JPL D-7669, Part 2

Planetary Data System
Standards Reference

July 24, 1995
Version 3.2

PDS
N

[)
Planetary Data System

National Aeronautics ang Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

\ TABLE OF CONTENTS

PDS Standards Reference Change Log. . i oo cr ittt e i i ieee e ii
I, Introductionottt et a . 1-1
2. Cartographic Standlards .. 2-1
3. DataTypeDefinitions i i i e 3-1
4, DataProducts.ttt e e e e e it 4-1
5. DataProductsLabels.............c.iiiiininiiniiii i iiiiaeeaaanannnnn. 5-1
6. Data Set/Data Set Collection Contents and Naming..............covivenran.... 6-1
7. Date/TImeFOImMALottii ittt ettt i e eiaaaanaennn 7-1
8. Directory TypesandNamingttt ittt iianennn 8-1
9. Documentation Standard........... i i 9-1
10. File Specificationand Naming.t 10-1
11. Media Formats for Data Submission and Archive. 11-1
12. Object Description Language (ODL) Specification and Usage. 12-1
13, PSS ObJeCtS. o« vt ittt it it e e e 13-1
14, Pointer Usage. ovi ittt i i e e e e 14-1
15. Record FOrmatsottt i e it it e it tis e iannaaneens 15-1
16, SPEDU USa e ...ttt titi et ettt it e eaiaeaeeienaaaeeannaenn *..16-1
17. Usage of NJA,UNKand NULL 17-1
18. Units of Measure;,ment .. 18-1
19. Volume Organizationand Namingot .. 19-1 °
Appendix A. Data ObjectDefinitionsottt iinnnnens A-1
Appendix B. Complete PDS Catalog Object Template Set.......................... B-1
Appendix C. Internal Representationof DataTypes................cc.ocieaa... C-1
Appendix D. Examplesof Required Files............ D-1
Appendix E. NAIF Toolkit Directory Structure. oottt inaen... E-1
Appendix F. Acronyms and Abbreviationsot iiiiiiiiiiiiia... F-1
51T T I-1

Change Log

Version

3.1

PDS Standards Reference Change Log

Section
1.1

23

24

3.0

3.2
523

6.3

6.4

100, ALL

10.2.1
12542
13.2

14

17

19
Appendix A

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Change
PDS Data Policy added
Reference coordinate standard expanded to support body-

fixed rotating, body-fixed non-rotating, and inertial
coordinate systems.

Ring coordinate standard added.

i
List of internal representations of data types moved to ;
Appendix C

EBCDIC_CHARACTER added to PDS Standard data types
Minimal label option described 1

Data set collection naming — data processing level component
made optional |

Data set naming -- added support for SPICE and Engmeenng,
where no instrument component applies

PDS use of UNIX/POSIX forward slash separator for path
names. VMS-style bracket notation replaced.

Required file names for catalog objects included
PDS use of double quotes clarified ‘
Use of Primitive objects described

New chapter - Pointer Usage

New chapter —- PDS Usage of N/A, UNK, and NULL
Logical Volume organization added

Primitive Objects added

Header object -- required and optional keyword lists changed
Container object - Column no longer a requried sub-object

Streamlined Catalog Object Templates with examples replace
3.0set

New appendix containing internal representations of data
types (moved from Chapter 3)

Qutline and example for AAREADME.TXT added

Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section

Version

3.2

Index

Section

512

5.2.3, Appendix A

8and 19

8.2
9.1

9.2.1

10.1

10.2

10.2.3 and 5.1

11.1.1

Change Log

deleted.
The document now features an index.

No other substantive changes have been made to the
standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have
been supplied.

Change

Label format discussion added
Noted that values in labels should be upper case (except
descriptions). Fixed examples in Appendix A.

Noted that for data products using minimal labels,
DATA_OBJIECT_TYPE = FILE in the Data Set Catalog
Ternplate

Added target IDs for DUST and SKY

Added instrument component values SEDR and POS

Noted that Data Set and Data Set Collection IDs and Names
should be upper case. Fixed examples.

Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

SOFTWARE Subdirectory naming recommendation added
Volumes may contain multiple versions of VOLINFO

Increased maximum line length in text file to 78 characters
plus CR/LF

Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

Added recommendation that file extension identify the data
type of a file.

Added .QUB as reserved file extension for spectral image
qubes.

Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT

Added LABINFO.TXT to list of required xxxINFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

added note that detached label file (*.LBL) should have the
same base name as the associated data file

Added PDS Extended Attribute Record (XAR) policy

Change Log

11.1.2

11.1.3
14.1.2

15

15.1

153

15.5

17.2

18
19

19

19.2

19.3

19.3

19.4, Appendix A
19.5.1

Appendix A

Appendix A
Appendix A

Appendix A

Appendix A

iv

Added recommendation that CDs be premastered using single'-
session, single-track format.

Added section on Packaging Software files on a CD-ROM
Added new example of structure pointer 1

Added recommendation that for VAX/VMS-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VMS restriction to an even
number of bytes in section 15.2

Removed discussion of use of BLOCK_BYTES and
BLOCKING_TYPE (since this data element not in PSDD)

Added notation that CR/LF is required line terminator for |
PDS label and catalog files

Reworded first sentence.

Allow definition of numeric constants representing N/A,
UNK, and NULL to be defined for use in an INDEX table.

replaced reference to PDS V1.0 with a general statement

Added SOFTWARE subdirectory recommendations I

Recommend that an archive volume be based on a single ,
version of the PDS standards. Volume organization guidelines’
added. :

Clarified requirements for files & directories when logical
volumes used
INDEX table standard update

use of axx- and bxx- prefixes in required file names
clarified

fixed examples—Volume and Volume set names capltalmad
Volume set ID formation rule modified.

updated COLUMN, BIT_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Added ALIAS and INDEX_TABLE objects

Added examples of COLUMN objects having ITEMs
Clarified use of ROW_SUFFIX_BYTES and
ROW_PREFIX_BYTES for SPARE fields in Tables with
fixed length records

Clarified the requirements for VOLUME objects for Logical

Appendix A

Appendix B
Appendix B

Appendix D

Appendix D.1

Appendix E and F

ALL

Change Log

Change Log

volumes

Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion..

Inventory, Software_Inventory and Target templates added
Removed incorrect example of use of Personnel template

INDXINFO.TXT and SOFTINFO.TXT outlines and
examples added

Modified example of AAREADME.TXT to include rules on
how pointer statements are resolved.

Added Appendix E - NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Version 3.1 change log updated—some items were missing

Chapter 1. Introduction 1-1

Chapter 1

Introduction

In order for planetary science data to be used by those not involved with its creation, certain sup-
porting information must be available with the data. Such information enables effective data access
and interpretation. Therefore, standards regarding the quality and completeness of data must be en-
forced. Also, the interchange of data is increasingly important in planetary science. Electronic
communication mechanisms have grown in sophistication, and the use of new media (such as CD-
ROMs) for data storage and transfer requires format standards to ensure readability and usability.
The Planetary Data System (PDS) has therefore developed a nomenclature that is consistent across
discipline boundaries, as well as standards for labeling data files.

1.1 PDS Data Policy

Only data that complies with PDS standards will be published in volumes which are labelled "Con-
forms to PDS Standards”. Non-compliant data published in recognized formats should be authored
by the publishing institution with PDS participation acknowledged only as "funded by PDS". The
PDS Management Council will make decisions on compliance waivers. Non-compliant data sets
will be permitted only under unusual circumstances.

1.2 Purpose

This document is intended as a reference manual to be used in conjunction with the PDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives instructions
for preparing data sets. In addition, a glossary of terms used throughout this document is contained
as an appendix to the workbook. The Planetary Science Data Dictionary contains definitions of
the standard data element names and objects. This reference document defines all PDS standards
for data preparation.

1.3 Scope

The information included here constitutes Version 3.2 of the Planetary Data System data prepara-
tion standards for producing archive quality data sets.

14 Audience

This document is intended primarily to serve the community of scientists and engineers responsible
for preparing planetary science data sets for submission to the PDS. These include restored data
from the era prior to PDS, mission data from active and future planetary missions, and data from
garth-based sites. The audience includes personnel at PDS Discipline and Data Nodes, mission
Principal Investigators, and Ground Data Systemn engineers.

1.5

The first chapter of this document, Chapter 1 - Introduction, provides introductory material and
lists of other reference documents. The remaining chapters provide a dictionary of data preparation
standards, organized alphabetically by standard name.

1.6

The following reference sources are mentioned in this document:

Chapter 1. Introduction

Document Organization |

Other Reference Documents 1

|

Batson, R. M., (1987) "Digital Cartography of the Planets: its Status and Future"; Photo-
grammetric Engineering 6 Remote Sensing 53, 1211-1218.

Davies, ME., et al (1991) "Report of the IAU/IAG/COSPAR Working Group on Carto-
graphic Coordinates and Rotational Elements of the Planets and Satellites: 199”1 Celestzal
Mechanics, 53,377-397. ,

Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Press,
Cambridge, 296p.

Guide on Data Entity Naming Conventions; NBS Special Publication 500-149.
Planetary Science Data Dictionary; JPL D-7116. (Available from PDS)

i
|
Planetary Data System Data Preparation Workbook; JPL D-7669; (Available from PDS)

Issues and Recommendations Associated with Distributed Computation and Data Managel-

ment Systems for the Space Sciences; CODMAC.

{

International Standards Organization (ISO) References

SFDU and PVL References

ISO 9660 “Information Processing - Volume and File Structure of CD-ROM for Informanon
Exchange” {

ISO 646 ASCII character set

ISO 8601 “Data Element and Interchange Formats - Representations of Dates and Times”

Standard Formatted Data Units - Structure and Construction Rules; CCSD 620.0-R-1.1c,
May 1992.

Standard Formatted Data Units - A Tutorial; CCSD 620.0-G-1, May 1992.
Parameter Value Language Specification (ccsd0006); CCSD 641.0-R-0.2; June 1991. -
Parameter Value Language -- A Tutorial; CCSD 641.0-6-1.0; May 1992,

Chapter 1. Introduction 1-3

1.7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data Systerﬁ Data Preparation Workbook, and
this document, the Planetary Data System Standards Reference are available online. Please con-
tact the PDS Operator, or a PDS data engineer, for instructions on methods of access.

Chapter 2. Cartographic Standards 2-1
Chapter 2

Cartographic Standards

The following cartographic data standards were developed through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG are also on the key IAU committees which set these same standards for international
adoption; therefore, the PDS-adopted cartographic standards are consistent with the IAU
standards. The PDS, rather than making unilateral decisions on cartographic data standards, looks
to the PCWG as the controlling body for these standards within NASA and the PDS. It is
recognized that the IAU continually reviews its standards and may, at some time, make a change
affecting the cartographic standards. If this happens, the PDS will work with the PCWG and decide
its course of action at that time.

Cartographic standards used in a data set should be identified, and where helpful, documented on
an archive volume.

2.1 Inertial Reference Frame/Timetag/Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the "J2000" system)
is the standard inertial reference frame. The Earth Mean Equator and Equinox of Besselian 1950
(ID 2433282.5) is also to be supported because of the wealth of previous mission data referenced
to this system. The transformations between the two systems are to be available. Time tagging of
data using UTC in Year, Month, Day, Hour, Minute and decimal Seconds is the standard, with
Julian Date being supported. SI metric units, including decimal degrees, are the standard.

2.2 Spin Axes and Prime Meridians

The IAU-defined spin axes and prime meridians defined relative to the J2000 Inertial Reference
System are the standard for planets, satellites and asteroids where these parameters are defined. For
other planetary bodies, definitions of spin axes and prime meridians determined in the future
should have the body-fixed axes aligned with the principal moments of inertia,with the North Pole
defined as along the spin axis and above the Invariable Plane. Where insufficient observations exist
for a body to determine the principal moments of inertia, coordinates of a surface feature will be
specified and used to define the prime meridian. It is expected that some small, irregular bodies
may have chaotic rotations and will need to be handled on a case-by-case basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems, body-fixed rotating, body-fixed non-rotating and
inertial. A body-fixed coordinate system is one associated with the body (e.g. planetary body or
satellite). In contrast to inertial coordinate systems, the body-fixed system is centered on the body

|
\
22 Chapter 2. Cartographic Standards

and rotates with the body (unless it is a non-rotating type), whereas the inertial coordinate system
is fixed at some point in space.

To support the descriptions of these reference coordinate systems, the PDS has defined the
following set of data elements (See Planetary Science Data Dictionary for complete definitions.):

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME |
LATITUDE ‘
LONGITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST_LONGITUDE
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, PDS has specifically defined two types of body-fixed rotating coordinate systems,
Planetocentric and Planetographic. However, the set of related data elements are modelled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added when the need arises. If this is the case, contact a PDS
data engineer for assistance.

The definition of Planetographic longitude is dependent upon the rotation direction of the body, |
with longitude being measured as increasing in the direction opposite to the rotation. That is to say,
that the longitude increases to the west if the rotation is prograde (or eastward) and vice versa.
Table 2.1 lists the rotation direction (prograde or retrograde) of the primary planetary bodies and
the Earth's moon. It also indicates the valid longitude range for each body. In order to

accommodate different traditions in measuring longitude, in the Planetary Science Data
Dictionary, PDS defines a broad longitude range: (-180, 360). Table 2.1. indicates which part of
that range is applicable to which body.

Chapter 2. Cartographic Standards

2-3

Table 2.1: Primary Bodies and Earth’s Moon - Rotation Direction and Longitude Range

Planet Rotation Direction Longitude Range
Earth Prograde (0, 360)
(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)
(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (0, 360)
_Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun " Prograde (0, 360)
(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Earth, Moon and Sun are prograde, however it has been tradition to measure
longitudes for these bodies as increasing to the east instead of the west. PDS recommends that the
Planetographic longitude standard be followed, but it also will support the tradition. Therefore, the
longitude range of (-180, 180) is supported for the Earth, Moon and Sun.

2.3.1 Body-Fixed Rotating Coordinate Systems

23.1.1 Planetocentric

The Planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatorial plane and a vector connecting the point of interest and the origin
of the coordinate system. Latitudes are defined to be positive in the northern hemisphere of the
body, where north is in the direction of Earth's angular momentum vector, i.e., pointing toward the
hemisphere north of the solar system invariant plane. Longitudes increase toward the east, making
the Planetocentric system right-handed.

23.12 Planetographic

The Planetographic system has an origin at the center of mass of the body. The planetographic
latitude is the angle between the equatorial plane and a vector through the point of interest, where
the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitude is defined to
increase with time to an observer fixed in space above the object of interest. Thus, for prograde
rotators (rotating counter clockwise as seen from a fixed observer located in the hemisphere to the
north of the solar system invariant plane), planetographic longitude increases toward the west. For
a retrograde rotator, planetographic longitude increases toward the east.

1
|

24 Chapter 2. Cartographic Stan:dards

|

24 Rings |

. i

i

Locations in planetary ring systems are specified in polar coordinates by a radius distance !

(measured from the center of the planet) and a longitude. Longitudes increase in the direction of |
orbital motion, so the ring pole points in the direction of right-handed rotation. Note that this

corresponds to the IAU-defined north pole for Jupiter, Saturn and Neptune but the south pole for

Uranus. ,

Longitudes are given relative to the ascending node of the ring plane on the Earth's mean equator,
of J2000. However, the Earth's mean equator of B1950 is also supported as a reference longitude!
because of the wealth of data already reduced using this coordinate frame. The difference is
generally a small, constant offset to the longitude. All longitude values fall between 0 and 360
1
Note that ring coordinates are always given in an inertial frame. It is impossible to define a suitablei
rotating coordinate frame for a ring system because features rotate at different rates. When itis |
necessary to specify the location of a moving body or feature, one must give the rotation rate and|
the epoch in addition to the longitude. |

The Planetary Science Data Dictionary (PSDD) contains a set of data elements designed to i
describe ring-related longitudes. Please see the PSDD for these elements and their complete
definitions.

2.5 Reference Surface |

The Digital Terrain Model (DTM), giving body radius as a function of Cartographic latitude and
longitude in a sinusoidal equal-area projection, is the standard. Mars is to be an exception where
Planetographic latitude is to be used. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of Cartographic coordinates are to be supported.

The Digital Image Model (DIM) giving body "brightness” in a specified spectral band or bands as
a function of Cartographic latitude and longitude in a sinusoidal equal-area projection, and
associated with the surface radius values in the DTM, is the standard Mars is to be an exception
where Planetographic latitude is to be used. DIMs registered to spheroids, ellipsoids and harmonic
expansions are to be supported.

2.6 Map Resolution

The suggested spatial resolution of a map is 1 /2" degrees. The suggested vertical resolution is 1
x 10™ meters, with m and n chosen to preserve all the resolution inherent in the data.

2.7 References /
The following references give more detail on the cartographic data standards:

Chapter 2. Cartographic Standards 2.5

Davis, M. E., et al (1991) "Report of the IAU/IAG/COSPAR Working Group on Cartographic
Coordinates and Rotational Elements of the Planets and Satellites: 1991" Celestial Mechanics, 53,
377-397.)

Batson, R.M., (1987) "Digital Cartography of the Planets: New Methods, its Status and Future".
Photogrammetric Engineering & Remote Sensing 53, 1211-1218.2.

Greeley, R. and Batson, R.M. (1990) Planetary Mapping Cambridge University Press, Cambridge,
296p.

Chapter 2. Cartographic Standards

Chapter 3. Data Type Definitions - 3-1
Chapter 3

Data Type Definitions

Each PDS-archived product is described using label objects that provide information about the data
types of stored values. The data elements DATA_TYPE, BIT_DATA_TYPE, and
SAMPLE_TYPE appear together with related data elements that provide starting location and
applicable length information for specific data fields. Within all PDS data object definitions, the
byte, bit, and record positions are counted from left to right, or first to last encountered, beginning
with 1.

Data values may be represented within data files as ASCH or BINARY format. The ASCII storage
format is simpler to transfer between different hardware systems and often between different
application programs on the same computer. However, strictly numeric data often are stored in
binary numeric types, since the ASCII representation of most numeric values requires more storage
space than does the binary format. For example, each 8-bit pixel value in an image file would
require 3 bytes if stored in ASCII format.)

3.1 Data Elements

Table 3.1 identifies the data elements that provide data type, location, and length information
according to the objects in which they appear.

3.2 Data Types

Table 3.2 identifies the valid values that may appear for the DATA_TYPE, BIT _DATA_TYPE,
and SAMPLE_TYPE data elements (or their aliases) in PDS data object definitions. Many of the
values in this table have been aliased to other values. Providing aliases allows the PDS to support
and maintain backward compatibility. However, the preferred method is to use the value rather
than its alias.

"Unless noted as ASCTII, all values in the table are binary.

3-2

Table 3.1: Data-Type-Related Elements Used in Data Label Objects

Data Object

COLUMN
(without ITEMS)

COLUMN

(with ITEMS)

BIT_COLUMN
(without ITEMS)

BIT_COLUMN
(with ITEMS)

IMAGE

HISTOGRAM

Chapter 3. Data Type Definitio

Data Elements Notes

DATA_TYPE
START_BYTE
BYTES

DATA_TYPE ‘ ITEM_TYPE is an alias
START_BYTE

BYTES (opt) total bytes in COLUMN
ITEMS

ITEM_BYTES size for each ITEM

BIT_DATA_TYPE
START_BIT

BITS
BIT_DATA_TYPE

START_BIT

BITS (opt) Total bits in BIT_COLUMN
ITEMS

ITEM_BITS size for each ITEM

SAMFPLE_TYPE
SAMPLE_BITS

DATA_TYPE ITEM_TYPE is alias
BYTES (opt)) total bytes in HISTOGRAM
ITEMS

ITEM_BYTES size for each ITEM (bin)

|
|
P
|

Chapter 3. Data Type Definitions

3-3

Table 3.2: PDS Standard Data Types

Data Element Usage Codes:

D = DATA_TYPE

B = BIT_DATA TYPE

S = SAMPLE_TYPE

Data Element

Usage Value

D ASCII_REAL

D ASCII_INTEGER

D ’ ASCII_COMPLEX

D BIT_STRING

D,B BOOLEAN

D CHARACTER
COMPLEX

D DATE

D EBCDIC_CHARACTER
FLOAT

D 1IBM_COMPLEX

D IBM_INTEGER

D IBM_REAL

D IBM_UNSIGNED_INTEGER

D IEEE_COMPLEX

D, S IEEE_REAL

D INTEGER
INTEGER

D LSB_BIT_STRING

D,S LSB_INTEGER

D,S LSB_UNSIGNED_INTEGER
MAC_COMPLEX
MAC_INTEGER
MAC_REAL

MAC_UNSIGNED_INTEGER
D MSB_BIT_STRING

Description

ASCII character string representation of real number
ASCTI character string representation of integer
ASCII character string representation of cornplex
alias for MSB_BIT_STRING

True/False indicator; 1, 2, or 4 byte unsigned number or
1-32 bit number; all {'s False;anything else True

any ASCII character stnng

alias for IEEE_COMPLEX

ASCII character string representation of PDS date
any EBCDIC character string

alias for IEEE_REAL

IBM 360/370 mainframe complex number (8,16 byte)
IBM 360/370 mainframe 1, 2, and 4 byte mumbers
IBM 360/370 mainframe real number (4 and 8 byte)
IBM 360/370 mainframe 1, 2, and 4 byte numbers
includes 8, 16, and 20 byte complex numbers
includes 4, 8 and 10 byte real numbers

Single byte integers only

alias for MSB_INTEGER (2+ bytes)

includes 1, 2, and 4 byte columns containing bit
columns

includes 1, 2, and 4 byte numbers

includes 1, 2, and 4 byte numbers

alias for IEEE_COMPLEX

alias for MSB_INTEGER

alias for IEEE_REAL

alias for MSB_UNSIGNED_INTEGER
includes 1, 2, and 4 byte columns containing bit

34

|

i
Chapter 3. Data Type Deﬁnitiorils

f

columns
D,B MSB_INTEGER includes 1, 2, and 4 byte numbers
D,B,S MSB_UNSIGNED_INTEGER includes 1, 2, and 4 byte numbers, and 1-32 bit numbers
D,B N/A Used for spare (or unused) fields, if identified
D PC_COMPLEX includes 8, 16, 20 byte complex mumbers
PC_INTEGER alias for LSB_INTEGER
D PC_REAL includes 4, 8, and 10 byte real numbers
PC_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER
REAL alias for [EEE_REAL
SUN_COMPLEX alias for IEEE,_ COMPLEX
SUN_INTEGER alias for MSB_INTEGER
SUN_REAL alias for [EEE_REAL
SUN_UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER |
D TIME ASCI character string representation of PDS date.fumé
UNSIGNED_INTEGER alias for MSB_UNSIGNED_INTEGER (2+bytes)
D,B,S UNSIGNED_INTEGER single byte nurbers, or 1-32 bit numbers |
VAX_BIT_STRING alias for LSB_BIT_STRING |
D VAX_COMPLEX includes D, F, and H type complex numbers
VAX_DOUBLE alias for VAX_REAL ‘
VAX_INTEGER alias for LSB_INTEGER ;
D, S VAX_REAL includes D (8 byte), F (4 byte), and H (16 byte) type real
numbers ‘
VAX_UNSIGNED_INTEGER alias for LSB_UNSIGNED_INTEGER
D VAXG_COMPLEX G type complex numbers only
D VAXG_REAL G type (8 byte) real numbers only

33 Binary Integers

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields.
These are the most-significant-byte first (MSB) and least-significant-byte first (LSB) archltecmres.f
The MSB architectures are used on IBM mainframes, many UNIX minicomputers (SUN, Apo]lo)
and Macintosh computers. The LSB architectures are used on VAX systems and IBM PCs. The
default interpretation for PDS labeled data is the MSB architecture, and non-specific data types .
(e.g. UNSIGNED_INTEGER) are aliased to MSB types. Therefore, files written on VAX or IBM
PC hosts must specify LSB data types for binary integer fields, or use the appropriate aliases.

34 Signed versus Unsigned

The PDS default binary integer is a signed value in 2's complemeni notation. Therefore, a data type
specified as INTEGER is interpreted as a signed integer. Unsigned binary integers must be
identified using a valid UNSIGNED_INTEGER data type from Table 3.2 |

Chapter 3. Data Type Definitions 3-5

3.5 Floating Point Formats.

The PDS default representation for floating point numbers is in ANSI/IEEE standard. This
representation is defined as the PDS IEEE_REAL data type, and aliases are identified in Table 3.2.
Several specific floating point representations are supported by PDS, and are further described in
Appendix C.

