.

DATA SET SUBMISSION PROCESS 2-3

2.4.5 Review

The submitted data set shall be received by the designated Discipline Node or the Central
Node and checked for format and completeness. The data set must include the following: the
science data, the catalog data, the documentation of the data set, any appropriate software and its
documentation, any appropriate ancillary information and several examples of the data.

The Science Manager and Project Scientist shall select a peer review committee, and send the
data set description and data examples to each member of the committee. The review committee
shall include the Project Scientist or Science Manager or a substitute acceptable to both, a rep-
resentative from the Central Node, the responsible Discipline Node manager and representatives
from other Nodes who have some familiarity with the type of data under review.

The catalog data shall be verified by loading it into a development version of the Central Node
catalog and shall be available to support queries for consideration during the peer review.

The review shall be conducted in a manner consistent with current peer review practices for
consideration of science analysis proposals.

The review committee shall consider the data set format, content, documentation, ancillary
data and software, and shall provide a written summary of all deliberations and conclusions. Each
logical component of the data set shall be judged for inclusion or rejection, and if rejected, a clear
indication of the reasons for rejection shall be provided. If a data set is rejected, the peer review
committee will decide on a schedule for resubmission of the rejected component. Whenever possible,
the explicit steps which must be ta.ken by the supplier to correct faults shall be enumerated.

The review committee shall also .make recommendations regarding the set of information which
constitutes the minimum orderable data set, the assignment of curatorial responsibility, and the
disposition of the data set. These recommendations shall include a determination of the appropriate
data processing level and quality tags to be assigned, its position in the data hierarchy (on- line, o:ff-
line, etc.) the number of inventory copies, and other recommendations to the Data Administrator.

Conflicts shall be resolved by mutual agreement of the PDS Project Manager, the Project
Scientist, the Science Manager and the Discipline Node Manager. If the Discipline Node Manager
is the data preparer, then conflicts will be resolved without his participation.

2.4.6 Rework

Discrepancies in the submitted material's quality, quantity, or continuity will be discussed with
the supplier, and rework will be negotiated between the Discipline Node, PDS management, and
supplier. It is hoped that frequent contact between the PDS representatives and suppliers will
minimize the necessity of reworking submitted data.

2.4. 7 Signoff'
Satisfactory completion of a data preparation/submission task will be approved by the PDS

management, reported to NASA management, and included in PDS publications.

2-4 DATA SET SUBMISSION PROCESS

-""-\

.,....,,_

Chapter 3

DOCUMENTATION STANDARDS

Accurate and complete documentation is required to make planetary data widely useable to the
community; the absence of enforceable documentation standards has resulted in the existing level
of difficulty in using many data sets. The documentation standards listed below are implemented
by the PDS to ensure that all ingested data sets will be readily useable to the community at large.

Note that documentation may include descriptive information that can appear to the PDS user
as text in the catalog or as help. Information supplied by the data preparer will either be destined
for catalogs or for stand-alone material. A summary of major PDS catalog entries is provided in
Appendix E.

3.1 RECOMMENDED FORMAT
Documentation prepared for submission with data sets should follow the conventions described

in PDS Writing Conventions and Document Standards, March 31, 1988.
The documentation section of the submitted material is to be in the form of text, with tables

and figures supplied as needed to clarify the subject. Electronically based documentation is strongly
preferred, as much of this information will eventually be archived in that form (perhaps on optical
disks), and be made widely available. Hardcopy material may be readable in some cases by PDS
scanners; if the data preparer plans to submit hardcopy material, he should coordinate this with the
Central Node staff in order to maximize the possibility of PDS's being able to scan the hardcopy
material.

Text files formatted in one of the major document processing protocols are strongly recom-
mended. The formats which PDS can easily handle are Runoff, TEX, Word, Wordperfect, Wordstar
and Vi. Use one of these formats if your text processing software has the option of producing them.

The data section of the sub_mitted material is to be in the form of computer-readable files if
at all possible. Formatting information is given in Chapter 6. Non-electronic material can be read
in some cases by PDS scanners as noted above.

3.2 EXAMPLES
Refer to Appendix D for examples of data set documentation. The Voyager PWS data were

documented in the PDS label format as part of that team's submission of their data. Also included
in that Appendix is text that was generated as part of a data set restoration effort by the Radiom-
etry Node of the Pilot PDS. That information was intended for use in an online VAX help file.
Please note that in this case only very limited information was available about some aspects of the
experiment.

3.3 SOFTWARE DOCUMENTATION
Software used to generate, process, and analyze the data set constitutes an important part

of the submitted material. This part is frequently of interest to other investigators. The extent
to which they use existing software depends very much upon the clarity and modularity of that
software. PDS has developed software design and documentation standards intended to promote
interchange of software tools. The data set preparer is strongly urged to follow these guidelines in

DOCUMENTATION STANDARDS 3-1

the development of new software, and to modify existing code comments where possible to meet
the intent of the standard (see Appendix M).

Documentation such as requirements, design, and user manuals, where available, are of interest
to those who might adopt the software or need to do similar development. Please preserve this
information for any software that may be inherited, or which has affected data processing. Also
note that software intended for eventual use at a Discipline Node for general PDS users must be
accompanied by appropriate systems engineering documentation: requirements, design, and user
manuals.

3.4 DOCUMENTATION CONTENTS
The following categories of information are required for each data set submitted to the PDS.

Brief examples of the kind of information desired are given; note that these examples are illustrative
and lack the amount of detail generally appropriate.
(1.) Instrument information

3-2

(a.) Measured parameters; theory of operation
What physical. parameters are sought? What is the mechanism by which these measure-
ments are obtained?
Example: "The single measured parameter of the UVEX instrument is ultraviolet radiance
within the 300 to 400 nm band."
Example: "The instrument comprises a single optical. window that is also the wavelength-
defining filter, followed by a field-defining aperture, followed by a single bolometer detector
chip. Signal output is related through calibration measurements of standard UV sources
to UV radiance in the subject passband and limited by the field of view of the detec-
tor/ aperture combination."

(b.) Sensitivity
What are the limits, in physical units, of measurable parameters?
Example: "The instrument response covers a usable range from 3 x lOE-11 gauss, which
is the noise level for the standard 1 sec integration, to 8 x lOE-5 gauss, at which point a
maximum data number (DN) level of 1024 is reached in the lowest gain state."

(c.) Temporal/ spatial/ spectral resolution
What are the inherent resolution limits of the experiment?
Example: "With the filter wheel fixed, samples may be obtained as frequently as 0.01
sec."
Example: "The optical field of view is circular with a diameter of 2.5 milliradians."
Example: "Spectral resolution is limited by the grating size to 0.6 nm within the 1200 -
1300 nm band, and to 1.0 nm in the 1300 - 1500 nm band."

(d.) Modes of operation; typical sequencing; observational compromises
What modes of operation are possible? What typical sequence of operations is performed
during data gathering? What compromises limited effective usage of the instrument?
Example: "The instrument may cycle through various filter wheel positions (see table)
or sample continuously in any chosen filter position. A typical sequence involves cycling
through both radiometric and photometry filters with a period of 10 sec. The advantage
of obtaining multiple wavelengths is offset by the time taken to cycle through filters, and

DOCUMENTATION STANDARDS

,,_,

the consequently slower permissible scan rate for the platform. Other instruments on the
scan platform prefer rapid scan rates, and so data collection was often performed with
filter cycles of 2-3 sec, and just 3 or 4 filter positions employed in the cycle."

(e.) Calibration techniques; laboratory and in-flight behavior; techniques; problems

(f.)

How was calibration performed before or during operation of the instrument? How were
these measurements employed during the data reduction process?
Example: "Pre-flight calibration consisted of observations of blackbody targets in a ther-
mal vacuum chamber for various instrument temperatures. The radiance versus measured
DN profiles were used to develop lookup tables used in the reduction of flight data from
DN to radiance."
Deviations from nominal performance
What unforseen occurrences limited effective data gathering? What operations were taken
to deal with these problems?
Example: "The instrument's drive motor developed erratic behavior after 3 years in orbit,
such that the internal reference plate viewing mode could not always be exercised reliably.
In response, the team chose to use commanded reference viewing rather than automatic
cyclical viewing; the plate was viewed less frequently, and consequently data obtained
after July 1 1993 have only 2% photometric accuracy versus 1% prior to that time."

(g.) Specifications
What are the basic instrumental characteristics?

(2.) Ancillary information
(a.) History of development

Trace the origin of the instrument or experiment and subsequent development that may
be relevant to data interpretation.

(b.) Team personnel and current contacts

Who constituted the experiment team? Of those, who is currently a source of information?
Who else has become a source?

(c.) Bibliography - instrument and science
What are the basic papers published by the team members relevant to this instrument?
Where are the engineering specifications documented?

(d.) Data reduction software requirements; approach; implementation
What formal documentation of reduction software is available?

(e.) Data analysis software; tools for treating data of this type
What software exists to aid the user of this kind of data? Note: PDS encourages the
submission of software tools along with data sets, provided these tools can be readily
understood and portable.

(f.) Catalog information - existing catalogs used with the data set
Any set of information that would help a user browse, characterize, or otherwise subdivide
the data set. Note that some of this information may be appropriately supplied in the
PDS labels attached to the data.

(g.) Data format information

DOCUMENTATION STANDARDS 3-3

This material is normally contained in PDS labels associated with the data set itself, but
it is valuable to have this information available in several forms.

The basic guideline for the content of documentation is, "Can this information be useful to a
data user?" and "Is the material necessary, and is it sufficient?" There are many levels of inquiry
possible regarding data sets, from the casual examination to the total reworking of a data set. What
is useful therefore also varies. The intent of PDS is to err on the side of completeness; it is intended
that calibration information, for example, be available to those who may want to reprocess data,
or who question conclusions based on that calibration.

How much volume of information is expected? The answer depends on what is available, and
on what is useful. Iflittle is available, little is all that can be expected. If a great deal of information
exists, then the answer is, "All that would be of interest and can be provided".

The data set supplier may not have access to all the information we would like about the
experiment or data. Information and people may no longer be available; tapes may have been
recycled. There may be insufficient time or funding to do a complete job. These are the realities
of J.>DS as well as the rest of planetary science. Our goal is to do the best we can to serve the
community within given constraints. The same goal should be kept in mind by the data set preparer.

3-4 DOCUMENTATION STANDARDS

"'-4

Chapter 4

CATALOG STANDARDS

The PDS is developing a general purpose catalog (also known as a high level catalog) to
encompass data sets from all disciplines of planetary science. As data come under the purview
of PDS, appropriate catalog entries are made to recognize the existence of the new data. More
detailed level catalogs give users insight into the nature of the data and provide information about
time and spatial coverage or provide specialized browse data subsets.

One important goal of this SPIDS document is to describe standards used in the development
of these catalogs. This is done to aid the development of catalogs by flight project staff, who have
similar catalog needs during mission operation. Since PDS will acquire these catalogs from the
projects, it is of mutual interest to promulgate a standard approach to database design.

The PDS has used relational database designs, and recommends the use of this database
structure throughout the planetary community. Use of relational databases will simplify the transfer
of information between flight projects, the science community, the PDS, and the NSSDC.

4.1 PDS SCIENCE CATALOG ARCHITECTURE
The PDS science catalogs contain meta-data which characterize and describe the PDS science

data holdings. This information is organized logically into two levels: a high level and a detailed
level. This distinction is made for efficiency to avoid unnecessary duplication of information. The
following discussion uses a bottom-up approach to characterize the contents of the two catalogs
and distinguish them from the underlying data the catalogs describe.
(1.) The Data Level

The actual and processed measurements from the science and engineering instruments, as well
as all of their derived data products, form the data level.
(2.) The Detailed Level Catalog

The next level up consists of detailed catalog information for the various disciplines. In a
fully-configured PDS, there will be as many detailed-level catalogs as there are Discipline Nodes.
Each catalog contains specific information about the data which is provided by that discipline.
This discipline-specific information is needed both for correct interpretation of the data and for
constraining searches.
(3.) The High Level Catalog

The high-level catalog contains generic information that cuts across all disciplines, and is
therefore at a higher level of abstraction than the discipline-specific detailed-level catalogs. While
the actual entries in the high-level catalog are discipline-specific, the information types are used
to characterize all planetary data.

It is important to realize that the actual values stored in the two catalogs are specific to the
data set and discipline being described, even if that information is part of the high-level catalog. It
is the information type rather than the content that determines what catalog level is appropriate.
The parameter measured may be specific to a single discipline (e.g., radiance or proton rate), but
all disciplines measure parameters. Other information such as sampling intervals and the names of
instrument subsystems also cross discipline boundaries, and are therefore present in the high-level
catalog. Information is pushed down into the detailed-level catalog only when its type is specific

CATALOG STANDARDS 4-1

to a single discipline (such as the location of one reticle point of an image, or a range of brightness
temperatures measured for an orbit sequence). Information which is even less general, such as the
set of radiances which form an image, or the set of brightness temperatures measured in an orbit
sequence, is considered to be data, and is not part of either catalog.

An example using the Fields and Particles discipline magnetic field data can serve to illustrate
the three levels. The magnetometer subsystem on Voyager recorded magnetic field intensities in
three orthogonal directions. Those intensities are the data. The data acquired can be analyzed
in hourly increments, and information such as the percentage of data available during that hour
and the type of data contamination which affected that hour's data can be derived. Such hourly
details are not available and perhaps not important for other disciplines' data, and so the hourly
details are a type of information which is stored in the Fields and Particles Detailed-level Catalog.
The processing histories of the various magnetometer data sets are also unique to those data sets.
However, the type of information which describes those processing histories, such as the names of
the programs used and the hardware environment which ran them, is important to the processing
histories of all data. Thus, the magnetic field intensities are data, the hourly contamination infor-
mation is detailed-level catalog information, and the processing history description is high-level
catalog information.

Note that the volume of information available decreases from the data level up through each
catalog level, and that there is a corresponding increase in the generality of the type of information
available.

4.2 ENTITY RELATIONSHIP MODEL
The definition and structure of the entities used in the PDS Catalog is shown in Appendix E

of this document. Database "entities" are broad groupings of information, and are comprised of
specific database "elements". A definition of elements contained in each entity is available in the
PDS Data Dictionary, D-4854. Submitters of PDS data sets will be given templates to record the
appropriate catalog data with their data sets. The templates indicate the criticality of a particular
element in relation to a specific entity. An element that is marked critical must be included in
the catalog data for acceptance of that data set by PDS. Figure 4-1 shows the entity relationship
model for the high level catalog.

4-2 CATALOG STANDARDS

I::'-;
C)

u:i
()q
s::

§ "1

:i:,.. t
'""' ..

u:i
()q

=-I
tot

-0 a p, -0
()q

(/J
n =-s p,

t

EARTHBASEINF

EARTH BASES

J

INSTRUMENT
HOSTS

.I

PlATFORMD

PLATFORMS

DATASETINFO ~VNODEMEDIA

A •• cum,111)> "IIMI ·~-..... , :::::v I
·.,_ ...•.. :

INSTITUTIONS

i J

SCINFO

MISSIONS

mfil.,;

VECTOR.COMP

'• ... ' I a I - 1<[••::1•t1y
·:•:•->·

;- .,

f':],.:::;;~Vl'POSITIO~
E\ITSPATIAL

..........

MISSINST
.A:=:•,

A "''-
- .• .. ::•::.=:-:-- -

4-4 CATALOG STANDARDS

Chapter 5

PDSNOMENCLATURESTANDARDS

This Chapter describes the PDS nomenclat re standards, which define the set of rules for con-
structing data object names. The purpose of es ablishing a standard syntax for data names is to
facilitate user access to a system's data. It is pa ticularly important to use common nomenclature
in database management systems, where search s are made covering a variety of disciplines, tech-
niqu~s, and spacecraft missions. For a given da a object, it is intended that any user of a system
will be able to construct the same unique data bject name by following these rules.

The traditional method of assigning name to data objects is best described as a process of
eclectic nonchalance. Data producers and user construct names that are individually meaning-
ful, perhaps following a personally preferred a breviation scheme; the name chosen by different
individuals is usually not the same. Witness th widespread use of SC, SPC, S/C, etc., all mean-
ing SPACECRAFT. A solution was required fo PDS that would allow for the consistent naming
of data objects- used in data dictionaries, catal gs, keywords, and documentation. The power of
uniformity in namiµg cannot be over-stressed; i is fundamental to the comparison of data across
discipline boundaries.

Several organizations have succeeded in dev loping a procedures for assigning standard names
to data objects. The method adopted by the P S is a derivative of the "OF language" developed
by IBM. It also follows closely the publication uide on Data Entity Naming Conventions, NBS
Special Publication 500-149.

The objective of the PDS nomenclature stan ards is to create an environment wherein different
individuals, working independently, will easily b able to construct the same name for a given data
object. This objective, if achieved, would elimin te multiple names for the same object (synonyms),
and duplicate names for different objects (homon ms); it would greatly simplify the task of browsing
data dictionaries for those who are unfamiliar w th its· contents.

The construction rules must yield data obj ct names which are easily grasped, are as consis-
tent as possible with the common usage within he science community, and are also logically and
methodically constructed, ideally from a predefi ed dictionary of component terms.

The standards described within this Chap er will be used in the PDS Catalog system and
the PDS data file labels. The standards are als for use by submitters of data to the PDS in the
creation of their mission catalogs and file labels.

The PDS strongly urges adherence to the st ndards set forth here within the planetary science
community. Products submitted to PDS are equired to use these standards. Note that the
PDS Data Dictionary (a separate document, P S D-4854) is intended to be a growing document;
definition revisions will be admitted to make th data elements more widely usable. The PDS will
endeavor to add any needed items which are no in the dictionary.

A substantial amount of effort by many pa ties has been invested in the development of these
standards. It is hoped that the result is robust enough to be incorporated by other systems that
deal with planetary data (e.g., NSSDC, SFOC, d flight projects).

5.1 PDS DATA NOMENCLATURE SY
'I'he PDS Data Dictionary contains the st dard keyword names used to catalog PDS data

products. An understanding of the syntax is ne essary for two purposes: 1) as an aid in finding an

PDS NOMENCLATURE· STANDARDS 5-1

already existing keyword and 2) creating a new keyword for inclusion in the data dictionary.

5.1.1 Construction of Terms
All terms should be constructed from standard ASCII alphanumeric characters and the under-

score character. No special characters (e.g.,"&","*", etc.) are permitted. Appendix M contains
the valid character set. The first character of the first term of a name must be alphabetic.

The PDS naming syntax is not case-sensitive. For example, all the following constructs rep-
resent the same object name:
(1.) spacecraft-event-time
(2.) SPACECRAFT_EVENT_TIME
(3.) Spacecraft..EvenLTime

Be aware, however, that the system employed in some implementations might be case-sensitive
(e.g., some "C" compilers). Care must be taken in such instances to avoid creating separate data
objects whose names differ only by the case (i.e., upper or lower) of one or more of the constituent
characters.

5.1.2 Order of Terms within a Data Object Name
In general, the grammar of a data object designator (name) is hierarchical; the most specific

term is placed first, the next most specific, etc., terminating with the least specific or most general.
For example, consider a phrase such as "the time of an event on the spacecraft". Removing the
articles and prepositions yields "time event spacecraft". The most general term here is "time", and
therefore will be placed last in the hierarchy. Next, ask the question "time of what?" Obviously,
the answer is "time of an event", which indicates that "event" is more specific than "time". The
question "what kind of an event?" is answered by "spacecraft", the most specific term. Therefore,
the data object name will be spacecraft_event_time.

A data object name starts with the most specific term, followed by a connector, the next most
specific (i.e., more general) term, and so on, terminating with the least specific (i.e., most general)
term. The terms in the name are connected by an underscore(-) or a hyphen(-). The underscore
is the preferred connector and should always be used except where it is not supported by hardware
or software.

Words used in the nomenclature syntax are also categorized in three groups as SPECIFIERS,
DESCRIPTORS or CLASS WORDS. The format of an object name is made up as follows:

object name:= [SPECIFIER] [DESCRIPTOR] CLASS WORD

5.1.3 Specifiers
Specifiers are terms such as START, STOP, SPACECRAFT, INSTRUMENT, TARGET, etc.

A specifier will generally be the first word of an object name.

5.1.4 Descriptor Words
The next term of a data object name should be chosen from a streamlined list of well-defined

generic "descriptor words". Examples of descriptor words include angle, altitude, distance, location,
radius and wavelength. This list is maintained by the PDS Data Administrator. See Appendix F
for the current proposed descriptor word list.

5-2 PDS NOMENCLATURE STANDARDS

5.1.5 Class Words
Class words usually comprise the rightmost word in a data object name. The class word

identifies the bask "information type" of the data object, where information type includes both
the data type (numeric, character, logical) and a size constraint.

The use of a limited set of class words will:
(1.) Eliminate the need for users and data processing software to constantly access a data dictionary

to parse, interpret, query or display values.
(2.) Add a greater level of structure and consistency to our nomenclature.
(3.) Constrain the selection and use of data values.
(4.) Promote automated operations such as validity checking.
(5.) Promote the development of intelligent software.

Class words include DATE, FLAG, ID, MASK, NAME, NUMBER, RATIO, TIME, and TYPE.
The various class words are defined in Appendix F.

If no class word is used as the right-most word in an object name the term "value"
is assumed to be the last term in a data object name. For example, one would
construct MAXIMUM-EMISSION..ANGLE or SOLAR-CONSTANT, as opposed to MAXI-
MUM_EMISSION..ANGLE_VALUE and SOLAR_CONSTANT_VALUE.

When the class word "count" would be appropriate, the object name can be abbreviated by
making the descriptor word a plural. The plural form implies "the number of something", for
example, "the number of bytes in a record". The PDS nomenclature syntax advises appending an
"s" to a descriptor word to indicate the inverse of "per each" or "number of".

For example:

Data Object

number of bytes in record
number of records in file
number of label records in file
number of lines in image
number of samples in line
number of suffix bytes in line

5.1.6 Abbreviations

PDS name

record_bytes
fileJecords
labeLrecords
lines
line..samples
line..suffix_bytes

There are twp aspects to abbreviations: the use of abbreviations in the formal "long" names
assigned to data objects, and the construction of terse object names for use in processing environ-
ments where names are restricted to 7, 8, 10, 12, or some other number of characters.

5.1.6.1 Abbreviation of PDS Formal Data Object Names
The maximum length of a PDS formal data object name is 30 characters. The limitation of

names to 30 characters i~ needed because of the limitations of the software engineering tools used
by PDS. There are instances, therefore, when it becomes necessary to abbreviate terms within a
name in order to comply with this limit. The rules for abbreviations are:
(1.) Abbreviate only if necessary to fit a name within the 30 character limit.

PDS NOMENCLATURE STANDARDS 5-3

(2.) When abbreviation is required, it should be performed from the right to the left (most general
to most specific terms), and should stop as soon as the name-length restriction is met.

(3.) The abbreviations for all dictionary terms are maintained by the PDS Data Administrator.
There may be multiple allowable abbreviations for a number of terms. This is to support the
construction of terse names of varying length (i.e., 12, 8, or maybe even 6 characters), while
maintaining maximum readability. Each abbreviation, however, will be unique and correspond
to one and only one full word. Appendix G contains the PDS Abbreviation List.

5.1.6.2 The Construction of Terse Data Element Names
The terse name for a given data object is based upon the "formal" full name of the object. As

previously noted, different applications may impose different length restrictions on terse names (for
example, the Britton-Lee Intelligent Database Machine (IDM) restricts terse names to a maximum
length of twelve characters). Several different sets· of PDS terse names may thus be required.

A list of twelve-character terse names for the data objects in the PDS Data Dictionary and
PDS Catalog design is maintained by the PDS Data Management Team along with the list of
thirty-character full names for those data objects. This terse name list is intended as a reference
for use by database implementors at the PDS Nodes and by other PDS developers.

For practical considerations, the PDS will not maintain multiple standardized lists of terse
names. Rather, the PDS has adopted the following methodology for formation of terse names for
PDS Version 1.0 applications:
(1.) Terse names are constructed from full names. Wh~re a full name is short enough to meet the

applicable name length restriction, the full name is used as the terse name except where data
independence considerations dictate a different approach. For example:

full name
12-character terse name
8-character terse name

LAST_NAME
LASTNAME
LASTNAME

(Note: Data independence considerations could motivate alternate choices for either or both
of the terse names in this example.)
Where a full name is longer than the applicable name length restriction, the full name is
shortened using a word-by-word abbreviating approach. For example:

full name
12-character terse name

INSTRUMENT -NAME
INSTNM (only 6 chars. needed)

(2.) Abbreviations used in terse names are selected from the PDS Abbreviations List, which is
maintained by the PDS Data Administrator. For some words, this list provides multiple
allowable abbreviations to facilitate the construction of the shorter (e.g., eight-character) terse
names.
In forming terse names for data objects which are included in the PDS Catalog schema - or
for data objects which are to be added to the PDS Catalog schema - the need may arise for
abbreviations which are not yet included in the PDS Abbreviations List. If this occurs, the
PDS Data Administrator should be informed of the need. The Data Administrator will approve
or suggest an alternate for the needed abbreviation, and will add approved new abbreviations
to the Abbreviations List.

(3.) In the process of word-by-word abbreviation of a name, the longest standard abbreviation
for each word is used first. Once each of the words in a name has been abbreviated in this

5-4 PDS NOMENCLATURE STANDARDS

T

manner, further abbreviation takes place using increasingly shorter standard abbreviations for
each word until the applicable name length restriction is met. For example:

full name
12-character terse name
8-character terse name

INSTRUMENT_MODE_DESCRIPTION
INSTMODEDESC
INSMODDC (uses shorter abbreviations)

(4.) As a rule, a terse name is formed without dropping any words from the given full name. In
extreme cases, it may not be possible to form a meaningful terse name of the required length
without dropping a word from the name. In these cases, the word dropped should be the word
in the full name which is least essential to conveying the meaning of the data object.
For example, if it should become necessary to drop a word from the full name "COORDI-
NATE-SYSTEM-REF _EPOCH" in order to comply with a terse name length restriction,
"REF," or REFERENCE, could be dropped. In this full name, REFERENCE is the word
least essential to conveying the meaning of this data object. In this example, then, the terse
name could be formed from abbreviations for the three remaining words, as follows:

full name
8-character terse name

COO RD IN ATE-SYSTEM-REF _EPOCH
CRDSYSEP

(5.) Word separators (for example, underscores) in terse names enhance the readability of the
names but are costly in terms of character. Because of this overhead and the resultant loss
of information content in a terse name, word separators have not been used in the twelve-
character terse names in the design of the PDS Catalog IDM database.

5.2 PDS FILE NAME SYNTAX
In order to maintain compatibility with various computer architectures, file names should

be chosen which utilize an eight character file name followed by a period and a three character
extension.

5.2.1 Naming Rules
In cases where file names will contain an identification value constructed from the time tag or

data object identifier, the following forms should be used:
Pnnnnnnn.EXT

where P is one of the following:
C = The following value is a clock count value (C3345678.IMG).
T = The following value is a time value (T870315.TAB)
I = The following value is an Image..id (I242A03.IMG).
N = The following value is a numeric file identification number (N003.TAB).

5.2.1.1 Standard File Extensions
The following file extensions shall be used wherever possible in the naming of Object Descrip-

tion Language data files.

Text files (Standard ASCII text)
Table file
Image file
Cube file

PDS NOMENCLATURE STANDARDS

filename.TXT
tablename. TAB

imagename.lM G
cubename.CUB

5-5

Label file objectname.LBL
Data file (:without labels) objectname.DAT
Formatted text files filename.DOC
Compressed file imagename.IMQ

The following file extensions shall be used for all Britton Lee IDM support files (ASCII) residing
on the VAX system.

Create tables (sql)
Create indexes (sql)
Store commands (sql)
Views(sql)
Table data (ascii)
Table permissions (sql)
Store permissions (sql)
Text type tables (key,seqno,text)
IDMCOPY (by table)
IDMDUMP (database backup)
IDMFCOPY data file
IDMFCOPY format file
FREEFORM Screen
Documentation

tablename.CTB
tablename.CDX

commandname.SQL
viewname.VUE
tablename. TDT
tablename. TPM

commandname.SPM
tablename. TXT
tablename.D

databasename.DBD
tablename.FCD
tablename.FMT

screenname.FFS
precisename.DOC

5.3 DIRECTORY NAMING AND USAGE CONVENTIONS
The use of directories on random access media allows individual data files to be logically

grouped for efficient location and retrieval. Well chosen directory structures lead the user naturally
through a hierarchy of more and more specific directories until the appropriate one is found. On
the other hand, a poor directory structure can make it nearly impossible to find a data file on its
media volume. Examples of poor directory choices are the inclusion of too many files at a single
directory level (this makes it hard to find the target file, and can actually cause severe performance
penalties in the case of CDROM media); or a selection where the directory key is not useful, such
as the use of day-of month for example, resulting in data for different months being in the same
directory.

High level directories which. deal with data sets which cover the range of planetary science
disciplines shall follow the standard NSSDC hierarchy for discipline and sub discipline organization.
For planetary science this hierarchy is as follows:

Planetary Science. (Directory name "PLANET")
Planetary Body (Directory name = Mercury, Moon, Mars, Venus, Comet).
Sub-discipline (Atmosphere, Ionosphere, Magnetosphere, Ring, Surface, Satellite (use satellite
name instead if numerous files exist).
Directories should be constructed to provide access to a "screenful" of file entries. Within large

collections of similarly named files the groupings should be chosen to provide from 20 to 100 files per
directory. Directory names will be assigned using the portion of the filename which encompasses
all files in the directory, with "X's" used to indicate the range of values of actual filenames in the
directory. As an example the directories for the Uranus Imaging CDROM disk will be as follows:

5-6

[ARIEL]
[MIRANDA]
(OBERON]

- 40 files
- 39 files

18 files

PDS NOMENCLATURE STANDARDS

=

[TITANIA] - 42 files
[UMBRIEL] - 31 files
[UNKNOWN] 4 files
[URANUS.C2674XXX] - 4 files
[URANUS.C2675XXX] - 6 files
[URANUS.C2676XXX] - 3 files
[URANUS.C2677XXX] - 31 files
[URANUS.C2678XXX] - 57 files
[URANUS.C2679XXX] - 65 files

etc ...
[U-RINGS.C2675XXX] - 82 files
[U_RINGS.C2676XXX] 49 files
[U-RINGS.C2678XXX] - 3 files
[U-RINGS.C2679XXX] - 10 files

etc ...

Total 800 files
The Uranus and U_RINGS target bodies are further subdivided into subdirectories containing

specific groups of spacecraft_clock_count values. For example, the directory [URANUS.C2674XXX]
contains image file names ranging from C2674702.IMG to C2674959.IMG.

PDS NOMENCLATURE STANDARDS 5-7

5-8 PDS NOMENCLATURE STANDARDS

Chapter 6

DATA FORMAT STANDARDS

This Chapter provides an overview of data format standards and describes the PDS Object
Description Language, a label system to be used to describe the format, contents and relationships
between PDS data units. Throughout this discussion, the term "data unit" is used to represent
what is commonly termed a "file".

6.1 "DATA FORMAT REPRESENTATION SYSTEMS
Numerous data representation systems are in use or in development within the NASA science

community. There is currently a major effort to develop the Standard Format Data Unit (SFDU)
as an umbrella for registering and describing these formats. The SFDU architecture is described
in Appendix H.

A more specific set of descriptive information, generally applicable to a single data unit (file),
is found in the user label or header label formats employed in many applications. Examples of such
formats are the ANSI labelled tape, the Landsat tape format, FITS, VICAR2, FLATDBMS, and
the Common Data Format (CDF).

These formats can be differentiated as either predefined structures where a template is used to
extract values from their assigned position, or keyword structures where a keyword or tag is used
to identify the information about the data unit.

6.1.1 Predefined Structures
The ANSI standard label for magnetic tape is an example of a predefined label format. Also,

most of the telemetry record formats used by JPL projects utilize predefined header formats. The
predefined formats do not have to be fixed. They may actually consist of numerous templates, any
one of which might be needed depending on some key found in an earlier portion of the header.

These architectures are very efficient in certain processing environments, especially where data
volume is critical. They are less attractive in open environments for several reasons. First, they
are inflexible and rely on the assumption that the user is able to determine in advance everything
that will ever be needed in the label. Second, they require external definition, either hard-coded
within a processing program, stored in a dictionary or written down on paper. Third, they can
be difficult to transport or interpret. In many cases the parameters are stored in machine specific
binary format and may be extremely difficult to extract, even given a template describing the
format and contents.