36 Bit String Data

A BIT_STRING data type is used for COLUMN:Ss to hold individual bit field values. Each bit field
is defined in a BIT_COLUMN object. A BIT_STRING data type can be a 1, 2, or 4 byte field,
much like a binary integer. Extraction of specific bit fields within a 2 or 4 byte BIT_STRING is
dependent on the host architecture (MSB or LSB), and follows the binary integer specifications
identified in Section 3.3 above. In interpreting bit fields (BIT_COLUMNS) within a
BIT_STRING, any necessary conversions (byte swapping from LSB to MSB) are done first, and
. then bit field (START_BIT, BITS) values are used to extract the appropriate bits. This will assure
that bit fields are not fragmented due to differences in hardware architectures.

3.7 Format Specifications

The data format specification is used to determine the format for display of a data value.
The following FORTRAN data format specifications will be used:

Aw Character data value.

Iw Integer value.

Fwd Floating point value, displayed in decimal format.
Ew.d[Ee] Floating point value, displayed in exponential format.
‘Where:

W= Total number of positions in the output field (including sign, decimal point or “E”).
d= Number positions to the right of the decimal point.
e Number of postions in exponent length field.

3.8 Internal Representations of Data Types

Appendix C contains the detailed internal representation of the PDS standard data types listed in
Table 3.2.

PDS has developed tools which are designed to use the specifications outlined in Appendix C for
interpreting data values for display and validation.

|

|
Chapter 3. Data Type Definitions

|

3-6

Chapter 4. Data Products 41

Chapter 4

Data Products

A data product is a grouping of primary and secondary data objects and their associated PDS labels

resulting from a scientific observation. Three examples of a data product are a PDS labeled image,

a spectrum, and a time series table. A data product is a component of a data set (see the Data Set/
Data Set Collection Contents and Naming chapter of this document).

Each data product is made up of one or more primary data objects, secondary data objects, and PDS
data product labels. .
A Primary data object is a grouping of data results from a scientific observation. The actual science
data, such as an image or table, represents the measured instrument parameters.

A Secondary data object is any data needed for processing or interpreting the primary data object.
Each primary data object may have one or more associated secondary data objects. An example of
a secondary data object is a histogram derived from an image.

A PDS data product label, expressed in ODL, identifies, describes and defines the structure of the
data. There may be a single label to describe the data product, or separate labels for each data
object.

4.1 Data Product File Configurations

The grouping of primary and associated secondary data objects and their PDS label(s) into one or
more physical files can be done in a variety of ways. An important consideration in choosing a file
organization scheme for a data product is the intended use of the PRODUCT_ID data element. The
PRODUCT_ID uniquely identifies an individual data product and can be based on physical file
names.

Example-

An image (the data product in this example) is a color triplet having three primary data objects, stored in separate physical
files, one for each of the red, blue, and green images. Each is uniquely identified by a PRODUCT_ID, additionally they are logically
associated through the IMAGE_ID data element.

for the red image:
PRODUCT_ID = "22A190-RED"
IMAGE_ID = "22A190"

for the blue image:
PRODUCT_ID = "22A190-BLUE"
IMAGE_ID = "22A190"

for the green image:
PRODUCT_ID = "22A190-GREEN"

IMAGE_ID = "22A190"

4-2 Chapter 4. Data Products

Figure 4.1 illustrates file configurations for a data product with a single data object.

@ Attached Label i

file A

PRODUCT_ID =A PDS Label
Primary Data Object

file A

PRODUCT ID=A PDS Label

file B

Primary Data Object . |

Figure 4.1 Data Product with a Single Data Object |

For a data product having multiple data objects (one or more primary data objects and one or morel
secondary data objects), the assignment of the PRODUCT_ID is identified within the label of thc
data product file(s). |

!
Figure 4.2 shows five possible file configurations for a single data product that consists of two datz:l

objects, a primary and secondary data object. Similar examples could be made using data products
composed of several primary data objects.

Note that the use of options (2) and (4) would require a logical linking by another identification
data element in each label.

Chapter 4. Data Products

® Attached Label
PRODUCT_ID =A

fileA

PDS Label

Primary Data Object
Secondary Data Object

@Aﬂal:led Label

PRODUCT D= A

PRODUCT_ID=B

PDS Label
Primary Data Object

file B

PDS Label

Detached Label
PRODUCT_ID =A

Secondary Data Object

— S s R e — ——— — o— — — o — — — e—

(@) Detached Label
PRODUCT_ID=A

PRODUCT_ID = B

Combined Detached Label

PRODUCT_ID = A

fie B

Primary Data Object
Secondary Data Object

PDS Label

Primary Data Object

fileC

PDS Label

file D

Secondary Data Object

Primary Data Object

file C

Secondary Data Object

Figure 4.2 Data Product with Muitiple Data Objects

4-3

Chapter 5. Data Product Labels 5-1

Chapter 5

Data Product Labels

PDS data product labels are required for describing the contents and format of each individual data
product within a data set. PDS data product labels are written in the Object Description Language
(ODL). The PDS has chosen to label the wide variety of data products under archival preparation
by implementing a standard set of data object definitions, data elements, and standard values for
the elements. These data object definitions, data elements, and standard values are defined in the
Planetary Science Data Dictionary (PSDD). Appendix A of this document provides general
descriptions and examples of the use of these data object definitions and data elements for labeling

data products.

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format of each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product label is embedded at the beginning of the data product file.
There is one label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which points to the data product file. There is one detached label file for every data product file.
The label file should have the same base name as its associated data file, but the extension .LBL .

Combined Detached -A single PDS detached data product label file is used to describe the contents
of more than one data product file. The combined detached label points to individual data products.

NOTE: Although all three labeling methods are equally acceptable, the PDS tools do not currently
support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

i

52 Chapter 5. Data Product Labels

file A
PDS
Label
Attached Label
DATA
file A
PDS
Label Detached Label
\ file B |
DATA
{
file A |
PDS file B |
Label \ Comb'i‘ned |
DATA Detached Label |
fileC
DATA

Figure 5.1 Attached, Detached, and Combined Detached PDS Labels

5.1.2 Label format

PDS recommends that labels have stream record format, and line lengths of at most 80 characters
(including line terminators) so that the entire label can be seen on a computer screen without

horizontal scrolling. <CR><LF> is the required line terminator. (See the Record Formats chapter
of this document.)

Chapter 5. Data Product Labels 5.3

All values in a PDS label should be in upper case, except values for description fields. It is also
recommended that the equal signs in the labels be aligned for ease of reading. TAB characters
should not be used in the labels since they are interpreted differently by different programs.

For a fixed length data file with an attached label, the label is padded with blanks in one of the
following ways:

1) Blanks are added after the label’s END <CR><LF> statement and before the data so that the
total size of the label is an integral multiple of the record length of the data.

Example:
In the example below, the label portion of the file is 7 x 324 = 2268 bytes in length, including blank fill between the
END<CR:><LF> statement and the first byte of data The actual data portion of the file starts at record 8 (ie. byte 8 x 324 = 2592)

RECORD_TYPE =FIXED, LENGTH<CR><LF>
RECORD_BYTES = 324<CR><LF>
FILE_RECORDS = 334<CR><LF>
LABEL_RECORDS = T<CR><LF>

AMMAGE | = 8<CR><LF>
END<CR><LF>

...blank fill....

data

2) Each line in the label may be padded with blanks so that each line in the label has the same record
length as the data file. In this case, the label line length may exceed the recommended 80
characters.

Example:

In the example below, the label portion of the file is 80 x 85 = 6800 bytes in length. Each line in the label portion of the file is 85
bytes long, the same length as each data record. Notice the blank space between the actual values in the label and the line delimiters.
In the example, the label is 80 lines long (i.e., 80 records long) and the data begins at record 81. Note that the label is padded so that
<CR><LF> are in bytes 84 and 85.

RECORD_TYPE = FIXED_LENGTH <CR><LF>
RECORD_BYTES = 85 <CR><LF>
FILE_RECORDS = 300 <CR><LF>
LABEL_RECORDS = 80 <CR><LF>
ATABLE =81 <CR><LF>
END <CR><LF>

data

|
I
54 Chapter 5. Data Product Labels

)
1

5.2 Data Product Label Content

5.2.1 Attached and Detached Labels

PDS data product labels have a general structure that is used for all attached and detached labels
except for data products described by minimal labels. (Minimal labels are described in Section
5.2.3)

- LABEL STANDARDS identifier |
. FILE CHARACTERISTIC data elements i
. DATA OBIJECT pointers t
- IDENTIFICATION data elements l
. DESCRIPTIVE data elements l
. DATA OBJECT DEFINITIONS

. END statement

Figure 5.2 provides an example of how this general structure appears in an attached or detached
label for a data product file containing multiple data objects.

Chapter 5. Data Product Labels

‘ PDS LABEL
cesp- - - ® LABEL STANDARDS
PDS_VERSIONID = IDENTIFIERS
/* FILE CHARACTERISTICS */ ® FILE CHARACTERISTICS
RECORD_TYPE = DATA ELEMENTS
RECORD_BYTES =
FILE_RECORDS =
LABEL_RECORDS =
7 POINTERS TO DATA OBJECTSY e
ANMAGE = q
AHISTOGRAM - (pnmary, secondary)
/* IDENTIFICATION DATA ELEMENTS */ 7]
DATA_SET_ID = ® |DENTIFICATION
PRODUCT_ID = DATA ELEMENTS
SPACECRAFT_NAME =
INSTRUMENT_NAME =

TARGET_NAME =

START_TIME =

STOP_TIME =

PRODUCT_CREATION_TIME __ = |

i /" DESCRIPTIVE DATA ELEMENTS */ ¢ DESCRIPTIVE

FILTESFS_NAME = DATA ELEMENTS
OFFSET_MODE_ID =

r DATIi OBJECT DEFINITIONS */ -

® DATA OBJECT
OBJECT = IMAGE DEFINITIONS
: ' (primary, secondary)

END_OBJECT = IMAGE

OBJECT = HISTOGRAM
END_OBJECT = HISTOGRAM

END ccsD. . . ® END STATEMENT

Note: Actual Data Elements, Pointers, and Objects vary by data product

Figure 5.2 PDS Attached/Detached Label Structure

5-6 . Chapter 5. Data Product Labt‘els

5.2.2 Combined Detached Labels

For the Combined Detached label option, the general label structure is modified slightly to
explicitly reference each individual file within its own FILE object. In addition, identification and
descriptive data elements that apply to all of the files can be located before the FILE objects.

. LABEL STANDARDS identifiers
. IDENTIFICATION data elements that apply to all referenced data files
. DESCRIPTIVE data elements that apply to all reference data files

. OBJECT=FILE statement (Repeats for each data product file)

e FILE CHARACTERISTIC data elements
» DATA OBIJECT pointers

e IDENTIFICATION data elements

o« DESCRIPTIVE data elements

e DATA OBJECT DEFINITION

. END_OBJECT=FILE statement
° END statement \

|
Figure 5.3 provides an example of how this general structure appears in a combined detached label
that describes more than one data product file. |

Chapter 5. Data Product Labels

PDS LABEL
CCSD= = = o LABEL STANDARDS
PDS_VERSION_ID = IDENTIFAERS
DATA_SET_D -
PRODUCT_ID o [DENTIFICATION &
SPACECRAFT_JD : DESCRIPTIVE DATA ELEMENTS
INSTRUMENT_NAME - for all files
TARGET_NAME =
PRODUCT_CREATION_TIME =
OB.JECT= FILE o For Detached FLE A:
RECORD_TYPE = FILE CHARACTERISTICS
: DATA ELEMENTS
FILE_RECORDS =
ATIME_SERIES = “file A" o DATA OBJECT POINTERS
START_TIME - & IDENTIFICATIONDESCRIPTIVE
STOP_TIME = DATA ELEMENTS
OBJECT= TIME_SERIES ® DATA OBJECT DEFINITIONS
END_OBJECT= TIME_SERIES
END_OBJECT = FILE
‘OBJECT =FILE] For Detached FILE B:
RECORD_TYPE = s FILE CHARACTERISTICS
- DATA ELEMENTS
FILE_RECORDS =
ATIME_SERI = °“file B°
o e - * DATA OBJECT POINTERS
OBJEETl mnme SERIES = e [DENTIFICATION/'DESCRIPTIVE
ool = TNE DATA ELEMENTS
: ® DATA OBJECT DEFINITIONS
END_OBJECT = TIME SERIES
_END_OBJECT - FILE]
END CCSD .« . ® END STATEMENT

Nete: Actual Data Elements, Pointers, and Objects vary by data product

Figure 5.3 PDS Combined Detached Label Sinzture

!

58 Chapter 5. Data Product Labels

523 Minimal Labels

Use of the minimal label option is only allowed when the format of the data cannot be supported
by the current documented Data Objects. 1
|
For minimal labels, the general label structure has removed the required use of data objects. A
minimal label does not contain any PDS data object definitions or pointers to data objects The
above applies to both attached and detached labels.

Minimal labels must satisfy the following two requirements:

¢)) Provide the ability to locate the data (file) associated with the label.
a Attached labels E

Since data objects and pointers are not required in the minimal label, by definition the data
follows immediately after the label. i

b. Detached Labels [

Both the implicit and explicit use of the FILE object are supported. The FILE_NAME |
keyword, contained in the FILE object, is required. |

2) Provide the ability to locate a description of the format/content of the data. !
One of the following must be provided in the minimal label:

(1) "DESCRIPTION = “<filename>"
This is a pointer to a file containing a detailed description of the data forinat; may be located
in the same directory as the data or in the DOCUMENT subdirectory.

2) DESCRIPTION = “<text appears here>" 3
This is either a detailed description of the data file, its format, data types,and use, oritis a
reference to a document available externally, e.g., a Software Interface Specification (SIS)
or similar document.

When minimal labels are used, DATA_OBJECT_TYPE = FILE should be used in the Data Set
Catalog template.

Chapter 5. Data Product Labels 5-9

52.3.1 Implicit File Object (Attached and Detached Minimal Label)

The general structure for minimal labels with implicit file objects is as follows:

. LABEL STANDARDS identifier

. FILE CHARACTERISTIC data elements
° IDENTIFICATION data elements

. DESCRIPTIVE data elements

. END statement

5.23.2 Explicit File Object (Detached Minimal Label)

The general structure for minimal labels with explicit file objects is as follows:

. LABEL STANDARDS identifier
° IDENTIFICATION data elements
° DESCRIPTIVE data elements
° OBJECT=FILE statement
* FILE CHARACTERISTIC data element

. END_OBJECT=FILE

. END staternents

Figure 5.4 provides an example of how this general structure appears in a detached minimal label.
In this example, an implicit FILE object is used.

i
5-10 Chapter 5. Data Product Labels

PDS LABEL
ccsD- - - ® LABEL STANDARDS
PDS_VERSION_ID = IDENTIRERS
/F FILE CHARACTERISTICS 7 ® FILE CHARACTERISTICS
RECORD_TYPE = DATA ELEMENTS
RECORD_BYTES =
FILE_NAME =
FILE_RECORDS =

LABEL_RECORDS

/" IDENTIFICATION DATA ELEMENTS ¥/
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME

PRODUCT_CREATION_TIME

/ DESCRIPTIVE DATA ELEMENTS */ e DESCRPTIVE

ALTER_NAME DES
OFFSET_MODE_ID DATA ELEMENTS
ADESCRIPTION

e DENTIFICATION i
DATA ELEMENTS

W Huwenwwn

[|

END ccsD:- - - e ENDSTATEMENT

Note: Actual Data Elements, Pointers, and Objects vary by data product

Figure 54 PDS Detached Minimal Label Structure

53 Detailed Label Contents Description

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers,
identification data elements, descriptive data elements, data object definitions, and the END
statermnent.

5.3.1 Label Standards Identifiers

Each PDS label begins with an optional Standard Formatted Data Unit (SFDU) label and a
PDS_VERSION_ID data element:

CCSD.... [optional SFDU label]
PDS_VERSION_ID

Chapter 5. Data Product Labels 5-11

The PDS does not require SFDU labels on individual products, but they may be needed for
conformance with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.
The PDS requires the PDS_VERSION_ID data element to identify the PDS published standards
and data dictionary that the label adheres to. This version id will be used to provide PDS software
tool support for a specific set of standards and will allow the evolution and expansion of both
standards and tools as required by the PDS user community.

For labels adhering to the standards described in this document -- the PDS Standards Reference,
Version 3.2 — and its associated Planetary Science Data Dictionary, Version 3.0, this will be:

PDS_VERSION_ID = PDS3

5.32 File Characteristic Data Elements

PDS data product labels contain data element information that describe important attributes of the .
physical structure of a data product file. PDS file characteristic data elements are:

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TYPE data element identifies the record characteristics of the data product file. A
complete discussion of the RECORD_TYPE data element and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BYTES data element identifies the number of bytes in each physical record in the data
product file. The FILE_RECORDS data element identifies the number of physical records in the
file. The LABEL_RECORDS identifies the number of physical records containing the PDS
product label.

Not all of these data elements are required in every data product label. Table 5.1 lists the required
(Req) and optional (Opt) file characteristic data elements for a variety of data products and labeling
methods for both attached (Att) and detached (Det) labels. Where (max) is specified, the value -
supplied must be the maximum size physical record in the file.

512 Chapter 5. Data Product Labels

1

Table 5.1: File Characteristic Data Element Requirements 1

Labeling Method | Att Det | At Det At Det | At Det ,
[RECORD_TYPE | FIXED_LENGTH | VARIABLE_LENGTH | STREAM | UNDEFINED |
RECORD_BYTES | Req Req | Rmax Rmax | Omax - - - [
FILE_RECORDS Req Req | Req Req | Opt Opt | - -
LABEL_RECORDS | Reg - Req . Opt . _ -

Note: For detached minimal labels, the FILE_NAME keyword is required. |

533 Data Object Pointers |

The actual data whose structure and attributes are defined in a PDS label are “data objects™. Each
data product file may contain one or more data objects. !

The PDS uses a pointer mechanism within product labels to identify the starting locations for all | |
primary and secondary data objects in a data product. PDS primary and secondary data objects |
usually requiring data object pointers include IMAGE, TABLE, SERIES, SPECTRUM, QUBE, }
PALETTE, HISTOGRAM, HEADER, and DOCUMENT. !

5.3.3.1 Use of Pointers in Attached Labels

For attached labels, if there is only one data object referenced, a data object pointer is not required.
However, it is strongly recommended that data object pointers be used at all times. The data object|
is assumed to start in the next phys1ca1 record after the PDS product label area. This is commonlyl

SPICE_KERNEL. object. The top two illustrations in Figure 5.5 show example files that do not !
require data object pointers.

If multiple data objects are stored in the data product file, object pointers are required for all data
objects. The syntax for data object pointers in attached labels may take one of two forms:

A<object_identifier>=nnn (see the Object Description Language chapter in this document)

where nnn represents the starting record number within the file,
01';

A<object_identifier> = nnn <BYTES>

where nnn represents the starting byte location within the file.

Chapter 5. Data Product Labels 5-13

The bottom two illustrations in Figure 5.5 show the required use of data object pointers for attached
label products containing multiple data objects.

END END : LABEL
TEXT SPICE
KERNEL DATA
record byte
1 | ATABLE1=11 1| AIMAGE =160 <BYTES> 4 LABEL
ATABLE 2 = 31 AHISTOGRAM = 640160 <BYTES> -
END END Y
1 160 A
TABLE 1
IMAGE
31 DATA
TABLE 2 640160
HISTOGRAM ¢

Figure 5.5 Data Object Pointers-Attached Labels

5.3.3.2 Use of Pointers in Detached and Combined Detached Labels

If the PDS data product label is a detached or a combined detached label, data object pomters are
required for all data objects referenced.

The syntax for data object pointers may be take one of three forms:
(1) “object_identifier = “filename”

(2) "object_identifier = (“filename”, nnn)
(3) “object_identifier = (“filename”, nnn <BYTES>)

H

5-14 Chapter 5. Data Product Labi,l;

i

|

In all three cases, the filename is the name of the file containing the data object. In the first case‘
the data object is located at the beginning of the referenced file. In the second case, the data object
begins nnn physical records from the beginning of the referenced file. In the third case, the datal
object begins nnn bytes from the beginning of the referenced file.

Figure 5.6 illustrates several examples of data object pointer usage for data product files with |
detached or combined detached labels. The top example shows a data product consisting of a [
HEADER data object and a TABLE data object together in a single file. The detached label for this
product includes pointers for both data objects, with the TABLE object starting at byte 601 of file
A. The middle example illustrates a combined detached label for a data product contained in two:
data objects, each in a separate file. A separate pointer is provided for each data object. The bottom

example shows a detached label for a data product containing multiple data objects.

Where multiple data objects are stored within a data product file, and where multiple data objects|
occupy portions of the same physical record, the data object pointer indicates the first physical

record containing the data object. Additional data elements within the Data Object Definitions (e.g:
LINE_PREFIX_BYTES, ROW_SUFFIX_BYTES) provide the relative byte locations within each
record for each line or row of data within the data object.

5.333 Note Concerning Minimal Attached and Detached Labels

By definition, data object pointers do not exist in minimal labels. The format of the data is fully
described in a separate file or document.

Chapter 5. Data Product Labels

<——DATA—P>
<4———LABEL——p byte file A
—1
AHEADER = "fileA” HEADER
ATABLE = (“fileA”, 601 <bytess) » 601
TABLE
file A
ATABLE = “fileA" >
 SERIES = "fleB"~_ TABLE
\ fileB
TABLE
record
1
AHEADER = “fileA” | 4 e
NMAGE = (“fileA"d) ———%
ATABLE = (“fileA" 4) — IMAGE

TABLE

Figure 5.6 Data Object Pointers-Detached & Combined Labels

534 Identification Data Elements

515

The identification data elements provide important information about the data to uniquely identify
the data product and to associate it with other data products that may be related. This information
is often used to populate the PDS product level catalogs or inventories. PDS requires a minimum
set of these identification data elements to be included in all product labels. These requirements
vary depending on the type of data product being archived. Additional identifying data elements
may be required by specific projects or organizations (e.g. AMMOS).

Additional data elements which might be needed to further identify the data objects or which would
be needed to catalog the data product to support potential search criteria should also be included.
These additional data elements are selected from the Planetary Science Data Dictionary (PSDD).

NOTE: When a data element is needed for a data product label, but is not yet recorded in the

PSDD, it can be proposed to be added to the dictionary. See a PDS Data Engineer for assistance.

5-16 Chapter 5. Data Product Labels

5.34.1 Spacecraft Science Data Products

The following identification data elements shall be included in data product labels for all spacecraft
science data products: i

DATA_SET_ID
PRODUCT_ID

SPACECRAFT_NAME or INSTRUMENT_HOST_NAME
INSTRUMENT_NAME

TARGET_NAME

START_TIME '

STOP_TIME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME

5342 Earthbased Science Data Products

The following identification data elements shall be included in data product labels for all
earthbased science and radio science data products:

DATA_SET_ID
PRODUCT_ID

INSTRUMENT_HOST_NAME

INSTRUMENT_NAME |
TARGET_NAME :
START_TIME i
STOP_TIME |
PRODUCT_CREATION_TIME

5343 Ancillary Data Products

The following identification data elements shall be included in data product labels for all ancillary
data sets. These types of products may be more general in nature, supporting a wide variety of

instruments for a particular mission. For example, SPICE data sets, general engineering data sets,
and uplink data are considered ancillary data products. |

|
|
!
\

DATA_SET_ID
PRODUCT_ID
PRODUCT_CREATION_TIME

The following data elements are highly recommended, and should be included in ancxllary data
products whenever they apply:

SPACECRAFT_NAME or INSTRUMENT_HOST_NAME
INSTRUMENT_NAME

TARGET_NAME

START_TIME

STOP_TIME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

Chapter 5. Data Product Labels 5-17

53.5 Descriptive Data Elements

In addition to the identification data elements required for various types of data, PDS strongly
recommends including additional data elements related to specific types of data. These descriptive
data elements must include any data elements which might be needed to interpret or process the
data objects or which would be needed to catalog the data product to support potential search
criteria at the product level.

Not only will these values be available with the data to the user, but they are also used to load PDS
product level catalogs and inventories with descriptive information about each data product. PDS
product level catalogs and inventories at PDS Discipline Nodes support both online data product
access and ordering capabilities.

In addition, PDS is developing software display and analysis packages for standard data objects.
These software packages will be built to utilize various descriptive data elements.

Recommendations for descriptive data elements to consider supplying will come from working
with PDS Mission Interface personnel as well as the data producer's own suggestions. These
additional data elements are selected from the Planetary Science Data Dictionary.

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it can be proposed to be added to the dictionary. See the PDS Data Engineer for assistance
with submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in this area of a PDS label to provide a shorthand method for including
a set of descriptive data elements or a long descriptive text passage referenced in several data
product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within a product label for describing the
structure and associated attributes of each data object in the data product. There will be one data
object definition for every primary and secondary data object pointer identified in Section 5.2.3.
These data object definitions are of the form:

OBJECT = aaa where aaa is the name of the data object
END_OBIJECT = aaa

The PDS has designed a set of standard data object definitions to be used for labeling data products.
Among these standard objects are those designed to describe data structures commonly used for
scientific data storage. Appendix A provides a complete set of PDS data object definition
requirements, along with examples of data product labels.