6.1.2 Keyword Structures
Keyword label systems present the descriptive information in text format. The Flexible Image

Transport System (FITS) and Video Image Communication and Retrieval (VICAR2) label systems
are used by the astronomy and planetary imaging communities to provide descriptive information
to accompany files of digital data. Both systems are widely used in image processing environments.

A major advantage of these systems is that the descriptive parameters and values are car-
ried with the data and can generally be typed out for inspection without sophisticated processing
software. In addition, they are flexible, and new keywords can be added to meet changing require-
ments. Since the keywords and values are in ASCII text format, they can be easily processed on
most computer hardware with any computer language.

DATA FORMAT STANDARDS 6-1

6.2 PDS OBJECT DESCRIPTION LANGUAGE (ODL)
The PDS Object Description Language (ODL) is a keyword structure derived from the FITS

and VICAR2 formats. It differs from these systems in allowing longer keyword names, extended
value types, and by separating labels with carriage control to make them easier to create or display.

6.2.1 ODL Objectives
The top level objective of the ODL development effort is to promote the use of planetary data

by a wide science community.
The ODL system is intended to provide a language to communicate data files between the

PDS data management system and the users. This language will be used to present information
about both the format and contents of a particular data file, and should also provide the capability
to describe its relationships to other data files.

Another important function of the ODL is to enable the automatic extraction of catalog el-
ements from the labels during the submission process to the PDS. Given appropriate la.belling
and software, it should be possible to update catalog information pertaining to a data set's size,
location, version, parameters, and help text.

6.2.2 ODL Concept
Space science data are almost always transported, stored and manipulated with the aid of

computers. Because we use computers to store and retrieve space science data, we often tend to
think of our data as files and records within the computer. But there are several reasons why the
file/record model of data is not a good model for us to use:
(1.) Files and records are what the computer manipulates, not what a human scientist wants to

manipulate. The scientist wants to think in terms of images, spectra, maps, etc., but since
data are arranged as files and records the scientist must make a translation - either mentally
or through the use of software - between images, spectra, etc. and files/records. In the best
of all worlds the scientist could deal directly with images and spectra without having to know
much about how they are represented within the computer. (Let's call this issue "Level of
Abstraction". We will give each issue below a name in parentheses so that, we can refer to it
later).

(2.) Files and records are (by design) very general concepts and in most computers records and files
can hold almost any type of data conceivable. If you receive a file of data without being told
what is in the file you will probably have a difficult time determining what the file contains.
To determine what is in a file you need two types of information that are often not supplied
with the file:
(a.) The format of data within the file: Are the data arranged as an array of binary numbers,

ASCII text strings, or what?
(b.) The content of the file: What do these numbers or strings represent? Are they an image,

a map or what?
(3.) An individual who creates a file determines the content and format of that file, and it is not

uncommon to find the same type of data (say an image) represented in different formats by
different users. (Format and Content).

(4.) Any relationships between data in one file and data in other files are difficult to determine. For
instance, how do you know when two different types of files contain images that are compatible
(i.e., that can be compared one to the other)? There is often no way to tell just from looking

6-2 DATA FORMAT STANDARDS

,......,

at the files; you need some sort of external information to tell you if the image files have the
same format and a comparable content. (Data Relationships)

(5.) File formats, record formats, even the format of individual data items (e.g., floating point
numbers) differ between brand X computer and brand Y computer, making it difficult to
transport data files from one machine to another. (Portability)
An alternative to the file/record model of data is the concept of the data base. The principal

data base model these days is the relational model and some commercial relational DBMSs are in
use in space science data applications. However many types of space science data including images,
spectra and maps cannot be effectively stored within or retrieved from commercial relational DBMSs
because they are designed to handle only simpler data types like integer scalar numbers and text
strings.

6.2.3 Data Object Description
Objects are entities that can be perceived and examined by man or machine. Space scientists

examine many objects including planets, atmospheres, rings, moons, magnetic fields, etc. Often
we cannot see or feel these objects directly; instead we rely upon other objects like spacecraft
and scientific instruments to provide us with data. The instrument data are actually objects also,
objects that can be subjected to scientific analysis like images, spectra, time-series and tables.
An instrument data stream is often jumbled up with other instrument data streams and with
spacecraft status streams during transmission from the spacecraft to the ground, but typically one
of the first things scientists do with data streams from their instruments when they receive them is
to reconstitute the data objects (the images, spectra, etc.) that the instrument actually collected.
Thereafter most analysis is performed on these data objects, and the output of analysis programs
is more data objects (calibrated images, maps, etc.).

A note of caution is necessary here: we use the term data object to mean two different things.
The word can mean:
(1.) The class of an object: Image, spectra, etc. The class of an object identifies key aspects of the

object that determine how the data object will be interpreted and analyzed. "Object class" is
to objects what "data type" is to low-level data in a programming language like FORTRAN
(FORTRAN data types include integer, real, complex, and character).

(2.) An instance of an object: an actual data object that can be manipulated and analyzed. An
example would be the Voyager 1 wide-angle camera image shuttered at time T (there is only
one such image). Each instance of an object belongs to one and only one object class; in our
example, the camera image might belong to a class named RAW VOYAGER IMAGE. There
may be hundreds or thousands of instances of a particular class of object.
Generally we will use the term "object" without specifying whether we mean class or instance,

but the context should make it clear which we mean.

6.2.4 Data Objects Storage and Transportation
As with any type of computer data, a data object is nothing more than a collection of bits.

Typically those bits are arranged into more meaningful types of data like numbers, text strings,
etc, and those numbers and text strings are arranged into data objects like images, spectra, maps,
etc. When we want to store or transport data objects we place them into "data units". Data units
are essentially containers for data objects. A data unit may contain a single object, several objects
of the same class or several objects of different classes. An example of several objects of the same
class would be a data unit containing a number of Voyager images. An example of several objects

DATA FORMAT STANDARDS 6-3

from different classes would be a data unit containing a Voyager image plus a histogram of that
image (the image and the histogram are two different classes of objects).

We often implement data units as files but a data unit is more than a file because it must
contain or point to information that describes the object(s) within the data unit. A data unit
provides, either directly or indirectly, documentation on each of its objects, both in human terms
and computer terms. By "directly", we mean that the data unit may contain a "label" that contains
this documentation. By "indirectly" we mean that the data unit may contain only a reference to
a database containing such documentation. The decision as to whether a data unit contains a full
label or only a pointer to the necessary documentation is left to the person generating the data
unit (who must weigh issues like the overhead involved, how recipients will use the data unit, etc.).

Each object within a data unit requires documentation both at the class level and at the
instance level. The following information is needed to describe a class of objects:

(1.) A name that uniquely identifies the object class and the relationship between this object class
and other objects classes. The methods of constructing object class names and specifying class
relationships are discussed later in this paper.

(2.) A description of the format of the data object in terms that a human can understand and
utilize. Taking a Voyager camera image as an example, the format information we need is that
each such image consists of 800 scan lines with 800 samples per scan line and each sample is
assigned an integral gray-level value in the range O - 255. All of this information is determined
by the specific characteristics of the Voyager cameras, and none of this information specifies
the way in which we will store the image within the computer: a class description is always
independent of the way in which the objects within that class will be implemented.

For each instance of an object it is also useful, but not mandatory, to have the data unit
include information that describes the content of the object.

The content of a data object is a function of the instrument object that created the data object
and the real-world object which the instrument was examining, so we need information that ties
data object, instrument object, and real-world object together. This holds equally true for data
objects that are output by a data analysis program rather than directly by an instrument: data
objects that are created by programs should be annotated with a history of the processes to which
the data object has been subjected.

One of the chief ways of specifying data content is through time stamping, and most descrip-
tions of data object content will contain the time at which the data object was created. To illustrate
further the concept of identifying data content, let's continue the example of a Voyager camera im-
age: useful information on content would include the identity of the target at which the instrument
was pointed when the data object was created (Jupiter, Titan, Uranus, etc) and a synopsis of the
instrument state at the time the picture was shuttered (the filter through which the image was
taken, gain state, etc.).

Along with the information describing the format and content of each data object we need
information that describes how the data objects are represented within the data unit. Since data
units are manipulated directly by computers, this description needs to be in terms that computers
can understand and utilize. Thus computers retrieving or receiving a data unit will know how the
originator arranged the objects and the bits within the data units. This information must include:

(1.) The location of each object within the data unit. This can be achieved through the use of
pointers that point to the beginning of each data object within the unit, or similar mechanisms.

(2.) A description of how the data object is broken into records and into underlying data types

6-4 DATA FORMAT STANDARDS

like integers, characters, etc. Continuing with our Voyager camera image as an example, if we
receive a data unit containing such an image we need to know that each scan line is contained
within a 800-byte fixed length record and that each sample is encoded as an 8-bit unsigned
integer quantity.

(3.) If an object contains data types like integers, reals, and text strings that are machine-
dependent, we need to know the conventions used for encoding such values on the originating
computer so that if the receiving computer has different formats for those data types it can
recognize the incompatibility and hopefully translate the received values into its own corre-
sponding data types.
To achieve the full potential of the object-orientation we need a standard way of describing the

format and content of data objects and data units. Since part of the information about form and
content is designed for use by humans while the other part is designed for use by computers, it is
useful to devise a language that is readable and writable by both humans and computers. We call
such a language an Object Description Language. The PDS has developed an Object Description
Language (ODL) which is described in detail in Appendix I.

6.2.5 Object Class Hierarchies and Inheritance
As mentioned previously, each instance of a data object belongs to one and only one object

class. One of the most powerful concepts of an object-oriented approach is that object classes can
be arranged into a hierarchy with classes in the lower levels of the hierarchy inheriting properties
from their ancestors higher up in the hierarchy. This is called "class inheritance" and to see how it
works let us develop a rough cut of the first level of a hierarchy for space science data objects:

IMAGE
SPECTRUM
TIME_SERIES
TABLE
HISTOGRAM
MAP
Descriptions of the formats of objects in the above classes can be expressed in an ODL, but

the descriptions are necessarily vague: we cannot specify that every image will have X scan lines
and Y samples per line because different cameras produce images with different values for X and
Y. We solve this problem by providing only a template of the object format description for these
high-level object classes. For example, a description of the class IMAGE might contain something
like the following (given below in a pseudo-ODL):

LINES
LINE_SAMPLES

= positive integer
= positive integer

This template indicates that for every image object the number of lines per image and the
number of samples per line must be included in the format description. The text to the right of
"=" is to be replaced with a value of the appropriate type.

We can now use this template to create new classes that are "subclasses" of class IMAGE. By
"subclass" we mean that the class shares the characteristics of other images but differs in salient
ways, namely that it has specific values for the variables in the template that may be different
from the values for other classes. Using class IMAGE as an example: the cameras aboard different

DATA FORMAT STANDARDS 6-5

spacecraft produce images of different sizes so that we need to define one subclass for each type of
spacecraft. The object class hierarchy for images might then look like this:

-IMAGE
- MARINEIL9 IMAGE
- VIKING IMAGE
- VOYAGER IMAGE
- etc.

We can tailor subclasses in two ways: we can fill in template values for attributes that were in-
herited, or we can add new attributes that weren't inherited. We cannot, however, ignore attributes
that are inherited. The format description of class VOYAGER IMAGE might include something
like the following, again specified in our pseudo-ODL:

LINES
LINE-SAMPLES
SAMPLE_BITS

= 800
= 800
=8

The first two pseudo-ODL lines above fill in template values inherited from class IMAGE. The
third line adds a new attribute that is specific to class VOYAGER IMAGE.

The hierarchy can be extended as far as it is useful to take it. For example, when data objects
are analyzed the processing programs used typically produce new data objects that are related to,
but different from, the input objects. This leads us to extensions in the hierarchy like the following:

- VOYAGER IMAGE
- RAW VOYAGER IMAGE
- DESPIKED VOYAGER IMAGE
- CALIBRATED VOYAGER IMAGE
- etc.

The name of a class should reflect the class's place in the hierarchy. For example, the class
name CALIBRATED VOYAGER IMAGE indicates the complete inheritance chain of calibrated
Voyager image data objects.

6.2.6 Summary
The object-oriented data model uses the data object as the principal thing that is being stored,

transported and manipulated (as opposed to files and records). Data objects are encapsulated
in data units whenever they are stored or moved. Data units contain or point to descriptive
information on· the following:
(1.) The data format of the object, expressed in terms that a scientist can understand
(2.) The data content of the object
(3.) The location and format of each data object within the data unit, in terms that a computer

can understand
Therefore, the object-oriented approach resolves the following issues concerning the file/record

model of data raised earlier:
(1.) Level of Abstraction: Data objects represent data at the level at which scientists work - images,

spectra, etc. - as opposed to the level at which computers work (i.e., files and records). It is
more natural for the scientist to manipulate objects than files and records.

6-6 DATA FORMAT STANDARDS

. ----,
i_

(2.) Format and Content: Data objects are encased in data units and data units provide, directly
or indirectly, a description of the format of the data object - both in human terms and in
computer terms - plus a description of the content of the object. Each data object belongs to
a class and the format, as described in human terms, is the same for all objects within a class,
thus classes provide a means for achieving uniformity since everyone who generates an object
of a particular class will have to format and describe that object in the same way.

(3.) Data Relationships: Relationships between data objects are expressed through class hierarchies
and inheritance. A class inherits the attributes of all its ancestors in the class hierarchy.
Therefore it is easy to tell that an object of class MERCATOR MAP is related to an object of
class SINUSOIDAL MAP because they are both subclasses of class MAP. It is also easy to tell
that there is no direct relationship between a MERCATOR MAP object and a UV SPECTRUM
object since they do not share ancestors in the hierarchy. Class format descriptions written in
an ODL can be used to determine whether or not two classes of objects are compatible (they
may or may not be compatible even when they share the same ancestors).

(4.) Portability: Objects and data units are more portable than files because of the descriptive
information that is contained in or that is pointed to by the data unit. A receiving computer
can look at the format descriptions for the objects within a data unit and determine whether
or not the objects are in a format that are compatible with that computer. If they are not,
and there is appropriate software available, the objects can be transformed into the proper
data format by the receiving machine .

DATA FORMAT STANDARDS 6-7

6-8 DATA FORMAT STANDARDS

Chapter 7

MISCELLANEOUS STANDARDS

7.1 TIME

The representation of time within a database is of particular concern, since time is often used to
constrain searches. PDS has adopted the ISO 8601 standard entitled "Data element and interchange
formats - Representations of dates and times" for this purpose , and applies it a.cross all disciplines
in order to give the ca.ta.log generality. The standard is UTC (Universal Time Coordinated).

The 8601 standard covers the representation of the following:

(1.) Dates consisting of year, month and day-of-month

(2.) Dates consisting of year and day-of-year
(3.) Dates consisting of year, week-of-year and day-of-week

(4.) Clock times consisting of hours, minutes and seconds, including local time, UTC and alternate
time zones

(5.) Periods of times
This proposal calls for adoption of a subset of the representations allowed by the 8601 standard.

It is important to note that the 8601 standard covers only ASCII representations of dates and
times. For binary representations of dates/times we propose that the PDS adopt the time code
format standards recommended by the Consultative Committee for Space Data Systems (CCSDS)
in document CCSDS 301.0-B-l (Blue Book), January 1987.

7.1.1 Representations of Dates

Dates sha.11 be represented as either year, month and day-of-month or as year and day-of-year
using the full 8601 format, which has the fields separated by dash characters.

Year, Month and Day of Month:

Complete year, month and day-of-month: ccyy-mm-dd. 8601-compliant representations of
dates as numbers only (ccyymmdd, etc) a.re not allowed under this proposal. The 8601 standard
requires a.11 digits of a field to be specified, using leading zeros as needed. For example the following
is not a legal format for August 1, 1988: 1988-8-1; the proper representation is 1988-08-01.

Year, month and day-of-month for dates in the current century: yy-mm-dd. 8601-complia.nt
representations where year and/or month fields a.re omitted (for example the use of -dd to represent
a date within the current year and month) are not a.llowed under this proposal.

Year and Day of Year:

Complete year and day of year: ccyy-ddd. The 8601 standard requires a.11 digits of a field to
be specified, using leading zeros as needed. For example the following is not a legal format for
February 1, 1988: 1988-32; the proper representation is 1988-032.

Year and day of year for dates in the current century: yy-ddd. We strongly recommend
specifying the full four-digit year rather than the two-digit year-of-century.

MISCELLANEOUS STANDARDS 7-1

7.1.2 Representations of Times
Times shall be represented as hour, minute and seconds using the full 8601 format. The hour,

minutes and seconds consist of three two-digit fields separated by colons and modulo 24, 60 and 60,
respectively. The seconds field may optionally have a fractional part; if a fractional part to seconds
is specified, a period shall be used as the decimal point and not the European-style comma.
Local Time: hh:mm:ss.s
UTC Times: hh:mm:ss.sZ
Alternate Time Zone (Relative to UTC): hh:mm:ss.s+n
where n is the number of hours from UTC.

7.1.3 Dates and Times
Dates and times shall consist of any legal representation of date and any legal representation

of time separated by the letter T. For example:

ccyy-mm-ddThh:mm:ss.s
ccyy-mm-ddThh:mm:ssZ
yy-dddThh:mm:ss+ 7

7.1.4 Periods of Time
(To Be Supplied)

7.2 UNITS

represents a date and local time
represents a date/time in UTC
represents a date and time in Pacific Daylight Time

The uniform psage of units is essential in a broadly-based catalog system, for obvious reasons.
One cannot search for all the instruments covering 400 to 700 nm wavelength if some of the entries
are in Angstroms and some in microns. The PDS Data Dictionary Report (a separate document,
PDS D-4854) will define desired units for each database element used in the system. The standard
is SI, Systeme Internationale. Therefore note that micrometers are preferred over microns, for
example. There are a few exceptions to SI units to allow for consistency with the community
standard usage. These exceptions are documented in the data dictionary.

7-2 MISCELLANEOUS STANDARDS

-:--;

The following summary of SI unit information is extracted from the Chicago Manual of Style.
Base units - As the system is currently used, there are seven fundamental SI units, termed

"base units":

UNIT ABBREVIATION

length meter m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

SI units are all written in lowercase style; abbreviations are also lowercase except for those
derived from proper names. No periods are used with any of the abbreviations in the international
system.

Derived units - In addition to the base units of the system, a host of derived units, which
stem from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters,
and a millisecond is .001 (that is, 1/1,000) second. The prefixes in current use are as follows:

SI PREFIXES

Factor Prefix SymlJol Factor Prefix SymlJol

101s exa E 10-1 deci d
101s peta p 10-2 centi C
1012 tera T 10-3 milli m
109 giga G 10-6 micro µ
106 mega M 10-9 nano n
103 kilo k 10-12 pico p
102 hecto h 10-15 femto f
101 deka da 10-18 atto a

Although, for historical reasons, the kilogram rather than the gram was chosen as the base unit,
prefixes are applied to the term gram instead of the official base unit: megagram (Mg), milligram
(mg), nanogram (ng), etc.

Another class of derived units consists of powers of base units and of base units in algebraic
relationships. Some of the more familiar of these are the following:

area
volume
velocity
acceleration
density
luminescence

UNIT

square meter
cubic meter
meter per second
meter per second squared
kilogram per cubic meter
candela per square meter

Many derived SI units have names of their own:

MISCELLANEOUS STANDARDS

SYMBOL
m2
m3

m/s
m/s2

kg/m3

cd/m2

7-3

UNIT SYMBOL EQUIVALENT
frequency hertz Hz cycles per second
force newton N kilogram-meters per second squared
pressure pascal P newtons per square meter
energy joule J kilogram-meter
power watt W joules per second
quantity of electricity coulomb C ampere-second
electric potential volt V watts per ampere
capacitance farad F coulombs per volt
electrical resistance ohm volts per ampere

Use of figures with SI units - In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity of any SI unit. Thus the quantity 12,000
meters is expressed 12 km, not 12,000 m. So too, 0.003 cubic centimeters is preferably written 3
mm3 , not 0.003 cm3 •

For the decimal point, the international system permits either a dot {the British and American
practice) or a comma (the French practice). Note that the comma is not used in international work
to mark off groups of three digits in large numbers: if such figures cannot be avoided, spaces are
left between the groups of three-to the right of the decimal point as well as to the left:

31 000 000 0.000 000 31

7.3 BINNING
Certain derived data sets are worth curating because of their high value and wide applicability.

Examples of these are maps of basic physical parameters such as albedo, thermal inertia, elevation,
etc. that have been derived from measurements. It has been demonstrated by both the Lunar and
Mars Consortium efforts that a uniform choice of binning or sampling intervals is of crucial value
for the intercomparison of such data sets, and in fact makes such comparison simple if the data
sets are available in a common database. We recommend here that if such data sets are developed
for planetary bodies the data be binned in a simple cylindrical coordinate system, and that the
bin sizes be binary multiples of 1 degree. Thus bin sizes of 0.25, 0.5, 1.0, 2.0, 4.0 degrees would
be desirable. High density data sets may be easily re-binned in this scheme to intercompare with
lower resolution data. See also Section 7.6 for cartographic standards.

7.4 SOFTWARE DEVELOPMENT
The PDS has developed a set of coding standards, which are essential in the design of any

large software-dependent system. These standards are detailed in the PDS Software Management
Plan {D - 3487); parts of that document appear also here in Appendix M for reference; adoption
of these standards in the development of new code will enhance the future usage of that material
by anyone and will smooth its incorporation into the PDS if such software is of interest to data
users. It is not expected that existing code accompanying data sets will in general be converted.
In the case of data processing software of archival interest, changes to the actual code structure are
in fact dangerous. Comments, however, should be added to existing code to improve readability.
Several document reader software tools are being developed within PDS to extract comments from
code. Refer to Appendix M also for standards regarding commenting.

Please note that software which is being generated to implement the basic operational functions
of the PDS {such as data retrieval, data preparation, and data delivery) must follow very stringent
development guidelines; these have been detailed in the PDS Software Management Plan.

7-4 MISCELLANEOUS STANDARDS

7.5 ANCILLARY GEOMETRIC INFORMATION (SPICE FILES)
In the past, geometric information for spacecraft experiments has been supplied to the teams

through a central project facility that runs the appropriate software. There is a trend towards
decentralization of this function, for several reasons. The data set supplier associated with future
missions will encounter this concept, and it will affect what they need to pass on to PDS. Therefore,
an introduction is provided below to the revised approach to generation of geometric data.

SPICE is a formalism for treating geometric and other ancillary information pertinent to the
understanding of science data returned from instruments on planetary spacecraft. Those familiar
with ground data systems supporting past NASA planetary missions may envision the SPICE sys-
tem as, in part, a functional replacement for the Supplementary Experiment Data Record (SEDR)
component.

An objective of the implemented SPICE system is that it, with the addition of the downlink
science instrument data from the spacecraft, will contain all of the information needed to recover
the full scientific value of the returned science instrument data, and it will facilitate correlations of
individual instrument data sets with data from other instruments on the same or other spacecraft.

The SPICE concept is being executed within the larger context of the Planetary Data System,
as it is within this environment that the full benefit of these concepts may be obtained. In turn,
substantial replication of the PDS system architecture, including SPICE, within flight project
environments will further extend these benefits.

The primary SPICE data sets, called "kernels", are those which contain the fundamental and
irreducible set of ancillary information. Kernels are composed of information which comes from
the most knowledgeable sources of such information, which has anticipated use within the SPICE
system, and which have been structured, formatted and cataloged to PDS standards.

The name SPICE is an acronym (coined by Hugh Kieffer of the USGS in Flagstaff) from which
reference to the kernels is made as follows:

S - Spacecraft ephemeris, or more generally, location of the observer, as a function of time.
P - Planet, satellite, comet or asteroid ephemerides, or more generally, location of the target
bodies being observed, as a function of time. The P kernel also logically includes principal
physical, dynamical and cartographic "constants" related to the target bodies, such as spin
axis orientation and size and shape specifications.
I - Instrument description kernel. Contains descriptive and operational data peculiar to a
particular instrument. Some examples of information included in the I kernel are mounting
alignments, internal timing characteristics, geometric and radiometric calibration data and
descriptions of operating modes. Note that I kernels, like the "constants" part of the P kernel,
contain data that are largely time invariant.
C - Pointing kernel. The name derives from historical use of the letter C to refer to a 3x3
matrix defining pointing of a spacecraft's scan platform in inertial coordinates. The C kernel
contains time tagged pointing angles for the (or a) major spacecraft structure on which science
instruments are mounted. Pointing data for a specific instrument are obtained by combining
appropriate portions of an I kernel with the C kernel.
E - Events kernel. The foundation and principal contents are derived from the Integrated
Sequence of Events (ISOE file) used to produce actual spacecraft commands. The E kernel is
then augmented with real-time commands and "notebook entries" from scientists and those
monitoring data system and spacecraft performance. The E kernel and portions of the I kernel
are the only SPICE system elements focussed beyond purely geometric information.

MISCELLANEOUS STANDARDS 7-5

The "SPICE" acronym might better have been named "SPICES" since there is one additional
and equally important component: SOFTWARE. The SPICE kernels alone do provide the data
needed to interpret science instrument data sets, traditionally called Experiment Data Records, or
EDRs. Pragmatically, though, provision to the user community of only the SPICE kernels would be
shortsighted and unacceptable. Instead, the SPICE formalism specifies that the user community
also be provided with the software needed to both read the kernels and, subsequently, compute
the principal observation geometry parameters and retrieve related ancillary data needed to help
evaluate the EDRs.

With these components of SPICE now identified, a premise and a major operational axiom
fundamental to SPICE should be stated.

PREMISE: The proliferation of inexpensive, high speed micro and mini computers and ad-
vances in data distribution technology facilitate the distribution of computation functions where
appropriate.
AXIOM: The ability to compute observation geometry parameters and to retrieve easily allied
ancillary experiment data is considered at least equivalent to having such data precomputed for
the end user.
This leads to the last major design concept of SPICE, which is the transfer of the capability

and responsibility for computation of derived ancillary information (SEDR parameters, and more)
to the end user - the scientist or PI team or engineering team.

Briefly summarized, then, the SPICE System Specification provides for the production at
JPL of the elemental data files called kernels, and a portable software library, called the "toolkit",
containing subroutines to read those kernels and compute most of the observation geometry param-
eters needed to aid interpretation of science instrument data sets. The toolkit software, including
test/demonstration programs, is distributed to PI teams, with assistance from JPL. The PI teams
integrate this toolkit software with their own analysis programs, functionally replacing that element ·
of their software which used to read a SEDR tape.

Once a mission is underway, as new kernels are produced they are cataloged on a computer
system accessible by PI teams. The PI may "order" all or selected kernels, and use these at his
home site to compute or extract the geometry and related ancillary information of interest. The
user does this according to his own schedule, and for only the specific time spans of interest. The
user can fold in his own related software or otherwise change what is now his own "SEDR factory."
(Changing SPICE toolkit software is not recommended.)

Further and more comprehensive discussion of these ideas, and details of SPICE component
specifications will be published in a SPICE Primer at a later date.

7.6 CARTOGRAPIC DATA
The following cartographic data standards were developed through an iterative process involv-

ing both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of
the PCWG are also on the key IAU committees which set these same standards for international
adoption; therefore, the PDS adopted cartographic standards are consistant with the IAU stan-
dards. The PDS, rather than making unilateral decisions on cartographic data standards, looks to
the PCWG as the controlling body for these standards within NASA and the PDS. It is recognized
that the IAU continually reviews its standards and may, at some time, make a change affecting the
cartographic standards. If this happens, the PDS will work with the PCWG and decide its course
of action at that time.

A driving force for standards is to enhance the exchange and correlation of data sets between the

7-6 MISCELLANEOUS STANDARDS

same instrument at different times and between different instruments and missions. The adoption
of these cartographic standards, as with other standards, is a compromise between technical purity,
tradition, standard practices, previous standards and potential costs associated with changes. Cost
impact was an important consideration for some planetary bodies. The IAU standard for plane-
tographic longitude definition rather than planetocentric was adopted because of traditional use.
Therefore, technical purity may be compromised by these standards; however, data exchange and
correlation is still enhanced by the adoption of these standards.

For historical reasons, Mars and Earth are exceptions to many of these standards, as noted
below. The giant, gaseous planets (Jupiter, Saturn, Uranus, and Neptune), having no visible
solid surfaces, are not explicitly covered by these standards, but the question of planetocentric vs.
planetographic latitude for these bodies may need to be addressed in the future.

7.6.1 Inertial Reference Frame/Timetag/Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the "J2000"
system) is the standard inertial reference frame. The Earth Mean Equator and Equinox of Besselian
1950 (JD 2433282.5) is to be supported because of the wealth of previous mission data referenced
to this system. The transformations between the two systems are to be available. Time tagging
of data using UTC in Year, Month, Day, Hour, Minute and decimal Seconds is the standard, with
Julian Date being supported. SI metric units, including decimal degrees, are the standard.

7 .6.2 Spin Axes and Prime Meridians

The !AU-defined spin axes and prime meridians relative to the J2000 Inertial Reference
System are the standard for planets, satellites and asteroids where these parameters are defined.
For other planetary bodies, definitions of spin axes and prime meridians determined in the future
should have the body-fixed axes aligned with the principal moments of inertia, with the North Pole
defined as along the spin axis and above the Invariable Plane. Where insufficient observations exist
for a body to determine the principal moments of inertia, coordinates of a surface feature will be
specified and used to define the prime meridian. It is expected that some small, irregular bodies
may have chaotic rotations and will need to be handled on a case-by-case basis.

7 .6.3 Reference Coordinates

The Cartographic latitude and longitude are the standard reference coordinates. These coor-
dinates are for a vector from the body center-of-figure to the surface. Latitude is measured from
-90 degrees at the South Pole to +90 degrees at the North Pole. Longitude has values from 0 to
360 degrees and is always positive. Longitude is measured from the prime meridian using the same
convention as for the IAU Planetographic longitude.

Mars and Earth are exceptions; Planetographic latitude is the standard for these bodies. The
long history associated with this definition and the volume of data and derived data products using
this convention makes a change to Cartographic coordinates impractical.

The proposal to adopt the Cartographic coordinate definitions has been made to the
IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Potential Elements of the
Planets and Satellites by IAU /PCWG members. The final resolution on adopting these coordinate
definitions has not been decided at this time.

MISCELLANEOUS STANDARDS 7-7

7.6.4 Reference Surface
The Digital Terrain Model (DTM), giving body radius as a function of Cartographic latitude

and longitude in a sinusoidal equal-area projection, is the standard. Mars is to be an exception
where Planetographic latitude is to be used. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of Cartographic coordinates are to be supported.

The Digital Image Model (DIM) giving body "brightness" in a specified spectral band or
bands as a function of Cartographic latitude and longitude in a sinusoidal equal-area projection,
and associated with the surface radius values in the DTM, is the standard. Mars is to be an
exception where Planetographic latitude is to be used. DIMs registered to spheroids, ellipsoids
and harmonic expansions are to be supported.

7 .6.5 Map Resolution
The spatial resolution of a map will use 1 / 2n degrees as the standard. The vertical resolution

will use 1 x 10m meters as the standard, with m and n chosen to preserve all the resolution inherent
in the data.

7 .6.6 Documentation
The PCWG and PDS support the concept of adopting these cartographic data standards to

promote data interchange and reduce confusion and errors. To eliminate unnecessary misinterpre-
tation of data, the PCWG strongly encourages that liberal documentation describing the standards
and conventions used be attached to all PDS data products.

Both the adoption of the standards and the documentation of these standards and of the
conventions associated with the data sets are important.

7.6.7 References
The following two references give more detail on the cartographic data standards:

(1.) Davies, M.E., et al (1986) Report of the IAU /IAG/COSPAR Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and Satellites: 1985 Celestial Mechanics
39, 103-113.

(2.) Batson, R. M., (1987) Digital Cartography of the Planets: New Methods, its Status and Future.
Photogrammetric Engineering & Remote Sensing 53, 1211-1218.

7-8 MISCELLANEOUS STANDARDS

Chapter 8

TOOLS

A considerable quantity of software is being or has been developed under PDS support for use
external to the system. There are routines that have been built to handle specific data sets. There
are programs to expedite data interchange and to deal with database management.

The software exists in various states of development, from simply planned to completed. The
list that follows is intended to guide the user in locating items of interest. Further information
will be provided in subsequent versions of this document and can also be found by interrogating
the PDS online catalog, once it is operational; the authors should be contacted regarding current
status.

8.1 DATA SET SOFTWARE
The Navigation Ancillary Information Facility (NAIF), which is developing and promulgating

the SPICE concept (see Section 7.5) provides a software toolkit that is the very essence of the
SPICE approach - the software allows the user to take control of geometry information relevant
to his/her experiment data. The toolkit allows manipulation of SPICE kernels and calculation
of geometric information of interest. Other available software includes a documentation reader.
Further information is available through the authors or directly from Charles Acton at JPL.