Pointers are sometimes used in this area of a PDS label to provide a shorthand method for including
a set of data sub-objects referenced in several data product labels. For example, a ASTRUCTURE
is often used to include a set of COLUMN sub-objects for a TABLE structure that is used in many

518 ‘ Chapter 5. Data Product Labels

labels.

NOTE: Minimal labels do not contain any data object definitions.

5.3.7 End Statement | |

The end of the PDS label is identified by the END statement followed by an optional SFDU.

The PDS does not require SFDU labels on individual products, but they may be needed for
conformance with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document. |
In some, but not all cases, another SFDU label is required after the PDS END statement to prov1de
“end label” and sometimes “start data” information.

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-1

Chapter 6

Data Set/Data Set Collection Contents and Naming

One of the objectives of the PDS is to introduce consistency in the contents, organization and
naming of planetary data sets. The PDS has introduced the concept that an archive quality data set
collection or data set must include everything that is needed to understand and utilize the data.
Towards this goal, the PDS has worked with the NSSDC, PDS Discipline Nodes, numerous Flight
Projects, and individual scientists and programmers to develop approaches to ensure that this
consistency is achieved.

Figure 6.1 shows the relationships between Data Set Collection, Data Sets, and Data Products.
Figure 6.2 shows the logical and physical relationships.

CONTENTS

DATA SET COLLECTION

DATA SET » ANCILLARY PRODUCT

l » CALIBRATION
DATA PRODUCT —» GEOMETRY
) DOCUMENTATION
=)» CATALOG INFORMATION
) INDICIES
PDSLABELS PRIMARY DATA OBJECT SECONDARY
(e.g. IMAGE, TABLE, QUBE, DATAOBJECT [DATA DICTIONARY INFORMATION
SERIES, KERNEL) (e.g. HISTOGRAM, -
PALETTE,
ENG. TABLE) -p GAZETTEER
) SOFTWARE

FIGURE 6.1

6-2 Chapter 6. Data Set/Data Set Collection Contents and Ni a.miing

LOGICAL/PHYSICAL RELATIONSHIPS

VOLUME SERIES

VOLUME SET
DATA SET ,
l VOLUME |
DATA PRODUCT DIRECTORY |
|
—» PDS Label ~
| |
—» Primary Data Object > FILE i
1

--p Secondary Data Object

one to one
—p one to many

4—p many to many

FIGURE 6.2

6.1 Data Set/Data Set Collection Contents

Data Set Collection and Data Set defined:

Data Set Collection - A data set collection consists of data sets that are related by observation type
discipline, target, or time, and therefore are to be treated as a unit, to be archived and distributed
together for a specific scientific objective and analysis.

An example of a data set collection is the Pre-Magellan CD-ROM containing a collection of
selected Earth-based radar data of Venus, the Moon, Mercury, and Mars, Pioneer Venus radar data,

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

airborne radar images of Earth, and line of sight acceleration data derived from tracking the Pioneer
Venus Orbiter and Viking Orbiter 2.

Data Set - The accumulation of data products, secondary data, software, and documentation, that
completely document and support the use of those data products. A data set can be part of a data
set collection. -

A data set collection or a data set may include all of the following:

Data Products - Labeled groupings of data resulting from a scientific observation. Examples of a
data product are planetary images, spectrum tables, and time series tables. A data product is a
component of a data set.

Calibration data - Calibration files used in the processing of the raw data or needed to use the data.

Geometry data - Relevant files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.

Documentation - All the textual material which describes the mission, spacecraft, instrument, and
data set. This can include references to science papers, or the actual papers.

Catalog Information - High-level descriptive information about a data set (e.g. mission description,
spacecraft description, instrument description), expressed in Object Description Language (ODL)
which is suitable for loading into a catalog.

Indices - Information which allows the user to locate the data of interest, such as a table mapping
latitude/longitude ranges to file names.

Data Dictionary Information - A portable version of the Planetary Science Data Dictionary which
is pertinent to the data set. The dictionary is expressed in ODL.

Gazetteer - Information about the named features on a target body associated with the data sets.

Software- The software libraries, utilities, or application programs to access/process the data
objects.

All data sets submitted to the PDS shall include the software used and/or algorithms for original
data reduction, processing, calibration and, decalibration of the data, or documentation stating how
to obtain such software. When software accompanies a data set, the source code, build instructions,
and software documentation shall be included.

There are several other types of data set software which may be provided with a data set:

L. Special software which is developed and maintained for certain hardware platforms. This
is often a refined version of the processing software developed for mission data analysis.

64 Chapter 6. Data Set/Data Set Collection Contents and N ami.!ng

2. Utilities which allow a user to select parameters from the data set and to extract these

parameter values to a data file based on certain key values (event time, for example). The outpu
format should be a simple ASCII table or one of the other generic PDS data object formats. This is
a minimum level of access for conducting a peer review of a data set.

-

3. Data analysis tools such as plotting programs.

62 Data Set Naming and Identification |
This standard contains instructions for naming a PDS data set and forming a Data Set Identiﬁer.?
Every PDS data set shall be given a DATA_SET_NAME and DATA_SET_ID, both formed frot'n

seven components. All components are required except for the Data Set Type and Descnptxon |
components. These components are described in section 6.4.

The only characters allowed within a data_set_id are the upper case alphanumeric set (A-Z, 0-95
a forward slash (/), a period (.), and a hyphen (-). The period is only used with numerics, i.e., V1. 0
or 12.5SEC. No other special characters are allowed (e.g., underscore (_)).

Multiple instrument hosts, instruments, or targets shall be referenced in a DATA_SET_NAME olr
DATA_SET_ID by concatenation of the values with a forward slash (/) which is interpreted as %
“and.”

The data set identifier (DATA_SET_ID) shall not exceed 40 characters in length. Each componetft
shall be the acronym rather than a full length name used in forming the DATA_SET_NAME.
Within the data_set_id, acronyms shall be separated by hyphens.(See section 6.4 for valid

|
acronyims.) I
A DATA_SET_NAME shall not exceed 60 characters in length. Where the character hmltatxon 1s
not exceeded, the full length name of each component should be used. If the full length name is too
long, an acronym shall be used to abbreviate components of the name. (See section 6.4 for valid|
full length names and acronyms.) !

The intent of the data set name and identifier is primarily to uniquely identify the data set.
The components of the DATA_SET_NAME and DATA_SET_ID are:

Instrument host ‘
Target ;
Instrument

Data processing level number
Data set type (optional)
Description (optional)
Version number

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-5

Example-

« Full length data set name. Mariner 9 and Viking Orbiter 1 and Viking Orbiter 2 Mars Imaging Science Subsystem and Visual
Imaging Subsystem denved cloud data Version 1.0

* DATA_SET_NAME = “MR9/V01/V02 MARS IMAGING SCIENCE SUBSYSTEM/VIS 5 CLOUD V1.0”
* DATA_SET_ID = “MR9/V01/V02-M-ISS/VIS-5-CLOUD-V1.0”

In this example, Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2
Target is Mars
Instruments are the Imaging Science Subsystem and Visual Imaging Subsystem
Data Processing Level number is 5
Description is CLOUD
Version number is V1.0
The optional Data set type is not used in this example.

6.3 Data Set Collection Naming and Identification

This standard contains instructions for naming a PDS data set collection and forming an identifier.
A data set collection consists of data sets that are related by observation type, discipline, target, or
time (which are treated as a unit), for a specific scientific purpose.

A data set collection will contain data sets that may cover several targets, be of different processing
levels, and have different instrument hosts and instruments. Since the individual data sets will be
identified by their own data set names, some of this information is not necessary to repeat at the
collection level. Therefore, the DATA_SET_COLLECTION_NAME uses a subset of the
DATA_SET_NAME components in addition to a new component, collection name, which
identifies the group of related data sets.

The DATA_SET_COLLECTION_NAME and DATA_SET_COLLECTION_ID are formed from
the six components listed below. All are required, except for data processing level number, data set
type, and description. However, it is recommended that data set type or description be used
whenever possible.

The only characters allowed within a data_set_collection_id are the upper case alphanumeric set
(A-Z, 0-9), a forward slash (/), a period (.), and a hyphen (-). The period is only used with
numerics, i.e., V1.0 or 12.5SEC. No other special characters are allowed (e.g., underscore (_)).

Multiple targets or data processing levels shall be referenced in the data set collection name or
identifier by concatenation of the values with a forward slash (/) which is interpreted as “and.”

A DATA_SET_COLLECTION_NAME shall not exceed 60 characters in length. Where the
character limitation is not exceeded, the full length name of each component should be used. If the
full length name is too long, an acronym shall be used to abbreviate it. (See Section 6.4 for valid
full length names and acronyms.)

The DATA_SET_COLLECTION_ID shall not exceed 40 characters in length. Each component

66 Chapter 6. Data Set/Data Set Collection Contents and Namin%g

i

shall be the acronym rather than a full length name used in forming the
DATA_SET_COLLECTION_NAME. Within the DATA_SET_COLLECTION_ID, acronyms |
shall be separated by hyphens. (See Section 6.4 for valid acronyms.)

The components of the DATA_SET_COLLECTION_NAME and
DATA_SET_COLLECTION_ID are:

Collection name

Target

Data processing level number (optional)

Data set type (optional)

Description (optional) i

Version number i
|

Example: t

The Pre-Magellan Data Set Collection contains radar and gravity data similar to the kinds of data that Magellan will collect and will
be used for pre-Magellan analyses of Venus and for comparisons to actual Magellan data

« Full-length data set collection name: Pre-Magellan Earth, Moon, Mercury, Mars, and Venus resampled and derived radar and
gravity data Version 10)

|
'
i
5

+« DATA_SET_COLLECTION_NAME = “PRE-MAGELLAN E//H/M/V 4/5 RADAR / GRAVITY DATA V1.0”

» DATA_SET_COLLECTION_ID = “PREMGN-EL/H/M/V-4/5-RAD/GRAV-V1.0”

6.4 Description of Name and ID Components

If the information needed to describe your data is not listed, consult the PDS Data Engineerto |
determine what the appropriate acronyms are for you to use.

When a reference is made to the PSDD, see the standard values list for the data elements.

1. Instrument host component valid values are:

full length names: INSTRUMENT_HOST_NAME data element in the PSDD
atronyms: INSTRUMENT_HOST_ID data element in the PSDD
exceptions: for Earth based data sets with no instrument host defined, the defanlt

value of EAR is recommended.
2. Collection name component valid values may be one of the following:
GRSFE Geological Remote Sensing Field Experiment
HW International Halley Watch
PREMGNPre-Magellan
3. Target component valid values are:

full length names: TARGET_NAME data element in the PSDD
acronyms: one of the following target IDs

. Chapter 6. Data Set/Data Set Collection Contents and Naming

target ID

gwwszermmugn

72}
w

= W <

target name
Asteroid

Comet
Calibration
Dust

Earth
Mercury

Jupiter

Saturn

Satellite

Solar System

Uranus

Venus

Other, ex. Checkout

Sky

6-7

NOTE: Satellites or rings shall be referenced in a DATA_SET_NAME and DATA_SET_ID by
the concatenation of the satellite or ring identifier with the associated planet identifier; for example:

JR = Jupiter's rings
JSA = Jupiter's satellites

If Jupiter data is also included in the ring and/or satellite data set, then only Jupiter, J, is

referenced as the target.

|
6-8 Chapter 6. Data Set/Data Set Collection Contents and Naming

In cases where there are data sets of comet or asteroids this component represents the
TARGET_TYPE rather than the target name, for example:

A = Asteroid CAL = Calibration
C = Comet MET = Meteorite

Valid values for the target_type data element are found in the PSDD.

4. Instrument component valid values are:

full length names: INSTRUMENT_NAME data element in the PSDD
acronyms- INSTRUMENT_ID data element in the PSDD
exceptions: ENG or ENGINEERING for engineering data sets

SPICE for SPICE data sets

GCM for Global Circulation Model data

SEDR for supplemental EDR data

POS for positional data

i
5. Data processing level nnmber ‘
This component is the National Research Council (NRC) Committee on Data Management and |
Computation (CODMAC) data processing level number. |
Normally a data set contains data of one processing level. PDS recommends that data of different
processing levels be treated as different data sets. However, if it is not possible to separate the data,
then a single data set with multiple processing levels will be accepted. Use the following when |
specifying the data processing level number component of the data set identifier and name: '
(a) the processing level number of the largest subset of data or
(b) the highest processing level number if there is no predominant subset.

|
|
|
|
|
|

Chapter 6. Data Set/Data Set Collection Contents and Namivng

DATA LEVEL NUMBER (CODMAC AND NASA LEVELS)

Level Proc. Type

1 Raw Data

2 Edited Data

3 Calibrated
Data

4 Resampled
Data

5 Derived Data

6 Ancillary Data

7 Correlative
Data

8 User Descrip-
tion

N N

ata 1 vel

Telemetry data with data embedded.

Corrected for telemetry errors and split or decommutated into a data set for a given
instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Corresponds to NASA Level 0 data.

Edited data that are still in units produced by instrument, but that have been cor-
rected so that values are expressed in or are proportional to some physical unit such
as radiance. No resampling, so edited data can be reconstructed. NASA Level 1A.

Data that have been resampled in the time or space domains in such a way that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level 1B.

Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

Nonscience data needed to generate calibrated or resampled data sets. Consists of in-
strument gains, offsets; pointing information for scan platforms, etc.

Other science data needed to interpret spaceborne data sets. May include ground-
based data observations such as soil type or ocean buoy measurements of wind drift.

Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary nser to extract information from
the data.

Not Applicable

6-9

6-10 Chapter 6. Data Set/Data Set Collection Contents and Namirig
|

6. Data set type \

Normally, the data processing level (CODMAC) component is sufficient to be able to identify thé
type or level of data. However, if additional identification is desired, this component may be used.
The following is a list of valid values (both full length names and acronyms) that may be used fo’{
this component.

NOTE: Several of the values in this table are currently unique to a particular mission (e.g. BIDR|
MIDR were used on Magellan). These values should also be used on other missions, if deemed
appropriate.

Acronym Description |
ADR Analyzed Data Record J
BIDR Basic Image Data Record L
CDR Composite Data Record i
CK SPICE CD (Pointing Kernel) l
DDR Derived Data Record (possibly multiple instrumentsi)
DIDR ’ Digitalized Image Data Record }
DLC Detailed Level Catalog i
EDC Existing Data Catalog |
EDR Experiment Data Record |
EK SPICE EK (Instrument Kernel)
GDR Global Data Record |
IDR Intermediate Data Record |
IK SPICE IK (Instrument Kernel)
MDR Master Data Record
MIDR Mosaicked Image Data Record
ODR Original Data Record
PGDR Photograph Data Record
RDR Reduced Daﬁ Record
REFDR Reformatted Data Recc;rd
SDR System Data Record
|
\

Chapter 6. Data Set/Data Set Collection Contents and Naming

7. Description

SEDR
SPK
SUMM
SAMP

1

Supplementary Experiment Data Record

SPICE SPK (Ephermeris Kernel)

6-11

Summary (data) (to be used in the browse function)

Sample data from a data set (not subsampled data)

The following is a list of example values (both full length names and acronyms) that could be used

for this component.

While the description is optional, it allows the user to provide information to help describe the data
set, such as identifying a specific comet or asteroid.

- D

Acronym
ALT/RAD

BR

CLOUD

ELE
ETA-AQUAR
FULL-RES
GIACOBIN-ZIN
HALLEY
ION

LOS

MOM

PAR

SA
SA-4.0SEC
SA-48.0SEC

Description

Altimetry and Radiometry
Browse

Cloud

Electron

Meteor Eta-Aquarius

Full Resolution

Comet Giacobini Zinner
Comet Halley

Ion

Line of Sight Gavity

Moment

Parameter

Spectrum Analyzer

Spectrum Analyzer 4.0 second
Spectrum Analyzer 48.0 second

6-12

8. Version number]
The rules for determining version numbers for PDS Data Sets/Data Set Collections are as follows:

(a)

(b)

If there is not a previous version of the PDS data set/data set collection, then use
Version 1.0. ‘

If a previous version exists, then consider the following:

i.

@
Chapter 6. Data SetData Set Collection Contents and Naming

If the data sets/data set collections contain the same set of data, but the new
one is on a different medium (e.g., CD-ROM), then no new version number
is required (i.e. no new data set identifier). The inventory system will handle
the different media for the same data set.

If the data sets/data set collections contain the same set of data, but the new
version has minor corrections or improvements such as a change in
descriptive labeling, then the version number is incremented by a tenth. For
example, V1.0 becomes V1.1. |

If a data set/data set collection has been reprocessed, using, for example, a
new processing algorithm or different calibration data, then the version
number is incremented by one (V1.0 would become V2.0). Also, if one data
set/data set collection contains a subset, is a proper subset, or is a superset 5
of another, then the version number is incremented by one.

Chapter 7. Date/Time Format 7-1

Chapter 7

Date/Time Format

The representation of time within a system is of particular concern, since time is often used to
constrain searches. PDS has adopted a subset of the International Standards Organization/Draft
Standard (ISO/DIS) 8601 standard entitled “Data Element and Interchange Formats -
Representations of Dates and Times™ for this purpose, and applies the standard across all
disciplines in order to give the system generality. See also Dates and Times in the Object
Description Language chapter of this document.

It is important to note that the ISO/DIS 8601 standard covers only ASCII representations of dates
and times.

7.1 Date/Times

In the PDS there are two date/time formats recognized as legal. These are
CCYY-MM-DDTHH:MM:SS.sssZ and CCYY-DDDTHH:MM:SS:sssZ. Each format represents
a concatenation of the conventional date and time expressions described in this chapter, with the
two parts separated by the letter T. The time part of the expression represents time in Universal
Time Coordinated (UTC), hence the Z at the end of the expression (see Section 7.3.1 for further
discussion). Note that in both the PDS Data Set Catalog and data product labels the “Z” is optional
and is assumed.

The preferred date/time format both for labels and Data Set Catalog templates is
CCYY-MM-DDTHH:MM:SS.sssZ.

72 Dates

The PDS allows dates to be expressed in conventional and native (alternate) formats.

7.2.1 Conventional Dates

Conventional dates shall be represented as either year, month, and day-of-month or as year and
day-of-year using the full ISO/DIS 8601 format, which has the fields separated by dash characters,
as follows: CCYY-MM-DD or CCYY-DDD. Both formats are acceptable for use in PDS labels
and Data Set Catalog templates, but the PDS prefers the CCY'Y-MM-DD convention.

722 Native Dates

The format of a native date is user specified. An example of a native date is Julian Day, an integer
count of days since a given reference day (January 1,4713 B.C.)

|
7-2 Chapter 7. Date/Time Format

I
|
1

73 Times

The PDS allows times to be expressed in conventional and native (alternate) formats.

73.1 Conventional Times

Conventional times shall be represented as hour, minutes, and seconds using the full ISO DIS8601
format. The hour, minutes, and seconds consist of three two-digit fields separated by colons, with
the field values being modulo 24, 60, and 60, respectively. The seconds field may be optionally
followed by a fractional part; if fractions of seconds are specified, a period shall be used as the

decimal point and not the European-style comma. The fractional part shall be at most 3 digits long.
The PDS has adopted the use of Universal Time Coordinated (UTC) for expressing time, using the
format HH:MM:SS.sssZ. Note that in both the PDS Data Set Catalog and data product labels the

“Z” is optional and is assumed. Fractions of seconds are limited to milliseconds. The |
START_TIME and STOP_TIME data elements required in data product labels and catalog
templates use this format.

|
|
|
i

For data collected by spacecraft-mounted instruments, the date/time shall be a time which
corresponds to “‘spacecraft event time”. For data collected by instruments not located on a ‘
spacecraft, this time shall be an earth-based event time value. |

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of data from a particular spacecraft or ground-based facility with data from other
sources.

7.3.2 Native Times i

Native or alternate time formats may be represented in a data product label or Data Product Catalo g
using the element NATIVE_TIME. Native times also can be represented using specific data
elements. Such data elements may be proposed by the data supplier and reviewed by the PDS. {

|

The following are examples of native time formats.

1. Spacecraft Clock Count (sclk)- Spacecraft clock count (sclk) provides a more precise time
representation than event time for instrument-generated data sets, and so may be desirable as an
additional time field. In a typical instance, a range of spacecraft-clock-count values (i.e., a start-
and a stop-value) will be called for.

Spacecraft clock count shall be represented as a right-justified character string field with a
maximum length of twenty. This format will accommodate the extra decimal point appearing in
this data for certain spacecraft and other special formats, while also supporting the need for simple
comparison (e.g., “>" or “<”) between clock count values.

2. Longitude of Sun- Longitude of Sun (“L sub S”) is a derived data value which can be
computed, for a given target, from UTC.

Chapter 7. Date/Time Format X

3. Ephemeris Time- Ephemeris time (ET)‘ is calculated as “TAI + 32.184 sec. + periodic terms”.

The NAIF S and P kernels have data that is in ET, but the user (via NAIF ephemeris readers which
perform data conversion) can obtain the UTC values.

4. Relative Time - In addition to event times, certain “relative time” fields will be needed to
represent data times or elapsed times. Time-from-closest-approach is an example of such a data -
element. These times shall be presented in a (D,H,M,S) format as a floating point number, and
should include fractional seconds when necessary. The inclusion of “day” in relative times is
motivated by the possible multi-day length of some delta times, as could occur, for example, in the
case of the several-month Galileo Jupiter orbit.

5. Local Times- For a given celestial body, LOCAL_TIME is the hour relative to midnight in units
of 1/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC)- When times must be expressed according to an
alternate time zone, they shall consist of hours, minutes, seconds, and an offset, in the form
HH:MM:SS.sss+n, where n is the number of hours from UTC.

Chapter 8. Directory Types and Naming 8-1

Chapter 8

Directory Types and Naming

The Directory Naming standard defines the convention for naming subdirectories on a data
volume. This standard lists the predetermined, standard directories that have been established by
PDS, plus the rules for forming subdirectory names and abbreviations.

8.1 Standard Directory Names

The following standard directory names must be used on archive volumes.
CATALOG— Template subdirectory containing PDS Catalog templates.

DOCUMENT— Documentation subdirectory containing text descriptions of the instrument and its
operation.

GAZETTER—Gazetteer subdirectory containing tables of information about the geological)
features of a target. e

INDEX — Data and inventory index subdirectory containing files which allow users to locate data
of interest.

LABEL— Label subdirectory containing include files which describe the data format and .
organization.

SOFTWARE — Software subdirectory containing utilities, application programs, or subprograms
used to access or process data files.

The following standards directory names are recommended for use on archive volumes.

CALIB — Calibration data subdirectory containing calibration files used in original processing of
data, or needed to use the data.

GEOMETRY — Geometry data subdirectory containing relevant files (SEDRs, spice kernels)
needed to describe observation geometry.

Note that some data sets may not contain all the components above and, as a result, do not need all
of the directories listed above. See the Volume Organization and Naming chapter of this document,
which describes all required and optional subdirectories on a volume. For example, many image
data sets do not include geometry files and so do not need a GEOMETRY directory.

8-2 Chapter 8. Directory Types and Naming

i

8.2 Formation of Directory Names |

1. A directory name shall consist of capitalized alphanumeric characters and the underscore
“_” character only (i.e., A-Z, 0-9, or “_"). No lowercase letters (i.e., a-z) or special
characters (e.g., “#“, “&", “*”) are allowed.

2. A directory name shall not exceed 8 characters in length. The purpose of this is to comply
with the ISO 9660 level 1 media interchange standard.

3. The first letter of a directory name shall be an alphabetic character, unless the directory \
name represents a year (e.g., 1984).

4. If numeric characters are used as part of the name (e.g., FILE1, FILE2, F[LE3) they should
be padded with leading zeros up to the maximum size of the numeric part of the name |
(FILEOOO1, FILE0OO2, F1LE3267). ;

5. Directories which contain a range of similarly named files shall be assigned directory ‘
names using the portion of the filename which encompasses all the files in the d.l:ectory,,
with “X’s” used to indicate the range of values of actual filenames in the directory. |

For example, the PDS Uranus Imaging CD-ROM disk contains image files named using ' §

SPACECRAFT_CLOCK_COUNT values. The directory that contains the image files |

ranging from C2674702.IMG through C2674959.IMG has the directory name C2674X)Q|(!

6. Directory names shall use full length terms whenever possible (e.g., SATURN, :
MAGELLAN, CRUISE, NORTH, DATA, SOFTWARE). Otherwise, directory names |
shall be constructed from abbreviations of full length names using the underscore character
to separate abbreviated terms, if possible. The meaning of the directory name should be |
clear from the abbreviation and from the directory structure.