The Radiometry Testbed Node of PDS has developed software for the treatment of radiometry
and spectroscopy data. These packages, known as the XG and SPECIO systems, provide access to
data from certain experiments on Mariner 6, 7, 9, and Viking, with constrained searches based on
geometry or the measured parameters themselves. The systems run under TAE and are designed
for portability to VAX computers. For further information contact Robert Gurule or Hugh Kieffer
at:

US Geological Survey
2255 N. Gemini Dr.
Flagstaff AZ 86001
(602) 527-7038

The Reflectance Spectroscopy Subnode at the Planetary Geosciences Division of the Hawaii
Institute of Geophysics is developing a data management system for spectral data that will run on
an IBM AT. It is intended to be a replicable system, with hardware, software, and data sets readily
duplicated at user sites. Contact Tom McCord at (808) 948-6488.

The Central Node of PDS has developed a program to manipulate and display digital image
data from CDROM or magnetic disks on IBM PC, XT, AT or compatible machines. It was
developed specifically to enhance the usage of PDS CDROMs by the community. The source code
(in "C") can be ordered or delivered electronically. For further information contact Mike Martin
at the address in the second chapter of this document.

The JPL Imaging Testbed Node has been developing image processing programs that run on
IBM PC AT computers. These perform a wide variety of functions and were modeled on routines
available initially only through the Image Processing Lab at JPL. For further information contact
Mike Martin or Sue La Voie.

TOOLS 8-1

8.2 PDS LABEL SOFTWARE
PDS labels can be created easily with any text editor and mated with data files. The recip-

ients of labeled data sets may choose, however, to treat the labels with software that places label
information into catalogs or displays or prints it. PDS personnel have been developing routines to
extract label information and parsers that can act on the content.

Automated loading of catalog information from labeled data sets is an important PDS devel-
opment activity. Routines to perform this function are being implemented at the Central Node at
JPL. Of particular interest is the template approach, in which model labels for specific data sets
are prepared for developers, who then "fill in the blanks" with the relevant catalog data. Please
contact the PDS Central Node's Data Management Team for information.

8-2 TOOLS

,.,,._

Appendix A

DATA INGESTION FROM PRESENT AND FUTURE MISSIONS

The negotiation with a Flight Project leading to the approval of the Project Data Manage-
ment Plan (PDMP) by PDS is lengthy and involves Flight Project, PDS, PSDSG, NSSDC, NASA

-~" Headquarters and other science participation. This procedure identifies the various steps involved,
the groups and organizations involved and their responsibilities leading to the PDS approval of a
Flight Project PDMP. This procedure insures proper science and data administration involvement
in identifying the Flight Project data sets to be prepared for delivery to the PDS and allows the
PDS to identify the resources needed to properly support these data sets.

....

.,,._,~

.....:.--;.,

A.1 DRAFT PDS MISSION DATA INTERFACE LIST
(1.) The PDS Mission Interface Team (MIFT) obtains an in-depth listing and description of all

known mission products from the Project Interdisciplinary Scientist for Data Management and
Archive or equivalent Project position (referred to as IDS/DMA). MIFT, in conjunction with
the PDS Data Administrator, produces a PDS resource estimate for each product.

(2.)
(3.)

(4.)

The PDS MIFT gives this data products list and supporting data to the PDS Project Scientist.
The PDS Project Scientist distributes the MIFT supplied information to the PSDSG, the
NSSDC and the appropriate PDS Node Scientists for review. The PDS Project Scientist,
PSDSG, NSSDC and Node Scientists may contact each other, the PDS MIFT and members
of the Project for additional information and clarification.
The PDS Project Scientist convenes a meeting including the PSDSG, the PDS Project Man-
ager, the NSSDC, participating Node Scientists, the PDS MIFT and invited members of the
Project. This group produces the Draft Mission Data Interface List. This list reflects both
scientific and resource management scrutiny and may include additional data products not
identified by the Project if needed.

A.2 WRITING THE PROJECT DATA MANAGEMENT PLAN
(1.) The PDS Guidelines for Project Data Management Plans (PDMP), JPL Document D-5111,

is provided to the Flight Project prior to drafting the PDMP. The PDS MIFT submits the
Draft List to the Project through the IDS/DMA for inclusion into the Draft PDMP. This Draft
PDMP is distributed for review to the Project including the Project Science Group (PSG),
the PDS, the NSSDC, the PSDSG, etc.

(2.) The Project IDS/DMA, assisted by the PDS MIFT, presents this Draft PDMP to the Project
PSG and to NSSDC. The PDS MIFT resolves all PDS Interface related issues raised within its
level of authority. Some issues affecting resources and schedule would be resolved at a higher
level.

(3.) The PDS Project Manager convenes a meeting of all interested parties (the PSDSG, PDS
Project Scientist, PDS Node Scientists, PDS MIFT, Project PSG members including the
IDS/DMA, NSSDC members, etc.) to air all unresolved issues and make the final data
set/product identification.

(4.) This Final List is submitted to the Project by the PDS MIFT through the IDS/DMA for
inclusion in the Final PDMP which is approved by the PDS Project Manager and the NSSDC
Director.

DATA INGESTION FROM PRESENT AND FUTURE MISSIONS A-1

A.3 MECHANISM FOR CHANGE OUTSIDE OF STEPS 1 AND 2
The following mechanisms are in place for additional comment, criticism, or change of the PDS

negotiation:
(1.) Review the matter directly with the PDS Project Scientist and Manager and with the NSSDC

Director for resolution.
(2.) Review the matter with the Planetary Science Data Steering Group (PSDSG) for consideration.

This group has direct review authority for the PDS and has direct recommendation access to
the NASA Code EL PDS Program Manager.

(3.) Review the matter with the Project IDS/DMA, Scientist or Manager for action by the NASA
Program Manager and/or Scientist for the Project who have direct recommendation access to
the NASA Code EL PDS Program Manager.

A-2 DATA INGESTION FROM PRESENT AND FUTURE MISSIONS

Appendix B

DATA RESTORATION PROCEDURES

The identification and prioritization of data sets to be restored are based upon the needs of
existing and future flight projects as well as current and future data analysis programs. The PDS
does not have the breadth of oversight or responsibility of the Solar System Exploration Projects
and Programs to make this identification and prioritization on its own. Therefore, NASA Program
management and the PSDSG, which is chartered to advise NASA on science data issues, play the
lead role in this activity. This procedure describes the steps, groups involved and their responsibility
leading to the selection of proposals for data restoration.

B.1 DATA RESTORATION PRIORITIZATION
(1.) The NASA Code EL Planetary Science Data Steering Group (PSDSG) has the lead responsi-

bility and is supported by the PDS Project Scientist, the PDS Node Scientists and the Flight
Project Scientists. A Priority List is generated, based upon PSDSG provided philosophy and
criteria, which identifies desired data to be restored by Body, Spacecraft and Instrument. Ad-
ditional data discrimination of Classification and Observation Category may also be necessary.
This list is reviewed and updated annually.

(2.) The PSDSG gives the Priority List to the NASA Code EL PDS Program Manager.

B.2 NASA REQUEST FOR DATA RESTORATION PROPOSALS
(1.) The NASA Code EL PDS Program Manager releases a request for data restoration proposals

annually which includes the PS DSG provided Priority List as well as data restoration guidelines
and standards supplied by the PDS Data Administration Plan.

(2.) Proposals for data sets not on the Priority List will also be considered.
(3.) NASA Code EL sends all submitted proposals to the PDS Project Manager.

B.3 SELECTION OF DATA RESTORATION PROPOSALS
(1.) The PDS Project Manager heads a review board supported by the PDS Project Scientist, Node

Scientists and the PSDSG to select proposals within PDS resources.
(2.) The PDS Project Manager negotiates the contracts, which are let from JPL, with the data

restoration proposers.

B.4 RESTORATION PROCESS
(1.) The PDS Science Manager monitors the delivery of scheduled data products.
(2.) Delivered data is validated by the PDS Central Node staff or designated Discipline Node

personnel for completeness, continuity and standards, and data integrity. The details of this
peer review process are given in Section 2.4.5.

(3.) The PDS Project Manager provides the NASA Code EL PDS Program Manager with a per-
formance assessment of all data restoration activities annually.

DATA RESTORATION PROCEDURES B-1

B-2 DATA RESTORATION PROCEDURES

Appendix C

WRITING CONVENTIONS AND DOCUMENT STANDARDS

The writing conventions and document standards for documents accompanying data sets being
submitted to PDS are still being developed. The conventions and standards for use by PDS
personnel on system development documents can be found in the document Planetary Data System
Writing Conventions and Documentation Standards, March 31, 1988.

WRITING CONVENTIONS AND DOCUMENT STANDARDS C-1

C-2 WRITING CONVENTIONS AND DOCUMENT STANDARDS

Appendix D

DATA SET DOCUMENTATION EXAMPLES

The following material provides two complete examples of data. set documentation for PDS
data. submission. The first was prepared for submission to PDS. The second was intended for use

,,,_,_. as a. help file and is included as an example of content.

D.1 PLASMA WAVE DOCUMENTATION EXAMPLE
The following documentation was submitted during prototyping of the "template" process

for automatic loading of catalog information for a. data. set. The Voyager PWS data. set supplier
provided information to fill in requested parts of the template.

I* Template: PDS Dataset Catalog Input Template
I* Note: The following templates form part of a standard
I* set for the submission of a single dataset
I* to the PDS.
I* The following hierarchy was redone to reflect
I* templates completed for this example
/* Hierarchy: DATASETHLCAT
I* DATASETINFO
/* DSPARMINFO
I* SCDATASET
I* DSPROCESSING
I*
OBJECT
DATA_SET_ID

'* I* Template:
I* Note:
I*
I*

= DATASETHLCAT
= "VG2-U-PWS-2-S4 OSEC"

Dataset General Information Temp! te
This template is to be completed f
dataset cataloged in the PDS.

= DATASETINFO

(J
OBJECT
DATA_SET_NAME = "VOYAGER 2 URANUS PLASMA WAVE RECEIVER

TARGET_NAME
TARGET_TYPE
START_EVENT_TIME
STOP_EVENT_TIME
DATA_OBJECT_TYPE
RELEASE_DATE
PROCESSING_TIME
PROCESSING_LEVEL_ID

EDITED SPEC 4.0SEC"
= URANUS
= PLANET
= 1986-01-23TOO:OO:OO.OOOZ
= 1986-01-31TOO:OO:OO.OOOZ
= "TIME SERIES"
= 1988-03-10
= 1988-02-14
= 2 <CODMAC>

I* The following
FULL_NAME
INSTITUTION_NAME
REFERENCE_KEY_ID
PIN_SOFTWARE_FLAG

attribute is the dataset provider
= "DR WILLIAMS. KURTH"
= "UNIVERSITY OF IOWA"
= 11 N/A 11

= y

DATA SET DOCUMENTATION EXAMPLES D-1

DETAIL_CATALOG_FLAG = Y
I•
DATA_SET_DESCRIPTION = "This data set consists of 4-second
edited, wave electric field intensities from the Voyager 2 Plasma Wave
Receiver spectrum analyzer obtained in the vicinity of the Uranian
magnetosphere. For each 4-second interval, a field strength is
determined for each of the 16 spectrum analyzer channels whose center
frequencies range from 10 Hertz to 56.2 kilo-Hertz and which are
logarithmically spaced in frequency, four channels per decade. Data
are edited, but not calibrated. Calibration look-up software and
tables are provided for use with this data
set."
I•
CONFIDENCE_LEVEL_NOTE = "This data set includes all available
spectrum analyzer data available within the interval of time covered.
The data set has been cleaned as best possible for periodic noise
spikes due to a stepper motor operating on another experiment. Other
possible sources of noise which have not been eliminated include
random, bursty noise in the 178-Hertz channel due to impulsive noise
sources such as attitude control thrusters. The attitude control
thrusters also result in random noise spikes in all channels below 1
kiloHertz, with the most intense bursts occurring in the lowest for
channels, below about 60 Hertz. Also, a failure in the Voyager 2
flight data system a few months after launch has decreased the
sensitivity and the calibration accuracy of the upper 8 spectrum
analyzer channels (i.e. 1 kiloHertz and higher) . 11

END_OBJECT = DATASETINFO

b-2

I•
I•
I•
I•
I•

Template:Dataset Parameter Information Template
Note: This template shall be repeated for each

dataset, sampling parameter pair utilized
by a dataset in the PDS. ·

I•
OBJECT = DSPARMINFO
SAMPLING_PARAMETER_NAME = TIME
SAMPLING_PARAMETER_RESOLUTION = 4.0
MINIMUM_SAMPLING_PARAMETER = 11 N/A 11

MAXIMUM_SAMPLING_PARAMETER = 11 N/A 11

SAMPLING_PARAMETER_INTERVAL = 4.0
MINIMUM_AVAILABLE_SAMPLING_INT= 4.0
SAMPLING_PARAMETER_UNIT = SECOND
DATASET_PARAMETER_NAME = "PLASMA WAVE SPECTRUM"
NOISE_LEVEL = 5.E-6
DATASET_PARAMETER_UNIT = "VOLT/METER"
END_OBJECT = DSPARMINFO
I• Another Dataset Parmeter
OBJECT
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_RESOLUTION

= DSPARMINFO
= "FREQUENCY"
= .25

DATA SET DOCUMENTATION EXAMPLES

MINIMUM_SAMPLING_PARAMETER = 1.0
MAXIMUM_SAMPLING_PARAMETER = 4.75
SAMPLING_PARAMETER_INTERVAL = .25
MINIMUM_AVAILABLE_SAMPLING_INT= .25
SAMPLING_PARAMETER_UNIT = "LOG HERTZ"
DATASET_PARAMETER_NAME = "PLASMA WAVE SPECTRUM"
NOISE_LEVEL = 5.E-6
DATASET_PARAMETER_UNIT = "VOLT/METER"
END_OBJECT = DSPARMINFO
I•
/• Template:
/• Note:

Spacecraft Dataset Template

I•
This template shall be completed if the
dataset is associated with a spacecraft.

I•
OBJECT
SPACECRAFT_ID
INSTRUMENT_ID
END_OBJECT
I•

= SCDATASET
= VG2
= PWS
= SCDATASET

I• Template:
/• Note:
I•

Dataset Processing Information Template
This template shall be completed for the
most meaningful previous source dataset

I• used to produce this dataset.
I•
OBJECT = DSPROCESSING
SOURCE_DATA_SET_ID = "VG2-U-PWS-2-EDR"
SOFTWARE_NAME = 11 N/A 11

END_OBJECT = DSPROCESSING
END_OBJECT = DATASETHLCAT
/• Template:PDS Catalog Spacecraft Instrument Input Template
/• Note: The following templates form part of a standard
/• set for the submission of a spacecraft instrument
/• to the PDS ..
I* The following hierarchy was redone to reflect the actual
/• templates completed for this example
/• Hierarchy: SCINSTINFO
I* SCINSTOFFSET
I* INSTELEC
/• INSTDETECT
/• INSTMODE
/• INMODEPARM
/• INMODEPARM
I•
OBJECT = SCINSTINFO
SPACECRAFT_ID
INSTRUMENT_ID
I• The following
DATA_SET_ID
INSTRUMENT_NAME

= VG2
= PWS

attribute applies to a NAIF dataset
= 11 N/A 11

= "PLASMA WAVE RECEIVER"

DATA SET DOCUMENTATION EXAMPLES D-3

INSTRUMENT_TYPE
/• The following
PDS_USER_ID
I•

= 11 PLASMA WAVE SPECTROMETER"
attribute applies to the data provider

= WKURTH

INSTRUMENT_DESCRIPTION = "The Plasma Wave Receiver on Voyager
consists of both a 16-channel spectrum analyzer covering the range of
10 Hertz to 56.2 kiloHertz and a wideband waveform receiver which
returns the waveform of waves in the frequency range of 40 Hertz to 12
kiloHertz. The spectrum analyzer provides data on a continual basis
with a maximum temporal resolution of one spectrum per 4 seconds. The
waveform receiver returns 4-bit samples of the electric field measured
at a rate of 28,800 samples per second. Because of the very high data
rate, the waveform samples must be transmitted in the same manner as
the Voyager imaging information. At J~piter, some 10,000 48-second
waveform frames were obtained. At Saturn and Uranus, the number of
frames obtained was very small due to the lower telecon rates available
at the greater distances of those planets. 11

I•
INSTRUMENT_CALIBRATION_DESC = "The Voyager plasma wave receiver
spectrum analyzers were calibrated by first establishing a relationship
between input voltage (of a sine wave at the filter center frequency)
and output voltage and second by measuring the effective bandwidth of
the filter. The bandwidth is measured by inputting a random noise
signal of known spectral density and by measuring the output voltage
which, by the first part of the calibration, is related to the rms
voltage of a sine wave. Dividing the equivalent sine wave voltage
squared by the input spectral density gives a bandwidth. This
procedure is repeated for each of the frequency channels. A special
calibration problem exists for the upper 8 frequency channels (1
kiloHertz and above) due to a failure in the Voyager 2 Flight Data
System. An in-flight recalibration was attempted using a Solar type
III radio burst observed by both Voyager 1 and 2. The recalibration
has known deficiencies, but it has been impossible to date to improve
on them."
I•
OPERATIONAL_CONSID_DESC = "The primary operational considerations
of the PWS include maintaining the proper operating mode and obtaining
waveform samples as often as the spacecraft tape recorder/downlink
capabilities allow. The standard instrument mode is with Waveform
Power On and Input Gain State Hi. For encounter periods, this
corresponds to GS3GAINHI/WFMPWRON. Since there has never been a period
when the signal levels were so high as to require the Low input gain
state, and it is highly unlikely that such levels will ever be
encountered, Low Input Gain State should never be selected. As long as
there is power margin available, it is most straightforward to leave
the Waveform Receiver Power on. The power consumption is less than 0,5
Watt for this section, hence, the power savings afforded by turning it
off is not large. The most involved operational consideration is
providing for the transmission of waveform data to the ground. At

D-4 DATA SET DOCUMENTATION EXAMPLES

Jupiter, the majority of the waveform data could be sent directly to
the ground via the 115200 bps downlink. This capability disappeared
after Jupiter, however, because of the greater distance to the
spacecraft, hence, lover telecom rates. Since operating the A/D
converter at a rate less than 28800 Hertz vould result in aliasing, it
is necessary to record the data at the 115200 bps rate on the
spacecraft tape recorder using the appropriate data mode and playback
the recorded data at a lover rate, commensurate vith the link
capabilities. Again, choice of the proper playback mode is required.
Since the data modes available on the spacecraft are highly dependent
on mission phase, these modes are not described here."
I•
SCIENTIFIC_OBJECTIVES_SUMMARY = "The primary science objective of the
Voyager plasma vave investigation is to make the first surveys of the
plasma and lov frequency radio vave spectra in the magnetospheres of
the outer planets: Jupiter, Saturn, Uranus, and Neptune. Plasma vaves
participate in a fundamental manner in the dynamics of planetary
magnetospheres and in the interactions of that magnetosphere vith the
external solar vind and internal perturbations such as those induced by
satellites interior to the magnetosphere. Plasma vaves also provide
diagnostic information about the plasma environment near the planets
including such parameters as electron density and sometimes
temperature. The instrument is also sensitive to lov frequency radio
emissions and, therefore, acts as a lov frequency extension to the
Planetary Radio Astronomy investigation. Radio vaves are often the
only means of remotely observing regions of plasma not accessible to
the spacecraft and also lead to remote diagnostics of plasma
conditions. The plasma vave receivers are also sensitive to the
results of small dust particles impacting on various parts of the
spacecraft at high velocities and, hence, provide a direct measure of
the rate of impact, the density of the dust, and an estimate of the
mass distribution of dust in the vicinity of the large planets,
especially those vith rings and otherwise dusty environments. Finally,
the Plasma Wave Receiver vill characterize the plasma vave and radio
vave spectrum of the outer heliosphere and perhaps beyond, extending
our understanding of solar vind plasma processes and wave-particle
interactions to several tens of Astronomical Units."
I•
INSTRUMENT_HEIGHT = 4.8 <centimeter>
INSTRUMENT_LENGTH = 31.8 <centimeter>
INSTRUMENT_MANUFACTURER_NAME = "UNIVERSITY OF IOWA"
INSTRUMENT_MASS
INSTRUMENT_SERIAL_NUMBER
INSTRUMENT_WIDTH
START_TIME
I•

= 1.4 <kilogram>
= SN003
= 18.5 <CENTIMETER>
= UNKNOWN <build date>

/• Template:
I• Note:

Spacecraft Instrument Offset Information Template
This template is to be completed for each
platform used for instrument positioning.

DATA SET DOCUMENTATION EXAMPLES D-5

,.
OBJECT
PLATFORM_OR_MOUNTING~NAME
CONE_OFFSET_ANGLE
CROSS_CONE_OFFSET_ANGLE
TWIST_OFFSET_ANGLE
INSTRUMENT_MOUNTING_DESC
END_OBJECT
I•

= SCINSTOFFSET
= "SPACECRAFT BUS"
= 11 N/A 11

= 11 N/A 11

= 11 N/A 11

= 11 N/A 11

= SCINSTOFFSET

/• Template:
/• Note:
I•

Instrument Electronics Information Template
This template is to be completed for each
instrument if applicable.

I•
OBJECT = INSTELEC
I• Note: Electronics id same as instrument id when no sub-system exists.
ELECTRONICS_ID = 11 PWS 11

I•
ELECTRONICS_DESCRIPTION = "The PWS electronics system consists of
three basic sections. The first is the power supply system which
regulates and filters the 28 volt, 2400 Hertz spacecraft power supply
and provides DC voltages to the remainder of the instrument
electronics. The second section is the spectrum analyzer which
consists of two banks of 8 narrow-band filters, each and two
logarithmic detectors, each of which provides an analog voltage
proportional to the log of the signal strength delivered to the
detector from any of the eight filters it services. The analog outputs
from these two compressors, as they are called, are sent to the Flight
Data System of the spacecraft for conversion to an 8-bit digital value.
The spacecraft steps the inputs to the two compressors periodically
(once per 0.5 seconds in GS3 or encounter mode) so that signal
strengths in each of the 16 channels is measured over a 4-second
interval. The third section consists of a single broadband filter of
40 Hertz to 12 kiloHertz, an automatic gain controlled amplifier, and a
4-bit A/D converter. This section digitizes the electric field
waveform at a 28800 Hertz rate. The output amplitude is controlled by,
the automatic gain control in order to keep the signals within the
useful range provided by the 4-bit digitization."
END_OBJECT = INSTELEC

D-6

I•
/• Template:
/• Note:
I•

Instrument Detectors Information Template
This template is to be completed for each
detector utilized by a instrument.

I•
OBJECT
DETECTOR_ID
DETECTOR_TYPE
DETECTORS
MAXIMUM_WAVELENGTH
MINIMUM_WAVELENGTH

= INSTDETECT
= "PWS ANTENNA"
= "DIPOLE ANTENNA"
= 1
= 11 N/A 11

= 11 N/A 11

DATA SET DOCUMENTATION EXAMPLES

','

---,

NOMINAL_OPERATING_TEMPERATURE = 25 <c>
I•
INSTRUMENT_DETECTOR_DESC = "The PWS uses a pair of 10 meter
antenna elements as a balanced dipole antenna. The two elements are
extended from the spacecraft at right angles to each other. (The
elements are shared with the Planetary Radio Astronomy instrument,
which uses them as a pair of monopoles so that measurements of the
degree of right and left hand circular polarization can be made.) The
PWS measures the voltage difference between the two elements which,
when coupled with the effective length of the antenna system--7.07 m)
yields an electric field strength in units of volt/meter. The antenna
system has the usual dipole antenna pattern which yields nearly -4•pi
steradians in its field of view, although there is a range of fields of
view where the detector response drops dramatically as one expects from
a dipole pattern. 11

SENSITIVITY_DESCRIPTION = "The PWS antenna, used as a balanced
dipole with an effective length of 7.07 meters gives a sensitivity to
fluctuating (wave) electric fields down to the range of 5.E-6
volt/meter. 11

TEMPERATURE_TRANSLATION_DESC = 11 N/A 11

END_OBJECT = INSDETECT
I•
/• Template:
/• Note:
I•
I•

Instrument Mode Information Template
This template is to be completed for each
mode that a instrument may be configured.

OBJECT
INSTRUMENT_MODE_ID

= INSTMODE
= 11 GS3GAINHI/WFMPWRON 11

I* The follow 3
DATA_PATH_TYPE
DATA_PATH_TYPE
DATA_RATE
DATA_RATE
SAMPLE_BITS
SAMPLE_BITS
FOV_SHAPE_NAME
FOVS

duplicate entries are being remodeled at this time.
= "REAL-TIME PLAYBACK"
= "RECORDED DATA PLAYBACK"
= 32 <bps>
= 115200 <bps>
= 8 <bits>
= 4 <bits>
= 11 DIPOLE11

= 1
GAIN_STATE_ID = 11 HI 11

HORIZONTAL_FOV = 11 2•PI 11 ??? FLOAT
/• Next value may be horizontal_fov
HORIZONTAL_PIXEL_FOV = 11N/A 11

INSTRUMENT_POWER_CONSUMPTION = 1.6 <watt>
SCAN_RATE = 11 N/A 11

/• Next value may be verticle _fov
VERTICAL_FOV = 11 2•PI 11 ??? FLOAT
VERTICAL_PIXEL_FOV = 11 N/A 11

I•
INSTRUMENT_MODE_DESCRIPTION = "The PWS instrument gain is high and
the waveform receiver power is on. This is the normal encounter

DATA SET DOCUMENTATION EXAMPLES D-7

j

operating mode of the instrument and places it in its most sensitive
input gain state with the waveform receiver section turned on. The
fact that the waveform receiver power is on does not guarantee that
waveform data. is available. The spacecraft is in the GS-3 data mode
which cycles the plasma wave spectrum analyzer so· that a complete
spectrum is obtained every 4 seconds."
I•
/• Template: Instrument Mode Parameters Information Template
/• Note: This template is to be completed for each
/• mode parameter a instrument utilizes.
I•

~JECT -- INMODEPARM
INSTRUMENT_PARAMETER~NAME = "WAVE ELECTRIC FIELD INTENSITY"
INSTRUMENT_PARAMETER_UNIT = "VOLT/METER"
MINIMUM_INSTRUMENT_PARAMETER = 5.E-6
MAXIMUM_INSTRUMENT_PARAMETER = 5.E-1
NOISE_LEVEL = 5.E-6

INIMUM_SAMPLING_PARAMETE; --=--411!ffA1oif'-~--·_.,,,..

MAXIMUM_SAMPLING_PARAMETER = "N/A',11 '"S
MINIMUM_-AVAILABLE_SAMPLIN'G~INT= 4.0 <sec>
SAMPLING_PARAMETER_INTERVAL = 4.0 <sec>

~---1- LING_PARAMETER_NAME =· "TIME" 4i-
SAMPLING_PARAMETER_RESOLUTION = 4.0 <sec>

'---'..-,u::acLING_PARAMETER_UNIT = "SECOND"
I•
INSTRUMENT_PARAMETER_DESC = "A measured parameter equaling the
electric field strength in a specific frequency passband (in MKS unit:
volts/meter) measured in a single sensor or antenna."

'l:ND _ JECT = INMODEP ARM
/• An tt
/• Thi s b
/• Steve Hu es

lRIMUM_SAMPLING_PARAMETER = 1.0----·-·
MAXIMUM_SAMPLING_PARAMETER = 4.75
MINIMUM_AVAILABLE_SAMPLING_INT= .25 <sec>
SAMPLING_PARAMETER_INTERVAL = .25 <sec>

LING_PARAMETER_NAME = "FREQUENCY"
SAMPLING_PARAMETER_RESOLUTION = .25 <sec>
SAMPLING_PARAMETER_UNIT = "LOG HERTZ"

D_OBJECT = INMODEPARM
7• Another instrument mode parameter
OBJECT = INMODEPARM
INSTRUMENT_PARAMETER_NAME = "ELECTRIC FIELD COMPONENT"
INSTRUMENT_PARAMETER_UNIT = "VOLT/METER"
MINIMUM_INSTRUMENT_PARAMETER = 5.E-6
MAXIMUM_INSTRUMENT_PARAMETER = 5.E-1
NOISE_LEVEL = 5.E-6
MINIMUM_SAMPLING_PARAMETER = 3.47E-5
MAXIMUM_SAMPLING~PARAMETER = 3.47E-5

D-8 DATA SET DOCUMENTATION EXAMPLES

,.-,_

MINIMUM_AVAILABLE_SAMPLING_INT= 3.47E-5 <sec>,
SAMPLING_PARAMETER_INTERVAL = 3.47E-5 <sec>
SAMPLING_PARAMETER_NAME = "TIME"
SAMPLING_PARAMETER_RESOLUTION = 3.47E-5<sec>
SAMPLING_PARAMETER_UNIT = "SECOND"
INSTRUMENT_PARAMETER_DESC = "A measured parameter equaling the
electric field strength (e.g. in milli-volts per meter) along a
particular axis direction. 11

-mm_OBJECT
END_OBJECT
END_OBJECT

= INMODEPARM
= INSTMODE
= INSTINFO

/• Template: PDS Catalog References Input Template
I• Note:

'* I•

The folloving templates form part of a standard
set for the submission of a Publication References
to the PDS.

I•

'*
The folloving hierarchy was redone to reflect the actual
templates completed for this example

I• Hierarchy: REFERINFO
I•
I•

REFERAUTHOR
REFERAUTHOR

I•
OBJECT
DOCUMENT_TOPIC_NAME

JOURNAL_NAME
PUBLICATION_DATE
REFERENCE_DESCRIPTION
REFERENCE_KEY_ID
I•

= REFERINFO
= "A PLASMA WAVE INVESTIGATION FOR THE

VOYAGER MISSION"
= "SPACE SCIENCE REVIEWS"
= 1977
= "SCARF, F. L., AND D. A. GURNETT"

= "SCARF 77 11

I• Template: Reference Authors Information Template
I•
I•

Note: This template is to be completed for each
author associated vith the publication.

I•
OBJECT
FULL_NAME
END_OBJECT
/• another author
OBJECT
FULL_NAME
END_OBJECT
END_OBJECT
END_OBJECT

D.2 IRS DATA SET EXAMPLE

= REFERAUTHOR
= 11 F. L. SCARF"
= REFAUTHOR

= REFERAUTHOR
= "D. A. GURNETT"
= REFERAUTHOR
= REFERINFO
= DATASETHLCAT

The following text was generated as part of a data set restoration effort by the Radiometry
Node of the Pilot PDS. This information was intended for use in an online VAX help file. Please
note that only very limited information was available about some aspects of the experiment.

1 IRS

DATA SET DOCUMENTATION EXAMPLES D-9

The Mariner 6 and 7 Infrared Spectrometer experiment.
2 INSTRUMENT

The IRS instrument is comprised of a 10-inch Dall-Kirkham telescope feeding a pair of circular-
variable filter spectrometers. Channel 1 covers 4.0 to 14.3 microns, detected by a HgGe detector
at 22K, cooled by a Joule-Thomson cryostat. Channel 2 covers 1.9-6.0 microns; detection is by a
PbSe detector at 175K, with radiative cooling. Wavelength resolution is 0.5-1.0%.

For detailed information see the instrument paper in REFERENCES.
2TEAM

Information accurate as of 1984:

Principal investigator for IRS:
Dr. George C. Pimentel
Dept. of Chemistry
Univ. of California, Berkeley CA 94720
{415) 642-6330

Co-investigators:

D-10

Dr. Kenneth Herr
Aerospace Corp.
El Segundo CA
{213) 648-5620

DATA SET DOCUMENTATION EXAMPLES

-"'

2 COVERAGE
· Detailed information on coverage is available in the IRS data file as geometry for each spectrum

footprint. The geometry is contained in a header preceding each spectrum. Summary information
is given below.

Mariner 6 Mariner 7

Arrival date of July 31 1969 Aug. 5 1969
closest approach

Julian date 2440433.7216 2440438.7089

Areocentric solar 199.8 202.8
longitude (Ls)

Time of closest 5h 19m 06.8s 5h Om 49.5s
approach (UTC)

Altitude of closest 3428.91 km 3428.35 km
approach

Tangential velocity 8.03 km/sec 7.90 km/sec
of s/c at closest
approach

Latitude of subsolar -8.12 deg -9.30 deg
point at C/A

Longitude of subsolar 303.32 deg 356.00 deg
point

Longitude of terminator 33.32 deg 86.00 deg
at equator at C/A

The size of the instrument field of view (a slit) is 2.07 by 0.10 degrees, or 36.1 by 1.75 millira-
dians. Multiplying the latter set of numbers by the range for a given spectrum yields the footprint
size, in the same units as the range.