For example, the following directory structure can be found on the Voyager 2 Images of Uranus
CD-ROM Volume 1: }

Chapter 8. Directory Types and Naming 8-3

ROOT — —— — — — ARIEL
— — — DOCUMENT
I:___ INDEX
— — — — MIRANDA
— — — — OBERON
— — — — TITANIA
L — uMBREL
L — — — unkNOWN
|- — — — uranus ——— — CosTaxX
I___C2675XXX

|
| L — C2687XXX
I
1

———— URNGS —— L — _co67sxxx
l and

In this case, it is clear from the context that the directory U_RINGS is the abbreviated form of
URANUS_RINGS.

7. High level directories that deal with data sets covering a range of planetary science
disciplines shall adhere to the following hierarchy:

A Planetary science directory: PLANET/
Planetary body subdirectories: MERCURY/, MOON/, MARS/, VENUS/, COMET/
Discipline subdirectories: ATMOS/, IONOSPHE/, MAGNETOS/, RING/, SURFACE/, and SATELLIT/
(Use satellite name 1f numerous files exist)

8. The recommended SOFTWARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. A platform based model or an
application based model can be used in defining software subdirectories. For a
platform-based model, the hardware platform and operating system/environment must be
explicitly stated. If there is more than one operating system/environment supported, then
they must be subdirectories under the hardware directories If there is only one, then the
subdirectory can be promoted to the hardware directory

For example, if software for the PC for both DOS and Windows were present on the volume, the directories SOFTWARE/PC/DOS
and SOFTWARE/PC/WIN would exist.

If only DOS software were preseat, the directory would be SOFTWARE/PCDOS.

8-4 Chapter 8. Directory Types and Naming

83 Path Formation Standard

The PDS standard for path names is based on Level 1 of the ISO 9660 International Standard. A *
pathname may consist of up to 8 directory levels. Each directory name shall be limited to 8
characters (A - Z, 0- 9, _ (underscore)). PDS has also chosen the UNIX/POSIX forward slash
separator (/) for use in path names. Path names typically appear on PDS volumes as data in index
tables for locating specific files on an archive volume. They may also appear as values in a].1m1ted
number of keywords (e.g. FILE_SPECIFICATION_NAME, PATH_NAME, and
LOGICAL_VOLUME_PATH_NAME).

The following are examples of valid path names:

TGISNXXX/TGISNIXX/TG15N12X/ - identifies the location of the directory TG15N12X at the third level below the
top level of an archive volume. |

DOCUMENT/ - identifies a DOCUMENT directory at the first level below the top level of a]
volume.

Note: The leading slash is omitted because these are relative paths. The trailing slash is included
so that the concatenation of PATH_NAME and FILE_NAME gives the full file specification.
&

i

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS |
support for this format continues to exist, it is recommended that all future volumes shall use the
UNIX syntax instead.

84 Tape Volumes

When magnetic tape is used as the archive medium, a directory structure cannot be used becanse,
the medium does not support multi-level directories. In this case, files must be stored in a
sequential fashion, as if they were all located in the same directory.

A directory structure for the volume shall be de51gned in any case, so that when the data is
transferred to a medium which supports hierarchical file structures, the data can then be placed i into|
a multi-level directory structure. A DIRECTORY object shall be placed on each tape volume
(within the VOLUME object) which is used to describe how the sequential files should be placed
in a hierarchical structure.

8.5 Exceptions to These Standards

In certain cases, the archive media used to store the data, the hardware used to produce the data set,
or the software which must operate on the data may impose restrictions on the names of directories
and their overall organization. In these cases, the alternate directory organization and naming used
on the data volume should be reviewed by PDS personnel during the data set submission process
in order to determine the best compromise between the standard given above and any practical
restrictions on the volume or data set structure.

Chapter 9. Documentation Standard 9-1

Chapter 9

Documentation Standard

Documentation to accompany archived data products is defined as flight project documents,
instrument papers, science articles, or any other textual material deemed necessary to understand
and use those data products and any software provided with the data sets.

During the design of each data set or data set collection, the documentation to be archived with the
data will be chosen. The archive format of this documentation will be chosen at this time as well,
taking into consideration the need for accessibility as well as the need for content. PDS requires an
ASCII version of all documents to be present on archive volumes in order to make the document
accessible to all platforms and text processing packages. Since plain ASCII text cannot include
graphics, which may be a critical component to the document's usefulness, an additional version
or versions of the document also may be included. The standards and guidelines for archive formats
are given in this chapter.

During assembly of the data set or data set collection, each document included must be prepared
and saved as files in the chosen format, labeled using PDS labels, and organized into the
DOCUMENT directory of an archive volume (See the Volume Organization and Naming chapte
of this document.). '

NOTE: Some documentation may only be available in hardcopy and will need to be converted into
electronic form, in which case optical character recognition scanners may be needed.

91 Document Labels

All files contained on a PDS data volume must be labeled. For documentation files, the following
rules apply:

1. Files placed on a volume to describe the contents of the volume or the contents of a
directory, such as AAREADME.TXT, DOCINFO.TXT, VOLINFO.TXT,
SOFTINFO.TXT, etc., must be in plain, unmarked ASCII text and must be given the
filename extension of .TXT. These files must include an attached or detached label
containing a TEXT object. (See the definition of the TEXT Object in Appendix A.)

NOTE: one or more additional versions of VOLINFO may be present (e.g. Postscript or a
word processor format). The required file VOLINFO.TXT must be labelled with TEXT
object. The additional file(s) would be labelled with the DOCUMENT object, and an
explantatory NOTE would be added to the label to indicate the required ASCII version is
VOLINFO.TXT.

2. Document files in formats other than plain ASCII placed on a volume to support the data

9.2

Chapter 9. Documentation Standard

set or data set collection must be labeled by a detached label containing a DOCUMENT
object (otherwise the label might interfere with the document’s application software).
Documents placed on the volume in plain ASCII text may have either an attached or |
detached label that contain a DOCUMENT object. (See the definition of the DOCUMENT
Object in Appendix A.)

1
|
r
I

l
Document Formats i

One version of the text of all documentation must be in ASCII text that can be typed or d.isplayeql
on a screen without word or text processing software. Several versions of a document, or parts of
that document, may be included on a volume for various reasons, such as: {

9.2.1

The required text version of a document can be one of the following:

1.

-be interpreted by specific word processing programs, but the files themselves can be

|
1.MYDOC.ASC - required ASCII version !
2. MYDOC.WP - WordPerfect 5.0 version to retain all graphics |
3. MYDOC(01.TIF- scanned TIFF version of selected pages for import capability into many packages.]
MYDOCO050.TIF

ASCII Text Formats |

i
i
}

Plain, unmarked ASCII text. Documentation files containing unmarked ASCII text shoulci
be given the file extension of .ASC. Lines of plain ASCII text should be 78 or fewer !

characters followed by the Carriage Return (Control M, Hex 0x0d) and Line Feed (Conu'ol
J, Hex 0x0a) characters.

The line length limitation is imposed to allow importing of text into environments which |
may reserve several characters for line numbering, or other uses. The use of the Carriage
Return and Line Feed characters ensures readability in the four environments commonly i in
use by planetary researchers. In the Macintosh and UNIX environments simple utilities are
available (Apple File Exchange and Translate, respectively) to add (if submitting data) ori
eliminate (if using data) the Line Feed or Carriage Return.)

Paragraphs should be separated by one or more empty lines, containing only the Carriage
Return/Line Feed sequence. This will facilitate simple conversion of text files into word

processor formats. In order to organize text into pages, the page feed character (Control L,
HEX 0x0c) is also allowed in text files. If this feature is used, page length should be kept |
to 60 lines of text and a page feed character should be inserted immediately after the END
(CR/LF) statement of any PDS labels which appear at the beginning of the document.

ASCII text containing a markup language. These ASCII files contain ASCII codes that can

viewed on any screen.

Chapter 9. Documentation Standard

as:
TeX TEX
LaTeX TEX
Interleaf IL
RUNOFF RNO

NROFF/TROFF .ROF

9-3

Files shall be given the file extension of their format type or their target processing program, such

Following is a list of document format types fitting this criteria:

a. SGML - Standard Generalized Markup Language. SGML provides special codes -
(in ASCII) which indicate common document components (title, chapter, etc.) This
standard for document preparation has been adopted by the DOD calls (computer
aided logistics program) and is strongly supported in the printing industry.

Advantages:

Disadvantages:

SGML is a descriptive markup language, describing the
structure of a document independent of any text formatter or
use of the data, and has been designed as a standard for
interchanging text, thereby making user conversion
programs a real possibility (publicly available conversion
programs will surely be available in the near future). SGML
documents can be validated using SGML parsers to ensure
their adherence to the SGML standard. SGML parsers are

. easily accessible and distributable.

SGML-supporting software and expertise is not wide-spread
throughout the PDS community at the present time.

b, TeX - TeX is a computerized types;etﬁng program which accepts documents
consisting of ASCII characters with embedded ASCII codes which identify special

formatting.

Advantages:

Disadvantages:

TeX is widely used and exists for hundreds of different
computers and operating systems. Files can be viewed as
ASCII text, or processed by TeX and then previewed on the
screen by widely available software such as Preview.
Mathematical formulas can be included using TeX, as well
as external references to Postscript files containing graphics.

The TeX processing software must be available to format
and print the files. TeX documents are usually preceded by
user-defined macro definitions, requiring that these
definitions be included with the file to assure compatibility
with standard TeX.

|

|
94 Chapter 9. Documentation Standard

3. LaTeX - A popular generic markup language that consists of macros written in TeX. ‘

Advantages: Same as TeX, with the addition that LaTeX is usually
simpler than TeX and its markup is less obtrusive when
viewing the document in ASCII.

Disadvantages: Same as TeX.

4. Interleaf - A mixed text, graphics, and image document editor based on a structured-
document architecture. Files can be saved in ASCII with Interleaf markup.

|
|
Advantages: Interleaf markup language is composed of semantic l
elements in the SGML sense, thereby making conversion |
programs possible, and is easily viewed as ASCII text.
Interleaf is widely used op workstation environments such as
Sun and Apollo.
|
Disadvantages: Interleaf software is required to format and print the '
document. 1

5. RUNOFF - The DIGITAL Standard Runoff (DSR) text formatting facility which
processes ASCII files containing text, and DSR commands and flags.

!

Advantages: RUNOFF is a standard utility in the widely used VMS
environment. DSR input files are easily viewed as ASCII }
text. |

Disadvantages: RUNOFF is required to format and print the document.

6. NROFF/TROFF - Both nroff and troff are text processing utilities for the Sun system, 1
nroff for typewriter-like terminals or printers, and troff for typeset formatting. Both nroff
and troff accept ASCII files containing text interspersed with lines of format control :

information.
|
Advantages: Both nroff and troff are standard utilities in the widely used
Sun OS environment. Input files can be viewed as ASCH |
st |
Disadvantages: Either nroff or troff is required to format and print the

document. Input files could be less "pleasant” to view as
ASCITI text due to the cryptic nature of its format control
commands.

7. Miscellaneous Notes - Although FrameMaker Interchange Files (MIF) are ASCII files
containing markup, this is not a recommended format for fulfilling this requirement. The
markup is very extensive and inhibits the ASCH viewing of the text.

Chapter 9. Documentation Standard 9-5

922 Non-ASCII Formats

Documents can be supplied on archive volumes in formats in addition to the required ASCII
version. Document files provided on archive volumes shall be given the file extension of their
format type or their application program, such as:

WordPerfect5.0 WP
FrameMaker MIF
TIFF TIF
Postscript PS

Encapsulated Postscnipt _EPS

" The recommended non-ASCII document formats include:
L. WordPerfect 5.0 - WordPerfect 5.0 word processing package.

Advantages: WordPerfect 5.0 is widely used within the PDS community
and can contain graphics and complicated text. Hardcopy
documentation can easily be scanned into WordPerfect 5.0
format.

Disadvantages:WordPerfect format can only be read by WordPerfect
software. ‘

2. FrameMaker - FrameMaker word processing package.

Advantages: FrameMaker is available on many platforms and can contain
graphics and complicated text. Hardcopy documentation can
easily be scanned into Maker Interchange Format (MIF)
files.

Disadvantages:FrameMaker format can only be read by FrameMaker
software, unless a conversion program is written or obtained
for MIF files.

3. TIFF - Tagged Image File Format for storing scanned documents, images, or graphics.

Advantages: The exact representation of the document, including
graphics and typesetting, is captured. Hardcopy documents
can easily be scanned into TIFF files. TIFF is accepted as an
import file type to many word processing packages such as
PC WordPerfect, MAC Framemaker, and MAC PageMaker,
as well as other systems such as MAC Photoshop.
Uncompressed TIFF files are very large, but CCITT/3
compression reduces the size of these files which can still be
read quite well. TIFF Group 4 compression reduces the file
size even more and is a CALS standard. Group 3 compressed
is recommended.

|
|
9-6 Chapter 9. Documentation Standm;'d
i
Disadvantages:TIFF stores one page per file and results in very large ﬁles'l
requiring a great deal of storage space. Group 3 and Group 4
compression do not store gray-scale images. TIFF requires’
TIFF-accepting software to view and print files. 1
4. Postscript - Postscript page desciiption language files are read by an interpreter in a E
Postscript printer such as LaserWriter or Imagen. .

Advantages: Postscript files are ready to print and can include graphics o%r
complicated text. Postscript printers are widely used and |
available throughout the PDS community.

l
Disadvantages:Postscript files cannot be imported into text or word l
processing packages. They can only be printed. !

5. Encapsulated Postscript (EPS) - Used for storing images, figures, graphics.

Advantages: Encapsulated Postscript files can be imported into a numbeL‘
of text and word processing packages, such as MAC }

FrameMaker, WORD, and WordPerfect, as well as other
programs for viewing and printing files such as Ghostscnpt
and Ghostview. |
]

Disadvantages:Requires EPS-accepting software to view and print files.

93 Validation |

Documentation files prepared to accompany the data set or data set collection must be validated 1 m
that the files can be copied or transmitted electronically, and can be read or printed by their target
text processing program. Documentation files should be spell-checked prior to archive.

l

9.4 Guidelines

The basic guideline for the content of documentation is, “Can this information be useful to a daIa]
user?” and “Is the material necessary, and is it sufficient?” There are many levels of inquiry

possible regarding data sets, from the casual examination to the total reworking of a data set. What
is useful therefore also varies. The intent of PDS is to err on the side of completeness; it is intended
that calibration information, for example, be available to those who may want to reprocess data, or
who question conclusions based on that calibration.

Chapter 10. File Specification and Naming 10-1

" Chapter 10

File Specification and Naming

The File Specification and Naming Standard defines the PDS conventions for forming file
specifications and file names. This standard is based on Level 1 of the international standard ISO
9660, “Information Processing - Volume and File Structure of CD-ROM for Information
Interchange.” The PDS has chosen the UNIX/POSIX forward slash operator (/) for use in path
names. Throughout this document notation has been changed from the VMS-style accepted in
previous versions to the UNIX/POSIX style. Directory path name formation is discussed further
in the Directory Types and Naming chapter of this document.

10.1 File Specification Standards

A file specification consists of the following elements:

A complete directory path name (as discussed in the Direcrory Types and Naming
chapter of this document)
A file name

A file name consists of a basename and an extension separated by a required FULL STOP (a.k.a.
period) character (.). The total length of the file name shall not exceed 12 characters. The length of
the base name shall not exceed 8 characters and the extension shall not exceed 3 characters. Both
the base name and extension shall contain only the upper case alphanumeric character set (A- Z,
0-9), and underscore (_). These requirements are often referred to as the 8.3 (8 dot 3) file naming
convention. These limitations exist primarily to conform to the ISO 9660 CD-ROM standard, and
to accommodate computer systems (e.g. IBM DOS-based PCs) that cannot handle longer file
names. Since PDS archive volumes are designed to be read on many platforms, including PCs,
these restrictions are necessary.

The following shows an example of a simple file name, which can be used to locate the file
provided you are located in the proper directory already. The file specification identifies the -
location of the file relative to the root of a volume, inlcuding the directory path name. '
File Name: TGISN122.IMG
File Specification: = TGISNXXX/TGISNIXX/TG15N12X/TG15N122.IMG

Do not use path or file names that correspond to operating system specific names, such as:

AUX CLOCK$ COM1 CON LPT1 NUL PRN

10-2 Chapter 10. File Specification and Nami:;lg

|
10.2 File Naming Standards |
The following sections identify the PDS required and reserved file names and file extensibns |
Required and reserved file names and extensions provide consistency across PDS archive volumesI
which is helpful to users. Also, software tools can make use of this predictability. 1
Required means that if a file contains a given type of information, it shall have the given name o'r
extension. Reserved means that if a file has a given name or extension, it shall contain that type of
information. For example, the volume object is contained in, and only in, the file named ‘
VOLDESC.CAT. It is a required file name. A file named TG15N122.IMG contains an image.
Another image could be in a file named GCPL1223.653. The extension IMG is a reserved, but not
required, file extension for images.

File extensions should be used to identify the data type of a file. This is reflected in the requueci‘
and reserved file extensions listed later in this chapter.

10.2.1 Required File Names |

VOLDESC.CAT - This file name must be used for the file containing the volume object. This
required file is placed in the ROOT directory of a volume. i

!
objectname.CAT - This category of file name must be used for files containing a catalog object.
These files, if present on a volume, must be placed in the CATALOG directory of a volume. The%
Software Inventory catalog object may also be placed in the SOFTWARE hierarchy under the |
appropriate DOC directory. ’

|
NOTE: PDS requires that either these objectname.CAT files, or the VOLINFO.TXT file descnbed
below, be present on the volume

“objectname” is one of the commonly used catalog objects listed below. The form of the file na.me
varies if one or more objects are described within the same or separate files. For example, ifa !
volume contains a single data set, the data set object shall be contained in the file named ’1
DATASET.CAT. If the volume contains multiple data sets and the data set objects are contained
in a single file, it shall be named DATASET.CAT. If the volume contains multiple data sets and
the data set objects are contained in separate files, each file shall be named xxxxxxDS.CAT where
"xxxxxx" is replaced with an acronym of up to six characters for the data set

If a single file is used to contain all catalog objects, it must be named CATALOG.CAT. The
pointer expression becomes: :

ACATALOG = "CATALOG.CAT"

If catalog objects are organized in separate files or sets of files, pointer expressions shall be
constructed according to the following table. Under "File Name", the first line shows the file name
to be used if a single catalog file is present on the volume for the particular type of catalog object
named. The second shows the syntax and file name convention to be followed if multiple catalog
files are present for the named object. ‘

1
i

Chapter 10. File Specification and Naming 10-3

Catalog Pointer Name File Name

ADATA_SET_CATALOG = "DATASET.CAT"

= {"xxxxxxDS.CAT","yyyyyyDS.CAT"}
ADATA_SET_COLLECTION_CATALOG = "DSCOLL.CAT"

= {"xxxxxDSC.CAT","yyyyyDSC.CAT"}
ADATA_SET_MAP_PROJECTION_CATALOG = "DSMAP.CAT"

= {"xxxDSMAPCAT","yyyDSMAP.CAT"}
NNSTRUMENT_CATALOG = “INST.CAT"

= {"xxxxINST.CAT","yyyyINST.CAT"}
AINSTRUMENT_HOST_CATALOG = "INSTHOST.CAT"

= {"xxxxHOST.CAT","yyyyHOST.CAT"}
AMISSION_CATALOG = "MISSION.CAT"

= {"xxxxxMSN.CAT","yyyyyMSN.CAT"}
APERSONNEL_CATALOG = "PERSON.CAT"

= {"xxxxPERS.CAT,"yyyyPERS.CAT"}
AREFERENCE_CATALOG = “REFCAT"

= {"xxxxxREF.CAT","yyyyyREF.CAT"}
ASOFTWARE_INVENTORY_CATALOG = "SWINV.CAT"

{"xxxSWINV.CAT", "yyySWINV.CAT"}

AAREADME.TXT- This file name must be used for the file that contains a terse description of the
volurne contents. This required file is placed in the ROOT directory of a volume.

ERRATA.TXT- This file name is used for a file used to provide comments as well as to report
errors. Curnulative comments for a volume set are kept in this file (although cumulative comments
are optional for a volume set). This optional file is placed in the ROOT directory of a volume.

VOLINFO.TXT - This file name must be used for the file containing detailed information
necessary to interpret the data set(s) contained on the volume. When present, this file is placed in
the DOCUMENT directory of a volume. The VOLINFO.TXT file is referenced in the catalog
object as ADESCRIPTION = "VOLINFO.TXT".

NOTE: PDS requires that either the VOLINFO.TXT file, or the objectname.CAT files described
above, be present on the volume.

The following xxINFO.TXT files are required to appear in the non-data subdirectories that appear
on the volume:

GEOMINFO.TXT is placed in the GEOMETRY subdirectory
CALINFO.TXT is placed in the CALIB subdirectory
DOCINFO.TXT is placed in the DOCUMENT subdirectory
GAZINFO.TXT is placed in the GAZETTER subdirectory
CATINFO.TXT is placed in the CATALOG subdirectory °
LABINFO.TXT is placed in the LABEL subdirectory
INDXINFO.TXT is placed in the INDEX subdirectory
SOFTINFO.TXT is placed in the SOFTWARE subdirectory

The following xxINFO.TXT files are recommended in the appropriate SOFTWARE subdirectories:
PCINFO.TXT in the SOFTWARE/PC subdirectory

104 Chapter 10. File Specification and Naming

MACINFO.TXT in the SOFTWARE/MAC subdirectory
SUNINFO.TXT in the SOFTWARE/SUN subdirectory
VAXINFO.TXT in the SOFTWARE/VAX subdirectory
SGIINFQ.TXT in the SOFTWARE/SGI subdirectory

The following file names should be used for INDEX files:
For a volume index:]
INDEX.TAB or ’ ’
axxINDEX.TAB (with “axx" replaced by an appropriate mnemonic)

For a cummulative index:
CUMINDEX.TARB or
axxCMIDX TAB (with "axx" replaced by an appropriate mnemonic)

10.2.2 Reserved File Names

VOLDESC. SFD - for use with a file containing an SFDU Reference Class object for an archive volume

10.2.3 Required File Extensions

CAT - for use with a file containing a catalog object
.FMT - for use with an include file containing structural information (meta data) describing a data object |

.LBL- for use with a file containing a detached PDS label for any class of data object. *
Note that a file containing a detached label should have the same base name as its’ associated data file, but the
extension .LBL E

.TXT - for use with a file described by the TEXT data object

.ASC - for use with a file containing a document in ASCII text format described by a label containing a DOCUMENT object |
definition.

10.24 Reserved File Extensions

IBG - for use with a file containing browse image data
.IMG - for use with a file containing image data
.IMQ - for use with a file containing image data that has been compressed

.TAB - for use with a file containing table data
(Note: this extension is also used for table data in ASCII form described by a detached PDS label).

.DAT - for use with binary files (other than images)

.QUB - for use with spectral (or other) image qubes

.TSP - for use with SPICE Transfer format SPK (ephemeris) files
.BSP - for use with SPICE Binary format SPK (ephemeris) files

.TC - for use with SPICE Transfer format CK (pointing) files

Chapter 10. File Specification and Naming 10-5

BC - for use with SPICE Binary format CK (pointing) files

.TI - for use with SPICE Text IK (instrument parameters) files

.TLS - for use with SPICE Leapseconds kemel files

.TPC - for use with SPICE Physical and cartographic constants kernel files

.TSC - for use with SPICE Spacecraft clock coefficients kernel files

NOTE: Additional file extensions are reserved for use for document files only and are described in
the Documentation chapter in this document.

10.3 File Naming Guidelines

In cases where file names will contain an identification value constructed from the time tag or data
object identifier, the following forms are suggested (but not required):

Pnnnnnnn EXT

where P is one of the following:

C - The following value is a clock count value (C3345678.IMG)

T - The following value is a time value (T870315.TAB)

F - The following value is a FrameID or an ImageID (F242A03.IMG)

N - The following value is a numeric file identification number (NC03.TAB).

Chapter 11. Media Formats for Data Submission and Archive 11-1

Chapter 11

Media Formats for Data Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its Science Nodes. It is expected that flight projects will deliver all standard digital
products on magnetic or optical media. Electronic delivery of modest volumes of special science
data products may be negotiated with the Science Nodes. “

During archive planning, the data producer and PDS will determine the medium (or media) to use
for data submission and archive. This standard lists the media that are most commonly used.
Delivery of data on media other than those listed here can be negotiated with PDS on a case-by-
case basis.

The use of 12-inch Write 6nce Read Many (WORM) disk, 8-mm EXABYTE tape or 4-mm DAT
tape is NOT recommended for archival products. WORM disks are not transportable between
various vendor hardware. Helical scan tape (8-mm or 4-mm) is prone to catastrophic read errors.

For archival products only media that conform to International Standards Organization (ISO)
standards for physical and logical recording formats should be used.

1. The preferred data delivery medium is the compact disc, either CD-ROM or CD-WO
(recordable) disc, in ISO-9660 format, using Interchange Level 1.

2. Standard computer compatible tape (CCT) on 12-inch reels recorded in ANSI format
(equivalent to VAX 'COPY" format) is acceptable.

3. ISO compatible 5 1/4-inch WORM or Magneto Optical disk is acceptable.

4, IBM 3480-compatible tape cartridges are acceptable.
11.1 CD-ROM Recommendations

11.1.1 Use of Extended Attribute Records (XARSs)

The use of Extended Attribute Records (XARs) on CD-ROMs shall be at the discretion of the data
producer, based on the anticipated use of the CD-ROMs. If the CD-ROMs will be widely used on
VMS platforms with software which expects certain record formats, then XARs should be
provided. If the CD-ROMs will be used on mixed platforms and there is no existing software on
the VMS platform which accesses the data files, XARs need not be included. This issue should be
discussed during the Peer Review or Data Delivery Review for any CD-ROM product. See the
Records Formats chapter of this document for additional requirements on CD-ROMs that have
XARs.

11-2 Chapter 11. Media Formats for Data Submission and Archi\lre

Software developed by PDS for use on VMS platforms should not expect record attributes to be
specified on all CD-ROM data files, and should allow processing of files which do not have XAR
records. Preferably, they should extract information about the record attributes from the PDS
labels, not from the operating system.

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMs be premastered using a single-session, single-track format.
Other formats have been found to be incompatible with some readers.

11.1.3 Packaging Software files on a CD-ROM

If the archive is being premastered such that it will be supported on all platforms and it includes
software for the MAC and SUN, then the following applies:

1. MAC Software

If the archive includes software for the MAC, the MAC files must be prepared in a particular
format. This is because other platforms can't recognize the resource and data fork files that come
with MAC applications. This has been done with the NTHIMAGE software on the Magellan GXDR
and the Clementine EDR CD-ROMSs. There is a MAC utility, called STUFFIT, that is used to
prepare the files; i.e. compress and BINHEX the MAC files. The users will also need this utility
in order to use the software (they will need to unBINHEX and decompress the file). This should
be described in a text file included on the CD-ROM (in the appropriate SOFTWARE/DOC |
subdirectory).

Example of text documenting HQX files

Macintosh Software

This directory contains software which can be nsed to display the GXDR
images on a Macintosh I computer with an 8-bit color display.

NOTE: Because of the way this CD-ROM was produced, it was not

possible to record this display program as a Macintosh executable

file. Anyone who is unfamiliar with the Macintosh STUFFIT utility

should contact the PDS operator, 818-306-6026, SPAN address

JPLPDS::PDS_OPERATOR, INTERNET address PDS_OPERATOR@JPLPDS.JFL.NASA.GOV

The file IMAGE.HQX contains the NIH Image program, along with several
ancillary files and documentation in Microsoft WORD format. It was
written by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD-ROM disks.

The Image executable and manual are stored in BINHEX format, and the !
utitity STUFFIT or UNSTUFFIT must be used to: 1) decode the BINHEX ‘

Chapter 11. Media Formats for Data Submission and Archive 11-3

file IMAGE.HQX into IMAGE.SIT, using the ' DECODE BINHEX FILE..." option
in the Other menu; and 2) use 'OPEN ARCHIVE' frori the File menu to

extract Image 1.40 from the STUFFIT archive file. There are also

several other files in the archive file which should be unstuffed and

kept together in the same folder as the Image executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

Raymond Lau MacNET:RayLau Usenet:raylau@dasysl.UUCP
100-04 70 Ave. GEnie:RayLau

Forest Hills, N.Y. 11375-5133 CIS.76174,2617

United States of America. Delphi:RaymondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

Aladdin Systems, Inc.
Deer Park Center

Suite 23A-171

Aptos, CA 95003

United States of America

2. SUN Software - preserving the SUN filesystem (e.g. filenames)

The ISO standard is all files and directories are uppercase, so when a disc is premastered as an ISO
CD, this is automatically done by the premastering software. We know from experience that some
CD readers connected to SUNs can show files/directories as uppercase instead of lowercase. This
can cause problems when the user copies the files over and tries to do a build if the software
filename should be lowercase.

There are two options on how to preserve the SUN filesystem (other than not doing anything and
just documenting it). The first option was used for Clementine.

The options are:

a. Build tar/compressed/encoded files for the SUN executables and source files. This is analogous
to what is done for the MAC with the HQX files. This way the actual software filenames will be
retained as they should be for the SUN when the user copies over the files and decodes/
uncompresses/detars them. This should be documented.

b. YoungMinds provides something to deal with this very problem. A translation table can be
created (called YMTRANS.TBL) to provide a mapping of the filename on the CD to what it should
be on the SUN UNIX. If the premastering is on a PC, this can't be done automatically because the
files have already been moved to a PC. However, it is only an ASCII table with a simple format
S0 it can be created manually. There would have to be a translation table in every SUNOS
subdirectory (/BIN, /SOURCE, /DOC) and its contents should only be of the files that appear in
the subdirectory in which it exists. Software must be provided on the CD (provided by
YoungMinds) for the user to copy the files. This software uses the translation tables. This would
also have to be documented. As an alternative to the Young Minds solution, one could supply a
custom script with the CD that will perform the proper case translations.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-1

Chapter 12

Object Description Language Specification and Usage

The following provides a complete specification for the Object Description Language (ODL), the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains a formal definition of the grammar of the ODL and describes the
semantics of the language. PDS specific implementation notes and standards are referenced in
separate sections of this chapter. '

12.1 About the ODL Specification

This standard describes Version 2.1 of the ODL. Version 2.1 of ODL supersedes Versions 0 and 1
of the language which were used previously by the PDS and other groups. For the most part, ODL
Version 2.1 is upwardly compatible with previous versions of ODL. There are, however, some
features found in ODL Versions 0 and 1 that have been removed from or changed within Version
2. The differences between ODL versions are described in Section 12.7. The following is a sample
data label written in ODL that describes a file and its contents:

* File Format and Length */
RECORD_TYPE=FIXED_LENGTH
RECORD_BYTES= 800
FILE_RECORDS= 860

/* ponter to First Record of Major Objects in File */
AIMAGE =40
AIMAGE_HISTOGRAM= 840
AENGINEERING_TABLE= 842

/* Image Description */

SPACECRAFT_NAME= VOYAGER_2
TARGET_NAME=10
IMAGE_ID= "0514J2-00"™
IMAGE_TIME= 1979-07-08T05:19:11
INSTRUMENT_NAME= NARROW_ANGLE_CAMERA
EXPOSURE_DURATION= 1.9200 <SECONDS>
NOTE = “Routine mullispectral longitude

coverage,1 of 7 frames”

/* Description of the Objects Contained in the File */

OBIJECT = IMAGE
LINES =800
LINE_SAMPLES= 800
SAMPLE_TYPE= UNSIGNED_INTEGER
SAMPLE_BITS= 8
END_OBIJECT=IMAGE

OBIJECT =IMAGE_HISTOGRAM

ITEMS =25
ITEM_TYPE =INTEGER
ITEM_BITS =32

END_OBJECT =IMAGE_HISTOGRAM
OBJECT = ANCILLARY_TABLE

|

12-2 Chapter 12. Object Description Language (ODL) Specification and Usaée
|

ASTRUCTURE= “TABLE. FMT"
END_OBJECT= ANCILLARY_TABLE
END

12.1.1 Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear |
throughout the following sections. These notes deal with issues that are beyond language syntax
and semantics but that are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which is the major user of ODL-encoded data labels, has levied additional
implementation requirements for software used within the PDS and these requirements are
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to develop software to read or write subsets of the ODL. Spec1ﬁcally,
software developers may: ‘

e Eliminate support for the GROUP statement

* Not support pointer statement 1
* Not support certain types of data values ;
|
For every syntactic element supported by an implementation, the corresponding semantics must be
fully supported, as spelled out in this document. Software developers should be careful to assure[
that language features will not be needed for their particular applications before eliminating them.
Documentation on label reading/writing software should clearly indicate whether or not the ‘
software supports the entire ODL and if the software does not support the full ODL specificationl,
the documentation should clearly spell out the subset that is allowed. {

12.1.1.2 Language Supersets

Software for writing ODL must not provide or allow lexical or syntactic elements over and above
those described below. With the exception of the PVL-specific extensions below, software for
reading ODL must not provide or allow any extensions to the language.

12.1.1.3 PDS Implementation of PVL-Specific Extensions

PDS implementation of software for reading ODL may, in some cases, provide handling of lexical
elements which are included in the CCSDS specification of the Parameter Value Language (PVL). |
PVL is a superset of ODL. Extensions which may be handled by such software include:

« BEGIN_OBJECT as a synonym for the reserved word OBJECT.
» BEGIN_GROUP as a synonym for the reserved word GROUP.

» Use of the semicolon (;) as a statement terminator.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-3

These lexical elements will not be supported by software which writes ODL.Therefore, they must
be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT and
BEGIN_GROUP synonyms) upon output.

1212 Notation

The formal description of the ODL grammar is given in a Backus-Naur format (BNF) notation.
Language elements are defined using rules of the following form:

defined_element ::= definition
where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
specification, spaces take the place of underscores (for example, units expression).

2. Boldface type is used to denote reserved identifiers. For example:
object
Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. The elements within the bracket may
occur once at most.

4. Square brackets followed immediately by an asterisk or plus sign specify
repeated elements. If the asterisk follows the brackets, the elements in the brackets
may appear zero, one, or more times. If a plus sign follows the brackets, the
elements in the brackets must appear at least once. The repetitions occur from left
to right.

5. A vertical bar separates alternative elements.

6. If the name of any syntactic category starts with an italicized part, it is equivalent
to the category name without the italicized part. The italicized part is intended to
convey some semantic information. For example, both object_identifier and
units_identifier are equivalent to identifier; object_identifier is used in places where
the name of an object is required and units_identifier is used where the name of
some unit of measurement is expected.

124 Chapter 12. Object Description Language (ODL) Specification and Usage

‘
i

i
H

12.2 Charapter Set

The character set of ODL is the International Standards Organization's ISO 646 character set. The
U.S. version of the ISO 646 character set is ASCII and the ASCII graphical symbols are used
throughout this document. In other countries certain symbols have a different graphical
representation.

The ODL character set is partitioned into letters, digits, special characters, spacing characters, |
format effectors and other characters: |

character :: = letter | digit | special_character | k
spacing_character | format_effector |
other_character

|
The letters are the uppercase letters A - Z and the lowercase letters a - z. The ODL is case- §
insensitive, meaning that lower case letters are treated as identical to their upper-case eqmvalent
Thus the following identifiers are equivalent:

« IMAGE_NUMBER
e Image Number

e image number

An exception to the case rule is when lowercase letters appear as part of text strings. For example,
the text String “abc™ is not the same as the string “ABC”.

The digits are 0, 1,2,3,4, 5, 6,7,8,9. i
The following special characters are used in the ODL:

Symbol Name Usage

= Equals The equals sign equates an attribute or pointer to a value. !

{} Braces Braces enclose an unordered set of values. ‘

@) parentheses parentheses enclose an ordered sequence of values. |

+ Plus The plus sign indicates a positive numeric value. |

- Minus The minus sign indicates a negative numeric value.

<> Angle brackets Angle brackets enclose a units expression associated with a numeric value.

. Period The period is the decimal place in real numbers.

" Quotation Marks Quotation marks denote the beginning and end of a text string value.

’ Apostrophe Apostrophes mark the beginning and end of a literal value.

- Underscore The underscore separates words within an identifier. '

y Comma The comma separates the individual values in a set or sequence.

/ Slant The slant character indicates division in units expressions. The slant is also
part of the comment delimiter. |

* Asterisk The asterisk indicates multiplication in units expressions. Two asterisks in a

row indicate exponentiation in units expressions. The asterisk is also part of

Chapter 12. Object Description Language (ODL) Specification and Usages 12-5

the comment delimiter.

: Colon The colon separates hours, minutes and seconds within a time value.

Sharp The sharp delimits the digits in an integer number value expressed in based
notation.

& Ampersand The ampersand denotes continuation of a statement onto another line.

A Circumflex The circumflex indicates that a value is to be interpreted as a pointer.

Two characters, called the spacing characters, separate lexical elements of the language and can be
used to format characters on a line:

Space
Horizontal Tabulation

The following ISO characters are format effectors, used to separate ODL encoded statements into
lines:

Carriage Return
Line Feed
Form Feed
; Vertical Tabulation
The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other characters in the ISO 646 character set that are not required to write ODL statements and
labels. These characters may, however, appear within text strings and quoted symbolic literals:

$%;?2@[I I~

The category of other characters also includes the ASCII control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.g., the control characters
that serve as spacing characters or format effectors). As with the printing characters in this
category, the control characters in this category can appear within a text String or symbolic literal.
The handling of control characters within text strings and symbolic literals is discussed in Section
12.3.5 below. .

123 Lexical Elements

This section describes the lexical elements of the ODL. Lexical elements are the basic building
blocks of the ODL and statements in the language are composed by stringing lexical elements
together according to the grammatic rules presented in Section 12.4. The lexical elements of the
ODL are:

= Numbers

e Dates and Times

12-6 Chapter 12. Object Description Language (ODL) Specification and Usage

* Srings
¢ Identifiers

e Special symbols used for operators, etc.

Lexical elements are technically only strings of characters and a lexical element has no meaning in
and of itself: the meaning depends upon the syntactic role played by the element and the

corresponding semantics. Therefore rules for determining the meaning of lexical elements (for
example, the rules that govern the range of numeric values) are found in the sections on language
syntax - sections 12.4 and 12.5 below - rather than in the current section. There is no limit on the
length of any lexical element. However, software for reading and writing ODL may impose
limitations on the length of text strings, symbol strings and identifiers. It is recommended that at
least 32 characters be allowed for symbol strings and identifiers and at least 400 characters for text
strings. |

12.3.1 Numbers

The ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (like 123), but the ODL also provides for integer values in other
number systems (for example, 2#1111011# is the binary representation of the decimal integer
number 123). Real numbers can be represented in simple decimal notation (like 123.4) or ina
scientific notation that includes a base 10 exponent (for example, 1 .234E2).

12.3.1.1 Integer Numbers In Decimal Notation

An integer number in decimal notation consists of a string of digits optionally preceded by a |
number sign. Unsigned integer numbers are assumed to be positive.

integer :: = [sign] unsigned_integer i
unsigned_integer :: = [digit] +
sign:= +1-

Examples of Decimal Integers

0

123

+440
-150000

Chapter 12. Object Description Language (ODL) Specification and Usages 12-7

12.3.1.2 Integer Numbers In Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which allows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In general, for a number base
X the digits O to X-1 are used. For example, in octal the digits O to 7 are allowed. If X is greater
than 10, then the letters A, B, C, D, E, F (or their lower case counterparts) are used as needed for
the additional digits.

A based integer may optionally include a number sign. An unsigned based integer number is
assumed to be positive.

based_integer :: = radix # [sign] [extended_digit] + #
extended_digit :: = digit | letter
radix :: = unsigned_integer

Examples of Based Integers

2#1001011#
8#113#
10#75#
16#4B#
16#+48#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final example
is the hexadecimal representation of -75 decimal.

123.13 Real Nombers

Real numbers may be represented in a decimal notation (like 123.4) or in a scientific notation with
abase 10 exponent specified (like 1 .234E3). A real number may optionally include a number sign.
Unsigned real numbers are assumed to be positive.

real :: = [sign] unscaled_real | [sign] scaled_real

unscaled_real :: = unsigned_integer. [unsigned_integer] | unsigned_integer
scaled_real :: = unscaled_real exponent

exponent :: = E integer | e integer .

Note that the letter E in the exponent of a real number may appear in either upper or lower case.

Examples of Real Numbers

0.0

123.
+1234.56
-.9981
-1.E-3
314591

;
!

12-8 Chapter 12. Object Description Language (ODL) Specification and Usagie

|
|
12.3.2 Dates and Times

Because time is an important data type in science, the ODL has lexical elements to represent dates
and times. The formats for dates and times are a subset of the formats defined by the International
Standards Organization Draft Standard ISO/DIS 8601. |
(For information regarding PDS specific use of dates and times, see the Date/Time chapter in tlus

document.) i
' |
|
i

12.3.2.1 Date and Time Values

Date and time scalar values represent a date, or a time, or a combination of date and time: |

date_time_value :: = date | time | date_time

The following rules apply to date values:

» The year can be either Anno Domini (i.e., 1990), or it can be given modulo 100 (i.e., 90). ‘
e The month must be a number between 1 and 12.

» The day of month must be a number in the range 1 to 31, as appropriate for the particular
month and year.

» The day-of-year must be in the range 1 to 365, or 366 in a leap year.

The following rules apply to time values: 1

e Hours must be in the range 0 to 23.
e Minutes must be in the range 0 to 59.
e Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

* Hours must be in the range -12 to + 12 (the sign is mandatory). i

e Minutes, if specified, must be in the range 0 to 59.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-9

12.3.2.2 Implementation of Dates and Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries.

Software for writing ODL shall always output full four-digit year numbers so that the labels will
be valid into the next century.

Times in ODL may be specified with unlimited precision (for example, to nanoseconds). The
actual precision with which times can be represented by label reading/writing software is
determined by the software implementers, based upon limitations of the hardware on which the
software is implemented. Developers of label reading/writing software should document the
precision to which times can be represented.

Software for writing ODL shall not output Jocal time values, since a label may be read in a time
zone other than where it was written. Use either the UTC or zoned time format instead.
123.23 PDS Implementation of Dates and Times

PDS software for reading ODL labels shall interpret local times to be equivalent to UTC times.
Upon output, a Z will be appended to local times.For more information regarding PDS specific
usage of dates and times, see the Date/Time chapter in this docament

123.24 Dates

Dates can be represented in two formats: as year and day-of-year; and as year, month and day of
month.

date :: = year_doy | year_month_day
year_doy :: = year - doy

year_month_day :: = year - month - day

year :: = unsigned_integer

month :: = unsigned_integer

day :: = unsigned_integer

doy :: = unsigned_integer

Examples of Dates

1990-07-04
90-158
2001-001

I
12-10 Chapter 12. Object Description Language (ODL) Specification and Usagé

12.3.25 Times

Times are represented as hours, minutes and optionally seconds using a 24-hour clock. Times may
be specified in Coordinated Universal Time (UTC) by following the time with the letter Z (for
Zulu, a common designator for Greenwich Mean Time). Alternately, the time can be referenced to
any time zone by following the time with a number that specifies the offset from UTC. Most time
zones are an integral number of hours from Greenwich, but some are different by some non-
integral time, and both can be represented in the ODL. A time that is not followed by either the
Zulu indicator or a time zone offset is assumed to be a local time.

time = local_time | utc_time | zoned time

local time :: = hour_min_sec §
utc_time :: = hour_min_sec Z 1
zoned_time :: = hour_min_sec zone_offset

hour_min_sec :: = hour: minute [:second]

zone_offset :: = sign hour [: minute]

hour :: = unsigned_integer

minute :: = unsigned_integer |
second :: = unsigned_integer | unscaled_real ‘

Note that either an integral or a fractional number of seconds can be specified in a time.
Examples of Times

12:00
15:24:127 ;
01:10:39.457591+07 ;

123251 Combining Date and Time

A date and time can be specified together using the format below. Either of the two date formats
can be combined with any time format - UTC, zoned or local.

I
1

date_time::=date T time |
The letter T separating the date from the time can be specified in either upper or lower case. Note
that because this is a lexical element that spaces may not appear within a date, within a time or
befare or after the letter T.

Examples of Date/Times

1990-07-04T12:00
90-15:24:127Z
2001-001T01:10:39.457591+7

Chapter 12. Object Description Language (ODL) Specification and Usages 12-11

1233 Strings

There are two kinds of string lexical elements in ODL.: text strings and symbol strings.

1234 Text Strings

Text strings are used to hold arbitrary strings of characters.
quoted_text: :=''[character]*"
The empty string — a quoted text string with no characters within the delimiters -- is allowed.

A quoted text string may not contain the quotation mark, which is reserved to be the text string
delimiter. A quoted text string may contain format effectors, hence it may span multiple lines in a
label: the lexical element begins with the opening quotation mark and extends to the closing
quotation mark, even if the closing mark is on a following line. The rules for interpreting the
characters within a text string, including format effectors, are given in the section on string values
in Section 12.5. ’

1234.1 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image ID may be a symbol string like *J123-U2A’, or a camera filter might be a symbol string like
UvLs

quoted-symbol ::= ’[character]+’

A symbol string may not contain any of the following characters:

* The apostrophe character, which is reserved to be the symbol string delimiter
e Format effectors, which means that a symbol string must fit on a single line

* Control characters

123.5 Identifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of a symbolic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
"words" in an identifier. The first character of an identifier must be a letter. The last character
cannot be an underscore.

identifier : : = letter [letter | digit | _letter | _digit]*

'
3

12-12 Chapter 12. Object Description Language (ODL) Specification and Usage

Because ODL is not case sensitive, lower case characters in an identifier can be converted to the
upper case equivalent upon input to simplify comparisons and parsing.

Examples of Identi

—— R

VOYAGER

VOYAGER_2

BLUE_FILTER
USA_NASA_PDS_1_0007
SHOT_1_RANGE_TO_SURFACE

12.3.5.1 Reserved Identifiers |

A few identifiers have special significance in ODL statements and they are therefore reserved and
cannot be used for any other purpose (for example, as the name of an object or an attribute):

end - end_group end_object
group object begin_object |

12.3.6 Special Characters

The ODL is a simple language and it is usually clear where one lexical element ends and ar.lother1
‘begins. Spacing characters of format effectors may appear before a lexical element, between any
pair of lexical elements, or after a lexical element without changing the meaning of a statement.

As can be seen in the sections above, many lexical elements incorporate special characters.
Examples are the decimal point in real numbers and the quotation marks that delimit a text string.
" Some special characters are lexical elements in their own right. These so-called delimiters appear
within the syntax descriptions in the following section. The following single characters are

delimiters unless they appear within one of the lexical elements described above or within a text or;

symbol string. |

= The equals sign is the assignment operator. 1
The comma separates the elements of an array or a set

~

#*

The asterisk serves as the multiplication operator in unit expressions.

/ The slant serves as the division operator within units expressions.
A The circumflex denotes a pointer to an object.
< The angle brackets enclose units expressions.

The parentheses enclose the elements of a sequence.

-~ C

The braces enclose the elements of a set.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-13

The following two-character sequence is a lexical element.

** Two adjacent asterisks are the exponentiation sign within units
expressions.

124 Statements

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by the
reserve identifier end.

label ::= [statement]*
end
The body of a label is built from four types of statements:

statement :: = attribute_assignment_statement |
pointer_statement |

object_statement |

group_statement

Each of the four types of statements is discussed below

124.1 Lines and Records

Labels are also typically composed of lines, where each line is a string of characters terminated by
a format effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format a label into lines:

* There should be at most one statement on a line, although a statement may be more than a
single line in length. As noted in Section 12.3.5 above, format effectors may appear before,
after or between the lexical elements of a statement without changing the meaning of the
statement. For example, the following statements are identical in meaning:

FILTERS = {RED, GREEN, BLUE}

FILTERS = {RED,
GREEN
BLUE)}

» ' Each line should terminate with a carriage return character followed immediately by a line
feed character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

:
12-14 Chapter 12. Object Description Language (ODL) Specification and Usag:e

i

* The character immediately following the end statement must be either an optional spacing
character or format effector, such as a space, line feed, carriage return, etc.

A line may include a comment. A comment begins with the two characters /* and ends with the
two characters */. A comment may contain any character in the ODL character set except format
effectors, which are reserved to mark the end of line (i.e., comments may not be more than one lme
long). Comments are ignored when parsing an ODL label. The comment delimiters (/* and */) may
appear within a text string, but in this case, they do not represent a comment. They are simply part
of the text string. For example, the following is not a correct use of a comment: i

NOTE = “All good men come to the /* Example of incorrect comment™/
aid of their party"]

Any characters on a line following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL-
encoded labels in record-oriented files should adhere to the following rules: ‘

* A line of an ODL-encoded label should not cross a record boundary. Each line should be !
totally contained within a single record. Any space left over at the end of a record after the the
last line in the record should be set to all space characters.

1
* The remainder of the record that contains the end statement shall be ignored and the data |
portion of the file shall be assumed to begin with the next record in sequence.