NOTE: the Mariner 6 instrument returned 108 Channel 2 (near-IR) spectra; no Channel 1
data were returned because the Joule-Thomson cryostat failed to cool the detector. The Mariner
7 instrument operated successfully in both channels and returned 130 spectra in each channel.

DATA SET DOCUMENTATION EXAMPLES D-11

2 DATAJ'ORMAT
IRS data are arranged as a single set of 512 spectra; there are first 36 calibration spectra,

followed by 122 Mariner 6 spectra, followed by 354 Mariner 7 spectra:

Record Spectra Nos. Channel Instrument Subject
--
1-22 (negative) 1,2 2 (Mar. 7) BB calibration
23-36 (negative) 2 1 (Mar. 6) BB calibration
37-158 14-290 2 1 space, Mars
159-323 2-274 2 2 space, Mars
324-512 2-274 1 2 space, Mars

D-12 DATA SET DOCUMENTATION EXAMPLES

Each spectrum is accompanied by a header containing spectrum number, instrument number,
channel number, spacecraft clock count, geometry information, and target blackbody temperature
in the case of calibration data. The header consists of 30 floating point numbers. The spectra are
each a set of 740 :floating point numbers, ranging in value between about -10. to +99.999. The
header format is as follows:

Word Item

1
2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

21
22

26*
27-30

*

Instrument number (1 = Mar. 6; 2 = Mar. 7)
Channel number (1 = 4-14 microns; 2 = 1.9-6 microns)

Spectrum number
GMT hour
GMT minute
GMT second

(neg. for calibration)

Encounter relative time: minutes
Encounter relative time: seconds
Spacecraft clock count
Latitude of slit center intercept on planet
Longitude of slit center intercept on planet
Latitude of slit north end intercept on planet
Longitude of slit north end intercept on planet
Latitude of slit south end intercept on planet
Longitude of slit south end intercept on planet
Emission angle (degrees) for slit center intercept
Incidence angle (degrees) for slit center intercept
Phase angle (degrees) for slit center intercept
Angle (degrees) betveen slit center intercept

and planet center as seen from spacecraft
Time past local sunset at slit center intercept

(hours and tenths)
Slant range (km) to slit center intercept
Altitude of tangent ray above planetocentric sphere

for non-intercepting vievs
Wavelength interval per spectrum point, left

segment (betveen left and central spike)
Wavelength (microns) of first point in left segment
Wavelength interval per spectrum point, right

segment (betveen central and right spike)
Wavelength (microns) of point 350 in spectrum
Spare

These items have been derived from the spectra and vere
not included originally in the data set. See DECALIBRATI0N.

DATA SET DOCUMENTATION EXAMPLES D-13

2 CALIBRATION
Pre-flight calibration of the IRS instruments consisted of obtaining spectra of blackbody

sources at varying temperatures in the range 77-300K, as well as absorption spectra of NH3, CH4,
H2O, CO2, and polystyrene with a high-temperature source. See the instrument paper under
REFERENCES. Several blackbody calibration spectra at various target temperatures are available
in the data file; they are the first spectra in the set, flagged by having negative spectrum numbers.
2 DECALIBRATION

Wavelength calibration information in flight was derived from observations of polystyrene
film, which has many absorption features in the range of interest. The polystyrene spectrum
was superimposed on the target (Mars) spectrum each 12th time. Unfortunately, these spectra
are unavailable at the present time in digital form. The spikes that occur in all the spectra are
introduced by allowing broadband radiation onto the detector at certain rotational positions of the
circular variable filters. Ostensibly, these spikes represent wavelength fiduciaries. Thus, for Mariner
6(7), the spikes mark 1.88(1.88) microns and 3.72(3.69) microns for the shortwave part of channel 2,
and 3.04(2.99) and 6.14(6.00) microns on the longwave side. Channel 1 is similarly marked; the first
spike is at 3.89(3.86) microns, the middle spike at 7.92(7.88). The longwave segment of channel 1
uses the middle spike as 7.21(7.37) microns and the third spike as 14.69(14.45). However, it will be
found that the spikes do not relate reproducibly to the locations of atmospheric CO2 features; there
is a small jitter in the relative locations. Wavelength information can also be derived from the known
positions of these CO2 atmospheric features in the Mars data; this is probably the most accurate
and dependable scheme. However, the only sharp CO2 features occur in the shortwave segment of
channel 2 spectra. We have used the 2.0 and 2.69 micron features to derive the wavelength scale
for this segment when possible; the parameters thus found are stored in header locations 23 and
24. For all other spectra, the wavelength parameters are found by extracting the location of the
spikes and assigning them the wavelengths noted above (from the instrument paper).

Flux decalibration was performed by in-flight observations of an internal blackbody every 12th
spectrum. The sequence of data acquisition was: BB calibration, 5 Mars spectra, polystyrene +
Mars spectrum, 5 Mars spectra, BB calibration, etc. There was no significant change in photometric
performance in flight, as measured by blackbody calibrations.

Although information is present in the instrument paper (figure 5) that would permit decali-
brating the intensity scale, and detector response curves are also available for detectors of the kind
used, we have not applied such corrections to the spectra because of the resulting uncertainties.
For many purposes the overall shape of the spectra is of lesser importance; the thermal region spec-
tra have good blackbody calibration spectra available that will permit assessment of instrumental
effects (these are the first spectra in the file).
2 GEOMETRY

Position of the IRS FOV relative to the television experiment:

TV-B
TV-A
IRS

Cone

-0 deg. 1'50"
+0 14'50"
-3 53'12"

Cross-cone

+0 deg. 0'30"
+0 9'31 11

+1 33'42"

It is not stated whether these values apply to both spacecraft.

D-14 DATA SET DOCUMENTATION EXAMPLES

Groundtrack geometry information for the IRS data set is contained in the data file together
with the spectra themselves. See DATA-FORMAT for specific information. Available parameters
are:

GMT TIME;
LATITUDE:
LONGITUDE:

TIME RELATIVE TO ENCOUNTER;
NORTH, SOUTH ENDS OF SLIT AND CENTER

II II II II II II

EMISSION ANGLE AT SURFACE INTERCEPT (SLIT CENTER)
SOLAR INCIDENCE ANGLE AT SURFACE INTERCEPT
SOLAR PHASE ANGLE AT SURFACE INTERCEPT
ANGLE FORMED BY INTERCEPT POINT, SPACECRAFT, AND PLANET CENTER
TIME PAST LOCAL SUNSET AT INTERCEPT POINT
RANGE OF SPACECRAFT FROM SURFACE INTERCEPT
ALTITUDE OF TANGENT RAY ABOVE PLANETOCENTRIC SURFACE (WHEN

INSTRUMENT IS NOT POINTED AT PLANET)

Original longitudes supplied were east longitude, in the NA3 system operative in 1969. We
have converted the latitudes and longitudes to the post-Viking system, incorporating both the
redefinition of zero longitude and the relocation of the Martian pole. Longitudes are now west
longitudes. For details of the major changes that occurred after Mariner 9 (the Viking alteration
is minor), see the article by de Vaucouleurs in REFERENCES.
2 SOFTWARE

The only software available is the small set ofIDL routines developed in 1984-5 by T.Z. Martin
as this data set was incorporated into the PDS. They permit printing the header information,
printing individual spectra, and plotting spectra to a Tektronix graphics terminal.

IRSOP:

IRSPLOT:

a program to read the IRS data and print header contents or
individual spectra.

a program to plot spectra to a graphics terminal. The spec-
trum, channel, and instrument number will be requested; it will
be helpful to have available a printout of the headers obtained
with IRSOP. Subsequent spectra can be overplotted on the first,
in different colors if the capability· exists. The program sends
escape codes to inform the terminal emulation software (ESC140
on the NEC APC computer) to change color. These codes may
be changed as desired to suit other configurations.

DATA SET DOCUMENTATION EXAMPLES D-15

2 REFERENCES
The following references will be of value to the researcher interested in the IRS instrument and

data set; these are the main papers published by the team.
1. "Mariner Mars 1969 IR Spectrometer"; K.C. Herr, P.B. Forney, and G.C. Pimentel, Applied

Optics 11, 493 (1972).
2. "Evidence about hydrate and solid water in the Martian surface from the 1969 Mariner IR

Spectrometer"; G.C. Pimentel, P.B. Forney, and K.C. Herr, J. Geophys. Res. 79, 1623 (1974).
3 "Martian topography from the Mariner 6 and 7 IR spectra"; K.C. Herr, D. Horn, J.M. McAfee,

and G.C. Pimentel, Astron. J. 75, 883 (1970).
4 "Evidence for solid carbon dioxide in the upper atmosphere of Mars"; K.C. Herr and G.C.

Pimentel, Science 167 , 47 (1970).
5. "The composition of the Martian atmosphere: minor constituents"; D. Horn, J_.M. McAfee, A.

M. Winer, K.C. Herr, and G.C. Pimentel, Icarus 16, 543 (1972).
6. "IR absorptions near three microns recorded over the polar cap of Mars"; K.C. Herr and G.C.

Pimentel, Science 166, 496 (1969).
The following final report for JPL contract 951722 contains the best known geometry infor-

mation for the data set and certain information about calibration. It is identical to the microfiched
information available from the NSSDC:

"Infrared Spectrometer Mariner Mars 1969 - Data Format Report"; May 11970, G.C. Pimentel
and K.C. Herr, University of California Space Sciences Laboratory Series 11 Issue 44, Berkeley,
California 94720.

Reference for the old and new latitude/longitude system for Mars:
"Mariner 9 areographfo coordinate system"; G. de Vaucouleurs, M.E. Davies, and F.M. Sturms,

J. Geophys. Res. 78, 4395 (1973).

D-16 DATA SET DOCUMENTATION EXAMPLES

Appendix E

ENTITY DEFINITIONS AND STRUCTURES

This Appendix defines and presents the structure of each data entity contained in the PDS
Entity-Relationship model. For each entity, a general textual description is followed by a data
structure chart in indented-list format. Each structure chart identifies by name all of the groups
and elements which comprise a particular entity and shows the hierarchical relationship between
the components of the entity. Where an entity includes multiple occurrences of a group or an
element, the designator (m) appears with the name. The definitions of groups and elements can
be found in the PDS Data Dictionary. This appendix supersedes the entity structure found in the
preliminary Planetary Data System Data Dictionary, D-4854, which was published on January 15,
1988.

Entity Name

coordinate system information
data set and product information
earth bases information
event information
institution information
instrument information
instrument host information
mission information
node information
parameter information
personnel information
platform information
reference information
software information
spacecraft information
target body information

ENTITY DEFINITIONS AND STRUCTURES E-1

E.1 COORDINATE SYSTEM INFORMATION

The coordinate-system-information entity defines a reference coordinate system.

Level Group/Element Structure

1 coordinate system id
1 coordinate system name
1 coordinate system center name
1 coordinate system ref epoch
1 coordinate system description
1 vector component information group (m)

2 vector component id
2 vector component type
2 vector component type desc
2 reference target name
2 reference object name
2 unit

E-2 ENTITY DEFINITIONS AND STRUCTURES

E.2 DATA SET AND PRODUCT INFORMATION

The data-set-and-product-information entity describes the contents and history of a data set
or a data product. It uniquely identifies the data set or product as well as the producer of the data.
It describes the data set or product in terms of its sampling, resolution, and physical or measured
parameters and identifies references relating to the data set or product. It identifies the storage
location and physical format of the stored data set or data product. In addition, where applicable
and available, it provides information about the processing software and antecedent data used to
produce the data set or product.

Note that for PDS Catalog purposes the notion of "data sets" includes the SPICE kernels
produced by the Navigation Ancillary Information Facility (NAIF) at JPL.

Level Group/Element Structure

1 data set identification group

1

1

1

1
1
1
1
1

1

2 data set name
2 data set id
2 data set description
2 target identification group (m)

3 target name
2 event time range

3 start event time
3 stop event time

2 data object type
2 release date

2
2
2
2

2
2
2
2

2
2
2
2

2
2

data set measurement group
measurement source desc
measurement atmosphere desc
measurement standard desc
measurement wave calbrt desc

data producer group
full name
institution name
processing level id
processing level desc

data processing history group (m)
source data set id (m)
software name
release date
processing time

confidence level note
document reference key id
pin software flag
detail catalog flag
data set instrument group (m)

instrument host id (m)
instrument id

reference key id (m)

ENTITY DEFINITIONS AND STRUCTURES

E.3 EARTH BASE INFORMATION

The earth-base-information entity describes earth bases and associates them with institutions
and nodes.

Level Group/Element Structure

1 earth base id
1 earth base name
1 node id
1 institution name

E.4 EVENT INFORMATION

The event-information entity defines the approximate location and time of an observed event.
It defines the location of the event with an initial position vector and, wp.ere appropriate, a spatial
extent.

Level Group /Element Structure

1 event identification group
2
2

3
2
2
2
2
2
2

event name
event type

event type description
target name
start event time
data set id
stop event time
instrument id
instrument host id

1 event location group
2 spatial coverage group

3 maJCimum latitude
3 minimum latitude
3 maximum longitude
3 minimum longitude

2 position vector group
3 coordinate system id
3 vector component id 1
3 vector component 1
3 vector component id 2
3 vector component 2
3 vector component id 3
3 vector component 3
3 local hour angle

E-4 ENTITY DEFINITIONS AND STRUCTURES

E.5 INSTITUTION INFORMATION

The institution-information entity provides the name of an institution.

Level Group/Element Structure

1 institution name

ENTITY DEFINITIONS AND STRUCTURES E-5

E.6 INSTRUMENT INFORMATION

The instrument-information entity describes the characteristics of an instrument, including its
mounting location, the scientific objectives for which it was designed, the observations in which it
took part, the physical parameters measured by the instrument and sampling information required
for the interpretation of instrument data values.

Each instrument consists of a set of subsystems. These subsystems are the detectors, optics,
electronics and other components which define the system used to gather data. For a spacecraft-
based instrument the set of subsystems is fixed, although only some parts of it may be used for any
given observation (for example, only one of two available detectors may be in use at a particular
time). This fixed set of subsystems which forms a spacecraft-based instrument is identified by a
serial number, a name, and an identification. Many laboratory- or observatory-based instruments,
however, do not consist of a fixed set of subsystems but are defined by the set of subsystems in use
when particular data observations were made. In these cases, there is no defined instrument-specific
identifying information other than the type of the instrument and the name of the laboratory and
institution.

Level Group /Element Structure

1 instrument identification group
2 instrument id
2 instrument name
2 instrument host id
2 instrument host type
2 instrument type

1 instrument desc
1 pds user id
1 data set id
1 start time
1 instrument data set group (m)

2 instrument parameter name
2 data set parameter name
2 important instrument parms

1 scientific objectives summary
1 instrument calibration desc
1 instrument mode group (m)

2 instrument mode id
2 gain state id
2 data path type
2 instrument power consumption
2 instrument mode desc
2 section id (m)

1 instrument section information group (m)
2 section id
2 horizontal pixel fov
2 vertical pixel fov
2 horizontal fov
2 vertical fov
2 fov shape name

E-6 ENTITY DEFINITIONS AND STRUCTURES

2 data path description
2 data rate
2 scan rate
2 sample bits
2 fovs
2 filter number (m)
2 detector id (m)
2 telescope id (m)
2 electronics id (m)

1 filter group
2 filter name

'~
2 filter number
2 filter type
2 minimum wavelength
2 maximum wavelength
2 center filter wavelength
2 measurement wave calbrt desc

1 instrument detector group (m) --,
2 instrument detector desc
2 detector id
2 detector type
2 detector aspect ratio
2 minimum wavelength
2 maximum wavelength
2 nominal operating tern perature
2 sensitivity desc
2 temperature translation desc

1 instrument optics group (m)
2 optics desc
2 telescope group

----"' 3 telescope id
3 telescope diameter
3 telescope f number
3 telescope focal length
3 telescope resolution
3 telescope serial number

...._,, 3 telescope t number
3 telescope t number error
3 telescope transmittance

1 spacecraft mounting information group (m)
2- platform or mounting name
2 instrument mounting desc
2 cone offset angle
2 cross cone offset angle
2 twist offset angle - 1 earthbase mounting information group (m)
2 platform or mounting name
2 latitude
2 longitude

ENTITY DEFINITIONS AND STRUCTURES E-7

2 instrument mounting desc
1 instrument physical characteristics group

2 instrument mass
2 instrument length
2 instrument width
2 instrument height
2 instrument serial number
2 instrument manufacturer name

1 instrument electronics group
2 electronics id
2 electronics desc

1 operational considerations desc
1 reference key id (m)

E. 7 MISSION INFORMATION

The mission-information entity provides a high-level description of a solar system mission or
project and its objectives and characterizes each of its phases.

Level Group /Element Structure

1 mission name
1 mission desc
1 mission institution group (m)

2 institution name
2 start time
2 stop time

1 mission objectives summary
1 mission phase group (m)

2 mission phase name
2 mission phase type
2 mission phase desc
2 spacecraft id
2 target name
2 target type
2 start event time
2 stop event time

1 reference key id (m)

E-8 ENTITY DEFINITIONS AND STRUCTURES

-,

E.8 NODE INFORMATION

The node-information entity provides information about a PDS Node. It identifies the Node
Manager, the address of the Node and the institution at which the Node resides.

Level Group/Element Structure

1 node name
1 node id
1 institution name
1 discipline name
1 node manager group

2 pds user id
1 node contact group

2 pds user id

ENTITY DEFINITIONS AND STRUCTURES E-9

E.9 PARAMETER INFORMATION

The parameter-information entity provides information about instrument and data set param-
eters.

Level Group/Element Structure

1 data set parameter group
2 data set id
2 sampling parameter name
2 sampling parameter resolution
2 minimum sampling parameter
2 maximum sampling parameter
2 sampling parameter interval
2 minimum available sampling int
2 sampling parameter unit
2 data set parameter name
2 noise level
2 data set parameter unit

1 instrument section parameter group
2 instrument id
2 instrument host id
2 section id
2 sampling parameter name
2 sampling parameter resolution
2 minimum sampling parameter
2 maximum sampling parameter
2 minimum available sampling int
2 sampling parameter unit
2 instrument parameter name
2 noise level
2 instrument parameter unit
2 minimum instrument parameter
2 maximum instrument parameter

E-10 ENTITY DEFINITIONS AND STRUCTURES

.-:;.-::;;

-

E.10 PERSONNEL INFORMATION

The personnel-information entity provides information about personnel associated with the
PDS, including electronic and mailing addresses, a time-tagged affiliation history identifying the
mission or task roles performed by a given person, the individual's institutional affiliations and his
or her area of expertise.

Level Group/Element Structure

1 pds user id
1 full name
1 telephone number
1 fts number
1 mailing address line
1 discipline name
1 expertise area group (m)

2 expertise area id
2 expertise area desc

1 affiliation group
2 mission group (m)

3 spacecraft id
3 instrument id
3 mission name
3 role group (m)

4 expertise area id
4 specialty name
4 role name
4 start time
4 stop time
4 scientist funding id

2 task group (m)
3 task name
3 role group (m)

4 expertise area id
4 specialty name
4 role name
4 start· time
4 stop time
4 scientist funding id

2 institution group (m)
3 institution name
3 scientist funding id
3 start time

1 node id
1 start time

2 electronic mail group (m)
3 electronic mail id
3 electronic mail type

ENTITY DEFINITIONS AND STRUCTURES E-11

3 preference id

E.11 REFERENCE INFORMATION

The reference-information entity identifies documents which are referenced elsewhere in the
PDS. Along with the traditional bibliographic information needed to reference journal articles, it
provides information which will assist in referencing non-journal documents such as JPL-internal
or other institution-internal documents.

Level Group/Element Structure

l reference key id
l document topic name
l publication date

2 author group (m)
3 full name

l journal name
l reference desc

E.12 SOFTWARE INFORMATION

The software-information entity provides information about software available through the
PDS. This includes information about the input data requirements, the input and output pa-
rameters which may be chosen, the output data and their formats and the required hardware and
operating system environment. It identifies each program and its algorithms, along with the person
to contact for additional information or for copies of the software.

TBD

E-12 ENTITY DEFINITIONS AND STRUCTURES

--,

E.13 SPACECRAFT INFORMATION

The spacecraft-information entity describes the characteristics of a given spacecraft, including
spacecraft operational information, information about instrument platforms on the spacecraft, and
reference information.

Level Group/Element Structure

1 spacecraft id
1 spacecraft name
1 spacecraft desc
1 launch date
1 platform information group (m)

2 platform or mounting name
2 platform or mounting desc

1 spacecraft operations group (m)
2 spacecraft operations type
2 start event time
2 stop event time

1 reference key id (m)

ENTITY DEFINITIONS AND STRUCTURES E-13

E.14 TARGET BODY INFORMATION

The target-body-information entity provides information which characterizes a particular solar
system target body, such as the Sun, a planet, a satellite, an asteroid, or a comet. This includes
various physical parameters and orbital parameters for the body. Along with each data value, this
entity identifies the source of the data value, which, for example, may be a document, an institution
or an individual.

Note that the most accurate ephemeris information for a given body is available in the ap-
propriate SPICE kernel produced by the Navigation and Ancillary Information Facility (NAIF) at
JPL.

Level Group/Element Structure

1 target identification group
2 target name
2 target type

1 target physical information group
2 primary body name
2 rings
2 ring system summary
2 mean radius
2 a axis radius
2 b axis radius
2 c axis radius
2 flattening
2 mass
2 mass density
2 mean surface pressure
2 minimum surface pressure
2 maximum surface pressure
2 mean surface temperature
2 minimum surface temperature
2 maximum surface temperature
2 surface gravity
2 bond albedo
2 magnetic moment

1 target orbit group
2 rotation period
2 obliquity
2 pole right ascension
2 pole declination
2 synodic revolution period
2 sidereal revolution period
2 mean orbital radius
2 orbital semimajor axis
2 orbital eccentricity
2 orbital inclination
2 ascending node longitude
2 periapsis argument angle

E-14 ENTITY DEFINITIONS AND STRUCTURES

2 secondary body name (m)
1 target parameter information group

2 target parameter name
2 target parameter uncertainty
2 target parameter epoch
2 data source id
2 data source desc

ENTITY DEFINITIONS AND STRUCTURES E-15

E-16 ENTITY DEFINITIONS AND STRUCTURES

Appendix F

PDS CLASS AND DESCRIPTOR WORD DICTIONARY

F.1 INTRODUCTION
In the PDS naming syntax, the words forming a name are composed of specifiers (first, last,

start, stop), descriptor words (which describe what is being measured or presented in the value field)
and class words (which identify the gross data type of the object). Names are constructed using
these word components from left to right, from most specific (the leftmost word) to most generic
(the rightmost word). The following lists identify the current set of class words and descriptor
words for use in PDS object naming. Appendix G provides a list of standard abbreviations for
these words and other specifiers used in the PDS data dictionary.

F .2 CLASS WORD DICTIONARY
count

date

description

flag

group

id

mask

name

A numeric value indicating a current total or tally of an entity.
The class word count is implied by the use of plural descriptor
words such as lines, bytes or bits.

Example: LINES= 800 (interpreted as LINE-COUNT= 800).

A representation of time in which the smallest unit of measure is
a day. The value is expressed in one of the standard forms.

Example: NATAL-DATE= 1959-05-30.

A textual account.

Example: "instrumenLdescrip_tion"

A boolean condition indicator, limited to two states.

Example: PRESSURE-VALVE-FLAG=TRUE.

Names a collection- or aggregation of elements.

Example: IMAGEJDENTIFICATION_GROUP.

A shorthand alphanumeric notation representing the common
term used for an entity.

Example: SPACECRAFTJD = VGl

An unsigned numeric value representing the bit positions within
an element value.

Example: SAMPLE_BIT_MASK = 2#00011111#.

A literal value representing the common term used to name an
element.

Example: SPACECRAFT_NAME=MAGELLAN.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-1

note

number

ratio

text

time

type

value

A textual expression of opinion, an observation, or a criticism; a
remark.

Example: DATASET..NOTE = "This is a good dataset".

A number associated with an object.

Example: FILTER..NUMBER = 5

The relation between two quantities with respect to the number
of times the first contains the second.

Example: SIGNAL-TO-NOISE-RATIO = 45.67

A free form text string of undefined content.

Example: OPERATIONALUSAGE_TEXT = "Description of
the operational usage of this instrument ... ".

A value which measures the point of occurrence of an event ex-
pressed as date and time in one of the standard forms.

Example: HAPPY-HOUR-TIME=1987-06-21Tl 7:30:30.0

A literal which represents a major predefined category.

Example: TARGET_TYPE=PLANET.

A numeric value representing a generic term for the amount or
quantity of an entity whe.re a more specific term is not defined.
This is the default class word for names not terminated with a
class word.

Example: SURFACE_TEMPERATURE = 98.6 would be
interpreted as SURFACE-TEMPERATURE-VALUE.

F.3 DESCRIPTOR WORD DICTIONARY

For Descriptor Words of a scientific nature (as opposed to the computer systems-oriented
words such as "bits"), the definitions are intended to convey the meaning of each word within the
context of planetary science and thus to facilitate the standardization of nomenclature within the
planetary science community.

Certain descriptor words may have more than one meaning, depending upon the context in
which they are used. It is believed that it is appropriate to include these words and their (multiple)
definitions in the list, and that the context- will suggest which definition is applicable in a given
case.

In some cases (such as "elevation"), the usage example given for the Descriptor Word may
contain just the word itself. In general, however, the Descriptor Word is one of several components
of a data object's name.

' "Plural Descriptor Words" are a special component of the PDS Nomenclature Standards. A
list of these words follows the body of the Descriptor Words list.

F-2 PDS CLASS AND DESCRIPTOR WORD DICTIONARY

Formerly used (or proposed) descriptor words which have been superceded by other words are
also enumerated at the end of the main Descriptor Words list.

albedo

altitude

angle

axis

azimuth

bandwidth

base

channel

circumference

coefficient

Reflectivity of a planetary surface or particle.

Example: "bond_albedo"

The distance above a reference surface measured normal to that
surface. Note: see "elevation" and "height". Altitudes are not
normally measured along extended body radii, but along the di-
rection normal to the geoid; these are the same only if the body
is spherical.

Example: "spacecraft-altitude"

A measure of the geometric figure formed by the intersection of
two lines or planes. Note: element definitions for angles should
include origin and relevant sign conventions where applicable.

Example: "maximum_emission_angle"

A straight line with respiect to which a body or figure 1s
symmetrical.

Example: "or bi taLsemimajor _axis"

One of two angular measures in a spherical coordinate system.
Azimuth is measured in a plane which is normal to the princi-
pal axis, with increasing azimuth following the right hand rule
convention relative to the positive direction of the principal axis.
PDS adopts the convention that an azimuth angle is never signed
negative. The point of zero azimuth must be defined in each case.

Example: "sub_solar_azimuth"

The range within a band of wavelengths, frequencies or energies.

Example: "radar_bandwidth"

A quantity to be added to a value.

A band of frequencies or wavelengths.

The length of any great circle on a sphere.

A numeric measure of some property or characteristic.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-3

component

constant

consumption

contrast

declination

density

deviation

diameter

distance

duration

F-4

1) The part of a vector associated with one coordinate; 2) A
constituent part.

Example: "event-velocity ..x_component"

A value that does not· change significantly with time.

The usage of a consumable.

Example: "instrument-power-consumption"

The degree of difference between things having a comparable
nature.

Example: "maximum_spectral_contrast"

An angular measure in a spherical coordinate system, declination
is the arc between the Earth's equatorial plane and a point on a
great circle perpendicular to the equator. Positive declination is
measured towards the Earth's north pole, which is the positive
spin axis per the right hand rule; declinations south of the equator
are negative. The orientation of the Earth's equator must ·be
specified; either the B1950 or J2000 reference coordinate system.
PDS adopts J2000 as the default. (See also "right_ascension" .)

Example: "declination"

1) The mass of a given body per unit volume. 2) The amount of
a quantity per unit of space.

Example: "mass-density"

Degree of deviance.

The length of a line passing through the center of a circle or a
circular object.

Example: "telescope-diameter"

A measure of the linear separation of two points, lines, surfaces,
or objects. See also "altitude," which refers to a specific type of
distance. The use of the word "distance" supercedes the use of
the word "range" as a measure of linear separation (see definition
of "range" below).

Example: "slant-distance"

A measure of the time during which a condition exists.

Example: "instrument..exposure_duration"

PDS CLASS AND DESCR.IPTOR WORD DICTIONARY

eccentricity

elevation

epoch

error

factor

fov

flattening

fraction

frequency

A measure of the extent to which the shape of an orbit deviates
from circular.

Example: "orbitaLeccentricity"

1) The distance above a reference surface measured normal to
that surface. Elevation is the altitude of a point on the physical
surface of a body measured above the reference surface; height
is the distance between the top and bottom of an object. 2) An
angular measure in a spherical coordinate system, measured pos-
itively and negatively on a great circle normal to the azimuthal
reference plane. The zero elevation point lies in the azimuthal
reference plane, and positive elevation is measured towards the
direction of the positive principal axis. (See also "azimuth".)

Example: "elevation"

A specific instance of time selected as a point of reference.

Example: "coordinate..system_reference..epoch"

The difference between an observed or calculated value and a
true value.

Exam pie: "telescope-t..number _error"

A quantity by which another quantity is multiplied or divided.

Example: "samplingJactor"

(Acronym for "field_oLview") The angular size of the field viewed
by an instrument or detector. Note that a field may require
multiple field-0Lview measurements, depending upon its shape
(e.g., height and width for a rectangular field).

Example: "horizontalJov"

A measure of the geometric oblateness of a solar system body, de-
fined as the ratio of the difference between the body's equatorial
and polar diameters to the equatorial diameter, or "(a-c)/a."

Example: "flattening"

The non-integral part of a real number. See "base".

The number of cycles completed by a periodic function in unit
time.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-5

gravity

height

inclination

index

interval

latitude

length

level

line

location

F-6

The gravitational force of a body, nominally at its surface.

Example: "surface_gravity"

The distance between the top and bottom of an object.

Example: "scaledJmage-height"

The angle between two intersecting planes, one of which is
deemed the reference plane and is normally a planet's equato-
rial plane as oriented at a specified reference epoch.

Example: "ringJnclination"

An indicator of position within an arrangement of items.

1) The intervening time between events. 2) The -distance be-
tween points along a coordinate axis. See also "duration" for
time intervals.

Example: "samplingJnterval"

Multiple definitions exist for latitude. PDS looks to NASA's
Planetary Cartography Working Group to provide specific rec-
ommendations for definition of this term. (See also "longitude".)

Example: "minimumJatitude"

A measured distance or dimension. See also "height" and
"width".

Example: "telescope_focalJength"

The magnitude of a continuously varying quantity.

Example: "noiseJevel"

1) A row of data within a two-dimensional data set. 2) A narrow
feature within a spectrum.

Example: "mailing_addressJine-1"

The position or site of an object.

Example: "documentJocation"

PDS CLASS AND DESCRIPTOR WORD DICTIONARY

longitude

mass

moment

obliquity

parameter

password

percentage

period

pressure

Differing definitions for planetocentric- and planetographic- lon-
gitude exist, and these definitions in turn depend on the definition
of East or North. PDS looks to NASA's Planetary Cartography
Working Group to provide specific recommendations for defini-
tion of this term. (See also "latitude".)

Example: "maximumJongitude"

A quantitative measure of a body's resistance to acceleration.

Example: "instrumenLmass"

The product of a quantity (such as a force) and the distance to
a particular point or axis.

Example: "magnetic_.moment"

Angle between a body's equatorial plane and its orbital plane.

. Example: "obliquity"

A variable.

Example: "maximum-physical-parameter"

An alphanumeric string which must be entered by a would-be
user of a computer system in order to gain access to that system.

Example: "accounLpassword"

A part of a whole, expressed in hundredths.

Example: "data_coverage_percentage"

The duration of a single repetition of a cyclic phenomenon or
motion.

Example: "rotation-period"

Force per unit area.

Example: "mean_surface_atmospheric_pressure"

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-7

righLascension

radiance

radius

range

rate

resolution

scale

summary

temperature

title

F-8

(right_ascension) The arc of the celestial equator between the
vernal equinox and the point where the hour circle through the
given body intersects the Earth's mean equator reckoned east-
ward, in degrees. The Earth mean equator and equinox shall
be as defined by the IAU as the 'J2000' reference system unless
noted as the 'B1950' reference system.