12.4.2 Attribute Assignment Statement ’

The attribute assignment statement is the most common type of statement in ODL and is used to
specify the value for an attribute of an object. The value may be a single scalar value, an ordered
sequence of values, or an unordered set of values.

assignment_statement :: = attribute_identifier = value

The syntax and semantics of values are given in Section 12.5.

Examples of Assignments Statemnents
RECORD_BYTES = 300
TARGET = JUPITER
FIELD_OF_VIEW =(0.25 <DEG>, 3.00 <DEG>)
FILTERS = {RED,
GREEN,

BLUE)

Chapter 12. Object Description Language (ODL) Specification and Usages 12-15

124.3 Pointer Statement

The pointer statement indicates the location of an object.
pointer_statement :: =*object_identifier = value

As with the attribute assignment staternent, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

A common use of pointer statements is to reference a file containing an auxiliary label. For
example:

ASTRUCTURE = “TABLEFMT"

is a pointer statement that points to a file name TABLE.FMT that contains a description of the
structure of the ancillary table from our sample label. Another use of the pointer statement is to
indicate the position of an object within another object. This is often used to indicate the position
of major objects within a file. The following examples are from our sample label:

~IMAGE =40
AIMAGE_HISTOGRAM =840
AENGINEERING_TABLE =842

The first pointer statement above indicates that the image is located starting at the 40th record from
the beginning of the file. If an integer value is used to indicate the relative position of an object, the
units of measurement of position are determined by the nature of the object. For files, the default
unit of measurement is records. Alternatively, a units expression can be specified for the integer
value to indicate explicitly the units of measurement for the position. For example, the pointer

AIMAGE = 10200 <BYTES>
indicates that the image starts 10,200 bytes from the beginning of the file.

The object pointers above reference locations in the same files as the label. Pointers may also
reference either byte or record locations in data files which are detached, or separate, from the label
file:

AIMAGE = ("IMAGE.DAT", 10)
AHEADER = ("IMAGE.DAT", 512 <BYTES>)

1244 OBJECT Statement

The OBJECT statement contains the description of an object. The description typically consists of
a set of attribute assignment statements to establish the values of the object's attributes. If an object
is itself composed of other objects, then OBJECT statements for the component objects may be
nested within the object's description. There is no limit to the depth to which OBJECT statements
can be nested.

!
12-16 Chapter 12. Object Description Language (ODL) Specification and Usagk:
|
i
The format of the OBJECT statement is:
object_statement :: = object = object_identifier

[statement]*
end_object [= objec:_identifier]

The object identifier gives a name to the particular object being described. For example, in a file
containing images of several planets, the image object descriptions might be named]
VENUS_IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT :
statement is optional, but if it appears it must match the name given at the beginning of the I
OBIJECT statement. i

124.4.1 Implementation of OBJECT Statements

It is recommended that all software for writing ODL should include the object identifier at the end
as well as the beginning of every OBJECT statement.

12.4.5 GROUP Statement *

The GROUP statement is used to group together statements which are not components of a largef
object. For example, in a file containing many images, the group BEST_IMAGES might contain
the object descriptions of the three highest quality images. The three image objects in the ;
BEST_IMAGES group don't form a larger object: all they have in common is their superior |

quality.

The GROUP statement is also used to group related attributes of an object. For example, if two |
attributes of an image object are the time at which the camera shutter opened and closed, then the
two attributes might be grouped as follows:

GROUP = SHUTTER_TIMES
START =12:30:42.177 i
STOP =14:01:29.265 |
END_GROUP = SHUTTER_TIMES

The format of the group statement is as follows:

group_statement ;1 = group = group_identifier
[statement]*
end_group [- group_identifier]

The group identifier gives a name to the particular group, as shown in the example for shutter times
above. The object identifier at the end of the GROUP statement is optional, but if it appears it must
match the name given at the beginning of the GROUP statement. Groups may be nested within
other groups. There is no limit to the depth to which groups can be nested.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-17

12.4.5.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL should include the group identifier at the end
as well as the beginning of every GROUP statement.

124.5.2 PDS Usage of GROUP

Although the ODL supports the GROUP statement, the PDS does not recommend its use because
of confusion conceming the difference between OBJECT and GROUP.

12.5 Values

ODL provides scalar values, ordered sequences of values, and unordered sets of values.
value :: = scalar_value | sequence_value | set_value
A scalar value consists of a single lexical element:

scalar_value :: =numeric_value |
date_time_value |
text_string_value |
symbol_value |

The format and use of each of these scalar values is discussed in the sections below.

12.5.1 Numeric Values

A numeric scalar value is either a decimal or based integer number or a real number. A numeric
scalar value may optionally specify a units expression.

numeric_value :: = - integer [units_expression] |
based_integer [units_expression] |
real [units_expression]

12.5.2 Units Expressions

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, and not the units of
measurement. The ODL, however, can represent both the magnitude and the units of a
measurement. A units expression has the following format:

units_expression :: = < units_factor [mult_op units_factor]* >
units_factor :: = units_identifier [exp_op integer]
mult_op =%/

exp_op =

12-18 Chapter 12. Object Description Language (ODL) Specification and Usage

(
I
|
|
A units expression is always enclosed within angle brackets. The expression may consist of a smgle
units identifier like KM (for kilometers), or SEC (for seconds). Examples are the distance 1 341E6
<KM> and the time 1.024 <SEC>. More complex units can also be represented; for example, the
velocity 3.471 <KM/SEC> or the acceleration 0.414 < KM/SEC/SEC>. There is often more than
one way to represent a unit of measure. For example: |

* 0414 <KM/SEC/SEC>

j
]
!

* 0414 <KM/SEC**2> }
* 0414 <KM*SEC**2>
are all valid representations of the same acceleratlon The following rules apply to units
expressions: :
|
* The exponentiation operator can specify only a decimal integer exponent. The exponent valué
may be negative, which signifies the reciprocal of the units. For example, 60.15 < HZ> and

60. 15 <SEC**-1> are both ways to specify a frequency.

* Individual units may appear in any order. For example, a force might be specified as either |
1.55 <GM*CM/ SEC**2> or 1.55 <CM*GM/SEC**2>. ;

12521 Implementation of Numeric Values i

There is no defined maximum or minimum magnitude or precision for numeric values. In general,l
the actual range and precision of numbers that can be represented will be different for each kind of|
computer used to read or write an ODL-encoded label. Developers of software for readmg/wntmg
ODL should document the following:

I
|
* The most positive and most negative integer numbers that can be represented. ;
* The most positive and most negative real numbers that can be represented. }

* The minimum number of significant digits which a real number can be guaranteed to have
without loss of precision. This is to account for the loss of precision that can occur when
representing real numbers in floating point format within a computer. For example, a 32-bit
floating point number with 24-bits for the fraction can guarantee at least 6 significant digits
will be exact (the seventh and subsequent digits may not be exact because of truncation and
round-off errors).

If software for reading ODL encounters a numeric value that is too large to be represented, then
the software shall report an error to the user.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-19

1253 Text String Values

A text string value consists of a text string lexical element:

text_string_value :: = quoted_text

12.53.1 Implementation of String Values

A text string read in from a label is reassembled into a string of characters. The way"in which the
string is broken into lines in a label doesn't effect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

e If a format effector or a sequence of format effectors is encountered within a text string, then
the effector or sequence of effectors is replaced by a single space character, unless the last
character is a hyphen (dash) character. Any spacing characters at the end of the line are
removed and any spacing characters at the beginning of the following line are removed. This
allows a text string in a label to appear with the left and right margins set at arbitrary points
without changing the string value. For example, the two strings

“To be or not to be”
and

“~ “To be or
not to be”

are the same.

e If the last character on a line prior to a format effector is a hyphen (dash) character, then the
hyphen is removed. Any spacing characters at the beginning of the following line are removed.
This follows the standard convention in English of using a hyphen to break a word across lines.
For example, the following two strings

“The planet Jupiter is very big”
and

“The planet Jupi-
ter is very big”

are the same.

¢ Control codes, other than the horizontal tabulation character and format effectors, appearing
within a text string are removed.

12-20 Chapter 12. Object Description Language (ODL) Specification and ng%:
|

1253.1.1 PDS Text String Formatting Conventions

The PDS defines a set of format specifiers that can be used in text strings to indicate the formatting
of the string on output. These specifiers can be used to indicate where explicit line breaks should
be placed, and so on. The format specifiers are:

* \n - Indicates that an end-of-line sequence should be inserted.
e\t - Indicates that a horizontal tab character should be inserted. ’
» \f-Indicates that a page break should be inserted.
* \v - Must be used in pairs, begin and end. Interpreted as verbatim. |
» \\- Used to place a backslash in a text string.
For example, the string

“This is the first line \n and this is the second line.”
on output will print as:

This is the first line
and this is the second line.

i
Note that these format specifiers have meaning only when a text string is printed, and not when the:
string is read in or stored. ﬁ

12.5.4 Symbolic Literal Values |

A symbolic value may be specified as either an identifier or a symbol string:
symbolic-value :: = identifier | quoted_symbol
The following statements assign attributes to symbolic values specified by identifiers:

TARGET =10
SPACECRAFT = VOYAGER_2

The apostrophes must be used if the symbolic value does not have the proper format for a identifier
or if it contains characters not allowed in an identifier. For example, the value "'FILTER_+_7’ must
be enclosed within apostrophes, since this would not be a legal ODL identifier. Similarly, the
symbolic value *U13-A4B’ must be in apostrophes because it contains a special character (the
dash) not allowed in an identifier. There is no harm in putting a]egal identifier within apostrophes;
for example:

SPACECRAFT = "VOYAGER_2'

is equivalent to the last example above.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-21

Symbolic values may not contain format effectors, i.e., may not cross a line boundary.

12.54.1 Implementation of Symbolic Literal Values
Symbolic values will be converted to upper case on input. This means that:

SPACECRAFT = VOYAGER 2
SPACECRAFT = "Voyager_2'

are equivalent.

12.54.2 PDS Recommendation on Symbolic Literal Values

Since the current use of the ODL within the PDS does not require the explicit specification of
symbolic literals or symbol strings, the PDS recommends that double quotation marks (") be used
instead of apostrophes.

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one and two dimensional sequences are allowed.

sequence_value:: = sequence_1D | sequence_2D
sequence_1D :: = (scalar_value |, scalar_value]™)
sequence_2D :: = ([sequence _1D] +)

A sequence may have any kind of scalar value for its members. It is not required that all the
members of the sequence be of the same kind of scalar value. Thus a sequence may represent a
heterogeneous record. Each member of a two dimensional sequence is a one-dimensional
sequence. This can be used, for example, to represent a table of values. The order in which
members of a sequence appear must be preserved. There is no upper limit on the number of values
in a sequence.

12.5.6 Sets
Sets are used to specify unordered values drawn from some finite set of values.

set_value :: = {[scalar_value [, scalar_value]*} | {}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets with
nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. There is no upper limit on the number of values in
a set.

12.22

12.5.6.1

The PDS allows only symbol values and integer values within sets.

12.6

i
H

Chapter 12. Object Description Language (ODL) Specification and Usage

PDS Implementation of Sets

ODL Summary

Character Set (12.2)

The ODL uses the ISO 646 character set (the American version of the ISO 646 standard is ASCII)‘.

The ODL character set is partitioned as follows:

character : : = letter | digat | special_character |
spacing_character | format_effector |
other_character

letter ctmA-Zlaz

digit ::=0111213141516171819

special_character ::= - {1}I(I)I+I-1.1"1"I=]
_LLt*#i&ir il

spacing_character ::=space | horizontal tabulation

format_effector :: = carriage return | line feed |
form feed | vertical tabulation

other_character = Heiwl;111@i[i]ri-|
vertical bar | other control characters

Lexical Elements (12.3)

integer : : = [sign] unsigned_integer

unsigned_integer : := [digit]+

sign R 3

based_integer : : = radix # [sign] [extended_digith+ #

extended_digit .. = digit | letter

radix : : = unsigned_integer

real : : = [sign] nnscaled_real [sign] scaled_real

unscaled_real : : = unsigned_integer . [unsigned_integer] |
- unsigned_integer

scaled_real : : = unscaled_real exponent

exponent : : =K integer | e integer

date : : =year_doy | year_month_day

year_doy : : =year - doy

year_month_day ::=year- month - day

year : : =unsigned_jnteger

month : ; =unsigned_integer

day : : =unsigned _integer

doy : : =umsigned_integer

time : : =local_time | utc_time | zoned_time

local_time : + =hour_min_sec

utc_time : :=hour_min_sec Z

zoned_time : : =hour_min_sec zone_offset

hour_min_sec : : =hour : mimute [: second])

zone_offset : : =sign hour [minute]

hour : : =unsigned_integer

minute y : : =unsigned_integer

second 1 : =unsigned_integer | unscaled_real

date_time : : =date T time

quoted_text : : =*[character]*"

quoted_symbol : : =’[character}+'

identifier 1 : = letter [letter | digit | _letter | _digit]*

|

Chapter 12. Object Description Language (ODL) Specification and Usages

Statements (12.4)
label o [statememt]"
end
statement : : = assignment_stmt | pointer_stmt |
object_stmt | group_stmt
assignment_stmt : : = artribute_identifier = value
pointer_stmt : 1= * object_identifier = value
object_stnt : : = object = object_identifier
(statement]”
end_object [= object_identifier]
group_stmt : { = group = group_identifier
[statement]”

end_group [= group_identifier]

Values (12.5)

value : 1 = scalar_value | sequence_value | set_vahie

scalar value : = pumeric_value | date_fime_valie
text_string_value | symbolic_value

pumeric_value : s = integer [units_expression] |

based_integer [units_expression] |
real [units_expression] .
units_expression : : =<units_factor{mult_op umnits_factor] >

umts_factor : : = wurs_jdentifier [exp_op integer]
mult_op =y

exp_op rrs .

date_time_value ::=date|time |date_time

text_string value ::=quoted_text
symbolic_value :-= identifier | quoted_symbol
sequence,_value : :=sequence_]D | sequence_2D

sequence_lD ::=(scalar_value [, scalar_value]")

sequence_2D ::=([sequence_lD]+)

set_value : 1 ={ scalar_value [,scalar_value]* }I{}

12.7 Differences Between ODL Versions

12-23

This appendix summarizes the differences between the current Version 2 of ODL and the previous
Versions 0 and 1. Software can be constructed to read all three versions of ODL. However, it is

important that software for writing labels only write labels that conform to ODL Version 2.

12.7.1 Differences from ODL Version 1

Version 1 labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and it had a more restrictive definition
for sets (which were limited to integer or symbolic literal values) and for sequences (which were

limited to arrays of homogeneous values). The following sections details non-compatible

differences and how they can be handled by software writers:

|
12-24 Chapter 12. Object Description Language (ODL) Specification and Usagé:

i
!
1

12.7.1.1 Ranges
Version 1 of the ODL had a specific notation for integer ranges:
range_value :: = integer.integer

This notation is not allowed in ODL Version 2. A parser may still recognize the 'double-dot' range
notation. On output, a range shall be encoded as a two value sequence, with the low-value of the
range being the first element of the sequence and the high-value being the second element of the
sequence.

12.7.1.1.1 Delimiters In Sequences and Sets |
The individual values in sets and sequences could be separated by a comma or by a spacing I
character. In Version 2, a comma is required. A parser can allow spacing characters between values
as well as commas. Software that writes ODL should place commas between all values in a .
sequence or set. |
1

|

12.7.1.1.2 Exponentiation Operator in Units Expressions

In Version 1 of the ODL the circumflex character (*) was used as the exponentiation operator in |
units expressions rather than the two-asterisk sequence (**). Parsers may still allow the circumflex
to appear within units expressions as an exponentiation operator. Software for writing ODL should
use only the ** notation.]

|

t

12.7.2 Differences from ODL Version 0

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM disks.
The major aspect of Version 0 is that is did not provide the OBJECT statement: all of the attributes:
specified in a label described a single object - namely the file that contained the label (or that was,
referenced by a pointer).

!
|
12.7.2.1 Date—Time Format |

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date-time format. The format for Version
0 dates and date-times is as follows:

date :: = year / month / day_of_month |year/ day_of_year
date_time :: = date - time zone
zone :: = < identifier>

The definition of time in ODL Version O was a subset of ODL Version 2; therefore parsers that
handle Version 2 time formats will also handle Version O times. Software for writing ODL must
output dates and date-times in the Version 2 format only.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-25

12.7.3 ODL/PVL Usage

A concept for a Parameter Value Language/Format (PVL) is being formalized by the Consultative
Committee for Space Data Systems (CCSDS). It is intended to provide a human readable data
element/value structure to encode data for interchange. The CCSDS version of the PVL
specification is in preliminary form.

Some organizations which deal with the PDS have accepted PVL as their standard language for
product labels. Largely because PVL is a superset of ODL, some PVL constructs are not supported
by the PDS. In addition, some ODL constructs may be interpreted differently by PVL software.

The ODL/PVL usage standard defines restrictions on the use of ODL/PVL in archive quality data
sets. These restrictions are intended to ensure the compatibility of PVL with the Object Description
Language (ODL) and existing software.

1. Labels constructed using PVL may be attached, embedded in the same file as the data
object it describes, or detached, residing in a separate file and pointing to the data file
the label describes.

2. All statements shall be terminated with a <CR> <LF> pair. Semicolons shall not be
used to terminate statements.

3. Only alphanumeric characters and the underscore character shall be used in data ele-
ments and undelimited text values (literals). In addition, data element and undelimit-
ed text values must begin with a letter. ‘

4. Keywords shall be 30 characters or less in length.

5. Keywords and standard values shall be in upper case. Literals and strings may be in
upper case, lower case, or mixed case. ,

6. Comments shall be contained on a single line, and a comment terminator (*/) shall be
used. Comments shall not be embedded within statements. Comments shall not be
used on the same line as any statement if the comment precedes the statement. Com-
ments may be on the same line as a statement if the comment follows the statement
and is separated from the statement by at least one white space, but this is not recom-
mended.

7. Text values that cross line boundaries shall be enclosed in double quotaﬁon marks

(“ ”).

8. Values that consist only of letters, numbers, and underscores (and that begin with a
letter) may be used without quotation marks. All other text values must be enclosed
in either single (" ’) or double (“) quotation marks.

12-26

10.

11.

12.

13.

14.

15.

16.

The following are guidelines for formatting ODL/PVL expressions.

1.

2.

Chapter 12. Object Description Language (ODL) Specification and Usaée

1

|

Sequences (arrays) shall be limited to 2 dimensions. NULL (empty) sequences are nlot
allowed. Sets shall be limited to one dimension. In other words, sets and sequencTs

shall not be used inside a set. |

l
Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark—

ers shall be used.

Units expression shall only be allowed following numeric values (e.g,
“DATA_ELEMENT = 7 <BYTES>" is valid. but “DATA_ELEMENT = MANY
<METERS>" is not. i

Units expression shall include only alphanumeric characters, the underscore, and the
symbols */,(,), and **. (The last represents exponentiation). \

Signs shall not be used in non-decimal numbers. (e.g., “2#10001#” is valid, but ‘:‘
2#10001#" and “2#-10001#" are not.) Only the bases 2 ,8, and 16 shall be used in non-
decimal numbers. |

|

Alternate time zones (e.g., YYYY-MM-DDTHH:MM:SS.SSS + HH:MM) shall nét
be used. Only the format YYYY-MM-DDTHH:MM:SS.SSS shall be used. !

!
Always provide all digit positions in dates and times. Zeros shall be used to replac’e
missing digits. |

An END statement shall be included at the end of the ODL/PVL statement list. |

The assignment symbol (=) shall be surrounded by blanks. Q
Assignment symbols (=) should be aligned if possible. z

Keywords placed inside an aggregator (OBJECT or GROUP) shall be indented wn:h
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP state-
ments which enclose them.

PDS label lines shall be 80 characters or less in length, including the end-of-statement
<CR> <LF> delimiter. While 80 characters can be displayed on most screens, some
editors and databases will wrap or truncate lines that exceed 72 characters.

TABs shall not be used in PDS Labels. Although both ODL and PVL allow the use
of TABs some simple parsers cannot handle them. Use spaces instead.

Chapter 13. PDS Objects 13-1

Chapter 13

PDS Objects

The Planetary Data System has designed a set of standard objects to be used for submitting catalog
object templates as well as for labeling data products. These standard objects, along with
definitions of individual keywords comprising those objects, are defined in the Planetary Science
Data Dictionary. In addition, object definitions and examples are also included as Appendix A and
Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there are two
categories, generic and specific. A generic object is the universal definition of an object, or superset
of keywords that can be used. A specific object is a subset used for a specific data product to allow
effective use of validation tools.

Generic objects are designed and approved by the Planetary Data System. The elements used to
define objects are classified either as Required or Optional. The Required and Optional member
elements are explicitly listed while the Optional member elements may include any element in the
data dictionary. A Specific object is defined for a particular data product and is based in a selected
Generic object. All Required elements and selected Optional elements from the Generic object are
used to define the Specific object.

Using the generic object definition as a guide and consulting with a Central Node Data Engineer,
a user may then customize the object by first using all the required keywords, and then choosing
which optional keywords apply to the data product. In addition, any keywords listed in the
Planetary Science Data Dictionary can be chosen for special purposes. The resulting object will
be a specific object that is subject to approval during a design review.

13-2 Chapter 13. PDS Objects

|

i

The following examples illustrate the migration from the generic IMAGE object to a specific }
IMAGE object and then an instance of that specific IMAGE. Note that when a specific case is used
that usage should be consistent for all labels defining a like data product.

OBJECT = GENERIC_OBJECT_DEFINITION 1
NAME = IMAGE

STATUS_TYPE = APPROVED

STATUS_NOTE "V2.1 1991-01-20 MDM New Data Object Definition”

DESCRIPTION "An image object is a regular array of sample values. Image ob]ects
are normally processed with special display tools to produce a visual representation of the sample values. This is done by asmgmng
brightness levels or display colors to the various sample values. Images are composed of LINES and SAMPLES. They may I
contain multiple bands, in one of several storage orders. X l

|
Note: Additional engineering values may be prepended or appended to each LINE of an image, and are stored as concatenated |
TABLE objects, which must be named LINE_PREFIX and LINE_SUFFIX. IMAGE objects may be associated with other objec:ts
including HISTOGRAMSs, PALETTEs, HISTORY and TABLEs which contain statistics, display parameters, engineering values
or other ancillary data "

SOURCE_NAME = "PDS CN/M.Martin™ !

REQUIRED_ELEMENT_SET = {LINE_SAMPLES, LINES, SAMPLE_BITS, l
SAMPLE_TYPE}

OPTIONAL_ELEMENT_SET = (BAND_SEQUENCE, BAND_STORAGE_TYPE,

BANDS, CHECKSUM, DERIVED_MAXIMUM,
DERIVED_MINIMUM, DESCRIPTION,
ENCODING_TYPE, FIRST_LINE,

FIRST_LINE_SAMPLE, INVALID,
LINE_PREFIX_BYTES, LINE_SUFFIX_BYTES, MISSING,
OFFSET, SAMPLE_BIT_MASK, SAMPLING_FACTOR,
SCALING_FACTOR, SOURCE_FILE_NAME,
SOURCE_LINES, SOURCE_LINE_SAMPLES,
SOURCE_SAMPLE_BITS, STRETCHED_FLAG, ’
STRETCH_MAXIMUM, STRETCH_MINIMUM, PSDD} |

REQUIRED_OBJECT_SET = “N/A"
OPTIONAL_OBJECT_SET =“N/A” |
i
OBJECT_CLASSIFICATION_TYPE = STRUCTURE |
OBJECT = ALIAS
NAME = “NA"
USAGE_NOTE = “N/A"
END_OBJECT = ALIAS
END_OBJECT = GENERIC_OBIECT_DEFINITION

Chapter 13. PDS Objects 13-3

This next example illustrates IMAGE object definition being used for a specific case.

OBJECT = SPECIFIC_OBJECT_DEFINITION

NAME =XYZ IMAGE

STATUS_TYPE = AFPROVED

STATUS_NOTE ="V2.11991-02-10 TMA New specific data object definition”
DESCRIPTION = "The XYZ unage is..."

SOURCE_NAME = "PDS CN/M . Martin"

REQUIRED_ELEMENT_SET = (LINE_SAMPLES, LINES, SAMPLE_BITS,

SAMPLE_TYPE, SAMPLING_FACTOR.
SOURCE_FILE_NAME,

SOURCE_LINES, SOURCE_LINE_SAMPLES,
SOURCE_SAMPLE_BITS, FIRST_LINE,
FIRST_LINE_SAMFLE}

OBJECT_CLASSIFICATION_TYPE =STRUCTURE
OBJECT =

NAME =“N/A"

USAGE_NOTE =“N/A"

END_OBJECT = ALIAS

END_OBJECT = SPECIFIC_ OBJECT_DEFINITION
13.2 Primitive Objects

Generic objects have a subclass called primitive objects that include ARRAY, COLLECTION,
ELEMENT, and BIT_ELEMENT. A primitive object is primarily used as the foundation for
defining the elementary structure of PDS objects that have either more abstract or more uncommon
layouts than more common structures like TABLES or IMAGESs. For example, a simple camera
image abstractly described by a PDS IMAGE object, shown in Example 1, could alternately be
described using a 2-dimensional ARRAY object, as shown in Example 2.