Example: "righLascension"

A measure of the energy radiated by an object.

Example: "spectrumJntegrated..radiance"

The distance between the center of and a point on a circle, sphere,
ellipse or ellipsoid.

Example: "meanJnner..radius"

Numeric values which identify the starting and stopping points
of an interval. Note: the use of the word "distance" supercedes
the use of the word "range" as a measure of linear separation
(see definition of "distance" above).

Example: "AXIS..n_BIN _RANGE" "emission_angle..range"

The amount of change of a quantity per unit time.

Example: "nominal..spin..rate"

A quantitative measure of the c;1,bility to distinguish separate
values.

Example: "sampling_parameter..resolution"

A proportion between two sets of dimensions.

Example: "map_scale"

An abridged description.

Example: "scientific_objectives..summary"

The degree or intensity of heat or cold as measured on a thermo-
metric scale.

Example: "mean..surface_temperature"

A descriptive heading or caption.

Example: "sequence_title"

PDS CLASS AND DESCRIPTOR WORD DICTIONARY

transmittance

unit

wavelength

width

The ratio of transmitted to incident energy.

Example: "telescope_transmittance"

A determinate quantity adopted as a standard of measurement.

Example: "unit"

The distance that a wave travels in one cycle.

Example: "minimum_wavelength"

The distance between two sides of an object. See also "height"
and "width."

Example: "scaledJmage_width"

F.4 PLURAL DESCRIPTOR WORDS

axes

bits

bytes

columns

detectors

fovs

images

items

The number of axes within a qube data object.

A count of the number of bits within an elementary data item.

Examples: "ELEMENT..BITS," "sample_bits"

A count of the number of bytes within a record, or within a sub-
component of a record.

Example: "RECORD-BYTES"

A count of the number of distinct data elements within a row in
a table.

A count of the number of detectors contained, for example, in a
given instrument.

Example: "detectors"

A count of the number of different fields of view characteristic of
an instrument or detector

Example: "fovs"

A count of the number of images contained, for example, in a
given mosaic.

Example: "mosaicJmages"

A count of the number of data elements along a specified axis of
a data array.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-9

lines

parameters

points

records

ririgs

rows

samples

units

A count of the number of data occurrences in an image array.

A count of the number of parameters in a given application.

Example: "required-parameters"

A count of the number of points (i.e., data samples) 0<:curring,
for example, within a given bin. · · '

Example: "bin_points"

' ' A count of the number of physical or logical records within a file
or a subcomponent of a file.

Example: "FILE-RECORDS"

A count of the number of rings associated with a given solar
system body.

Example: "rings"

A count of the number of data occurrences in a table.

A count of the number of data elements in a line of an image
· array or a set of data.

Example: "sequence-Samples"

A count of the number of units of a particular type

Example: "media-units"

F.5 IDENTIFIED NON-DESCRIPTOR WORDS
The following words are not to be used as descriptor words. For each word, the list below

explains why the word was not included in the descriptor words list and provides an alternative
which is a recognized PDS descriptor word.

code

date/time

definition

divisor

F-10

Ambiguous. Use "id" instead.

Unnecessary. Use "time" alone in naming fields which may carry
both date and time information, or which carry only time infor-
mation (i.e., fields which provide information in units not greater
than hours). Use "date" alone only in naming fields which are to
carry only date information (i.e., fields which provide information
only down to the level of days).

Unnecessary. Use "description" instead.

Unnecessary. Use "factor" instead.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY

field_of_ view

identification

increment

indicator

information

mode

multiplier

comment

order

origin

position

right-ascension

Awkward. Use "fov" instead.

Too long. Use "id" instead.

Unnecessary. Use "interval" instead.

Unnecessary. Use "id" or "state" instead.

Ambiguous. Use "description" instead. (Note: "information" is
used as a descriptor word in the names of Data Dictionary entity
names on an exception basis).

Unnecessary. Use "description" or "id," as appropriate, together
with mode (e.g., mode_description or modeJd).

Unnecessary. Use "factor" instead.

Unnecessary. Use "note" instead.

The descriptor word should be id, type, or description, as in
storage_order_description.

The descriptor word should be description or group, as in pro-
jection_origin_grou p.

Unnecessary. Use "location" instead.

Awkward. Use "ra" instead.

PDS CLASS AND DESCRIPTOR WORD DICTIONARY F-11

F-12 PDS CLASS AND DESCRIPTOR WORD DICTIONARY

Appendix G

PDS ABBREVIATION LIST

The following is "Version A" (February 3, 1988) of the PDS Standard Abbreviations List,
which replaces the November 12, 1987 Preliminary Version. Version A reflects the PDS Data Design
Team's comments on the previous version. The Standard Abbreviations List is a component of the
PDS Nomenclature Standards, which are explained in this document.

The Abbreviations List provides one or more standard abbreviation(s) for every word which
appears in any of the data object names in the PDS Data Dictionary, as well as for other words
needed in PDS applications. Each abbreviation listed is unique. Where "(DROP)" appears in
place of an abbreviation, the word is to be dropped - rather than abbreviated - when necessary in
a given application.

The list is not expected to require any additional editing, except to ADD new words and their
abbreviations, or to ADD new abbreviations for words already on the list. Thus, the list should be a
trustworthy source of standard abbreviations for use throughout PDS Version 1.0 implementation.

The Abbreviations List is maintained by the PDS Data Management Team at JPL.

FULL WORD ABBR #1

acceptance acptnc
account acct
address addr
affiliation a:ffil
albedo alb
algorithm alg
altitude alt
and (DROP)
angle ang
anomaly anom
antecedent antcdt
approach aprch
area ar
argument arg
ascending ascndg
aspect aspct
associated assctd
atmosphere atmos
atmospheric atmsc
author auth
authority authty
availability avlbty
available avlbl
average avg
axis axs
azimuth az

PDS ABBREVIATION LIST

ABBR #2

acpc
act
adr-.
afl

an
anm
ant
apch

asc
asp
ascd
atms
ate
aut
athy
avl
avbl

ABBR #3

acp

apr

asd
atm

aty
av
avb

G-1

FULL WORD ABBR #1 ABBR #2 ABBR #3

band bnd bd
bin bn
hit ht
body bod
bond hon
brightness brgtns btns -
browse brows bws bs
byte byt
calibration calhrt calb cal
carrier car
catalog cat
center ctr
channel chan chi ch
characteristic char
clarity clrty clar clr
clock elk
closest clst els
code cod
comment cmt
component comp cmp
compromise cmprms cmps cps
computer cmptr -::~ cmpr
condition cond end
cone en
confidence confid conf cnf
consideration consid cnsd csd
consumption cnsp esp
contact cntct cont ctt
contamination ,. contam cntm ctm
contrast contr cnr
control ctrl ctl
conversion conv cnv
coordinate coord crd cd
coordinator coordr crdr err
count cnt ct
coverage covrg cvrg cvg
cross crs
customer cust cus
data dta da
date dt
day dy
declination dee
defining defog defg dfg
definition defn dfn
delimiting delim dlm
density dnsty dens dns
description desc dsc de

G-2 PDS ABBREVIATION LIST

-

FULL WORD ABBR #1 ABBR #2 ABBR #3

detector <let
diameter diam dia
discipline disc dis
distance dist dst
document doc
duration duratn dur du
dynamic dynam dyn
earth eth
east est
eccentricity ecc
electronic electnc elec elc
elevation el
emission emiss emsn em
entry entr etr
environment env
ephemeris eph
epoch epc ep
error err
event evt ev
experimenter exprmtr xptr xpr
expertise exprts xpts xps
exposure exposr exp ex
facility facil fad fac
factor fact fct
feature featr ftr
field fild fil
field-of-view fov

- fields-particles fp
filter fl.tr fir
first fst
flag fig fl ,
flattening flatng fltn fin
flood fld fd
focal fcl
format frmt fmt
frame frm
from fr -c-
full
function func fnc
gain gn
geometry gmtry geom gom
gravity grav grv

---"\.
group grp
guidance guidnc guid gdn
hardware hw
height ht
hierarchy hier hir

PDS ABBREVIATION LIST G-3

-

FULL WO}J.D ABBR #1 ABBR #2 ABBR#3

history hist hst
home hm
horizontal horiz hor
hour hr
hourly hrly hry
identification id
image img

,:;-

imaging imng imn
implementation impl imp
incidence incdnc inc
inclination incl inl
information info inf
initial init ini
mner in
input inp
institution instn ist
instruction instruc istc isc
instrument instr inst ins
integrated integd itgd itd
interval int iv
item itm
journal jrnl jl

.julian jul ju:
kernel knl
key ky
laboratory lab
language lang Ian
last 1st
latitude lat
launch Inch lch
length len
level lvl lv
light It
limb lmb
line lin
list lis
local lei --location loc
longitude Ion
magnetic magntc mgnc mgc
mail ml
mailing ming mlg
manager mgr
manufacturer mfr
map mp
mass
maximum ma.x ma.

G-4 PDS ABBREVIATION LIST

-/

FULLWORD ABBR #1 ABBR #2 ABBR #3

mean mn
measured meas ms

-. measurement measmt msmt mst
media med
memory memry mem

..., method mthd mth
middle mid
midnight mdnt mdt

- midsequence midseq msq
' . minimum min mi

mission msn
mode mod

~, model mdl
moment momnt momt mmt
mosaic mos _,.,_
motion motn mot
mounting mtg
naif nf
name nam nm
native natv Iitv
navigation navgtn nav
node nod nd
noise ns
nominal nom
north nor no
note nt
notebook ntbk nbk -- number num
object obj
objective objctv ojtv oj
obliquity obliq oblq obq
observation obs
observatory obsvty oby
of (DROP)
offset ofst ost
operating oprtg optg opg - operation oprtn op
operational optl opl
optics optcs opes ope

- or (DROP)
' orbit orb

orbital orbtl orbl or - order ord
orientation orientn ortn orn
outer out ot

-, output outp otp
page pg

PDS ABBREVIATION LIST G-5

FULL WORD ABBR #1 ABBR #2 ABBR #3

parameter parm par pm
password pswd pw
path pth
peak pk
percentage prctg pctg pct
periapsis peri pps --period per
personnel prsnnl psnl psl
phase phs ps
physical phys phy ph
pixel pix
planet plnt pla
platform pltfm plat plt
point pnt pt
pointing pntg ptg'
pole pol
position pos
power pwr
precession precesn pcsn pen
preference prefmc pref prf
pressure pres prs
primary prim pri
prime pme
principle prncpl pcj)l pd
privilege privlg pvlg pvg
process proc pre
processing procg prcg prg
producer prdr pdr
product prdct prdt prd
production prdctn prdtn pm
profile profl prfl prl
program pgm
programming pgmg pgg
projection prjctn prjtn prj
publication pub
quality qual qly
query qry
radiance radnc rdnc rdc
radiometry rdmtry rdm
radius rad
range mg
rate rat
ratio rto
rationale ratnle rtl
received rcvd red
reference ref rf
region rgn

G-6 PDS ABBREVIATION LIST

FULL WORD ABBR #1 ABBR #2 ABBR #3

registration regis reg
release relse rels rls
remote remt rmt
request rqst rqs
required req
requirement rqmnt rqmt rq

-._4_ research rsrch rsch rsh
resolution res rl
resonance resnc rsnc rsc
reticle retcl ret
revolution rev rv
right-ascension ra
ring rg
role rol
rotation rot
sample smpl smp
sampling samplg samp smg
satellite sat
scale scl
scaled scld scd
scan sen

-, schedule sched sch
scientific sctf
secondary secdry sdry sdy

....., selection sel
semi sm
semi major smaj smj - sensi ti vi ty sens sns
sequence seqnce seq sq
serial serl srl
series ser
set
shape shp
sheet sht
shipping shipg shpg spg
shutter shtr shr
sidereal sidrl sid
size sz
slant slnt slt
software SW

solar sol
source srce src
south sou so
spacecraft SC

spacecraft-clock sclk sck
spatial spatl sptl stl
special sped spcl spl

PDS ABBREVIATION LIST G-7 -

FULL WORD ABBR #1 ABBR #2 ABBR #3

specialty speclty spty sty
spectral spctrl sprl spr
spectroscopy spctrsy spsy ssy
spectrum spctrm spct spc
spin spn
stabilization stabzn stbn sbn
staff stf
standard std
start st
state stte stt
status stat sts
stop stp sp
storage stor str
sub sh
subnode sbnod sbnd
subsystem -, ss
subtask sbtsk stsk stk
summary sumry smry smy
supplier suplr supp sup
support suprt spt
surface srfc srf
synodic syndc syn
system sys sy
target trgt tgt
task tsk
telephone phone phn
telescope tlscp tlsc tl
temperature temp tmp
time tm
title ttl
topic topc tpc
total tot
translation trnsl tnsl tnl ---
transmittance tnsmtc tmtc tmc
triaxial tria.xl trxl txl
true tru
twist twst twt
type typ
unit unt un
usage usg
user usr
validity vldty vldy vdy
value val vl
vector vect vec
velocity veloc vel
vendor vndr vnd
version vrsn vrs

G-8 PDS ABBREVIATION LIST

FULL WORD ABBR #1 ABBR #2 ABBR #3

vertical vert vrt
view vw
volume vol
wavelength wave wvl wl
weight wght wgt wt
west wst WS

width wid wd
..--::-,,_

PDS ABBREVIATION LIST G-9

G-10 PDS ABBREVIATION LIST

Appendix H

STANDARD FORMATTED DATA UNITS

H.1 INTRODUCTION
The following is an introduction to the SFDU concept, by John Johnson and Ed Greenberg

of JPL. More complete reference information is available in the "blue book": Standard Formatted
Data Units - Structure and Construction Rules, Consultative Committee for Space Data Systems
Publication #CCSDS 620.0-B-1. An example of the way PDS is currently implementing the SFDU
is given in Appendix L.

H.2 INFORMATION TRANSFER
The Standard Formatted Data Unit (SFDU) concept provides the protocols needed to enable

the transformation of the discipline-oriented data users of today into a distributed confederated
world wide scientific information network of the future.

The SFDU Concept provides:
(1.) a means for globally defining and identifying data products,
(2.) a means for aggregating instances of science, ancillary and meta data into data products, and
(3.) a means for administering the data product definitions and description to ensure their access-

ability and understanding.
The SFDU methodology promotes documentation rigor through the administrative services

provided by the CCSDS Member Agency Control"Authorities (CA). These CAs thus become focal
points for the acquisition of "meta data" (data about data). The data registration procedures
establish a global data identification mechanism, which combined with standard data labelling and
aggregation conventions, enables the comprehensive self identification 'process needed to support
meaningful data interchange. The SFDU concept focuses on the standard labeling of data to enhance
the transmission, storage, and manipulation of the data contained therein. The contents may be
in any arrangement. that can be expressed in a precise way.

The taxonomy of information transfer ranges from single data elements to completely identified
and defined products. A data element is an individually named item of data that is used in a
processing algorithm as a singular data parameter, variable, or attribute. Elements are collected
and structured into data objects (aggregations of elements or groups) and units (aggregations of
objects) with identifying SFDU labels. A data product consists of units containing not only the
data, but data formats and representations, data element dictionaries, cataloging information, etc.

H.3 DATA STRUCTURING
A Type-Length-Value Object (TLVO) is a self identified and self delimited data object which

follows CCSDS labelling rules. A structured TLV Data Object is shown in Figure H-1. It consists
of a fixed length label followed by a variable length value field. The basic structure of the object
is given in the figure below. The two fields of the label are: a) the TYPE field (which includes the
reference name of the description of the value field) and, b) the LENGTH field (which provides the
length of the value field). The value field may contain data elements or embedded TLVOs.

In the TYPE field, the Control Authority Identifier (CAID) identifies the CA office which
maintains the format definition. The VERSION (V) field gives the structure of the label, the

STANDARD FORMATTED DATA UNITS H-1

Type

Length

Value

CAID V C SP DDPID

Length of value

Data Elements
or

more TL V Objects

Figure H-1: Structured TLV Data Object

12 bytes

8 bytes

CLASS (C) field gives a high level classification of the content of the value field, and SP denotes
two spare characters. The Data Definition Package Identifier (DDP ID) uniquely defines (within a
CA) the package which contains the complete definition of the data object. The CA ID and The
DDP ID together (called the Control Authority and Data Definition Package Identifier or ADI)
provide globally unique identification and definition of the object.

Structuring (aggregation) of data is done currently in two ways: by envelope (length) and by
reference. Envelope aggregation is depicted in the previous diagram; that is, the LENGTH field is
known at the time of creation of the object. As shown, the value field may consist of data elements,
in which case the ADI identifies the appropriate Data Description Package (DDP). Alternately, it
may contain additional TLVOs. In other words, TLVOs may be nested arbitrarily deeply, forming
data products or Standard Formatted Data Units (SFDU).

If a data product, consisting of several classes of objects where the total length is not known,
is to be created, then aggregation by reference is used. An example of aggregation by reference is
delimiting by marker. This is shown in Figure H-2.

T CCSD12000001
I

T CCSD2R000003

-
L length T NJPL2I001234 - L length

-
T CCSD2R000003 L length - V Collection . . . -IJII JI •-111111

V L length -V data -
Collection

V Information

Start Data End
Figure H-2: Delimiting by Marker

The diagram shows type (T), length (L), and value (V) fields of a set of objects making up
a data product. The CA ID "CCSD" indicates that what follows is in SFDU format. Embedded

H-2 STANDARD FORMATTED DATA UNITS

within the CCSD objects are Start and End (CLASS=R) labels, each of which describe the makeup
of the object. The format of the R class value field is named as 0003, which within the CCSDS
domain indicates a "keyword=value" format and specific semantics. The markers bracket a series
of data objects (CLASS=I), the total length of which is not known at the beginning of product
creation.

H.4 DATA DEFINITION

The Data Definition Package (DDP) structure and content is the subject of current study by
the CCSDS. The intent is to supply the data product user with the conceptual or logical description
of the data as well as the format and representation of the data. This information will be packaged
with the data such that a suite of standard software, conforming to SFDU recommendations, at the
user's installation can transform the data to conform to his machine architecture and can present
standard views for applications.

The content of the DDP will include the following categories of information:

(1.) Self identification information which contains the ADI of the TLVO whose value field is defined
by this DDP. This may also include references to specific DEDs and DDRs.

(2.) Data Entity Dictionaries (DED) which enable semantic information to be expressed.

(3.) Data Definition Records (DDR) which contain the data object formats and representations
which enable syntactic information to be interchanged among the elements of a heterogeneous
information system.

The packaging of the DDP is shown in Figure H-3. In this example, a CLASS F object has
been added to the beginning of the sample product shown previously.

This Class F Unit contains several embedded TLV objects each containing one of the sections
of the DDP. In this way, the first logical piece of information received by the software suite is the
identification and definition of the remainder of the product. One element of the DDP object is
the CA ID /DDP ID of the data object that is defined. Thus the DDP can be loaded into a library
and accessed whenever a CLASS I object of the same ID is received.

In the case of archives, the DDP information may be kept with the data and sent along with
any order, enhancing the long term usefulness of the data.

H.5 TERMINOLOGY

The literature on SFDUs use a specialized vocabulary to describe the SFDU concept. The
following definitions are provided to explain the terms.

A DATA ENTITY is a logical collection of data that has a separate and distinct existence and
objective. There are three types of data entities: data elements, data objects, and data products.

A DATA ELEMENT is the smallest named item or items of data for a given application.

TYPE-LENGTH-VALUE (TLV) is a method for the self-identification and delimiting of data.
In this method, the TYPE identifies the specification governing the data within the VALUE. This
specification establishes the order of appearance of the data elements with the data object and
their data representation. The LENGTH expressed the size of the VALUE. The VALUE is the
data. See Figure H-4.

The TYPE and LENGTH together form a LABEL while the VALUE field contains the data.
The label and data together form a DATA OBJECT.

STANDARD FORMATTED DATA UNITS H-3

T

L

V

CCSD12000001

T

L

V

T

L

V

LENGTH

CCS01 F000001

LENGTH

EMBEDDED
TLVOs FOR OED

ANDDDR
INFORMATION

CCSD1 R000003

LENGTH

COLLECTION
INFORMATION

START

I
I

NON-LABELLED
DATA

ENTITIES

DATA

Figure H-3: Product with DDP

TYPE

LENGTH

VALUE

Figure H-4: TLV Encoded Structure

T CCSD1 R000003

L LENGTH

- V COLLECTION
INFORMATION -

END

t
LABEL

DATA
I

I l
A TYPE-LENGTH-VALUE OBJECT (TLVO) is a TLV structured data object. A STAN-

DARD FORMATTED DATA OBJECT (SFDO) is a TLVO that follows the specific CCSDS struc-

H-4 STANDARD FORMATTED DATA UNITS

turing and labelling recommendations.

A CLASS UNIT is a collection of TLVOs that are aggregated for or by a specific application.
A CLASS UNIT is recognized by the appearance of an ADI = CCSD000l and any legal class ID.

A DATA PRODUCT or DATA UNIT is a collection of CLASS UNITS that are aggregated for
transfer to or from a remote user process or archive. A STANDARD FORMATTED DATA UNIT
(SFDU) is a data unit that consists of objects (and nested SFDUs) aggregated by the CCSDS
recommended construction rules. The start of a product is recognized by the appearance of an ADI
= CCSD000l and a class ID = Z.

Consider Figure H-5.

CCSD I 0001
LENGTH

NJPLl0017
LENGTH

e1 e2 e3 e4 ...
e1 e2 e3 e4 ...

NJPL I 0017
LENGTH

e1 e2 e3 e4 ...
e1 e2 e3 e4 ...

Figure H-5: Taxonomy

.................
i

TLVO (SFDO)
! :
!
!

Data Elements i
: i

••••••••••••••• =:

Class Unit

A DATA INSTANCE is a specific occurrence of values of a data entity.
The object depicted in Figure H-6, consists of two TLVOs containing instance identification

information (typically used by a data catalog system) and data bits (perhaps an image). They are
aggregated by the CCSDllO0000l label, forming a cohesive class unit. In each case, the length
(L) field gives the length of the value (V) field. Note that a class unit typically contains all of the
data objects necessary to process the science data, including calibration data, navigation data, etc.
Data units range in complexity from simple messages, to entire collections of space acquired data
plus ancillary and meta data from a mission.

The method described for formulating a data product for interchange is to assemble all of the
required data in the desired order and construct an "envelope" or container that aggregates the
combination, binding the enclosed data into a named and delimited data product. It is required
that the labeling technique utilized in the "envelope" be globally recognizable and interpretable to
ensure that the contents of the data product are readable.

The CCSDS requires that all data products be labelled using a CCSDS approved and registered
data description.

H.6 ODL IMPLEMENTATION OF SFDU'S
There are still uncertainties involving the final implementation of the SFDU architecture. In

order to minimize the effect of small changes in the SFDU's which will naturally occur over the
development and implementation stage, PDS will use a minimal implementation of the SFDU

STANDARD FORMATTED DATA UNITS H-5

T CCSD1I000001

L 24621

T NJPL1K002468

L 601

V (CATALOG
DATA)

V

T NJPL1100TLM1

L 23980

V BITS

Figure H-6: CCSDS I Class Unit Instance

registration scheme for archival data products. This SFDU (shown below) will indicate that the
data file uses ODL labels to present data descriptiye infoqnation a.bout the data unit.

This label will constitute the first label record of an ODL labelled file.
NJPLlI00PDSlnnnnnnnn = PDS-8FDU_LABEL where:

H-6

NJPL

1

I

00

PDSl

nnnnnnnn

is the JPL control authority.

version id, indicating that the sfdu length is represented as an
ASCII string.

class id, indicating that this is an information or. data object class
ofSFDU.

are reserved characters filled with ASCII zeros.

is the data definition record identifier, identifying the SFDU for-
·mat as being a STANDARD PDS LABELLED :file, with em-
bedded format specification statements. This format supercedes
(and is a superset of) the PDS0 SFDU label on current data files.

is the length of the file in ASCII numerals; if this value is un-
known use 00000000.

STANDARD FORMATTED DATA UNITS

Appendix I

ODL IMPLEMENTATION AND SPECIFICATION

1.1 IMPLEMENTATION OF PDS OBJECT DESCRIPTION LANGUAGE
This section provides a description of the implementation of the Object Description Language

and a detailed specification for the language.

1.1.1 PDS Object Description Language
In the object-oriented approach the principal data entity that is stored and transported is the

data object. Examples of data objects are images, spectra and maps. For each object we need to
have the following information:
(1.) A description of the format of an object in terms a scientist can understand (scan lines, samples,

etc). This description is done at the object class level and it is the same for every object in
the class.

(2.) A description of the content of the object. This description must be at the object instance
level and will be different for every instance.
Data objects are encapsulated within data units for storage and transportation. For each data

unit we need the following information:
(1.) A description of the format of the data unit: is it a file or does it have some other organization?

If it is a file, are the records fixed or variable length, how long are the records, etc.
(2.) A description of the content of the data unit. If there are two or more data objects within the

data unit and the descriptive information is the same for all the objects, then that descriptive
information can be moved up to the level of description of the data unit.

(3.) The location of each data object within the data unit.
All the descriptive information on data units and the objects within them is put into a "label"

for the data unit. A label may be "embedded" - enclosed within the data unit itself - or "detached"
- located in a separate label file that is associated with the data unit.

Figure I-1 shows the relationships between data units, objects, labels and the descriptive infor-
mation about data units and objects contained within the label (The figure shows an "embedded"
label).

The PDS has developed the Object Description Language (ODL) to uniformly express infor-
mation about objects and data units. Data unit labels, both embedded and detached, are created
using this ODL. The ODL is used to describe objects and data units to both humans and com-
puters so it is implemented much like a computer language: it is readable and writable by human
beings but it can be readily parsed into a more efficient format which a computer can manipulate.
We describe only the basics of the PDS Object Description Language in this section. A complete
description of the syntax of the ODL is given in Section 2 of this Appendix.

An ODL object description has the following basic format:
OBJECT= objecL.name

One or more statements in the Object Description Language
END_OBJECT

ODL IMPLEMENTATION AND SPECIFICATION 1-1

DATA UNIT

LABEL

Description of
Data Unit Format and Content

Description of
Object Format and Content

Pointers to Objects

1

OBJECTS

Figure 1-1: Structure of a Data Unit

For descriptions of object instances, "object-name" is a name assigned by the person creating
the object description. It must be unique within the scope of the data unit within which the object
is contained. Thus if there are three image objects within a data unit, each image must be assigned
a different object name. This ensures that we can unambiguously identify each object within a
data unit. ·

The statements within an object description all have the same general format:

name= value

where "name" is the name of a particular attribute of the object and "value" is the value of the
attribute for this object instance. An attribute name can be 1 to 32 characters in length. The first
character of a name must be alphabetic but the remaining characters, if any, may be any of the
following:

Alphabetic characters. The ODL makes no distinction between uppercase and lower case
alphabetic characters in names or anywhere other than within quoted text strings;

The decimal digits O - 9;

The underscore character(-)-
The creator of a class of objects determines to a large degree which attributes are associated

with those objects. Attribute names are not chosen arbitrarily; there is a PDS naming convention
that specifies what an attribute name will look like and even which words to use in attribute names.
These naming conventions are discussed in a Chapter 5.

Values in ODL statements can be either scalar (a single value) or array (a one or two dimen-
sional set of values). Scalar data types are:

1-2

Integer
Real
Unitized real
Literal
Text

(example:
(example:
(example:
(examples:
(example:

123)
123.456)
123.456 <KM/SEC>
ORANGE, ' 1 : 1')
''Now is the time'')

ODL IMPLEMENTATION AND SPECIFICATION

Clock time (example: 1987/10/26-22:03:45.6 <OTC>)
Object names (example: INTEGER, REAL, etc)

The ODL data types are described in greater detail in Appendix K.

Arrays are collections of scalar values separated by commas and optionally enclosed within
parentheses. For example:

(123.0, 456.1, 789.2)

Here is an example of an object description for an instance of a histogram:

OBJECT = SAMPLE-HISTOGRAM
ITEMS= 200
ITEM_TYPE = INTEGER
ITEM-BITS = 32

END_OBJECT

This description indicates that the particular histogram object known by the name SAM-
PLE-HISTOGRAM contains the counts for 200 separate things and that the counts of these things
are contained within an array of 200 integer values, with each integer value being 32 bits long. An
equivalent FORTRAN 77 type declaration for this object would be:

INTEGER *4 SAMPLE_HISTOGRAM(200)
ODL descriptions of objects are used in two rather different ways: either they can describe an

entire class of objects, thus serving as templates when individuals want to create objects of this
class, or they can describe an instance of the object. We have so far discussed only the later case -
where the description is for an instance of an object; a discussion of descriptions for object classes
appears later in this section.

1.1.2 Data Unit Labels
When objects are placed into data units the description of each object is placed into the data

unit's label. For embedded labels, the label must be the first thing within the data unit. There are
up to six parts to an embedded label, and by convention they appear in the order given here:

(1.) SFDU registration

(2.) Data unit format description
(3.) Pointers to objects
(4.) Data unit content description

(5.) Object descriptions
(6.) END statement

1.1.2.1 SFDU Registration
Most PDS data units will have a 20-byte Standard Format Data Unit (SFDU) registration

ID in the first 20 bytes of the label (and hence the data unit). This SFDU ID is encoded as a
statement in the ODL with the following format:

nnnnnnnnnnnnnnnnnn = SFDU-LABEL
where nn .. nn is the 20-byte SFDU ID. SFDU IDs are issued by a special SFDU control authority
and the rules for constructing SFDU IDs, as well as the procedure for getting an ID from a control
authority, are discussed elsewhere (see Section 6.1 and Appendix E). The SFDU ID must begin

ODL IMPLEMENTATION AND SPECIFICATION I-3

in the first column of the first line of the label (and the data unit). An example of an SFDU
registration statement is:

NJPLlI00PDSl00000000 = SFDU-LABEL
Additional descriptive material about the SFDU architecture is contained in Appendix H.

1.1.2.2 Data Unit Format Description
A data unit's format description presents the salient characteristics of the data unit which

must be known to properly open and read the data unit with a computer (usually through the
computer's file management system). For example, the following ODL statements are used to
describe the format of data units contained within files:

REC0RO_TYPE = FIXED or VARIABLE
REC0RD_BYTES =
FILE_REC0RDS =
LABEL_RECORDS =

length of record (maximum length for variable records).
number of records in file
number of records in label

As you can see in the example above, the format of a data unit is described in the same way as
the format of a data object: through a set of statements in the ODL. In fact, specific types of data
units -like files - are nothing more than objects of class DATA-UNIT. This reveals the true nature
of data units: they are objects created expressly to hold other data objects during transport and
storage. The class descriptions for data units are contained in object description libraries, along
with the descriptions of other types of objects.

1.1.2.3 Pointers to Objects
It is usually useful to have a pointer within a data unit to each of the data objects within the

data unit. This permits more rapid retrieval of the individual data objects. These pointers are
expressed in the ODL using the following notation:

-object_name = location
In a file the location is given as an integer representing the starting record number of the

object, measured from the beginning of the file. Pointers are also useful for describing the location
of individual components of a data object and for pointing to a detached label. An example of the
latter is

-object_STRUCTURE = "file_name"
where "object" is the name of the object being described and "file..name" is the name of the
detached label file containing the description.

1.1.2.4 Data Unit Content Description
A data unit may contain ODL statements that describe the content of the data unit and

its objects. Typically these ODL statements are derived by factoring ODL statements about the
content of the data objects within the data unit: if there are ODL statements describing the
content of data objects that are common to all the data objects within the data unit, then these
ODL statements can be moved out of the object descriptions and into the data unit description. An
example would be an image and a histogram of that image p~ckaged into the same data unit: rather
than putting the same information about image content into both the image object and histogram
object descriptions, it is sufficient to state that information once in the data unit description.

1-4 ODL IMPLEMENTATION AND SPECIFICATION

1.1.2.5 Object Descriptions
A label contains an object description for each of the objects within the data unit. This will

include information about both the format and content of the data object.
There are three ways to specify object descriptions in labels. Firstly, for objects of a non-

varying class - a class where the object format is fully defined by the class template so that all
objects of the class are identical in format - it is sufficient to identify the object by reference, that
is by simply naming the class of the object in the following manner:

OBJECT= MIRANDA!
CLASS= VOYAGER_IMAGE

END_OBJECT
This is an acceptable description of the format of the object, although the receiver of such an

object would have to consult an object definition library to fetch the template giving the details
on the format of objects of class VOYAGERJMAGE.