Example 1 " Example2

OBIECT =IMAGE ' OBJECT= ARRAY
LINES =800 AXES=2
LINE_SAMPLES= 600 AXIS_ITEMS= (800, 600)

AXIS_NAME= (LINES, LINE_SAMPLES)

END_OBJECT =IMAGE END_OBJECT= ARRAY

However, given the PDS objective of defining a robust object model for planetary science data, it
is recommended that primitive objects only be used when other PDS objects result in a misleading
or incorrect description of the data being labeled.

Chapter 13. PDS Objects

134

Chapter 14. Pointer Usage 14-1

Chapter 14

Pointer Usage

Within PDS labels, pointers are used to indicate the locations of objects within the same file or
references to external files. A pointer statement is indicated in a PDS label or catalog object by an
ASCII caret (»). '

14.1 Types of Pointers

Pointer statements fall into three main categories: data location pointers, include pointers, and
related information pointers.

14.1.1 Data Location Pointers (Data Object Pointers)

The most common use of pointers occur in PDS labels to link together data object descriptions with
the actual data. The syntax for the values of these pointers depends on whether the label is attached
or detached from the data it describes. Examples of these data location pointer statements are:

m AIMAGE =12

@ AIMAGE =600 <BYTES>

3 AINDEX_TABLE ="INDEX.TAB"

)] ASERIES = ("C100306.DAT", 2)

&) ASERIES = ("C100306.DAT", 700 <BYTES>)

The first and second examples illustrate pointers in attached labels. This type of pointer allows
reading software to scan the label for the appropriate pointer, and then skip right to the data at its
location elsewhere in the file. In the first example, the data begin at record 12 of the labeled file.
In the second example, the data begin at byte 600 of the labeled file.

In examples 3 through 5, external data files are referenced. As these pointers occur in detached
labels, they must identify a file name, and if the data do not begin at record 1 of the data file, a
location as well. In example 3, the data begin at record 1 of the data file "INDEX.TAB". In
example 4, the data begin at record 2 of the data file, "C100306.DAT". In example 5, the data
begin at byte 700 of the data file.

14-2 Chapter 14. Pointer Usage

|
14.1.2 Include Pointers (Structure, Catalog, and Map Projection Poin int-
€ers) }

|

Another common use of pointers occurs in PDS labels or completed catalog templates that
reference external files to be included directly at the location of the pointer statement. These are
classified as ‘include’ type pointers since they act like #INCLUDE statements in C program source
files.Pointers with the class names of STRUCTURE, CATALOG, and MAP_PROJECTION fall
into this category. As is illustrated below, include files contain only PDS data object definitions or
completed catalog object templates. |

Examples of include pointer statements are:

(0 ASTRUCTURE = "ENGTAB.FMT"

) A STRUCTURE = "IMAGEFMT"

&) ACATALOG = "CATALOG.CAT"

4) ~DATA_SET_MAP_PROJECTION ="DSMAPDIM.CAT"

In the first example, an external structure file is referenced from a TABLE object. The file .
ENGTAB.FMT contains the column object definitions needed to complete the TABLE object. In
cases such as this, column objects would be stored in a separate file if the table is especially large
(with many columns), making its label unwieldy, or if the file containing column objects can be 7
referenced by more than one label through the use of the pointer. ;

|
In the second example, the structure of an image (i.e., all statements beginning with the ?
OBJECT = IMAGE statement and ending with the END,_OBJECT = IMAGE statement) is deﬁned

in an external file called IMAGE.FMT.

In the third example, the external file, CATALOG.CAT, is pointed to from the VOLUME ob_]ect
in order to provide a full set of catalog information associated with the volume. |

In the fourth example, the external file, DSMAPDIM.CAT, is referenced in the
IMAGE_MAP_PROJECTION object to complete the map projection information associated w1th

the image. |
1413 Related Information Pointers (Description Pointers)

The last type of use of pointer statements occurs in PDS labels that reference external files that

provide additional documentation that may be of special use to a human reader of the label. These]
files are indicated by the DESCRIPTION or DESC class words, and reference text files that are not
written in ODL. This pointer is not meant to refer to software tools.

-

An example of a description pointer statement is:

*ADESCRIPTION ="TRK_2_25.ASC"

In this example, the pointer references a PDS-1abeled external ASCII document file,
TRK_2_25.ASC, that provides a detailed description of the data. i

Chapter 14. Pointer Usage 14-3

14.2

Rules for Resolving Pointers

The following set of rules exist for resolving pointer statements that reference external files:

For any pointer statement in FILE_A,

(D

(2a)

(2b)

look in the same directory as FILE_A
for a single physical volume (no logical volumes), look in the following top level directory:

ASTRUCTURE- LABEL/ directory

ACATALOG- CATALOG/ directory
ADATA_SET_MAP_PROJECTION - CATALOG/* directory
ADESCRIPTION - DOCUMENTY/ directory

within a logical volume, look in the following top level subdirectory:

ASTRUCTURE - LOGICAL_VOLUME_PATH_NAME/LABEIL/directory
ACATALOG .- LOGICAL_VOLUME_PATH_NAME/CATALOG/directory
ADATA_SET_MAP_PROJECTION - LOGICAL_VOLUME_PATH_NAME/

CATALOG/* directory
ADESCRIPTION - LOGICAL_VOLUME_PATH_NAME/DOCUMENT/directory

* for volumes using PDS Version 1 or 2 standards, the MAP_PROJECTION files may be located
in the LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

Chapter 15. Record Formats 15-1

Chapter 15

Record Formats

The choice of the proper record format is determined by the applications which the data will
support. In general, fixed length records are well-suited to the storage of binary data files, such as
images, binary tables or qubes. These files are expected to be transported and used in structured
environments. They shall also be used for ASCII tables to promote transportability. Input/output
operations with FIXED_LENGTH files will use read and write statements which read
RECORD_BYTES number of bytes with each operation.

Variable length files are less transportable and require special software to read. Their use is
discouraged except in instances where they may optimize storage efficiency or access. An example
of such an application is the compressed image format being used for CD-ROM storage.

For CD-ROMs that are meant to be VAX/VMS-compatible (ie., for CDs with XARs), it is
recommended that all records in fixed length or variable length files contain an even number of
bytes. Thus records which contain an odd number of bytes would be padded by one byte to give
them an even length.

Stream records should be used for text files for ease of transportation to different computer
systems. Input/output operations with stream files will generally use string-oriented access,
retrieving a record from the file each time.

Table 15.1: Recommended Record Formats

REC TYPE= FIXED VARIABLE STREAM

DATA FORMAT BINARY, ASCII BINARY ASCI
ENVIRONMENT STRUCTURED VERY STRUCTURED ADHOC

DATA VOLUME LARGE VERY LARGE SMALL, MEDIUM
INPUT/OUTPUT READ/WRITE CUSTOM, SPICE STRING I/'O
15.1 Fixed Length Record Formats

Fixed length record formats normally use a physical record length (RECORD_BYTES) which
corresponds directly to the logical length of the data objects (that is, one physical record for each
image line, or one physical record for each row of a table). In some cases, logical records are
blocked into larger physical records to provide more efficient storage and access to the data. This
blocking is still an important consideration when storing data on magnetic tape, (which requires a
gap on the tape between records), but is not generally a consideration in data sets stored on
magnetic or CD-ROM disks. In other cases, the physical record length is arbitrary, and only
specifies a unit of data for input/output operations, as in FITS format files or USGS PICS images.

15-2 Chapter 15. Record Formatfs
The use of a record length which matches the size of the primary data object in a file is
recommended, to provide fairly simple file access with a variety of applications. In this approach
objects within a file are all stored in physical records of RECORD_BYTES length. Figure 15.1
illustrates the physical and logical structure used to build a standard PDS FIXED_LENGTH file.

1

Physical Structure Leogical Structure
Label Recod 1 <CT I1> e 1<Cr ine 2 <¢cr
Label Recod 2 , llne 58 «or k> Label ineb0 <cri
Histogram Rec 256 32 bt integers ...
Eng Tabke Rec _Englata
Line Hdr Rec 1 ~
Line Hdr Rec2 - | I
]
] |
LineH¥Recss [| | | | [| T 1 |
Line Rec 1 i
Line Rec 2 _ ;
[] |
[- !
Line Rec 1056 I | |

15.1 Physical and Logical Structure for Fixed Length Files

15.2 Variable Record Formats }

A second category of record type is variable length. The use of variable length records is

discouraged, since they are operating-system dependent. They should only be used in the followmg
circumstances:

» Software that can operate on a variety of hosts is provided along with the data. For examplef
the Voyager CD-ROM disks contain variable length compressed images, along with a
decompression program for VAX, PC, Macintosh and UNIX systems. These programs will

reformat the data to a variety of user-selectable formats. |

» The files are only intended for use on one computer system. For example, the Viking IRTM
CD-ROM utilizes VAX/VMS variable length formats for software and command files
because the software cannot be used unless it is in this format.

PDS data files using variable length records shall follow the VAX/VMS conventions where the
records are preceded by a 2-byte (LSB first or swapped) integer which defines the length of the
record with no carriage control. The reason for this choice is that VAX/VMS supports variable
length records and numerous planetary science data files are stored in this format.

Chapter 15. Record Formats 153

153 Stream Record Formats

Stream records consist of ASCII text delimited with a carriage return (CR) and/or line feed (LF)
sequence. Different computers interpret these codes differently. For example, IBM PC’s use the
two-byte CR/LF sequence to terminate a line of text. UNIX systems use only a line feed. The
Macintosh uses only a carriage return. VAX computers support these various formats as stream
files, but prefer to store text files internally as variable length records.

Despite the confusion, stream files can easily be transmitted via text-oriented communications
facilities like TELEMAIL, NASAMAIL, or VAXMAIL. In addition, most file transfer protocols
(KERMIT, FTP) will automatically make the needed conversions when stream files are transported
between different computers.

PDS has adopted the CR/LF as the standard line delimiter for archival products. Note, in particular,
that CR/LF is the required line terminator for all PDS labels and catalog files. This is the only end-
of-line sequence that insures that text file will be viewable on all computer systems. System
utilities are available on the various computer types to convert this format to the internal format if
necessary.

Macintosh - Apple File Exchange, MS-DOS to Mac option.
Unix - Translate utility (tr-d’\15’ <input_file>output_file)

The VAX-stream format is recommended for the transfer and archive of text and for files
containing detached labels. While stream format can be used for ASCII tables, it is recommended
that the FIXED_LENGTH format be used when storing these tables on archival or distributable
media (CD-ROM).

154 Undefined Record Formats

Undefined record formats are those which have no implied record structure. For files with attached
labels, the label portion should be written using undefined record format and should use record
terminators as in the stream case. When data are written using undefined format, no record
terminators or specific record length is implied,; it is assumed to be a stream of bytes. It is
recommended that fixed length records rather than undefined record format be used whenever
possible.

15.5 Detached Label Files

Detached label files should be in stream record format. The data elements in a detached label
ALWAYS REFER TO THE DATA FILE, not to the detached label file. Thus a RECORD_TYPE
= FIXED_LENGTH data element in a label file refers to the record type of the data file, not the
label file itself. Detached label files shall carry the file extension “.LBL” so that they can be easily
identified by users.

Chapter 16. SFDU Usage 16-1

Chapter 16

SFDU Usage

The SFDU Usage Standard defines restrictions on the use of Standard Formatted Data Units
(SFDUs) in archive quality data sets. PDS does not require that data products are packaged as
SFDUs. However, if data products are packaged as SFDUs, the following standards are in
effect.

A recommendation for the standardization of the structure and construction rules of SFDUs for the
interchange of digital space-related data has been prepared by the Consultative Committee for
Space Data Systems (CCSDS). An SFDU is a type-length-value object. More simply stated, each
SFDU consists of a type identifier which indicates the type of data within the SFDU, a length field
which either states the length of the data or indicates how the data are delimited, and a value field,
which is the data itself. Both the type and the length fields are included in a 20 byte label which
will be called an SFDU labe! in this document. The value field, immediately follows the 20 byte
SFDU Label. For PDS data products, the value field contains the PDS label including one or more
data object definitions (such as an image).

There are three versions of SFDUs. In Version 1, the length of an SFDU was represented in binary.
In Version 2, the length could also be represented in ASCII. In Version 3, the length can be
represented in binary, ASCII, or using one of several delineation techniques. Unless previously
negotiated, all PDS data products packaged as SFDUs shall be constructed using Version 3 SFDU
Labels.

A Version 3 SFDU label consists of the following parts:

1) Control Authority ID 4 Bytes
2) Version ID 1 Byte
3) Class ID 1 Byte
4) Delimiter Type 1 Byte
5) Spare 1 Byte
6) Description Data Unit ID 4 Bytes
7 Length 8 Bytes

The Control Authority ID and the Description Data Unit ID together form an identifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary) and syntactic (Object Definition Language, 2.0) description of the value field.

Version 3 allows delimitation of SFDUs by end-of-file or by start markers and end markers rather
than by explicit byte counts. Further details of the SFDU architecture will not be discussed here.
Other sources of information can be found in the SFDU References listed in the Introduction to this
document.

|
!

16-2 Chapter 16. SFDU Usa‘ge

Since archive quality data sets are internally defined, only a limited set of SFDU labels are used tlo
identify the files on a data volume. The full suite of available SFDU classes is not used in the t
packaging of PDS data products. The PDS has adopted this philosophy in order to simplify not only
the archive products themselves, but also the software processing of those products. PDS labels are
included in the (data products), and the information in these PDS Labels is considered more than
adequate for data identification and scientific analysis. I

\
The standard usage of SFDUs by PDS in current missions and data restoration is different than the
usage of SFDUs in data products from upcoming missions fully supported by the JPL Advanced
Multi-Mission Operations System (AMMOS). The following sections define the standard usage of
SFDUs for each source of data.

\
Two SFDU organizations are allowed in PDS data products. The first organization (the ZI l
Structure) has been used historically in PDS data products from restoration and past missions. The
second organization (the ZKI organization) is required for data products which pass through the }
JPL Advanced Multi-Mission Operations System (AMMOS) Project Database. ll

16.1 The ZI SFDU Organization

Any PDS data products that are packaged as SFDUs and are not required to pass through the |
AMMOS Project Database as part of an active mission may use the following SFDU organization.

Each instance of a data product (file) in a data set shall include two (and only two) SFDU labels. i
These are a Z Class SFDU label and an I Class SFDU label. The two SFDU labels are concatcnated
(i.e. Z, then I) and left justified in the first line or record of the PDS label for each data product.
(See Figure 16.1.) In the case of data products with detached PDS labels, the two SFDU labels shall
appear in the first record of the PDS label files and no SFDU labels appear in the data object ﬁ.les
(See Figure 16.2.)

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Class indicates that the value‘
field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation consists of
only the I Class SFDU. This label also indicates that the delimiter type is End-of-File and that thlS

SFDU (data product) is terminated by a single End-of-File. It shall be formed as follows:
1) Control Authority ID CCSD

2) Version ID 3

3) Class ID Z

4) Delimiter Type

5) Spare 0

6) Description Data Unit ID 0001

7 Length Field 00000001

Example: CCSD3ZF0000100000001

Chapter 16. SFDU Usage 16-3

PDS LABEL

1

Figure 16.1: Attached PDS Label Example for non-AMMOS compatible
products

FILE
{ PDS LABEL

DATA OBJECT

EOF

o

EOF o
@)
)
B
[es)]
w2

FILE
DATA OBJECT
EOF

Figure 16.2: Detached PDS Label Example for non-AMMOS compatible products

164 Chapter 16. SFDU Usage

|
|

!

The second SFDU label shall be an I Class Version 3 SFDU label. Class I indicates that the value
field (everything after the second 20 bytes) is application data, the PDS label and the data obj ect(sj.
The Data Description Unit ID of PDSX indicates that the data product uses the Object Description
Language (ODL) syntax and the Planetary Science Data Dictionary semantics to present data |
descriptive information. This SFDU label also indicates that the SFDU (data products) will be
terminated by a single End-of-File. It shall be formed as follows:

1) Control Authority ID NJPL |
2) Version ID 3

3) Class ID I |
4 Delimiter Type F |
5) Spare 0

6) Description Data Unit ID PDSX J,
7 Length Field 00000001 |

Example: NJPL3IFOPDSX00000001

CCSD3ZF0000100000001NJPL3IFOPDS X00000001 <CR> <LF>
PDS_VERSION_ID = PDS3 <CR> <LF> »
RECORD_TYPE=STREAM <CR> <LF>
RECORDS=100 <CR> <LF>

END <CR> <LF>
DATA OBJECT

EOF

Figure 16.3: SFDU Example

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD_TYPE = STREAM or FIXED_LENGTH or UNDEFINED, the concatenated
SFDU labels shall be followed immediately by <CR><LF>. For data products that have
RECORD_TYPE =VARIABLE_LENGTH, the two SFDU labels shall not be followed by
<CR><LPF>.

STREAM example CCSD3ZF000010000000INTPL3IFOPDSX 00000001 <CR><LF>
FIXED_LENGTH Example CCSD3ZF000010000000INJPL3IFOPDS X00000001<CR><LF>
VARIABLE_LENGTH Example CCSD3ZF000010000000INJPL3IFOPDSX00000001

UNDEFINED Example CCSD3ZF000010000000INJPL 3IFOPDSX00000001<CR><LF> !

Chapter 16. SFDU Usage 16-5

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Label is attached, the data object begins on the next
record. If the PDS label is detached, the END statement is the last line of the file.

16.2 The ZKI SFDU Organization

Any PDS data products that are packaged as SFDUs and are required to pass through the AMMOS
Project Database as part of an active mission must use the following SFDU organization. All data
products of this type are assumed to have attached PDS labels.

Each instance of a data product (file) in a data set shall include four (and only four) SFDU labels.
These are the Z Class SFDU label, the K Class SFDU label, the End-Marker label for the K Class
SFDU, and the I Class SFDU label. The Z and K Class SFDU labels are (i.e. Z, then I) are
concatenated and left justified in the first line or record of the PDS label for each data product. The
End-Marker for the K Class SFDU label and the I Class SFDU label are right justified on the last
record of the PDS label (following the END statement). See Figure 16.4.

Z| K##

PDS LABEL
EOK| I
FILE END
DATA OBJECT

EOF

Figure 16.4: PDS Label Example for AMMOS compatible products

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Class indicates that the value
field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation consists of
a K Class (PDS label) and an I Class (data object) SFDU. This label also indicates that the
delimitation type is End-of-File and that this SFDU (data product) is terminated by a single End-
of-File. It shall be formed as follows:

1) Control Authority CCSD

2) Version ID 3

3) ClassID z

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID 0001

7 Length Field 00000001

Example: CCSD3ZF0000100000001

f

16-6 Chapter 16. SFDU Usage

|
é

_ The second SFDU label shall be an K Class Version 3 SFDU label. Class K indicates that the value
field (everything after the second 20 bytes) is catalog and directory information, i.e., the PDS label
(sometimes) referred to as the K Header). The Data Description Unit ID of PDSX indicates that the
PDS label uses the Object Description Language (ODL) syntax and the Planetary Science Data |
Dictionary semantics to present data descriptive information. The SFDU label also indicates that

the SFDU is delimited by a Start-Marker/End-Marker pair. It shall be formed as follows: [
|

1) Control Authority ID NIPL |
2) Version ID 3 3
3) Class ID K i
4) Delimiter Type S :
5 Spare 0

6) Description Data Unit ID PDSX

1)) Length Field #H#marki

The marker pattern (##marks### in the example) can be set to any String which is unlikely to be
repeated elsewhere in the data product.

EXAMPLE: NJPL3KSOPDSX##mark## ‘

|

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS E
label. Note that there are no characters between the two SFDU labels. For data products that have,
RECORD_TYPE equal to VARIABLE_LENGTH the two concatenated SFDU labels shall not be
followed by <CR><LF>. .

EXAMPLE' CCSD3ZF000010000000INJPL3KSOPDS X ##mark##
The remainder of the PDS label begins on the next line. The last line of the PDS label contains the;

END statement. Then, in the same line or record, right justified, is the End-Marker for the K Class
SFDU and the I Class SFDU label. The End-Marker pattern shall appear as:

|
|

i
t

EXAMPLE: CCSD$$MARKER##marki#H#

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, ##mark##). Next shall be an I Class Version 3 SFDU label. Class I indicates that the
value field (everything after the SFDU label) is application data, the data object. The Data
Description Unit ID varies by data product type, is supplied by the JPL Control Authority, and is
usually documented in the science data product Software Interface Specifications (SIS). The SFDU
label also indicates that the SFDU will be terminated by a single End-of-File. It shall be formed as
follows:

Chapter 16. SFDU Usage 16-7

1 Control Authority ID NJPL

2) Version ID 3

3) Class ID |

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID XXX
I Length Field 90000001

EXAMPLE: NIJPL3IF0010600000001
where XXXX has been replaced by 0106.
The two SFDU labels shall be concatenated, right justified, and appear in the last line or record of
the PDS label following the END statement. (If it happens that there is not 40 bytes left in the last
record of the PDS label, add an additional record and right justify the two SFDU labels.) Note that
there are no characters between the two SFDU labels, and that the marker pattern and I Class SFDU
Labels are transparent to the PDS label processing software (the PDS Toolbox). ‘
Example: END CCSD$$MARKER#Hmark##NIPL3IF0010600000001

The data object begins on the next physical record.

 Example for STREAM record type
End Statement blank(s) End marker I Class SFDU End of record
END CCSD$$SMARKER##mark##NJPL3IF0010600000001<CR><LF>

*» Example for FIXED_LENGTH record type:
End Statement Terminator Record Boundary
END <CR><LF> bbbbb CCSD$$MARKER##MARKHNIJPL3IF0010600000001
* Example for UNDEFINED record type:

Statement terminator

End Statement l
END<CR><LF> CCSD$$MARKER##MARK#HNIJPL3IF0010600000001

» Example for VARIABLE_LENGTH RECORD_TYPE:

168 Chapter 16, SFDU Usage
Record Length END end of statement

END CCSD$$SMARKER#HMARK#NIPL3IF0010600000001

16.3 Exceptions to this Standard

Software files and document files should not be packaged as SFDUs. Previous versions of the PDS
standards expressed the ZI SFDU labels as an ODL statement. The ZI SFDU labels were followed
by “= SFDU_LABEL”.

EXAMPLE: CCSD3ZF0000100000001INJPL3IFOPDSX00000001 = SFDU_LABEL

Chapter 17. Usage of N/A, UNK and NULL 17-1

Chapter 17

Usage of N/A, UNK and NULL

17.1 Interpretation of N/A, UNK, AND NULL

During the completion of data product labels or catalog templates, it often occurs that a value is not
available for a required data element. The symbolic literals "N/A", "UNK", and "NULL" are used
in such cases to represent the fact that no value is available and also to suggest the reason why the
value is not available. This chapter provides both descriptive and technical definitions for these
symbolic literals.

The symbolic literals ""N/A", "UNK", and "NULL" are allowed for use in all domains of all data
elements. In the descriptions, the actual use of a data element is referred to as an "instance" of the
data element.

17.1.1 N/A

When it appears as a value, "N/A" (shorthand for "Not Applicable") indicates that the values within
the domain of this data element are not applicable in this instance.

INSTRUMENT_ID= "N/A"

For example, in the Data Set catalog object, the instrument identification associated
with NAIF SPK kernels is "N/A" since these data sets have no associated
instruments.

17.1.2 UNK

When it appears as a value, "UNK" (shorthand for "Unknown") indicates that the value for this data
element in this instance is permanently not known. A value is applicable but none is forthcoming.

FILTER_NAME = "UNK"

In this example for a value with a character data type, the filter used for a Viking Image is not
known and no archive exists that supplies this information.

TWIST_ANGLE = "UNK"

"UNK" can also be used for values that have numeric data types, as shown in this example. Here
it indicates that the twist angle that applies to an image is not known and no archive exists that
supplies this information

17-2 Chapter 17. Usage of N/A, UNK and NULL

|
1713 NULL |
When it appears as a value, "NULL" indicates that the value for this data element in this instance
is temporarily unknown. A value is applicable and is forthcoming. T

DATA_SET RELEASE_DATE = "NULL" I

This example shows that a data set could be loaded into the catalog before being ofﬁcialiy .
released. During the interim, the release date is not known. |

|
17.2 Implementation recommendations for N/A, and UNK, and NULE

Within information processing systems such as the PDS catalogs, the above definitions imply thaI
three distinct values will be stored for the "figurative constants" N/A, UNK, and NULL. The PDS
recommendations are as follows. |

1) For character fields: The strings "N/A", "UNK", and "NULL" (see 3) can be stored as values 1]{1
data elements with character data types. This includes DATE/TIME data types where UTC or other
character formats are specified.