Secondly, for objects from a class with varying attributes - a class where the values for some
attributes are not fully specified in the class template and therefore must be specified for each
and every instance - the alternative is to name the object class and then supply the values for all
varying attributes:

OBJECT= SAMPLE_HISTOGRAM
CLASS = HISTOGRAM
ITEMS = 200
ITEM_TYPE = INTEGER
ITEM_BITS = 32

END_OBJECT
Values for any varying attributes of an object must be specified when a description of such

an object is created, but at the discretion of the creator of an object description some or all of
the non-varying attributes may also be specified in the description. Supplying all the attributes,
both varying and non-varying, is good practice for data that is to be widely distributed because it
means the object can be processed without first having to retrieve the object's class template from
an object description library.

Lastly, if the object does not belong to a pre-existing class of objects you omit the reference
to an object class and then include values for all attributes in the object description:

OBJECT= SAMPLE_HISTOGRAM
ITEMS = 200
ITEM_TYPE = INTEGER
ITEM_BITS = 32

END_OBJECT

1.1.2.6 END Statement
Each label must end with an ODL statement of the form:
END

This statement signifies the end of the label; computer-aided label processing will always terminate
at this statement.

ODL IMPLEMENTATION AND SPECIFICATION 1-5

1.1.3 Accessing Data Objects
The PDS will develop and distribute some of the basic software needed for handling data objects

and data object descriptions written in the ODL. In particular the PDS will supply software for:
(1.) Opening a data unit
(2.) Extracting the label from a data unit
(3.) Parsing ODL statements in the label
(4.) Providing information about the objects within a data unit
(5.) Providing access to the data objects within a data unit
The software developed by PDS will enable data objects and data units to be manipulated in three
environments:
(1.) Human User Environment - This is the simplest kind of object processing, where we present

the text of a data unit label to the user on a CRT screen and the user reads and "processes"
the label information to determine the objects within the data unit and how to manipulate
them. To facilitate this type of processing we have purposely made the ODL easy for humans
to read and to understand.

(2.) Programming Environment - This is where information extracted from labels is used within
programs written by users. User programs will have access to the description of the data unit,
to the descriptions of the data objects within the data unit, and to the data objects themselves.
This capability will be implemented through a series of calls in the host language and perhaps
through a pre-processor as well. The initial host language for this capability will be Fortran
77 and the initial implementation will be for VAX/VMS computer systems.

(3.) Smart Software Environment - This is the environment where information in a label tells
"smart" software how to process the data unit and the data objects within it. Two candidates
for smart object processing software have been identified:
(a.) Data ingest: Software for PDS central and discipline nodes that reads the labels attached

to data flowing into the node to determine how to transfer the' data into the node catalog
or database.

(b.) Data display: Software that uses labels to determine how to display the data to which
the labels are attached. For example, the software might know to display spectra (or
other single- dimension data) as a line graph on a graphics terminal and images (or other
two-dimensional data) on an image display device.

The object access software to be developed is depicted in Figure 1-2.
The processing is divided into six levels. Processing starts at level 1 and works its way to

higher levels. You will note that the human user environment bypasses some of the higher levels
because the brain is being called upon to do those jobs. Following is a description of each of the
levels:

1-6

Level 1 - Open a Data Unit and Read in Label Records
This level opens a data unit, finds its label - either embedded or detached - for the data
unit and reads in records containing label lines.

Level 2 - Get All the Lines Within a Record
In the case where labels are attached to the front of data it is often the case that multiple
label lines are packed into a single record. For example, this is the case with the Voyager
Image labels on the CD ROM where the records are 836 bytes long to match the size of

ODL IMPLEMENTATION AND SPECIFICATION

6.

5.

4.

3

2.

1.

Human User
Environment

Print Labels on
Screen

Programming
Environment

Provide Access to
Objects

t
Provide Label Information to

Programs

t
Parse and Evalrte Statements

Build Statemlts from Lines

Get All the Lines! Within a Record

Open a Data Unit and Read in Records
Figure 1-2: Object Access Software Layers

SmartS/W
Environment

Manipulate
Objects

t
Object Processing
Directed by Labels

t

the image records. In this case software is needed to strip out all the label lines in an
input record. There must be an integral number of label lines in an input record.

Level 3 - Build Statements from Lines
The basic entity for label processing is the label statem.ent. A label statement can take up
a part of a line (there might be a comment on the end of the line) or it can span multiple
lines. Software at this level builds statements out of one or more input lines.

Level 4 - Parse and Evaluate Statements
Once a statement has been assembled we can parse the statement. The result of parsing
a label is:

(i.) A list containing the name and value(s) for each attribute extracted from the data
unit description portion of the label;

(ii.) A list containing the name and class of each object within the data unit plus the
pointer, if any, to the object;

(iii.) For each object, a list containing the name and value(s) for each attribute extracted
from the object description.

Level 5 - Provide Access to Data About Objects
At this level the information about objects gathered during parsing is made available to
users. There are two ways in which this information will be provided:

ODL IMPLEMENTATION AND SPECIFICATION 1-7

(i.) As output on a screen that provides m~ers directly with information about the objects
within the data unit;

(ii.) Through subroutine calls to user programs and smart software.
. Subroutines will be available to provide at least the following capabilities:

(i.) Determining which objects are within a data unit (returns the number of data objects
plus the name, class and pointer for each object);

(ii.) Getting the value for any attribute of a specified object.
Level 6 - Access to Objects

At this level access to the data objects within a data unit is provided. This capability is
provided only through software subroutine calls. Subroutines will be available for retriev-
ing all or part of an object so that it can be manipulated by the host program. Software

. will also be available for writing objects to a file, although this software will be available
sometime after the retrieval software is completed.

I.L3.1 Describing Classes of Objects
We noted above that object descriptions can define either an instance of an object (which is

what they do when the descriptions appear within labels) or an entire class of objects. This section
discusses object descriptions for object classes, which we will often call "class templates". A new
class template must be developed when a new class of objects is created. The class template is
placed into an object description library where it can be retrieved by those who want to create a
description for instances of that class. Essentially when you create an instance of an object you
do so by taking the class template and, if necessary, filling in the blanks within the template.
We expect that the creation of an object description from a class template will be done using a
PDS-supplied computer program for writing labels.

Object descriptions for object instances and object classes share the same ODL format dis-
cussed previously. How then do you know whether a particular object description is to be inter-
preted as a template for a class of objects or as a description of an instance of an object? As
with the distinction between the concepts of class and instance, the context helps make it clear.
Any object description within a data unit label - either embedded or detached - is a description
of an instance of an object. Object descriptions for classes of objects don't appear in labels; they
typically appear only within libraries of class descriptions that are accessible to people and software
who are creating new objects or seeking further information on data objects they have received.
Class templates contain other objects that define each attribute of the object. The general format
of a class template is:

1-8

OBJECT= object_class
OBJECT• first_attribute_name

Description of first attribute
ENO_OBJECT
OBJECT= second_attribute_name

Description of second attribute
END_OBJECT

EHD_OBJECT

ODL TMPLEMENTATION AND SPECIFICATION

,.....,

,.....,

The outermost object being defined here is the class template. The object class specified in
the first OBJECT statement gives the name of the class of object and it must be unique within
the PDS. Inside the class are other object descriptions that serve as attribute templates. There is
one of these attribute templates for each attribute of the data object. Let's look at an example.
We have previously shown the format description for an instance of class HISTOGRAM:

OBJECT= SAMPLE_HISTOGRAM
CLASS = HISTOGRAM
ITEMS = 200
ITEM_TYPE = INTEGER
ITEM_BITS = 32

END_OBJECT

Now let's look at the class template for class HISTOGRAM:

OBJECT= HISTOGRAM
OBJECT= ITEMS

TYPE = INTEGER
VALUE = 1 .. *
DESCRIPTION= "The number of bins within the histogram"

END_OBJECT
OBJECT= ITEM_TYPE

TYPE = OBJECT
VALUE = {INTEGER, REAL}
DESCRIPTION = "The data type of the bins within the histogram"

END_OBJECT
OBJECT= ITEM_BITS

TYPE = INTEGER
VALUE = 1 .. *
DESCRIPTION= "The length of each bin item, in bits."

END_OBJECT
END_OBJECT

The name of the outermost object gives us the class name HISTOGRAM. Within the HIS-
TOGRAM object are three attribute templates that provide information about the three attributes
that are needed to describe a histogram. These three attributes are ITEMS, ITEM-TYPE and
ITEM_BITS. In essence this class template says that you can specify any histogram by supplying
values for these three attributes.

An attribute template always contains three ODL statements that define the attribute. These
statements define the following:
(1.) TYPE- Specifies the type of value expected for this attribute. Must be one of the recognized

ODL data types.

(2.) VALUE- The value or range of values for the attribute. If a single value is specified then it is
the value for every instance of the object. If a range of values or a list of values is given then a
value within the range of values (or selected from the list of values) must be specified for each
object instance. An attribute with a single value is called "non-varying"; an attribute with a
range or list of values is called "varying". An object class with one or more varying attributes
is called a varying object class. When a description for an instance of a varying object class
is specified values for all varying attributes must be specified in t.he format description of the

ODL IMPLEMENTATION AND SPECIFICATION I-9

object. All three of the attributes in our histogram example are varying, which says that they
must appear in the definition for the object that we called SAMPLE-HISTOGRAM.

(3.) STRUCTURE - A text string containing an English description of the attribute. This text
can be displayed by the software that builds object descriptions to the human user to help
them understand what is expected of them when supplying an attribute value.

The PDS will build software that provides the following capabilities for creating and manipu-
lating class templates:

(1.) Creating an object class template: A program will query users for the name of each attribute
and for the type, value and description of each attribute, building the attribute templates and
the class template and, upon completion, inserting the class template into an object description
library.

(2.) Accessing an object description library and extracting a class template for a specified class of
object.

(3.) Parsing a class template for use by the software described below. It is expected that this will
be the same parser that is used when processing data unit labels.

(4.) Printing the description for a class of object using the class template as a guide.
(5.) Creating a description of an instance of an object by using the class description for a template,

querying the user to supply appropriate values for each of the varying attributes and writing
out the object description in ODL.
PDS will create the initial object description libraries (and define the rules for accessing them),

define an initial hierarchy of object classes, and create class templates for the initial object classes.

I.2 ODL SPECIFICATION

I.2.1 Definitions
The following terms are used in the label specification material.
Attribute - An important characteristic of an object that is included within the object's de-
scription within a label. Some attributes describe the physical characteristics of the data (the
number of channels in a spectrum, for example) and others describe the contents of the data
(the target of an image, for example).
Comments - Each line may optionally include a comment. The comment begins with a
slash/asterisk pair (/*) and terminates with the end of the line on which it appears. A
comment can be terminated prior to the end of the line with "* /" if it is necessary to embed a
comment in an entry line. Comments may not be continued to another line. It is allowable to
have lines that contain only comments (such lines begin with the comment indicator and the
comment extends for the entire line). Blank lines are also allowed between any two statements
within a label.

Keyword - The name of an attribute. Synonymous with "element name" as used in the PDS
data dictionary.
Label - A group of statements in the PDS Object Description Language which conveys infor-
mation about a data unit and the objects within it.
Line - An ASCII text string terminating with a carriage return, line feed sequence. Any line
may contain a comment (see below).

1-10 ODL IMPLEMENTATION AND SPECIFICATION

Object - A data entity that is contained within a data unit and th&,t is described in the data
unit's label or in an ancillary label. .;;·~
Pointer...:. A pointer is a type of ODL statement that specifies one of the following: the location
of a subsidiary data object within the current data object; the name of another data unit that
contains data objects described in the current label; or the name of a data unit containing an
ancillary label that further describes the current object.
Statement - A complete sentence in the Object Description Language. A statement may be
entirely contained on one line or it may require several lines.
Value - A numeric, literal or string constant that represents the value of the named attribute
for a particular object.

1.2.2 Label Format
A label consists of "statements" in the Object Description Language. The label begins with

the first line of the file that contains it and ends with a line that contains only the word END. Any
characters following the END but prior to the start of the data records are ignored. If the label
record containing the END line is padded out to some fixed length, it is recommended that the
ASCII space character be used for padding.·

Within a label there are three types of ODL statements: object statements, attribute as-
signment statements and pointer statements. Object statements provide a shell around attribute
assignment statements to indicate which data object the attributes are describing.

1.2.3 Object Statements
An object statement has the following format:

OBJECT= name
(one or more ODL statements)

END_OBJECT {= name}

·. ·,, .. -

The "name" within the object statement is used to identify a specific data object within the
data unit. All the attribute assignment statements contained within an object statement describe
this data object. Pointer statements within the object statement point to other objects that are
constituents of this object or to other data units that contain the object or information about
the object. Object statements can also contain other object statements, providing a hierarchical
nesting of objects.

1.2.4 Attribute Assignment Statements
An assignment contains the name of an attribute and the value of that attribute for the object

which the assignment statement is describing. Assignment statements have the following format:

keyword= attribute-value
The layout of each assignment is essentially free-form: blanks and tabs are typically ignored.

Specifically, blanks or tabs before a name, between the name and the assignment (=) symbol,
between the assignment symbol and the value, or after the value are ignored. ·

Because different types of terminals and printers have different ways of treating tab characters,
it is recommended that tabs not be used in a label; use the blank character instead.

ODL IMPLEMENTATION AND SPECIFICATION 1-11

1.2.4.1 Keyword

The keyword is equivalent to the element name in the PDS data dictionary. It is the formal
PDS identifier for the data value. Keywords in the ODL are not limited to any set length but other
PDS systems do have limitations on name lengths, so it is recommended that keywords not exceed
30 characters in length.

1.2.4.2 Assignment Symbol

The name and value must be separated by an "=" sign.

1.2.4.3 Value

The value field may contain a numeric, a literal, a text string, or a parenthesized list of values.
(1.) Numeric Values- Numeric values can be signed or unsigned decimal or non-decimal integers or

real numbers. Real number values must have an explicit decimal point in them and they may be
represented in unscaled notation (like 3.14159) or in scaled (scientific) notation (like 31.4159E-
1). There is no specific limitation on the magnitude of number that can be represented nor
is there a limitation on the precision with which a floating point number can be represented;
however, the computer on which the label will be processed typically imposes restrictions on
magnitude and precision and users must be aware of these when building labels. A numeric
value can optionally be followed by a units designator. The units value is enclosed in angle
brackets.

Example of a numeric value followed by a units designator:
VELOCITY= 16.578 <KM/SEC>

Integer values can also be represented in bases other than base 10. Any number base from 2
(binary) to 16 (hexadecimal) is allowed.
(2.) Literals - Literals are text fields following the same construction rules as names, or text fields

enclosed in apostrophes if they contain special characters. Apostrophes may not be embedded
in literals. Literals are used to indicate one value drawn from a finite (and usually rather
small) set of possible values. For example, FILTER= BLUE could be used to indicate that
the blue filter for a particular instrument, out of a set of BLUE, RED and GREEN filters, has
been selected. It is recommended that literal names be kept to 30 characters or less.

(3.) Dates and Times- Dates and time values can be represented explicitly in the ODL. The date
can be given as either year, month and day of month or as year and day of year. Times are
given as hours, minutes and seconds. There are provisions for specifying UTC time and for
specifying a time in a time zone other than Greenwich.

(4.) Text Strings - Strings may be any length and may consist of any sequence of printable ASCII
characters, tabs or blanks enclosed in double quotes. Strings continue until a terminating
double quote symbol is encountered. Double quote characters may not be embedded within
quoted strings.
As noted, text strings are not limited in length and they often span two or more label lines.
When the text string is read into the computer the text string is converted into one long string
of characters according to the following rules:
(a.) If the last character of a text string line is neither a"-" nor a"&" then one blank character

will be placed between the last word of the line and the first word on the next line. If
there are blank or tab characters after the last word of a line or before the first word of a
line, they are ignored. This is the standard convention for written English text.

1-12 ODL IMPLEMENTATION AND SPECIFICATION

(b.) If the last character of a line is a "-" (hyphen) character then the hyphen is removed
and there will be no space between the last non-blank character on a line and the first
non-blank character on the next line.

(c.) If the last character of a line is an "&" (ampersand) then the ampersand is removed and
the first characters of the next line will be placed immediately after the character before
the ampersand, regardless of whether that character is blank or non-blank.

(d.) You can explicitly indicate the end of a line of text by inserting a new-line indicator - \n
- into a text string. For example, the ODL text string:
"This is the first line \n And this is the second."
will result in the following:
This is the first line
And this is the second.

(5.) Aggregate Values - An attribute value may be either a scalar - a single value of one of the
types described above - or an aggregrate value which is built up from individual scalar values.
There are two types of aggregrate values allowed: arrays and sets. Arrays can be either one-
or two-dimensional and all the elements of the array must be of the same data type (integer,
real, date/time, literal or string). Arrays are specified in a way that makes the row and column
orientation explicit and the elements of an array are always retained in the order in which they
are given. A set is collection of zero, one or more values drawn from a superset of discrete
values. Because they must be discrete values, only literals and integers are allowed as elements
of a set (but you can't mix literal and integer values within a single set). The null set is also
allowed. The order in which the elements of a set are given is not important.

1.2.5 Object Description Language Syntax Specification
In the following syntax specification, brackets ("[" and "]") are used to indicate components

that are optional: brackets by themselves mean that there can be either zero or one occurrence of
the components that appear within the brackets; an asterisk ("*") immediately after the closing
bracket means that zero, one or more occurrences of the components in the brackets may appear;
and a plus sign ("+") immediately after the closing bracket indicates that one or more occurrences
of the components should appear. The vertical line ("I") means 'or'.

1.2.5.1 Basic Elements of the Language

digit
extended_digit
letter
character
separator

1.2.5.2 Lexical Elements

word
name
symbol
sign

integer

:= 0-9
:= 0-9, A-F, a-f
:= A-Z. a-z
:= any printing ASCII character plus tab
:= space, tab, comma

:= letter [letter I digit]*
:= word L word]* [_ unsigned_integer]
:= [character]+
:= + I -
:= [sign] [digit]+

ODL IMPLEMENTATION AND SPECIFICATION 1-13

unsigned_integer .- [digit]+
extended_integer .- [extended_digit]+

real
unscaled_real
scaled_real

date
year_doy
year_month_day
year
month
day
doy

time
local_time
utc_time
zoned_time
hour_min_sec
hour
minute
second

date_time

1.2.5.3 Syntactic Elements

label

1-14

statement

object_stmt

attribute_stmt
keyword
attribute_value
scalar_value

array _value
one_dim_array
two_dim ... array

set_value
set_element

:= unscaled_real I scaled_real
.- [sign] [digit]+. [digit]• I [sign] . [digit]+
:= unscaled_real Ele integer

:= year_doy I year_month_day
:= year - doy
:= year - month - day
:= unsigned_integer
:= unsigned_integer
:= unsigned_integer
:= unsigned_integer

.- local_time I utc_time I zoned_time
:= hour_min_sec
:= hour_min_sec Z
:= hour_min_sec sign hour
.- hour: minute: second
:= unsigned_integer
:= unsigned_integer
:= unsigned_integer [. unsigned_integer]

: = date T time

. - statement•
END

:= object ... stmt attribute_stmt I pointer_stmt

:=OBJECT= name
statement•

END_OBJECT [= name]

:=keyword= attribute_value
:= name
.- scalar_value I array_value
.- integer_value I real_value

literal_value I text_string
:= one_dim_array I two_dim_array

set_value I range_value
date_time_value I

:= (scalar_value [separator scalar_value]•)
:= (one_dim_array

[one_dim_array]•
one_dim_array)

:= { set_element [separator set_element]•} I{}
:= literal_value I integer_value

ODL IMPLEMENTATION AND SPECIFICATION

integer_value

radix
real_value
range_value
date_time_value
literal_value

:= integer I integer units_expression
radix I extended_integer I

:= unsigned_integer
:= real I real units_expression
:= integer_value .. integer_value
:= date I time I date_time
:= name I ' symbol '
:= 11 symbol 11 text_string

units_expression := < units [units_operator units]•>
units
units_operator

pointer_stmt
pointer_value
file_name_value
position_value

1.2.5.4 Semantics

:= name
:= * I I I A

:= A name= pointer_value
:= file_name_value I position_value
:= literal_value
:= unsigned_integer

This subsection discusses basic semantic aspects of the ODL as defined above.
(1.) Dates and Times - The formats for dates and times in the ODL are a subset of the formats

defined by the International Standards Organization recommendations on representations of
dates and times as given in standard ISO /DIS 8601.
The year can be either a full specification of year Anno Domini (i.e., 1989) or it can be given
modulo 100 (i.e., 89). If it is given in the later format, then it is interpreted to be a year in the
current century. We strongly recommend that only full year specifications be used in labels.
The month should be a number between 1 and 12. The day of month should be a number in
the range 1 to 31, as appropriate for the particular month and year. The day-of-year should
be in the range 1 to 365, or 366 in leap years.
Hours should be in the range 0 to 23. Minutes should be in the range Oto 59. Seconds should
be a number greater than or equal to 0.0 and less than 60.0.

(2.) Number Representations - A radix for an integer value that is given in non-decimal format
should be in the range 2 to 16. The most common radix values are 2 (binary), 8 (octal) and
16 (hexadecimal).
There is no defined maximum magnitude or precision for numbers specified in the ODL. In
general, the actual range and precision of numbers that can be represented will be different
for each kind of computer used to read or write a label. Developers of label reading/writing
software will document the magnitude and precision of numbers that can be represented with
their software on various computers. When label reading software cannot represent a number
of the magnitude specified for a value in a label, then the software shall report that condition
as an error to the user.

(3.) Array Representations- All elements of an array must have the same value type (integer, real,
date/time, literal or string.) Two-dimensional arrays are represented with a block structure
that makes explicit the row-column relationships of the data; it is incumbent upon any software
that processes a two-dimensional array to preserve this row-column relationship.

(4.) Set Representations - The elements of a set must be either be all literals or all integers:
intermixing the two is not permitted. There is no requirement to retain the order of set

ODL IMPLEMENTATION AND SPECIFICATION 1-15

elements when they are. processed by label-reading software.

1-16 ODL IMPLEMENTATION AND SPECIFICATION

Appendix J

DATA UNIT FORMATS

The implications of file and record formats vary with the operating system being used. MS-
DOS and UNIX systems do not have any special file or record formats and merely maintain a file
length indicator in the directory. Basically, the files c;1,re considered to be a stream of bytes which the
user's application program must interpret. Control of record structures is performed for text files
by interpreting carriage return and/or line feed sequences as record delimiters. Operating systems
such as VAX VMS provide dozens of unique file formats. It is recommended that file formats unique
to a specific operating systems not be used for archival storage of PDS data products.

The basic keywords which identify file formats are RECORD-TYPE and RECORD-BYTES.
The RECORD_TYPE shall be either FIXED-LENGTH, VARIABLEJ,ENGTH or STREAM as
shown in Figure J-1.

FIXED_LENGTH
RECORD_BYTES

VARIABLE_LENGTH
------RECORD_BYTES------

LENGTH
LENGTH

STREAM
RECORD_BYTES (optional)

CR/LFI

Figure J-1: Forms of Record Types

The RECORD..BYTES parameter indicates the rna.ximum number of 8-bit bytes in each record
within the file. For FIXED-LENGTH files the RECORD-BYTES parameter is the record length.
For VARIABLE-LENGTH records the RECORD-BYTES parameter is the maximum number of
data bytes (excluding the 2-byte length indicator) in any record in the file. For STREAM records,
the RECORD_BYTES parameter is optional and, if specified, indicates the maximum length of
any record, including the terminating carriage return/line feed characters.

DATA UNIT FORMATS J-1

J.1 RECOMMENDATIONS FOR USING RECORD FORMATS
The choice of the proper record format is determined by the applications for /by which the

data will be used. In general, fixedJength records are well-suited to the storage of binary data files,
such as images, binary tables or qubes, which are expected to be used or transported in structured
environments. VariableJength files are less transportable and require special software to read, and
therefore are discouraged except for instances where they may optimize storage efficiency or access.
An example of such an application is the compressed image format being used for CD ROM storage.
In this case the variable length structure allows "semi-random" access to any line in an image so
that the entire file need not be decompressed whenever a portion of an image is needed. Stream
formats should be used for text files and ASCII tables, to optimize storage efficiency and for ease
of transportation to different computer architectures. The use of stream formats for binary data
is discouraged. First, the stream record delimiters may occur as instances of valid data within
a binary data file and second, large streams of binary data without delimiters can cause system
buffers to overflow in record-oriented (VAX) systems.

RECORD TYPE fixed

Data form
Environment
Volume
Media

binary
structured
large
tape,disk

J .1.1 Fixed Length Record Formats

variable

binary
very-structured
very large
disk

stream

ascii
ad-hoc
modest
electronic,others

Fixed length record formats include two major categories, one where the fixed physical length
maps directly to the logical length (that is, one physical record for each image line, or one physical
record for each table record); and one where the fixed length is arbitrary, and provides only a
physical unit of data for input/output operations, to facilitate processing the file.

The former approach is recommended, to make it easier to understand the file structure and
to provide fairly simple file access with a variety of applications. In this approach, objects within a
file are all stored in integral multiples of the basic logical data record length (RECORD-BYTES).

In the latter case the record type might more appropriately be called UNDEFINED, however,
in practice users generally call them FIXED-LENGTH and use this length as a buffer size for in-
put/output operations. The FITS format is an example of this application of the FIXED.LENGTH
record type. FITS files consist of fixed length records of 2880 bytes each (the lowest common de-
nominator of all byte and word sizes on computer systems in use during the 1970's). The label
records at the beginning of a FITS file indicate how the physical records are to be interpreted
as data records. Within the FITS structure data records are packed into as many of these 2880
byte physical records as are needed. There is no filler added between logical records; the next
logical record begins in the next byte of the current physical record throughout the file. A slightly
different approach is taken in the USGS Flagstaff image file formats. All files are written as 512
byte physical records (the VAX internal record storage size) and logical records are packed into as
many as are needed for a logical record; however, the remainder of that 512 byte record is not used,
and the next logical record begins in the next 512 byte physical record. This allows for extremely
fast access to image lines embedded in an image file, since a program can directly and immediately
access the beginning of any logical record. In the FITS structure, additional computations would
be required to find the correct physical record, translate that into a VAX block (blocks are 512
bytes per block) and position to the starting byte ofthe logical record within the buffer.

J-2 DATA UNIT FORMATS

Both of these approaches require that the user perform somewhat complex buffer maintenance
procedures to correlate logical and physical records.

J .1.2 Variable Record Formats

A second category of record type is variable length. Each variable length record begins with
a binary length field followed by the data. The variable length type is the default for files created
with the VAX text editor. There are 2 commonly used forms, records with carriage control and
without carriage control. Variable length records with carriage control begin with the 2 byte length
field and are terminated by a HEX 0A (line feed). These records can not be used with binary data
files. Variable length records without carriage control use can be used to store binary data.

PDS data files using variable length records should follow the CDROM and VAX VMS con-
ventions where the records are preceded by a 2 byte (swapped or unswapped) integer which defines
the length of the record with no carriage control.

NOTE: This is complicated slightly because the actual number of bytes following the length
field is always an even number, thus all variable length records are an even number of bytes on
the media. The reader software must physically read an extra pad byte if the length field is odd,
unless the system software handles this (as on the VAX). Variable length records will be used for
compressed data files, but their use in other situations is discouraged.

J .1.3 Stream Record Formats

Stream records consist of ASCII text delimited with a carriage..return and/or line_feed se-
quence. The handling of these two ASCII codes on different computers and in communicating
them between computers is quite different. On the other hand, stream files are the only type which
can generally be transmitted safely on TEXT oriented communications facilities like TELEMAIL,
NASAMAIL, or VAXMAIL. They are also usually editable with standard text editors. Fixed and
variable length files pose many problems for ASCII text transmission and processing systems.

J .1.4 Composite Files
Composite files utilize a STREAM format label file which points to the data file, which may be

fixed, variable or stream. The rule for interpreting the label file is that it does not describe itself.
All descriptive entries apply to the file(s) pointed to by the label file: Thus a RECORD-TYPE =
FIXED_LENGTH keyword in a LABEL file refers to the record type of the data file, not to the
LABEL file itself. Composite label files should always carry the file extension ".LBL" so that they
may be identified by processing software.

The following examples show the major parameters for the three record types. Note the
pointers (-objecLname = record_number) to the starting location of objects. If the object is
actually stored in another file, then the pointer will give the file name, not the record number (see
the COMPOSITE FILE example).

FIXED LENGTH FILE

RECORD_TYPE
RECORD_BYTES

DATA UNIT FORMATS

= FIXED_LENGTH
= 836

J-3

FILE_RECORDS = 806
LABEL_RECORDS = 3
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE
-IMAGE_HISTOGRAM = 4
-ENGINEERING_SUMMARY
-IMAGE

VARIABLE LENGTH FILE

= 6
= 7

RECORD_TYPE = VARIABLE
RECORD_BYTES = 836 I* interpret as max record bytes
FILE_RECORDS = 806
LABEL_RECORDS = 56
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE

J-4

-IMAGE_HISTOGRAM = 57
-ENCODING_HISTOGRAM = 59
-ENGINEERING_SUMMARY = 62
-IMAGE = 63

STREAM FILE

= STREAM RECORD_TYPE
FILE_RECORDS = 806 I• if available, othervise

COMPOSITE FILE

/• determine based on parsing
/• the file.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 836
FILE_RECORDS = 806
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE
-IMAGE = 'IMAGE.DAT'

DATA UNIT FORMATS

Appendix K

DATA OBJECT DESCRIPTIONS

Data objects are categorized as elementary, aggregate or compound objects.

Elementary objects

Aggregate objects

Compound objects

K.1 ELEMENTARY OBJECTS

data item types like INTEGER, REAL, CHAR-
ACTER, TIME, BIT..STRING, identified by
ITEM-TYPE or TYPE key words.

the values of the homogeneous arrays, like HIS-
TOGRAM and SPECTRUM, identified by pres-
ence of the ITEMS keyword in the object
definition.

composed from elementary and aggregate ob-
jects, e. g., TABLE, IMAGE, QUBE, TEXT,
HISTORY

The data type definition segments of the ODL label structure use a simple syntax to define the
data types of stored data values. The data format specifications indicate to the parser the type of

.~ data in a field, the starting byte location and the length in _bytes. An optional format specification
can be given for use in displaying data item values. Within all the object descriptions, the byte, bit
and record POSITIONS count from 1, and from le-ft to right where applicable.

Data values may be represented within data files in ASCII or BINARY format. The ASCII
storage format is much simpler to transfer between different hardware ~ystems and often between
different application programs on the same computer.

On the other hand, all numerics are stored and manipulated internally in binary numeric types;
thus ASCII data values must be converted to internal formats before they can be processed. In
addition, the ASCII representation of most numeric values requires more storage space than does
the binary format. For example, each 8 bit pixel v~ue in an image file would require 3 bytes if
stored in ASCII format.

The current specification uses the same set of d_ata types for both ASCII and binary data
values. The basic interpretation of whether a data value is stored in ASCII or BINARY format
within the data record is derived from the object type. For TEXT and TABLE objects the default
representation is that the data type is stored in an ASCII format. For the IMAGE, CUBE and
QUBE object types the default representation is that the data value is stored in binary format.

The following data types can be specified:

INTEGER

REAL

BIT-STRING

COMPLEX

DATA OBJECT DESCRIPTIONS

A signed integer value [default = 4 bytes].

A real (floating point) value [default = 4 bytes].

Used to represent information defined at the bit
level.

A complex value. Usage not currently defined.

K-1

CHARACTER (or STRING)

TIME

K.1.1 Specification Qualifiers

A text string.

Time value. Only the ASCII format is currently
defined.

Additional qualifiers can be used to explicitly state the length or representation format for
binary values.

K.1.1.1 Length Specification
The interpretation of binary fields is normally determined by the field length (BYTES or BITS)

parameter, thus an integer field specified with a bytes value of 2 would be interpreted as a 16-bit
signed binary value. The length can also be specified by appending a byte count to the end of the
type specification (-1, _2, -4 or _8).

INTEGER_!
INTEGER_2

A signed 1 byte integer value.
A signed 2 byte integer value.

K.1.1.2 Binary Integer Specifications
There are two widely used formats for integer representations in 16-bit and 32-bit binary fields.

These are the most-significant-byte first (MSB) and least-significant-byte first (LSB) architectures.
The MSB architectures are used on IBM main-frames, many UNIX minicomputers (SUN, Apollo)
and Macintosh computers. The LSB architectures are used on VAX systems and IBM PCs. The
default interpretation for ODL files is the MSB architecture. Therefore files written on VAX or
IBM PC hosts should specify LSBJNTEGER for the field type of binary integers, or use synonyms
for LSB, which are VAX and IBMPC. Alternatively the structure definition can be initiated with
a HARDWARE-TYPE keyword indicating MSB or LSB is to be used for all fields in the structure.

LSBJNTEGER A signed 4-byte integer value in least-significant-
byte-first order.

VAXJNTEGER-2 A signed 2-byte integer value in least-significant-
byte-order.

K.1.1.3 Signed Versus Unsigned
The default binary integer is a signed value in 2's complement notation. Alternatively, the

TYPE field may have the term "UNSIGNED-" prepended to the specification.

UNSIGNEDJNTEGER_l
UNSIGNEDJNTEGER_2

An unsigned 1 byte integer value.
An unsigned 2 byte integer value.

K.1.1.4 Floating Point Formats
The standard representation for floating point numbers is as defined in ANSII/IEEE 754.

Floating point values which use other representations should preface the type parameter with
an identification of the host machine. In the case of VAX double precision floating point, two
representations are used, the standard DOUBLE and a "G" format. The "G" format will be
specified as VAXG-DOUBLE. The hardware specification can be set for an entire object definition
by using the HARDWARE_TYPE keyword in the STRUCTURE definition.

K-2

VAX-REAL A real (floating point) value [default = 4 bytes].
in VAX format.

DATA OBJECT DESCRIPTIONS

VAX..DOUBLE (or REAL-8) An 8 byte double precision floating point value.
Doubles should be used if the precision required
for a numeric value exceeds 7 digits.

VAXG..DOUBLE

K.1.1.5 Bit String Data

A special type to handle the VAX G-type double
precision.

A BIT..STRING is used as a container to hold and process individual bit item values. A
BIT:..STRING can be a 1~byte, 2.:byte or 4-byte field, much like a binary INTEGER. Extrac.tion of
BIT..STRING data for 2-byte and 4-byte fields is dependent on the host architecture, and follows
the specifications of the integer representation supplied above. In processing bit values within a
BIT_STRING, any necessary conversions (from MSB first to LSB first, for example) should be
done before extracting the individual bit items. This will assure that bit fields are not fragmented
due to differences in the hardware architecture. The default bit string is MSB first. Therefore
files written on VAX or IBM PC hosts should specify LSB-BIT..STRING for the field type of
binary integers. Alternatively the structure definition can be initiated with a HARDWARE-TYPE
keyword indicating MSB or LSB is to be used for all fields in the structure.

Data objects defined within a BIT-STRING must be of the type INTEGER or UN-
SIGNED..INTEGER. Bit locations are assigned counting from left to right, starting with bit 1.

BIT..STRING-2 Specifies an item of 16-bits (equivalent to an UN-
SIGNED_INTEGELI) containing sub-items de-
fined at the bit level.

Specifies an item of 32-bits (equivalent to
an LSB-UNSIGNED..INTEGER) containing sub-
items defined at the bit level.

K.1.2 Object Format Specifications
This discussion is a great simplification of the data format specification question. It only

addresses fundamental types. The data format specification is used to determine the format for
display of a data value. A 4 byte binary integer can store values in the range of -2,14 7,483,648 to
2,147,483,647 however the actual values stored in the field may only range from -9999 to 9999.
In this case it is convenient to specify the output length with a format statement "I5" where I
indicates that the value is an integer and 5 indicates the number of display positions (one for the
sign and 4 for the numeric value).

The following FORTRAN data format specifications will be used:

where:·

Aw

Iw

Fw.d

Ew.d[Ee]

Character (alphanumeric) data value.

Integer value.

Floating point value, displayed in decimal format.

Floating point value, displayed in exponential format.

DATA OBJECT DESCRIPTIONS K-3

w = Total number of positions in the output field (including sign, decimal point or
"E").

d = Number of positions to the right of the decimal point.
e = Number of positions in exponent length field.

K.1.3 Explicit Definitions of Elementary Objects
Where the non-standard data types described above cannot be used, special data type spec-

ifications may be defined. These definitions shall be specified as in the General Data Interchange
BINREP format (Section 5.3.3.3, JPL Document D3606, F. Billingsley, 1988-01-12), but cast in
the ODL object structure definition format.

The keywords to use in describing these non-standard data types are:

COMPLEMENT
EXCESS
BASE
SIGN
EXPONENT
MANTISSA
EXPONENTJHGN
ORDER
INVERT
IMPLICIT

Representing 0, 1 or 2's complement.
in decimal integer form.
which is raised to the exponent - excess power.
bit position of sign.
bit positions of exponent.
bit positions of mantissa.
bit position of sign exponent.
bit positions of bits making up integer value field.
bit positions in which the "ls" and "Os" are inverted.
flag indicating an implicit 1 bit in the mantissa.

The numerical value represented is:
(Sign)Mantissa * Base** Exponent_Sign(E)Cponent - Excess)
The values in sign, exponent, mantissa, exponent-sign, and order are ASCII numbers indicating

the bits in which the parameter occurs, msb first, separated with commas. The leftmost bit is
designated bit 1. The notation m .. n may be used to designate the range of bit positions m to n,
inclusive.

Excess is the excess (base 10) coding of the exponent.
The examples below show the definition of a VAX INTEGER and DOUBLE using this notation.

OBJECT
TYPE
COMPLEMENT
SIGN
ORDER

END_OBJECT

OBJECT

K-4

TYPE
COMPLEMENT
BASE
EXCESS
SIGN
IMPLICIT
MANTISSA
EXPONENT

= VAX_INTEGER
= TEMPLATE
= 2
= 25
= (26 .. 32,17 .. 24,9 .. 16,1 .. 8)

= VAX_REAL
= TEMPLATE
= 2
= 2
= 128
= 9
= TRUE
= (2 .. 8, 25 .. 32, 17 . . 24)
= (10 .. 16,1)

DATA OBJECT DESCRIPTIONS

NOTE

END_OBJECT

= 11Byte values AB CD EF GH are converted to
CD AB GH EF, where there is a one-bit sign
followed by an 8 bit exponent,
followed by a 23 bit mantissa. 11

K.2 AGGREGATE OBJECTS

Aggregate objects consist of homogeneous arrays of elementary objects. Aggregate objects are
identified by the ITEMS keyword in the object definition.

The following example illustrates a HISTOGRAM object:

OBJECT = IMAGE_HISTOGRAM
ITEMS = 256
ITEM_BITS = 32
ITEM_TYPE = INTEGER
END_OBJECT

K.3 COMPOUND OBJECTS

Compound objects represent collections of elementary and aggregate objects. Five major
compound object types have been identified:

a format for documents

a flat file of ASCII and/ or binary values

a special array for images (special case of QUBE)

TEXT

TABLE

IMAGE

QUBE an array for multi-dimensional data files with optional prefix and
suffix data in each dimension

HISTORY a format for cumulative ASCII keyword processing histories

K.3.1 TEXT Object Format

The default text object consists of ASCII text in STREAM format with each line separated
by a carriage return/line feed pair. Lines should be 71 characters or less, and there should be no
embedded control characters other than the form feed (control-L) and tab characters (Control-I).

Example of a TEXT object:

NJPL1I1OOPDS1OOOOOOOO = SFDU_LABEL
RECORD_TYPE = STREAM
OBJECT = TEXT
END_OBJECT
END
Now is the time for all good men to come to the aid of their
labels.

DATA OBJECT DESCRIPTIONS K-5

K.3.2 TABLE Object Format
A PDS TABLE object is a uniform collection of records containing ASCII and/or binary value

fields, as described in the label. If all of the fields are ASCII, the table has FORMAT = ASCII, and
it may have stream (the default) or fixed-length records. Otherwise it has FORMAT = BINARY
and it MUST have fixed-length records.

If a table has ASCII format and stream records, the records are terminated with carriage
return / line feed pairs. The most widely used form has fields separated by commas, and text items
enclosed in double quotes. This kind of table can be processed by nearly all data management
systems. It is recommended for PDS tables which are expected to be used with commercial data
management or data analysis software.

The basic file structure is defined by the following keywords:

FORMAT

RECORD-TYPE

FILE-RECORDS

The type or representation of data stored in the
table. The default table format is ASCII, indicat-
ing that values are stored as ASCII text. Tables
may also have FORMAT= BINARY where data
i terns are stored in binary (or mixed binary and
ASCII) format.

The default RECORD-TYPE of an ASCII table
is STREAM, while that of a BINARY table is
FIXED-LENGTH. The parameters which define
a BINARY TABLE are identical to those for an
ASCII TABLE, except the default meaning of the
column type refers to a binary storage format. For
example, INTEGER column type in a BINARY
TABLE would indicate a signed 4 byte (32 bit)
binary value.

The number of physical records.
Keywords used to define table contents are as follows:

TABLE-RECORD..BYTES

ROWS

TABLE-RECORD-ROWS

ROW..BYTES

ROW_COLUMNS

The number of bytes in a fixed-length table
record.

The number of logical table entries.

The number of table rows contained in a single
table..record.

The number of bytes in each table row.

The number of items of information in each table
row.

Keywords used to define the data objects (columns) within the table are:

K-6

NAME

TYPE

The name of a data item or column in a table row.

The data type of the data item, INTEGER,
REAL, DOUBLE, CHARACTER, STRING,
TIME, BIT-STRING. See Appendix K for a de-
scription of valid data types.

DATA OBJECT DESCRIPTIONS

-,
I

FORMAT

START-BYTE or START _BIT

BYTES or BITS

BYTE or BIT

UNIT

NOTE
Example of an ASCII TABLE file:

NJPL1I1OPDS10OOO00OO
RECORD_TYPE
OBJECT

FORMAT
ROWS
ROW_COLUMNS
OBJECT

TYPE
END_OBJECT
OBJECT

TYPE
END_OBJECT
OBJECT

TYPE
END_OBJECT

END_OBJECT
END
11111, 22.22, "ABCDE 11

22222, 33. 33, "FGHIJ"
33333, 44. 44, "KLMNO"

Example of a BINARY TABLE file:

NJPL1I100PDS100000000
RECORD_TYPE
RECORD_BYTES
-TABLE
OBJECT

FORMAT
ROWS

DATA OBJECT DESCRIPTIONS

A Fortran representation of the format statement
needed to read or write the data item. See Ap-
pendix K for a description of valid formats

The byte or bit position (counting from 1) of the
beginning of the data item within the row.

The number of bytes or bits containing the data
item.

The byte or bit position (counting from 1) of a 1-
byte or 1-bit data item within a row. BYTE may
substitute for the 2 statements START _BYTE
= n and BYTES = 1. BIT may substitute for
START _BIT = n and BITS = 1.

The units of measure of the data item.

Descriptive notes about the data item.

= SFDU_LABEL
= STREAM
= TABLE
= ASCII
= 3
= 3
= COLUMN_!
= INTEGER

= COLUMN_2
= REAL

= COLUMN_3
= CHARACTER

= SFDU_LABEL
= FIXED_LENGTH
= 10
= 'TABLE.DAT'
= TABLE
= BINARY
= 3

K-7

ROW_COLUMNS
OBJECT

TYPE
START_BYTE
BYTES

END_OBJECT
OBJECT

TYPE
START_BYTE
BYTES

END_OBJECT
OBJECT

TYPE
START_BYTE
BYTES

END_OBJECT
END_OBJECT
END

K.3.3 IMAGE Object Format

= 3
= COLUMN_!
= REAL
= 1
= 4

= COLUMN_2
= INTEGER_2
= 5
= 2

= COLUMN_3
= INTEGER
= 7
= 4

The image object format is designed for simple two-dimensional arrays from imaging type
instruments (cameras, radar, etc.). For fixed format image files there may be a label group, a
header object, a history object, the image object, and a trailer object, each of which will require
a separate definition. In addition, it is common for the data records to have either prefix or suffix
bytes with each record of data, representing time tags, line numbers or engineering parameters
specific to a certain line of data. ·. ·

The physical and logical structure of any of these files can be defined with the following label
parameters:

RECORD-TYPE

RECORD..BYTES

FILE-RECORDS

LABEL-RECORDS

K-8

Image objects may have FIXED-LENGTH,
VARIABLE-LENGTH or STREAM records.
FIXED_LENGTH is the default. Images in
STREAM format would have to have ASCII item
types.

The record length parameter represents the phys-
ical length of each record in the file. It also rep-
resents the DEFAULT logical record length for
components of the file.

The file records parameter represents the number
of physical records within the file with each record
having a length equal to the RECORD..BYTES
value.

· Number of records containing PDS text la-
bels. Generally the label area will be filled
so that the labels consume a multiple of the
RECORD-BYTES parameter.

DATA OBJECT DESCRIPTIONS

LABEL..RECORD..BYTES Length of each label record. This parameter de-
faults to the RECORD-BYTES if no value is pro-
vided.

These parameters provide a framework within which the logical file structure is built. The most
common situation is that the record components have logical length values which are equal to the
physical values, HOWEVER, the physical length values can be overridden for any component of
an image file by specifying a "componenLRECORD_BYTES" parameter.

The data format keywords for the IMAGE object are:

IMAGE..RECORDS

IMAGE..RECORD-BYTES

LINES

LINE-PREFIX-BYTES

LINE-SAMPLES

SAMPLE-BITS

SAMPLE_TYPE

SAMPLE..BIT-MASK

LINE_SUFFIX_BYTES

TRAILER-RECORDS

TRAILER-RECORD-BYTES

DATA OBJECT DESCRIPTIONS

Number of records containing image data.

Length of each line record. This parameter de-
faults to the RECORD_BYTES if no value is pro-
vided. This value must be an integral number of
8-bit bytes.

Number of lines in image. Normally equal to IM-
AGE-RECORDS value.

Number of bytes of data which precede the image
data in each line record.

Number of sample values contained in each line
record.

Number of bits of data comprising one sample
value. Common values are 1 (bit), 4 (nibble), 8
(byte), 16 (halfword), 32 (fullword).

Data type of sample values, where the default is
unsignedJnteger. Other data types are defined in
Appendix K.l.

A bit pattern representation indicating which bits
are active in the SAMPLE value. For exam-
ple "SAMPLE-BIT-MASK = 2#00011111#" in-
dicates that only the lower 5 bits of each sample
value contain valid data.

Number of bytes of data which follow the last
sample value in a line record.

Number of records which follow the last image
line record in a file.

Length of each trailer record. This parameter
defaults to the RECORD-BYTES if no value is
provided.

K-9

K.3.4 QUBE Object Format

The qube object type is a generalization of the image object type to data objects with an
unlimited number of dimensions. It is distinguished from an ordinary multi-dimensional array by
its capacity for arbitrary prefix and suffix data in each axis. (See terminology below.) The image
object type is a special case of the qube object type.

The primary motivation for the qube object is the spectral image cube generated by the imaging
spectrometer class of instruments, a class with a growing number of members. For these cubes, the
principal use of the prefix and suffix capability will be to include "backplanes" of associated data
(geometry parameters, quality codes, etc.) in the qube. It may also be used for engineering data
accompanying image lines.

A typical file of such data will contain a PDS label, a history object, optional header and/or
other objects, and a qube object. The label will contain descriptions of the structure of the most
important parts of the file, and pointers to supplementary labels containing details about the
less-often-used parts.

K.3.4.1 Qube Terminology

Note the distinction between qube, cube and the various image cubes. Because of its frequent
occurrence, the image object type is identified as a special case of the qube object type. See Figure
K-1 for a diagram of an "Image Cube".

s
p
A
T
I
A
L

K-10

STILL LIFE OF IMAGE-CUBE WITH
SIDE- & BACK-PLANES

CORE

CORE SUFFIX
--REGION

~Q:'

SPATIAL SUFFIX
REGION

Figure K-1: Diagram of an "Image Cube"

BAND-SEQUENTIAL FORM

A1=sample

A
2
=

n
e

DATA OBJECT DESCRIPTIONS

Qube

Cube

Image cube

Spectral image cube

Image

Item

Sample

Axis

Core

Prefix

Suffix

Backplane

Si deplane

Corner

Co-cube

Bin

DATA OBJECT DESCRIPTIONS

A multi-dimensional array with optional prefix
and suffix areas in each dimension. (final name
still open).

A qube of 3 dimensions

A cube of multiple images

An image cube one of whose dimensions is wave-
length (band)

A qube of 2 spatial dimensions: sample and line

An elementary object (data element) in the multi-
dimensional array, or in its prefix or suffix regions.

synonym for item in an image

A dimension of a qube

The "central" region of a qube corresponding to
the prjncipal type of data in all axes. The core is
"homogeneous", i.e. all elements are of the same
type. A qube with prefix or suffix elements will
be "heterogeneous".

ltem(s) preceding the core along an axis of a qube
(also prefix region, prefix plane, etc.)

Item(s) .following the core along an axis of a qu be
(also suffix region, suffix plane, etc.)

A plane of a cube perpendicular to the 3rd dimen-
sion with index greater than the highest index of
any plane in the core

A plane of a cube perpendicular to either the 1st
or 2nd dimension with index outside the index-
range of the core

Region of a qube corresponding to prefix/suffix
indices in two or more axes. Corner regions are
normally left empty.

Backplanes or sideplanes of a cu be in a separate
file (these generally have no core; planes are of
different items on the same space)

A 1 to N dimensional region in the "true physical
space" with finite extent along one or more axes
represented by an element in the core of a qube.

K-11

K.3.4.2 Label Keywords Describing the File Containing a Qube Object
RECORD_TYPE Viteral]

FIXED.LENGTH
RECORD-BYTES [integer]

record length in bytes
FILE-RECORDS [integer]

total number of records in file
LABEL-RECORDS [integer]

number of records in label

K.3.4.3 Basic Qube Object Keywords
TYPE [literal]

QUBE - multidimensional array with optional prefix/suffix data in all dimensions
IMAGE - synonym for 2-d qube of sample and line dimensions

AXES [integer]
• number of dimensions in the cube

STORAGE_TYPE [literal]
name describing the sequence of items in the qube (the following are for image cubes).

BAND_SEQUENTIAL (BSQ)
BAND-INTERLEAVED-BY-LINE (BIL)
BAND-INTERLEAVED-BY-PIXEL (BIP)
plus various tiled and compact forms (TBD).

ITEM_TYPE [literal]
interpretation of data item (must be compatible with ITEM_BITS below)
applies to all items in core and is default for prefix/suffix (See Appendix K.1)
INTEGER, UNSIGNED-INTEGER, REAL, COMPLEX, CHAR[ACTER],
BIT-8TRING, ASCII-INTEGER, ASCILREAL, ... (default: INTEGER) (see DATA
TYPE SPECIFICATIONS above)

ITEM-BITS [integer]
item length in bits (usually n*8)
applies to all items in core and is default for prefix/suffix

K.3.4.4 Qube Axis Keywords
AXIS-NAME (vector of literals]

name of each axis e.g. (SAMPLE, LINE, BAND) {applies to core]
AXIS_UNIT [vector of literals]

physical units of each axis [applies to core]
AXIS-NOTE [vector of text]

K-12 DATA OBJECT DESCRIPTIONS

,....,_

-;

descriptions lengthier than NAME & UNIT
AXIS..ITEMS [vector of integers)

length of each axis, e.g. (128,128,83)
AXIS-BYTES if not integral number of items

PREFIX..ITEMS (vector of integers}
prefix length of each axis (default 0)
PREFIX-BYTES in not integral number of items

CORE..ITEMS (vector of integers)
length of each axis within core {defaults to AXIS..ITEMS - PREFIX..ITEMS - SUF-
FIX..ITEMS)

SUFFIX-1TEMS (vector of integers}
suffix length of each axis (default O)
SUFFIX-BYTES if not integral number of items

[The rest of the keywords in this section apply to the core only]

For uniform axes representing physical variables (e.g. wavelength):

AXIS..INTERVAL [vector of reals)
increment between successive bins or grid points along each axis (1. is the default, 0.
indicates a descrete set)

and choice of one of the following pairs of keywords:

AXIS_START (vector of reals)
outer edge of first bin of core {def 0)

AXIS-STOP [vector of reals)
outer edge of last bin of core {def 0)

AXIS-FIRST (vector of reals)
central value of first bin of core

AXIS_LAST (vector of reals]
central value of last bin of core

For non-uniform axes or spatially undersampled data (i is axis number):

AXISi-BIN_RANGE [vector of pairs of reals)
range along axis for each bin

or

AXISi-BIN _START [vector of reals}

DATA OBJECT DESCRIPTIONS K-13

starting value (along axis) for each bin
and

AXISi..BIN_STOP [vector of reals]
stopping edge (along axis) for each bin

or

AXISLBIN-CENTER [vector of reals]
central value for each bin

and
AXISLBIN-WIDTH [vector of reals]

width for each bin

K.3.4.5 Qube Core Keywords
CORE-NAME [literal]

name of principal data item (e.g. Brightness)
CORE_UNIT ~iteral]

physical units of principal data item (default: dimensionless)
CORE-NOTE [text]

description lengthier than NAME and UNIT
CORE..BIT_MASK [binary integer]

e.g. 2#01111111# for 7 bit item in byte

The following 3 keywords describe the relationship between the data stored in the core and the
"true" physical values they represent. Only one of CORE-MULTIPLIER and CORE-DIVISOR
may be present. All 3 keywords have default values.

''true'' value= base+ (stored value* multiplier)

or

''true'' value= base+ (stored value/ divisor)
CORE-BASE [real]

base value to be added to stored value (default 0.)
CORE_MULTIPLIER [real]

multiplier of stored value (default 1.)
CORE-DIVISOR {real]

divisor of stored value (default 1.)

CORE-EXCLUDE-VALUE [type specified by ITEM-TYPE]

K-14

value denoting missing or null or "fill" or bad data (default is minimum numeric value
allowed by hardware for type and length of item)

DATA OBJECT DESCRIPTIONS

..__

-~
I

-~
- ,.

-

-"""-

.-,

CORE_EXCLUDE_RANGE [vector of 2 values of type specified by ITEM_TYPE]
algebraic minimum and maximum of range of values to be excluded from consideration
as "valid" data (may be reserved for flagging various kinds of invalidity, to be described
more fully in text)

The following four keywords are optional items - possibly vectors of values, one for each band in
core - perhaps maintained in the cube header.

CORE..MINIMUM [type indicated by ITEM_TYPE]
CORE-MAXIMUM [type indicated by ITEM-TYPE]
CORE-MEAN [type indicated by ITEM-TYPE]
CORE..STANDARD-DEVIATION [type indicated by ITEM-TYPE]

K.3.4.6 Qube Prefix/Suffix Keywords
In the following definitions, i = axis number, and j = "PRE" or "SUF".
AXISLjFIX_N AME [vector of literals]

= name of each prefix/suffix item, e.g. AXIS..3-SUFFIX-NAME = (LATITUDE, LON-
GITUDE, PHASE..ANGLE)

and similar.vector-valued keywords corresponding to Core keywords: UNIT, NOTE, ITEM_TYPE,
BIT-MASK, BASE, MULTIPLIER, DIVISOR, MINIMUM, MAXIMUM, MEAN, STAN-
DARD-DEVIATION, EXCLUDE-VALUE .

K.3.4. 7 Projection Keywords
The following keywords apply to the image plane of qube.
PROJECTION-NAME [literal]

cartographic projection
NULL
SIMPLE-CYLINDRICAL
MERCATOR
LAMBERT-CONFORMAL
POLAR-STEREOGRAPHIC
SINUSOIDAL..EQU AL..AREA
POINT-PERSPECTIVE (view)
etc.

PROJECTION-NOTE [text]
PROJECTION:..ORIGIN [vector of 2 reals]

origin of map (lat/~on)
PROJECTIQN_ORIGIN..LOCATION [vector of 2 reals]

first line and sample relative to origin
PROJECTION-RESOLUTION [unitized real]

DATA OBJECT DESCRIPTIONS K-15

resolution of map, e.g. deg/pixel or km/pixel
PROJECTION..ELLIPTICITY [real]

ellipticity of object
POSITNE_LONGITUDE [literal]

EAST, WEST
STANDARD-PARALLELS [vector of reals]
CENTER-LONGITUDE [real]
CENTER-LATITUDE [real]
LONGITUDE-RANGE [vector of reals]
LATITUDE-RANGE {vector of reals]

K.3.5 History Object Format
A history object is a collection of text describing the processing performed to generate a data

object. It consists of a series of history entries, one for each process the data has been subject to,
followed by an END statement.

K.3.5.1 History Entry
Each history entry is a sub-object of the history object. The entry consists of a series of

keyword=value statements, each terminated by CR/LF, beginning with OBJECT and ending with
END_OBJECT. One group of statements, the process parameters, form a nested object within the
entry. All statements follow the syntax of the Object Description Language (ODL) used in the
data unit label. For example:

K-16

OBJECT= FILT8B
VERSION_DATE = 1986-08-15
VEaSION_HUMBER = 2.3
OBJECT= PARAMETER_GROUP (or PARAMETERS)

FILTER= NPE
LINE= 256
SAMPLE= 256
NULL• 0
FRACTION =.7
FROM= input_file
TO= output_file

END_OBJECT
DATE_TIME • 1988-08-08T08:08:08
NODE• GRUMPY
USER= "Snov Vhite"
PROGRAM_NOTE • "High pass filter"

USER_NOTE = "Eliminate noise from
Ganymede global mosaic"

[comments,*= statement
required]

[•value is process name]
[•program version date]
[version number]
[•program parameters:
names not necessarily in PDS
dictionary; values might be
homogeneous vectors.]

[•]
[•run date a time]
[•(net) name of computer]
[•username]
[•program-generated

description]

[•user input]

DATA OBJECT DESCRIPTIONS

----,

-PREDECESSOR= a (or {a1,a2, ... })

-sucCESS0R = b

END_OBJECT

K.3.5.2 Tree of Processes

[•pointer(s) to predecessor
entry(s) (record number(s))]

[•pointer to successor entry,
to be added when that
entry is created]

[•]

The entire History Object has a kind of tree structure, with the file containing it as the root
of the tree, and the branches extending backwards in time, rather like human ancestor trees, but
where there can be one, two or more parents! There are branch points at each file merge step
(i.e. when two or more input files combine to form one output file in some process.) The entries
are therefor doubly linked by pointer statements for computer traceability. (See sample entry
above.) The FROM and TO parameters, if used, also provide traceability, but it is indir~ct, and
the parameter names may vary from program to program. In addition, an indentation technique
is employed for human readability. A sample diagram of processing history is given in Figure K-2.
A sample indented list is given in Figure K-3.

A 8 C

l d l e I f
D E F

l g

G

I
A '
H L

I
l

I
Process h

has2
output files

Figure K-2: Diagram of Processing History for a File

K.3.6 History Object Processing
The following rules should be applied to help make the history object more human-readable:

(1.) At each non-merge step, insert a blank line before adding the new entry. Do not indent.
(2.) At each merge step, insert 2 blank lines, and indent merged entries by 1 space.
(3.) A restriction of 75 characters per line will allow histories of up to 5 levels to be expressed

in indented form with a maximum line length of 80 characters. (The indentation could be
suppressed if there were more than 5 levels.)
Each application program should invoke history routines (to be provided) to:

DATA OBJECT DESCRIPTIONS K-17

Only OBJECT
and
END_OBJECT
statements are
shown here

END

OBJECT= d
... history of file D
END OBJECT

OBJECT= g

7
. . ·. history of file G _J
END OBJECT

OBJECT= e
... history of file E
END OBJECT

OBJECT= f

History of Rle G

. . . history of file F History of Rle H
END OBJECT

OBJECT= i

OBJECT= h
... history of file H
END OBJECT

... last (current) entry in history of file I
END OBJECT

Figure K-3: Textual Description of Processing History for a File

(1.) Update history objects in memory by adding a new history entry OR
(2.) Copy history object of input file to output file and append new history entry OR
(3.) Merge history objects of multiple input files (as in II above) and write to output file, appending

new history entry
Each program should also:

(1.) Supply a descriptive "program..note" to be included in the entry.
(2.) Provide for user input of "user..notes" to be included in the entry.
(3.) Maintain a version date to be included in the entry.
(4.) Optionally maintain a version number according to standards to be adopted.

K-18 DATA OBJECT DESCRIPTIONS

Appendix L

SAMPLE ODL LABELS

The following examples present ODL label sets for a variety of different data object types.
They represent a working prototype implementation of the ODL label structure.

L.1 SAMPLE TEXT FILE LABEL
This label set precedes the description of the Voyager image documentation contained on the Uranus
Image Disk.

NJPL1IOOPDS100000000
RECORD_TYPE
OBJECT
FORMAT
END_OBJECT
SPACECRAFT_NAME
MISSION_PHASE
INSTRUMENT_NAME
END

SAMPLE ODL LABELS

= SFDU_LABEL
= STREAM
= TEXT
= TEX

= VOYAGER_2
= URANUS_ENCOUNTER
= {NARROW_ANGLE_CAMERA,WIDE_ANGLE_CAMERA}

L.2 SAMPLE TABLE FILE LABELS
Delimited ASCII Table of Spectral Reflectance Values:

Note that start-byte and bytes parameters are not needed since all values are delimited with
commas and each row comprises one record.

L-2

NJPL1IOOPDS100006664 = SFDU_LABEL
RECORD_TYPE = STREAM
OBJECT = TABLE

FORMAT = ASCII
ROWS = 125
ROW_COLUMNS = 3

OBJECT = WAVELENGTH
TYPE = REAL

END_OBJECT
OBJECT = REFLECTANCE

TYPE = REAL
END_OBJECT
OBJECT = ERROR

TYPE = REAL
END_OBJECT

FILE_NOTE = "Data is taken from 'The Galilean
Satellites: New Near-Infrared Spectral Reflectance (0.65-2.5
microns) and a .325-.5 micron Summary', Clark and McCord; Icarus,
vol. 41, 323-329 (1980). Figure 13, Ganymede Leading. The
reflectivity is the geometric albedo scaled to 1.0 at 1.02
microns."
END

.350000, .488778, .022660

.375000, .590744, .011475

.400000, .632155, .012826

.433000, .752500, .011015

.466000, .783059, .008976

.500000, .869610, .007633

.533000, .918507, .004766

.566000, .955278, .001062

.600000, .973874, .005927

.633000, 1.010833, .006079

.666000, 1.021557, .009361

AND SO ON •••

SAMPLE ODL LABELS

/

-'"'

PWS Binary Data File:
Note that there are many files with the same record structure so the structure definition is

stored in a single STRUCTURE file and referenced in the labels for the individual data files.
Labels for data file PWS072.TAB:

NJPL1IOOPDS101033180
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS
ATABLE
SPACECRAFT_NAME
MISSION_PHASE
TARGET_NAME
INSTRUMENT_NAME
INSTRUMENT_MODE
SPACECRAFT_EVENT_TIME
OBJECT

FORMAT
ROWS
ASTRUCTURE

END_OBJECT
END

= SFDU_LABEL
= FIXED_LENGTH
= 48
= 21525
= 32
= 33 I* Location of start of table in records.
= VOYAGER_!
= JUPITER_ENCOUNTER
= JUPITER_MAGNETOSPHERE
= PLASMA_WAVE_SPECTROMETER
= SPECTRUM_ANALYZER
= 1979-072TOO:OO:OOZ
= TABLE
= BINARY
= 21493
= 'VGRPWSEL.FMT'

Contents of referenced structure file VGRPWSEL.FMT:

NJPL1IOOPDS100000000 = SFDU_LABEL
RECORD_TYPE = STREAM
I* STRUCTURE TABLE FOR VGRPWS ELECTRIC WAVEFORM DATA
OBJECT

TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE

SAMPLE ODL LABELS

= YEAR
= VAX_INTEGER
= 1
= 2
= I4
= "YEAR OF 1900"
= YEAR

= HOUR
= VAX_INTEGER
= 3
= 2
= 14
= "HOUR OF YEAR STARTING AT 24"
= HOUR

= SECOND
= VAX_INTEGER
= 5

L-3

BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

L-4

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES
FORMAT
NOTE

END_OBJECT

OBJECT
ITEMS
TYPE
START_BYTE

= 2
= I4
= "SECOND OF HOUR"
= SECOND

= MILLI
= VAX_INTEGER
= 7
= 2
= 13
= "MILLISECOND OF SECOND"
= MILLI

= FDS_MOD16
= VAX_INTEGER
= 9
= 2
= IS
= "FDS MODULO 65536 COUNT"
= FDS_MOD16

= FDS_MOD60
= VAX_INTEGER
= 11
= 2
= I2
= "FDS MODULO 60 COUNT"
= FDS_MOD60

= FDS_LINES
= VAX_INTEGER
= 13
= 2
= 13
= "FDS LINE COUNT (1-800)"
= FDS_LINES

= INSTRUMENT_MODE
= VAX_INTEGER
= 15
= 2
= 12
= "DATA FORMAT MODE (0-31)"
= INSTRUMENT_MODE

= CHANNEL
= 16
= VAX_INTEGER
= 15

SAMPLE ODL LABELS

........,.,

BYTES
FORMAT
NOTE

END_OBJECT
END

SAMPLE ODL LABELS

= 2
= I6
= "UNCALIBRATED E-FIELD CHAN n"
= CHANNEL

L-5

Pointer Label to an ASCII Table of Image Parameters:

NJPL1IOOPDS100000000 = SFDU_LABEL
I• This label describes the structure of the Index Table on each Voyager
/• Image CDROM. The table contains one row for each image file on the
I* CDROM.
RECORD_TYPE
FILE_RECORDS
RECORD_BYTES
-IMAGE_INDEX_TABLE
OBJECT

L-6

FORMAT
ROWS
ROW_BYTES
SFDU_LABEL
SPACECRAFT_NAME
MISSION_PHASE_NAME
NOTE

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

EHD_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

EHD_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

EHD_OBJECT

= FIXED_LENGTH
= 6538
= 512
= 'IMGINDEX.TAB'
= IMAGE_INDEX_TABLE
= ASCII
= 6538
= 512
= NJPL1IOOPDS103347456
= VOYAGER_2
= URANUS_ENCOUNTER
= "Flat Table File of Voyager Image Information"
= SPACECRAFT_NAME
= CHARACTER
= 1
= 9

= MISSION_PHASE_NAME
= CHARACTER
= 13
= 16

= TARGET_NAME
= CHARACTER
= 31
= 8

= IMAGE_ID
= CHARACTER
= 39
= 10

= IMAGE_NUMBER
= REAL
= 51
= 8

I* FDS COUNT

SAMPLE ODL LABELS

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT

SAMPLE ODL LABELS

= IMAGE_TIME
= TIME
= 61
= 19

= EARTH_RECEIVED_TIME
= TIME
= 81
= 19

= INSTRUMENT_NAME
= CHARACTER
= 101
= 19

= SCAN_MODE_ID
= CHARACTER
= 121
= 7

= SHUTTER_MODE_ID
= CHARACTER
= 129
= 7

= GAIN_MODE_ID
= CHARACTER
= 132
= 7

= EDIT_MODE_ID
= CHARACTER
= 145
= 7

= FILTER_NAME
= CHARACTER
= 153
= 7

= FILTER_NUMBER

L-7

TYPE = INTEGER
START_BYTE = 161
BYTES = 7

END_OBJECT

OBJECT = EXPOSURE_DURATION
TYPE = REAL
START_BYTE = 169
BYTES = 7

END_OBJECT

OBJECT = NOTE
· TYPE = CHARACTER

START_BYTE = 177
BYTES. = 80

END_OBJECT

OBJECT = IMAGE_VOLUME_ID ,__

TYPE = CHARACTER
START_BYTE .;, 257
BYTES = 8

END_OBJECT

OBJECT = IMAGE_FILE_NAME
TYPE = CHARACTER
START_BYTE = 269
BYTES = 48

END_OBJECT

OBJECT = BROWSE_VOLUME_ID -.
TYPE = CHARACTER
START_BYTE = 317
BYTES = 8

END_OBJECT

OBJECT = BROWSE_FILE_NAME
TYPE = CHARACTER
START_BYTE = 329
BYTES = 48 -END_OBJECT

END_OBJECT = IMAGE_INDEX_TABLE
END

·-_,:

L-8 SAMPLE ODL LABELS

Binary Table of Voyager Magnetometer Values:

NJPL1IOOPDS111395180 = SFDU_LABEL
HARDWARE_TYPE = VAX
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 24
FILE_RECORDS = 474800

~- LABEL_RECORDS = 50
OBJECT = TABLE

FORMAT = BINARY
ROWS = 474750
ROW_COLUMNS = 5
OBJECT = TIME

TYPE = DOUBLE
START_BYTE = 1
BYTES = 8
FORMAT = 'F13.3'

END_OBJECT
OBJECT = BX

TYPE = REAL
START_BYTE = 9
BYTES = 4
FORMAT = 'F12.4'

END_OBJECT
OBJECT = BY

TYPE = REAL
START_BYTE = 13
BYTES = 4
FORMAT = 'F12.4'

END_OBJECT
OBJECT = BZ

TYPE = REAL
START_BYTE = 17
BYTES = 4
FORMAT = 'F12.4' - END_OBJECT

OBJECT = BT
TYPE = REAL
START_BYTE = 21
BYTES = 4
FORMAT = 'F12.4'

END_OBJECT
END_OBJECT
END

SAMPLE ODL LABELS L-9

L.3 SAMPLE IMAGE FILE LABELS
NOAA Elevation File:

NJPL1IOOPDS105529580 =
RECORD_TYPE =
RECORD_BYTES =
FILE_RECORDS =
LABEL_RECORDS =
-ENGINEERING_HEADER =
-IMAGE =
OBJECT =

RECORDS =
END_OBJECT
OBJECT =

LINES =
LINE_SAMPLES =
SAMPLE_BITS =

END_OBJECT
FILE_NOTE =

SFDU_LABEL
FIXED_LENGTH
1920
2880
1
2
3
ENGINEERING_HEADER
1

IMAGE
2879
1920
8

II

NOAA 30-second elevation averages were scaled to a range from 0
(sea level, lowest elevation) to 255 (highest elevation) so that
each scaled value corresponds to a 15 meter interval. The data
are arrayed in four files with the following longitudinal
boundaries in degrees vest longitude: 125 to 109, 109 to 100,
100 to 86, 86 to 66 degrees. Each file corre·sponds to a latitude
range from 25 to 49 degrees north. Within each file each record
corresponds to the northernmost latitude and the first sample in
each record corresponds to the westernmost longitude. This file
contains the Western region, 125 to 109 degrees vest longitude."
END

L-10 SAMPLE ODL LABELS

--

Ocean Data System Image File:

NJPL1IOOPDS100263148 = SFDU_LABEL
/* FILE CHARACTERISTICS
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 512
FILE_RECORDS = 514
LABEL_RECORDS = 2
OBJECT = IMAGE

LINES = 512
LINE_SAMPLES = 512
SAMPLE_BITS = 8

END_OBJECT
/* IMAGE DESCRIPTION
SPACECRAFT_NAME = NIMBUS_7
TARGET_NAME = EARTH
INSTRUMENT_NAME = COASTAL_ZONE_COLOR_SCANNER
NOTE = "A CHLOROPHYLL CONCENTRATION IMAGE FROM THE
SANTA BARBARA AREA. SCALE INCLUDED. 1 PIXEL IS ABOUT 1 KM
SQUARE. II

END

SAMPLE ODL LABELS L-11

Voyager Plasma Wave File:
This file is identified as an image in this example.

NJPL1IOOPDS100822252
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS
-ENGINEERING_SUMMARY
-IMAGE
OBJECT

BYTES
STRUCTURE

END_OBJECT
OBJECT

LINES
LINE_SAMPLES.
LINE_PREFIX_BYTES
LINE_SUFFIX_BYTES
SAMPLE_BITS
SAMPLE_BIT_MASK

END_OBJECT
SPACECRAFT_NAME
MISSION_PHASE_NAME
TARGET_NAME
FRAME_ID
FRAME_PERIOD
SPACECRAFT_CLOCK_COUNT
SPACECRAFT_EVENT_TIME
INSTRUMENT_NAME
INSTRUMENT_MODE
INSTRUMENT_SAMPLING_RATE
INSTRUMENT_LOST_SAMPLES
END

L-12

= SFDU_LABEL
= FIXED_LENGTH
= 1024
= 802
= 2
= 3
= 4
= ENGINEERING_SUMMARY
= 1024
= 'VGRPWS.LBL'

= IMAGE
= 800
= 1600
= 220
= 4
= 4
= 2#1111# /• NIBBLES IN TIME ORDER

= VOYAGER_!
= JUPITER_ENCOUNTER
= JUPITER_MAGNETOSPHERE
= 16269.49
= 48 <SECONDS>
= 16269.49 /• FLIGHT DATA SYSTEM (FDS)
= 1979/060-12:24:36 <UTC> /•FRAME BEGINNING
= PLASMA_WAVE_SPECTROMETER
= WAVEFORM_RECEIVER
= 28800 /• SAMPLES PER SECOND
= 128 /• LOST AT END OF EACH LINE

SAMPLE ODL LABELS

---,

~-

Voyager CDROM Image File:

NJPL1IOOPDS100000000 = SFDU_LABEL
/• FILE FORMAT AND LENGTH
RECORD_TYPE = VARIABLE_LENGTH
RECORD_BYTES = 836
FILE_RECORDS = 860
LABEL_RECORDS = 54
/• POINTERS TO STARTING RECORDS OF MAJOR OBJECTS IN FILE
-IMAGE_HISTOGRAM = 55
-ENCODING_HISTOGRAM = 57
-ENGINEERING_TABLE = 60
-IMAGE = 61
SPACECRAFT_NAME = VOYAGER_1
MISSION_PHASE_NAME = SATURN_ENCOUNTER
TARGET_NAME = TITAN
IMAGE_ID = '1516S1-002'
IMAGE_NUMBER = 34909.12 /•FLIGHT DATA SUBSYSTEM (FDS)
IMAGE_TIME = 1980-11-11T19:52:34Z
EARTH_RECEIVED_TIME = 1980-11-11T21:19:46Z
NOTE = "ROUTINE MULTISPECTRAL LONGITUDE COVERAGE"
INSTRUMENT_NAME = WIDE_ANGLE_CAMERA
SCAN_MODE = '3:1'
SHUTTER_MODE = BOTSIM
GAIN_MODE = LOW
EDIT_MODE = '1:1' /•FULL RESOLUTION
FILTER_NAME = CH4_JS
FILTER_NUMBER = 0
EXPOSURE_DURATION = 15.3600 <SECONDS>
/• DESCRIPTION OF THE DATA OBJECTS CONTAINED IN FILE
OBJECT

ITEMS
ITEM_TYPE
ITEM_BITS

END_OBJECT
OBJECT

ITEMS
ITEM_TYPE

.· ITEM_BITS
END_OBJECT

OBJECT
BYTES
-sTRUCTURE

END_OBJECT
OBJECT

ENCODING_TYPE
LINES
LINE_SAMPLES

SAMPLE ODL LABELS

= IMAGE_HISTOGRAM
= 256
= VAX_INTEGER
= 32

= ENCODING_HISTOGRAM
= 511
= VAX_INTEGER
= 32

= ENGINEERING_TABLE
= 242
= 'ENGTAB.LBL'

= IMAGE
= HUFFMAN_FIRST_DIFFERENCE
= 800
= 800

it

L-13

LINE_SUFFIX_BYTES
SAMPLE_TYPE
SAMPLE_BITS
SAMPLE_BIT_MASK
-LINE_SUFFIX_STRUCTURE

END_OBJECT
END

L-14

= 36
= UNSIGNED_INTEGER
= 8
= 2#11111111#
= 'LINESUFX.LBL'

SAMPLE ODL LABELS

L.4 SAMPLE CUBE FILE LABEL
The following label is from a Sample Cube file. Note that just about everything necessary to

interpret this data is included in the labels, including references to people with more information.

NJPL1IOOPDS100000000
I* File structure
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

/• Pointers to objects

~QUBE

= SFDU_LABEL

= FIXED_LENGTH
= 512
= 5320
= 8

= 9

/• Qube object description

OBJECT = QUBE I* object type serves as name

I* Data structure and description

STORAGE_TYPE = BAND_SEQUENTIAL
AXES = 3
AXIS_ITEMS = (128,128,83)
ITEM_BITS = 16
ITEM_TYPE = VAX_INTEGER I• actually unsigned
AXIS_NAME = (SAMPLE,LINE,BAND)
AXIS_UNIT = (, ,MICRONS)
AXIS_INTERVAL = (, ,0.) '* discrete bands
AXIS3_BIN_CENTER_VALUE = (

.1 .713 .725 .738 .751 .764 .116 .789 .802 .815

.827 .84 .853 .866 .878 .891 .904 .917 .929 .942

.955 .968 .98 1.006 1.031 1.057 1.082 1.108 1.133 1.158
1.184 1.209 1.235 1.26 1.286 1.311 1.337 1.362 1.387 1.413
1.438 1.464 1.489 1.515 1.54 1.566 1. 591 1. 617 1.642 1.668
1.693 1. 719 1. 744 1.11 1.795 1.821 1.846 1.872 1.897 1.923
1.948 1.974 1.999 2.025 2.051 2.076 2.102 2.127 2.153 2.178
2.204 2.229 2.255 2.281 2.306 2.332 2.357 2.383 2.408 2.434
2.46 2.485 2.511)

CORE_ITEMS = (128,128,83)
CORE_NAME = "NORMALIZED REFLECTANCE"
CORE_UNIT = DIMENSIONLESS
CORE_DIVISOR = 10000
CORE_EXCLUDE_VALUE = -32000

/• Instrument and target description

SPACECRAFT_NAME

SAMPLE ODL LABELS

= GALILEO

L-15

INSTRUMENT_NAME = NIMS /• Near Infrared Mapping Spectrometer
TARGET_BODY = GANYMEDE
NOTE = II

GANCUB: Synthetic Ganymede Cube (17mar87)

(by Robert Singer, with additions by Roger Clark and Bob Mehlman)
GANCUB is a synthetically generated 3-dimensional data set (image
cube) of the type to be returned by mapping spectrometers such as the
NIMS instrument on Galileo. The spatial information (the first two
array dimensions) is based on a small section of a Voyager image of
Ganymede, taken in the longest wavelength filter (orange, I believe).

The third (spectral) dimension consists of one spectrum per spatial
pixel. These spectra originated from 25-30 near-IR laboratory
spectra c-o.7 to 2.5 um) of ice, minerals, and ice-mineral mixtures,
and were converted to NIMS wavelengths. A small amount of random
noise was added to the lab spectra before assignment to each pixel in
the image to more closely simulate actual NIMS data, but the net
effect is still quite smooth, probably smoother than will be realized
with actual spacecraft measurements. A spectrum was assigned for
each pixel based on the closest match between Voyager orange albedo
and the -o.7 um reflectance of the spectra. (These albedos did not
vary much so they were stretched to fill the range.) For the ice
spectra, this depends most heavily on the grain size and level of
contamination. Some clay minerals and amorphous hydrous weathering
products (palagonites) are also spectrally represented. There are
small exposures of olivine and pyroxene as well, for variety.

Most d~ta words in the file range from Oto 10,000, corresponding to
normalized spectral values from 0. to 1.0 with a significance of
about .002. There are a few small negative values. There are also
1437 fill values of ~32,000 corresponding to missing pixels in the
lab spectra.

References:

L-16

Roger N. Clark
U.S. Geological Survey, Mail Stop 964
Box 25046, Federal Center
Denver, CO 80225
Phone: 303/236-1332, x1212 (secy), x1411
Telemail: RNCLARK

Robert Singer
Lunar and Planetary Laboratory
Space Sciences Bldg.
University of Arizona
Tucson, AZ 85721
Phone: 602/621-4573

SAMPLE ODL LABELS

Bob Mehlman (software)
UCLA/IGPP
Los Angeles, CA 90024
Phone: 213/825-2434, -3123
Telemail: RMEHLMAN
SPAN: GRUMPY: : RMEHLMAN, ISSAC: : RMEHLMAN 11

END_0BJECT
END

SAMPLE ODL LABELS L-17

---,

L-18 SAMPLE ODL LABELS

Appendix M

PDS CODING STANDARDS

The purpose of these standards is to facilitate the creation of highly readable and maintainable
code. This standard will:
(1.) Increase portability to a new host environment.
(2.) Allow mechanical processing of computer programs (i.e., a documentation reader).
(3.) Provide for new personnel to learn easily about existing software.
(4.) Facilitate reuse of program segments.

It is important for the software engineer to understand the philosophy behind the standards.
The following coding standards are not absolute rules, nor are they meant to hinder the engineer's
productivity. By following standards, the goals listed above can be obtained, leading to a more
maintainable and readable product. Moreover, these Standards are not exhaustive; additions to the
Standard shall occur throughout the development phase. Therefore, it is just as important for the
software engineer to follow the spirit of the Standard as it is to follow the letter of the Standard.

The following code development standards address comments, programming style, explicit
typing, naming conventions, language specific practices, common software, and software engineering
notebooks. Each guideline is followed by a brief paragraph motivating the guideline. Occasionally,
a stylistic motivation is given which indicates that the choice was arbitrary; however, the choice
shall be used to keep the code consistent.

PDS application software shall be organized as a hierarchy of software components:
(1.) Function
(2.) Program
(3.) Segment
(4.) Unit
(5.) Module

In this hierarchy, a function is the largest and most general component and a module is the
smallest and most detailed.

Each software component shall have the following format:
Component (parameter 1, parameter2, ...) followed by:
(1.) Header block
(2.) Parameter declarations and descriptions
(3.) Local variable declarations and descriptions
(4.) Code body

PDS CODING STANDARDS

M.1 COMMENTS
Comments shall occur at the following places in a software component:

(1.) A header which is surrounded by the comment symbol as a block shall highlight the beginning
of a software component. Additionally, it is recommended that the higher level software
component should contain one more boundary line on both the top and bottom sides than the
next lower level. This header format applies to all levels of software components.

*
* Component subname [(var1[,var2[... J])]

* Change history: (date, author, summary)
* Overview: (what it does)
* Invocation example:
* Detailed description: (processing logic)
* Internal/external references
* Author and institution
* Version and date:
* Logical--units on input
* Logical--units on output
* Limitations

*
*
*
*
*
*

*
*
*
*
*
*

Motivation: The header contains the essential sections necessary to document a software
component. These sections are formatted so that the documentation reader can extract them.
Moreover, the format chosen separates the header from the rest of the software component.

(2.) Logical blocks of code shall be commented in block format. The majority of components should
be decomposable into blocks. A typical block may be a nested if block, loop, or procedure
initialization statements. Comments describing logical blocks of code shall be surrounded by
starred boxes for emphasis.
Motivation: Code is described best in logically cohesive blocks than by many over-commented
lines. Boxing in comments aids visually in the separation of blocks throughout the code.

(3.) Comment blocks at the same software component level shall be aligned on the same column.
In general, comments of individual statements shall be aligned, especially for those statements
logically related. Individual lines of code shall be commented only when the comment does
more than just echo the statement coded. In general, it should not be necessary to comment
many individual lines of code, since most statements belong to a logical block. The following
shall be a guide to comment individual lines of code:
(a.) The statement performs a complete function.
(b.) The programmer determines that specific information is required for general software

understandability.
(c.) The comment is required to explain programming language or structure construct idiosyn-

crasies.

M-2 PDS CODING STANDARDS

-=

(d.) The programmer intends to further clarify nesting levels by commenting the beginning
and ending statements of a particular block of code.

(e.) The statement is setting default values or error flags where additional comments are
required to state the function.

Motivation: Over-commenting ruins the readability of code and burdens the reader with
unnecessary details .

. (4.) Comments shall reflect what the code is doing.

Motivation: Inaccurate comments are worse than no comments. An inaccurate description
of the code can become a major problem in debugging and maintaining code, especially when
the reader relies on descriptions instead of actual code.

(5.) The structure of the code shall be directly traceable from the structure of the design.
Motivation: The traceability of the code from structure charts is a direct check on the design
process. If the code deviates drastically from the charts, this signals that either the coding
was done incorrectly, or that the design is faulty.

(6.) Local variables shall be described and declared in a separate section before any executable
statements by a line or two of description.
Motivation: Similar to describing parameters, local variables must also be described and
declared together to complete the documention of the software component.

M.2 PROGRAMMING STYLE
Stylistic issues address choosing a single consistent way of performing an operation when

there are multiple acceptable solutions. Stylistic c~iwentiohs may seem to burden the programmer
especially when his style does not agree with the imposed Standard. However, stylistic conventions
allow easier mechanical processing of programs if the conventions are follo;wed. Moreover, a standard
programming style enhances program readability, since the reader doesn't need to readjust to a
different programming style.

(1.) The recommended size of a PDS module shall be 100 lines of code or less. Programmers shall
follow the following rule that a component shall have one purpose, described in the overview
section of the header. Moreover, the overview shall not consist of a compound subject (i.e., no
"and" in it). If it does, then the component shall be split.
Motivation: Limiting the scope of a subroutine to one purpose maximizes program modularity
and cohesion.

(2.) Multiple entry and exit points shall not be allowed.
Motivation: Multiple entry and exit points go against the philosophy of structured program-
ming. If the structured design is done correctly, the code should reflect one entry and one exit
point. In general, multiple exit points are unnecessary, since flag setting and branching can
often solve the problem and multiple entry points can be replaced by writing separate routines.

(3.) The use of goto statements shall be limited.
Motivation: Extensive use of goto statements goes against the philosophy of structured design
and programming. Its use contributes to a non-top-down programming style that can be best
described as spaghetti code. A common instance where the legitimate use of gotos may occur
is: branching to an error or exit routine, so that multiple return statements are avoided.

PDS CODING STANDARDS M-3

(4.) Indentation shall reflect the logical structure of the code. Levels of nesting shall be set apart
by four columns per indentation. Moreover, each statement that ends a structure shall appear
in the same column as the statement that started the structure. Example:

do var = el, e2, e3
statement l
statement 2
statement 3

end do
Motivation: Code that is indented well reflects the logic of a program much better than
non-indented code. Four columns is recommended for the length of indentation, since it ~s
recognized easily and does not waste line space.

(5.) Constants shall be defined through the use of C define statements or FORT RAN parameter
statements, and contained in separate include files. The use of numerals in the code shall be
kept to a minimum. Exception: When initializing variables, it is easier to use numerals.
Motivation: By defining constants and maintaining them in include files, individual programs
will not need to be modified due to changed constants.

(6.) Blank lines shall be used to separate code from comments.
Motivation: This improves readability. /

(7.) Spaces shall be used to separate variables in parameter lists, equations, and other programming
statements.
Motivation: This improves readability.

(8.) If a statement is too long to fit on a line comfortably, the continued statement shall be indented
the same amount as the previous line.
Motivation: This improves readability.

(9.) When code is commented out, additional comments shall be added telling when and why the
code has been changed. Commented out code shall be set off by marks, i.e., ** old ** .
Motivation: Many times code is commented out on the fly and therefore not well documented.
Code should be documented at all stages of development including its maintenance phase.
Commented out code shall be made distinguishable from code that is in use.

(10.) Complicated expressions shall be transformed into several simple expressions aligned on sepa-
rate lines.
Motivation: The C language allows the programmer to encode complicated and efficient ex-
pressions at the expense of clarity and readability. To help future readers understand the entire
expression it is appropriate to break the expression down into small, clear subexpressions. This
can also provide more space for individual comment.

M.3 EXPLICIT TYPING
All variables and functions shall be explicitly typed. Each variable shall be declared separately
by the use of a type statement, i.e., real, integer, etc.
Motivation: Many languages consider explicit typing a standard feature. This feature virtu-
ally eliminates bugs due to the failure of declaring variables.

M-4 PDS CODING STANDARDS

---.

- '

M.4 NAMING CONVENTIONS
(1.) Variable name and file name length shall be dictated by the machine.

Motivation: PDS does not put a restriction of the size of a variable or file name. Therefore,
the maximum variable name size shall be determined by the limitation of the machine.

(2.) All global variable and software component names shall be unique in the first six characters.
Motivation: This ensures unique names for global variables and software components.

(3.) A software component naming scheme shall exist which categorizes components into appropri-
ate programming areas.

(4.)

Example: Prefixes in software component names: slibgetline or slib_getJ.ine, where the prefix
slib tells this routine it belongs to the system library.
Motivation: The scheme shall facilitate the identification of software components throughout
the system.
The following file extensions shall be used:
(a.) .FOR - FORT RAN source code files
(b.) .INC - FORTRAN include file
(c.) .C - C source code files
(d.) .H - C include file
(e.) .COM - VAX DCL command files
(f.) .OBJ - VAX object files
(g.) .EXE - VAX executable files
(h.) .MAR - VAX MACRO assembly code files
Motivation: The use of standard terminology facilitates the system build process.

(5.) Descriptive variable names shall be used. One or two character variable names shall be avoided.
Exception: array indices, loop counter variables, etc.
Motivation: Comprehension of variables is enhanced.

M.5 LAN GU AGE SPECIFIC PRACTICES .
The following sections define the language specific coding standards for the FORTRAN and C

programming languages.

M.5.1 PDS FORTRAN Coding Standards

(1.) In general, PDS applications software written in FORTRAN shall be restricted to the
ANSI FORTRAN 77 (X3.9-1978) Standard to make the code more transportable and con-
sistent. Extensions to the ANSI FORTRAN 77 Standard involving do loops, do while loops,
include files, and lower case shall be available to programmers. These extensions show the
structure of the code more clearly than the ANSI counterparts. Since applications shall be
shared between Nodes, transportability shall be a major concern. Therefore, a precompiler
shall be provided in order to translate all non-ANSI extensions into ANSI FORTRAN 77.
PDS EXTENSIONS to ANSI FORTRAN 77:

PDS CODING STANDARDS M-5

Common and Parameter Statements. Common and Parameter statements shall be placed
in separate include files. These files shall be included by means of the include statement in
any software component that uses the Common or Parameter statements. The syntax of the
include statement shall be include filename/list. The /list qualifier is optional and directs the
compiler to list the include file with the rest of the source file in the list file. These two types
of include files shall be distinguishable by using the prefixes com.. and par_ followed by the
filename.inc. The com-filename.inc. shall contain the type declarations of all the common
block variables followed by the declaration of the common block itself. The par_filename.inc.
shall contain alternating type declarations and Parameter statements.

Motivation: Ensures that the declarations of a common block will be unique, since all
references made to it shall be through the declaration in the include file.

Implicit None. The implicit none statement shall be used in the declaration section.
Motivation: This helps find any variables that are not explicitly declared.

Unnamed Common. Unnamed Common shall not be used.
Motivation: The use of unnamed Common is incompatible in a large user group. Using
two or more software components containing unnamed Common blocks with different
contents can cause unpredictable results.

Labeled Loops. Do loops without statement labels shall be preferred over labeled do loops.
Example of: do loops without labels:

do var = el, e2, e3

end do

Example of: do loops with labels:
do label var = el, e2, e3

label end do

do for var = el; e2, e3

end for

Motivation: It delineates the structure of the program and avoids the use of statement
labels.

Do While. Do while loops shall be preferred over labeled if blocks.
Example of: do while loops:

do while var = el, e2, e3 do while var = el, e2, e3

end do end while

Motivation: While loops express the structure of a program better than labeled if blocks.
·Block If. The block if construct shall be preferred over the logical if () then:

block if: logical if:

M-6 PDS CODING STANDARDS

if() then
if statements

else
else statements

end if

if() then
if statements

if not() then
else statements

Motivation: The block if statement is more concise and easier to follow.
FORTRAN shall be written in either upper- or lowercase.

Motivation: Only the uppercase character set is defined in the ANSI FORTRAN 77
standard. Lowercase FORTRAN statement will be translated into uppercase.

M.5.2 PDS C Coding Standards

This section provides standard coding guidelines for programs written in C. In order to make
the C applications code as portable as possible, VMS-unique system features shall not be used in
PDS applications code.

In addition to the following guidelines, the standard reference for coding in C shall be THE C
PROGRAMMING LANGUAGE by Kernighan and Ritchie, (Prentice-Hall,1978.)
(1.) Structure member names. All structure member names shall be unique.

Motivation: The standard C definition does not bind a member name to the structure
that contains it.

(2.) Structure/Union assignment. Not all compilers allow structure/union assignment. To ac-
comodate differences in compilers, the following shall be used: Define a symbol (STRASS)
"structure assignment" in system.h to indic~te whether structure/union assignment is allowed.
Example:

struct str a,b;

#if STRASS
a= b;

#else
bytncpy((char*)a, (char *)b, sizeof(str));

#endif
(bytncpy is a function that copies a given number of bytes from b to a.)

(3.) Passing a structure or a union as a function argument. Structures or unions shall not be passed
as functional arguments. The & operator shall be used to pass a pointer to them instead.

Motivation: This shall enhance portability; structure and unions may be passed as an
argument only in newer compilers.

(4.) Labels and gotos. In cases where a goto is unavoidable, labels shall be in upper case, and
placed starting in column 1 with the following colon on the same line.

Example: goto OUTLOOP;

OUTLOOP: statement;
Motivation: Stylistic.

PDS CODING STANDARDS M-7

(5.) Typedef. New data type names created by using the typedef statement shall be in upper case.
Example: typedef int LENGTH;
Motivation: Stylistic.

(6.) Pointer array. Pointer array arguments shall be defined as *X[], not **X. Pointer array
variables shall be defined as **X.

Motivation: Stylistic
(7.) Character set differences. Dependence on the ASCII character code set shall be avoided;

use standard library functions to determine character type, and perform upper /lower case
conversion. One may assume that the characters 'O' through '9', 'a' through 'z', and 'A'
through 'Z' are consecutive.

Motivation: This feature enhances portability.
(8.) Allocation of storage for character strings. Character string allocation shall use the form

"MAXLEN + 1" to emphasize the real length of the string including the end of string terminator
at the end.

Example: Allocate storage for a character string of 80 characters:

define MAXLEN 80
char str(MAXLEN + 1]

Motivation: Stylistic.

(9.) Octal vs. hexadecimal constants. If binary representation is needed, hexadecimal constants
shall be used instead of octal.

Motivation: Hexadecimal constants are wore suited for modern 16- and 32-bit computer
architectures. •'• - ·

(10.) Unsigned char and unsigned long. Unsigned char and unsigned long shall not be used.
Motivation: Portability. Unsigned char and unsigned long are not available on some
compilers.

(a.) Pointer arguments. All pointer arguments to a function shall be cast to the proper type.
Example: the standard function strcpy takes two char pointers:

strcpy((char *)dest, (char *)source);
Motivation: The internal forms (or even the size) of pointers to different objects may be
different. Therefore, it is safer to use the cast operator.

(11.) Pointer arithmetic. Pointer arithmetic shall be limited to a single dimensioned arrays. -
Motivation: Portability. In general, the numeric value of a pointer is CPU dependant.

(12.) Pointer conversion. Pointer conversion shall be explicitly stated by a cast operator.
Motivation: A voids future programming problems. This guideline agrees in spirit of
explicitly declaring variables.

(13.) Type sizes. Be aware that the size of pointer and int types are not always the same. (Example:
VAX/VMS C uses 2 bytes for int and 4 bytes for pointers.) Care must be taken to use the
correct size. Ensure that arguments and function return values are of the correct size.

M-8

Motivation: Portability. Programs developed on systems in which int and pointer types
are the same size fail to work when ported to systems with different sizes.

PDS CODING STANDARDS
--------,

(14.) Placemrnt of braces. The two braces { } used to delimit a compound statement shall be
indente(i on the same column. Example:

(15.)

(16.)

(17.)

if (i > 0)
{

if-part;
}
else
{

else-part;
I }

M!tivation: It is easier to trace a program with matching levels of delimiters (braces)
thr one with uneven levels.

Function definitions. If a function returns anything, then what is returned shall be explicitly
definedi, even if it is the default type, int.

Mbtivation: This features increases program readability and forces the programmer to
thtnk about the type of value the function shall return.

Assign~ent operators. The following obsolete assignment operators shall not be used: =+,
=--, I =*' =/' =%' =>> ' =<<' =&' =, =I

Mptivation: These assignment operators are obsolete and have been replaced by operator
= /type operators.

Condi4onally compiled integration code. All temporary statements which will only survive to
integr 'ion testing shall be surrounded by the following conditional compilation control lines:

#if def integration
statements;

#endif
B~ inserting or not inserting the statement #define integration at the beginning of the
soµrce file or in an include file,the integration statements can be compiled or not compiled.
M~tivation: This provides programmers with a standard method of introducing tempo-
rj~ code into the integration environment without affecting the standard code.

(18.) Abbreyiated variable names shall be separated by underscore. Example: max..i.nt for maxi-
mum ipteger.

M.6 VA ID CHARACTER SET

Motivll tion: Readability of variables is enhanced.

This s ction contains the valid character set that must be used in the construction of PDS
terms. I

a b c d e f g h i j k 1 m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 2 3 4 5 6 7 8 9 0 _

PDS CO ING STANDARDS M-9

	SPIDSv1.1-1988_0000
	SPIDSv1.1-1988_0001
	SPIDSv1.1-1988_0002
	SPIDSv1.1-1988_0003
	SPIDSv1.1-1988_0004
	SPIDSv1.1-1988_0006
	SPIDSv1.1-1988_0007