2) For nurmeric fields: See Table 17.1 for the values stored for data elements with numeric data i
types. '

3) Exception: Files such as volume INDEX files that are included in archive volumes in ASCII
format may use of the figurative constants "N/A", "UNK", and "NULL" for both numeric and
character data types. Alternatively, numeric constants representing N/A, UNK, and NULL may be
defined for each column in an INDEX table, using the keywords
NOT_APPLICABLE_CONSTANT, UNKNOWN_CONSTANT, and NULL_CONSTANT in the
appropriate COLUMN objects.

Table 17.1: Numeric values for N/A, UNK, NULL

Signed Inte- |Signed Inte-| Unsigned [Unsigned In-{Tiny Integer
ger ger Integer teger (1 byte - un- Real Binary Time
(4 byte) (2 byte) (4 byte) (2 byte) signed)
N/A |2147483648 32768 |4294967293| 65533 | ORIl ppsy (e L 173
UNK |2147483647| 32767 |4294967204| 65534 | OB de | 4y gy [Dec- 359990
NULL null* null* null* null* null* null* null*

TINN PUe NN “V/N Jo 3desn) *L] 1dey)

* The availablility of NULL as a universal value across data types in some data management systems simplifies the implementation of
the figurative constant "NULL". However, if a system "null” is not available, then either a) an arbitrary value can'be chosen, or b) the
meanings of UNK and NULL can be combined and the token or numeric representation of UNK used.

** Sybase limits.

€Ll

Chapter 18. Units of Measurement. 18-1

Chapter 18

Units of Measurement

The uniform usage of units is essential in a broadly-based catalog system, for obvious reasons. One
cannot search for all the instruments covering 400 to 700 nm wavelength if some of the entries are
in Angstroms and some in microns. The PDS standard shall be Systeme Internationale d'Unites
(SI) where applicable. For example, micrometers should be used rather than microns.

The units for the data elements used in PDS data product labels and templates have been
determined by the discipline scientists on a data element by data element basis. The Planetary
Science Data Dictionary defines the desired units for each database element used in the system. In
addition, there is a table in the PSDD that gives unit definitions.

In cases where more than one type of unit is possible for a given data element, an additional data
element shall be used to identify the applicable unit. For example, the value of the element
SAMPLING_PARAMETER_RESOLUTION may be given in different units, depending on the
situation. Therefore, an additional element, SAMPLING_PARAMETER_UNIT, accompanies it,
in order to specify the applicable unit of measure. The PDS allows exceptions to ST units when
needed for consistency with previous community usage (e.g. an angle measurement in degrees
instead of radians).

Both the name of the unit and the symbol are allowed as well as singular or plural form. In

addition, the double asterisk (**) is used, rather than the caret () to indicate exponentiation, in
order to comply with the preferences of the European science community.

SI Units

The following summary of SI unit information is extracted from The International System of Units.

Base units — As the system is currently used, there are seven fundamental SI units, termed "base

7,

units™:

QUANTITY NAME OF UNIT SYMBOIL,
length meter m

mass kilogram kg

time second . s

electric current ampere A
thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

18-2 Chapter 18. Units of Measurement. :

[
l

'
5
¥
1

ST units are all written in lowercase style; symbols are also lowercase except for those derived frorh
proper names. No periods are used with any of the symbols in the international system.

Derived units — In addition to the base units of the system, a host of derived units, which stem

from the base units, are also employed. One class of these is formed by adding a prefix, "
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters, and
a millisecond is .001 (that is, 1/1,000) second. The prefixes in current use are as follows:

SI PREFIXES
Factor Prefix Symbol Factor Prefix Symbol |
10**18 exa E 10** deci d |
10**15 peta P 10%*-2 centi ¢
10**12 tera T 10**3 milli m
10**2 giga G 10**-6 micro
10**6 mega M 10**9 nano n
10**3 kilo k 10**-12 pico o]
10**2 hecto h 10**13 femto f
10** deka da 10**-18 atto a

Although, for historical reasons, the kilogram rather than the gram was chosen as the base unit, |

i
z

prefixes are applied to the term gram instead of the official base unit: megagram (Mg), milli :

(mg), nanogram (ng), etc.

Another class of derived units consists of powers of base units and of base units in algebraic

relationships. Some of the more familiar of these are the following:

OUANTITY NAME OF UNIT SYMBOL, |
area square meter m**2 ;
volume cubic meter m**3 5
density kilogram per cubic meter kg/m™**3

velocity meter per second m’s

angular velocity radian per second rad/s

acceleration meter per second squared m/s**2

angular acceleration radian per second squared rad/s**2

kinematic viscosity square meter per second m**%ss

dynamic viscosity newton-second per square meter N * ¢/m**2

luminance candela per square meter cd/m**2

wave number 1 per meter m**!

activity (of a radioactive source) 1 per second s**1

i
|
i
i

Chapter 18. Units of Measurement. 18-3

Many derived SI units have names of their own:

QUANTITY NAME OF UNIT SYMBOL EQUIVALENT
frequency hertz s **-1
angular acceleration hertz Hz s**-1

force newton N kg“m/s'"'2
pressure (mechanical stress) ' pascal Pa N/m **2
work,energy,quantity of heat joule J N*m
power watt w Jis
quantity of electricitypotential difference ~ coulomb C A*s
electromotive force volt v W/A
electrical resistance ohm - V/A
capacitance farad F A*g/V
magnetic flux weber Wb V=*s
inductance henry H V *s/A
magnetic flux density tesla T Wb/m"**2
magnetomotive force ampere A

luminous flux lumen Im cd*sr
illuminance lux Ix Im/m™**2S]

Supplementary units are as follows:

QUANTITY N. OF SYMBOL
plane angle radian rad
solid angle steradian ST

Use of figures with SI units — In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity of any SI unit. Thus the quantity 12,000
meters is expressed 12 km, not 12,000 m. So too, 0.003 cubic centimeters is preferably written 3
mm3, not 0.003 cm3.

Chapter 18. Units of Measurement.

184

Chapter 19. Volume Organization and Naming 19-1

Chapter 19

Volume Organization and Naming

The Volume Organization and Naming Standard defines the standard way of organizing data sets
onto physical media and the conventions for forming volume names and identifiers. A volume is
one unit of physical media such as a CD-ROM, a CD-WO, an 8mm magnetic tape, or a 9-track
magnetic tape. Data sets may reside on one or more volumes and multiple data sets may also be
stored on a single volume. Volumes are grouped into Volume Sets.

Each volume has a directory structure which contains subdirectories and files. Both random access
(CD-ROM) and sequential access (magnetic tape) media are supported. A PDS volume on
sequential access media has a “virtual” directory structure defined in the volume object included
on the volume in the file VOLDESC.CAT. The virtual directory structure may be used to recreate
the volume directory structure when the files are moved to random access media.

PDS recommends that archive volumes be based on a single version of the PDS Standards.
Software tools that work with one version of the standard may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes. The distinguishing
characteristics between the volumes types are the number of data sets on each volume and the
number of volumes required to capture all the data. The directory organization of the volumes and
the required files varies slightly depending on the volume type. Figures 19.1 through 19.5 depict
the various volume directory structure options. The four volume types are described below.

(1) One data set on one volume - this is the basic volume organization consisting of the required
ROOT directory, INDEX, and data subdirectories and the seven optional subdirectories:
DOCUMENT, CATALOG, LABEL, GAZETTER (not shown in the figures), SOFTWARE,
CALIB, and GEOMETRY. See Figure 19.1.

Note that CALIB and GEOMETRY are only recommended directory names, other
appropriate names may be substituted.

(2) One data set on many volumes - this type includes both an index for the volume and a
cumulative index for the volume set (up the given volume number, not the entire set) in the
INDEX subdirectory. See Figure 19.2.

(3a) Many data sets on one volume (one logical volume) - this type of volume requires additional
file naming conventions to distinguish similar files for different data sets. In addition, the
DATA subdirectories are organized by data set (or equivalent, e.g. instrument) at the first
level below the ROOT directory. See Figure 19.3.

|
19-2 Chapter 19. Volume Organization and Naming‘

(3b) Many data sets on one volume (many logical volumes) - this volume organization is designeld
to accommodate many small data sets that have distinct documentation, indexing and othér
ancillary information that are more logically packaged together below the root directory of
the volume. See Figure 19.4. Directories common to all logical volumes (e.g. SOFI'WARE)
may also be supplied, provided there are no pointer references to any files within a common
directory. |

(4) Many data sets on many volumes - this type requires additional file naming conventions,
cumulative indices, and a first level subdirectory organization by data set. See Figure 19. 5‘
|
g
NOTE: It is permissible to have one or more data volumes with an ancillary volume containing thc'_e
DOCUMENT, CATALOG, GAZETTER, SOFTWARE, CALIB, and GEOMETRY directories. If
this is done, PDS requires that all include files be present on each data disk. PDS prefers that |
ancillary files be archived on the same volumes as the data wherever possible. This makes data |
easier to access for the science users. The contents and organization of the directories of all the ‘
volume types are described in this chapter. \

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, ONE VOLUME

ROOT

AAREADME.TXT

ERRATA.TXT"
VOLDESC.CAT

VOLDESC.SFD*

DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY - INDEX DATA4 DATA,
| | | | i | 1 i
DOCINFO.TXT CATINFOTXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT LABEL FILE, |
VOLINFO.TXT! CATALOG.CAT! INCLUDE FILE, l l I INDEX.LBL DATA FILE;
l l INCLUDE FILEy INDEX.TAB LABEL FILE,
I DATA FILE
LABELED DATA FILE,
LABELED DATA FILE,
LABELED DATA FILE,
INCLUDE FILE +
INCLUDE FILE*
xxxxINFO.TXT Required for each non-data subdirectory Iif present |
* Optional

1 One of VOLINFO.TXT and CATALOG.CAT required

< FIGURE 19.1

Surure) pue uogeziueS1Q aumoA 61 s=dey)

£-61

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, MANY VOLUMES

ROOT

AAREADME.TXT

ERRATA.TXT*
VOLDESC.CAT
VOLDESC.SFD*

DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY INDEX DATA4 DATA2
| I i i I I | |
DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT LABEL FILEq I
VOLINFO.TXT 1 CATALOG.CAT! INCLUDE FILE, I I I INDEX.LBL DATA FILE,
l I INCLUDE FILEp INDEX.TAB LABEL FILE,
I CUMINDEX.LBL DATAFILE,
CUMINDEX.TAB LABELED DATAFILE,
LABELED DATA FILE,
LABELED DATA FILE,
INCLUDE FILE *
xxxINFO.TXT Required for each non-data subdirectory if present INCLUDE FiLE"
* Optional I

1 One of VOLINFO.TXT and CATALOG.CAT required

_FIGURE 19.2

urureN pue uoneziueS1O Swno ‘61 derD 61

Fi

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE VOLUME

ROOT

AAREADME.TXT
ERRATA.TXT*
VOLDESC.CAT
VOLDESC.SFD*

DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY INDEX DATASET{ DATASET,

| 1 | 1 | | i i
DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT
VOLINFO.TXT 1 CATALOG.CAT! axxTABLE.FMT axxCALIB.TAB
axxDS.CAT bxxTABLE.FMT bxxCALIB.TAB axx:“gg#l‘a\LB
axx .
l LXXDS.CAT I I bxxINDEX LBL
l bxxINDEX.TAB
L} |
i
DATA11 DATA12 DATA21
: | |
0o INFO.TXT Required for each non-data subdirectory if present LABEL FILE
* Optional DATA FILE 1
1 One of VOLINFO.TXT and CATALOG.CAT required LABEL FILEy
DATA FILE 5
LABELED DATA FILE,
LABELED DATA FILE2
LABELED DATA FILE,
INCLUDE FILE 4
F'GUHE 1 9.3 INCLUDE FILE,

Surmep] pue uogeziveS10 sumpoA 61 ideyd

c-61

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE PHYSICAL VOLUME,

MANY LOGICAL VOLUMES
ROOT
= AAREADME TXT
VOLDESC.CAT
ERRATATXT*
VOLDESC.SFD*
r I]
DATASET{* DATASETn"* SOFTWARE**
| | I
AAREADME.TXT . . e AAREADME.TXT SOFTINFO.TXT
VOLDESC CAT VOLDESC.CAT ETC.
ERRATA.TXT* ERRATATXT*
VOLDESC.SFD* VOLDESC.SFD*
l
|] |] i] ' | | | | | |
DOCUMENT CATALOG LABEL SOFTWARE | GEOMETRY | DATA1a ‘
CALB INDEX DATA1b
I I | | !
DOCUMENT LABEL CALIB iINDEX | DATAna
CATALOG SOFTWARE GEOMETRY DATAnb

* Opibna
** Logical volume; diractory structure identical to Figure 19.1, ONE DATA SET, ONE VOLUME.
*** Common to ali logical volumes

FIGURE 19.4

|
|

9-61

SurnureN pue noneziwesio sumpo ‘61 Jadeq)

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, MANY VOLUMES

ROOT

AAREADME.TXT
ERRATA.TXT*

VOLDESC.CAT
VOLDESC.SFD*

DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY INDEX
I 1 I 1 1 i I

SurureN] pue vonezrwediQ sumiop 61 deq)

DATASET{ DATASET,
1

DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT
VOLINFO.TXT 1 CATALOG.CAT! axxINCLUDE FILE4 I axxCALIB.TAB I axxiINDEX.LBL

awooDS,.CAT bxxINCLUDE FILEq bxxCALIB.TAB
bxooDS.CAT . I

axINDEX.TAB
axxCMIDX.LBL
axxCMIDX.TAB
bxxINDEX,LBL

I bxxINDEX.TAB
bxxCMIDX.LBL
bxxCMIDX.TAB

xxxxINFO.TXT Required for each non-data subdirectory if present
* Optional
1 One of VOLINFO.TXT and CATALOG.CAT required

FIGURE 19.5

i
DATAq4 DATA{3 DATAy

|
LABEL FILE4 I I
DATA FILEq
LABEL FILEp
DATA FILE,
LABELED DATA FILE4
LABELED DATA FILE
LABELED DATA FILE3
INCLUDE FILE 4
INCLUDE.FILE

L6l

19-8

I
i
\
1

Chapter 19. Volume Organization and Namm

19.2 Volume Orgapizaﬁon Guidelines

PDS

recommends that directory structures be simple, path names short, and directory and file

names be constructed in a logical manner. It is recommended that the number of files per !

subdirectory should ideally be a screenful, allowing users to browse through file names using the
directory command. Some externally developed software cannot handle subdirectories with more
than 255 files, so it is recommended that this number not be exceeded. PDS also recommends that

there

193

be no empty subdirectories (as a convenience to users).

|
i
|
Description of Directory Contents and Organization E

ROOT Directory -- Required
Top level directory of a physical or logical volume. The ROOT directory (of a physical or logical
volume) contains the following required and optional files and subdirectories. i

DOCUMENT Subdirectory — Optional
Contains all the textual material that describes the mission, spacecraft, instrument, and data set.
This can include references to science papers, or the actual papers.

AAREADME.TXT - Required ‘
Contains an overview of the contents of the volume (physical or logical volume) and its
organization, general instructions for using the volume and its contents, and provides contac]t
information. Its name has been chosen so that it will be listed first in an alphabetical d1rectory
listing. See Appendix D for an outline and example of an AAREADME.TXT file.

ERRATA.TXT -- Optional |
Contains textual information describing errors and/or anomalies found in the current volume
as well as errors and/or anomalies found in previous volumes of a volume set. If known en'ors

exist on a volume they shall be documented in this file. :

VOLDESC.CAT -- Required
Contains the VOLUME Object which gives a high-level description of the contents of the
volume. |

i

VOLDESC.SFD -- Optional \
Contains the SFDU Reference Object structure which aggregates the separate file contents of
the volume into a SFDU. The Reference Object is expressed in PVL. This file should only be
considered for use if the data products are packaged as SFDUs. Note: the “.SFD” ﬁle
extension is a reserved file extension in the CCSDS SFDU standard indicating the file
contains a valid SFDU.

DOCINFO.TXT -- Required
Contains a textual description of the contents of the DOCUMENT subdirectory.

VOLINFO.TXT - Optional
Contains a textual description of the contents of the volume. It is an optional file, however,

Chapter 19. Volume Organization and Naming 19-9

either one or both of the VOLINFO.TXT or the data set catalog objects in the CATALOG
subdirectory shall be included on the volume (see the CATALOG subdirectory).

CATALOG Subdirectory -- Optional

Contains all the completed catalog objects for the mission, spacecraft, instruments, data set
descriptions associated with the data set(s) on the volume. This is an optional directory, however,
either one or both of the data set catalog objects or the VOLINFO.TXT file shall be included on
the volume.

Note that for logical volumes, these must be below the logical volume root, if present.

CATINFO.TXT -- Required
Contains a textual description of the contents of the CATALOG subdirectory.

CATALOG.CAT -- Required

Contains the entire set of high-level descriptive information about a data set (this includes
mission description, instrument host description, instrument description, and data set),
expressed in PDS objects which makes the file suitable for loading into a catalog. Individual
catalog objects may also be packaged into separate files. For example, in the figures the files
axxxxxDS.CAT and bxxxxxDS.CAT represent two separate files each containing data set
objects (descriptive information about the data set) for data sets a and b respectively. See the
File Specification and Naming chapter in this document for the file naming rules. See also
Appendix A for the required contents of the catalog object.

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

LABEL Subdirectory — Optional

Contains additional PDS labels and/or include files (meta data or descriptive information) which
were not packaged with the data products or in the data subdirectories.

Note that if a logical volume organization is used, the LABEL subdirectory, if present, must reside
below the logical volume ROOT, since pointer references to files within a commeon directory are
not allowed.

LABINFO.TXT - Required
Contains a textual description of the contents of the LABEL subdirectory.

Inchnde Files — Required

Files pointed to in a PDS label that contain additional meta data or descriptive information.
Only files of type LBL, TXT, or FMT shall be included in the LABEL subdirectory. In the
figures, the files axxINCLUDE FILE;, bxxINCLUDE FILE; and INCLUDE FILE,
represent sample files of the above types. The axx and bxx prefixes indicate that the include
files for different data sets (a and b) may be cornbined in the same LABEL subdirectory.

|
19-10 Chapter 19. Volume Organization and Naming

i

Note that the axx- and bxx- prefixes in the sample names are neither reqmred nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

GAZETTER Subdirectory — Optional
Contains detailed information about all the named features on a target body associated with the

data sets on the volumes. The features are those the International Astronomical Union (IAU) has
named and approved.

GAZINFO.TXT —- Required
Contains a textual description of the contents of the GAZETTER subdirectory.

GAZETTER.TXT - Required |
Contains a textual description of the structure and contents of the gazetteer table.

GAZETTER.LBL -- Required

|

]

Contains the PDS label identifying and giving a formal description of the structure of th|e
gazetteer table.

GAZETTER.TAB — Required
Contains the gazetteer table.

|
SOFTWARE Subdirectory — Optional]
Contains the software libraries, ntilities, or application programs to access/process the data objects.

It may also include algorithms. Currently only public domain software can be included on PDS |
archive volumes.

The following SOFTWARE subdirectory structure is the recommended platform-based model. An
alternative model for the SOFTWARE subdirectory structure is application-based (e.g. di.rectcryf
names are based on the application such as DISPLAY). See Appendix D SOFTINFO.TXT ‘
example for the subdirectory structure used for Clementine. See Appendix E for the subdlrectory
structure of the NAIF Toolkit for a single platform.

\
SOFTINFO.TXT -- Required %
Contains a textual description of the contents of the SOFTWARE subdirectory. |
For an outline and example, see Appendix D. |

!
SRC Subdirectory — Optional ;
There can be a global SRC directory under the SOFTWARE directory if there is source codé
applicable to all platforms. For example, application programming languages such as IDL are
relatively platform independent and would be placed in a gobal SRC directory. Note m

example below, there is both a global source directory as well as source directories at the
lower levels.

Chapter 19. Volume Organization and Naming 19-11

DOC Subdirectory -- Optional
A global DOC directory under the SOFTWARE du'ectory would contain documentation for
the source code in the global SRC directory.

LIB Subdirectory — Optional
A global LIB directory under the SOFTWARE directory would contain libraries applicable
to all platforms.

Hardware Platform and Operating System/Eilvironment Subdirectories - Optional (not
present if only global source code provided)

1. The hardware platform and the operating system/environment must be explicitly stated. If
there is more than one operating system/environment (os/env) supported then they must be
subdirectories under the hardware directories. If there is only one, then that subdirectory can
be promoted to the hardware directory level (via naming conventions). In the example
below, since only one os/env is supported on hardware 2, the name of the hardware
subdirectory also contains the os/env name.

SOFTWARE

softinfo.txt

| | I I I
<HW1> <HW1> <SRC> <SRC>* <DOC>*

| | | [I | I [
<osl> <o0s2> <os3> BIN SRC DOC LIB OBJ

| | I [I
BIN SRC DOC LB OBJ

2. The next level of directories are BIN, SRC, DOC, LIB and OBJ. If any are not applicable,
they should be left off (i.e. no empty directories).

*info.txt files under SOFTWARE subdirectories are optional (e.g. PCINFO.TXT,
MACINFO.TXT, VAXINFO.TXT, SUNINFO.TXT, etc.).

3. Examples of subdirectory names for the two cases where there are single or multiple
operating system/environments are listed below. This list is not meant to be a complete list,
it will be updated on an as-needed basis.

19-12

|

Chapter 19. Volume Organization and Naminé

Multiple Single :
|
PC
DOS PCDOS |
WIN PCWIN b
WINNT PCWINNT
082 PCOS2 |
MAC |
SYS7 MACSYS7 |
AUX MACAUX |
SUN ;
SUNOS SUNOS :
SOLAR SUNSOLAR g
VAX 1
VMS VAXVMS |
ULTRX VAXULTRX
SGI 5
IRX4 SGIIRX4 ;
IRXS SGIIRX5 1

CALIBration Subdirectory -- Optional |
Contains the calibration files used in the processing of the raw data or needed to use the data
products on the volume. ‘

Note that CALIB is only a recommended directory name, another appropriate name may be used

CALINFO.TXT - Reguired ﬁ
Contains a textual description of the contents of the CALIB subdirectory. ’ ;
Calibration Files — Required ‘
In the figures, the files axxCALIB.TAB and bxxCALIB.TAB represent sample files. The axx
and bxx prefixes indicate that the calibration files for different data sets (a and b) may be
combined in the same CALIB subdirectory.

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,f
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

Chapter 19. Volume Organization and Naming 19-13

GEOMETRY Subdirectory -- Optional

Contains the relevant files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.

Note that GEOMETRY is only a recommended directory name, another appropriate name may be
used.

GEOMINFO.TXT -- Required
Contains a textual description of the contents of the GEOMETRY subdirectory.

INDEX Subdirectory - Required (exception noted below)
Contains the indices for the data products in the data set(s) on the volume.

Exception note: If the logical volume organization is used, there will generally be no INDEX
subdirectory at the ROOT of the physical volume. Instead there will be individual INDEX
subdirectories at the ROOT of each logical volume.

INDXINFO.TXT - Required
Contains a textual description of the contents of the INDEX subdirectory. This description
should include at least:
1) a description of the structure and contents of each index table in this subdirectory.
2) usage notes
For an example, see Appendix D.

CUMINDEX.LBL -- Recommended for multi-volurmne sets

For multi-volume sets, this file contains the PDS label for the cumulative volume set index
(CUMINDEX.TAB). The INDEX_TABLE specific object should be used to identify and
describe the structure (columns) of the cumulative volume set index table. See Appendix A.
Although CUMINDEX.LBL is the preferred name for this file, the name axxCMIDX.LBL
may also be used (with axx replaced by an appropriate mnemonic).

PDS recommends the use of detached labels for index tables. If an attached label is used, this
file is not needed.

CUMINDEX.TAB —Recommended for multi-volume sets

For multi-volume sets, this file contains the cumulative volume set index in a tabular format.
Normally only data files are included in a cumulative index table. In some cases, however,
ancillary files may be included.

Although CUMINDEX.TAB is the preferred name for this file, the name axxCMIDX.TAB
may also be used (with axx replaced by an appropriate mnemonic).

INDEX.LBL -- Required (exception noted below)

For all volumes, this file contains the PDS label for the volume index (INDEX.TAB). The
INDEX_TABLE specific object should be used to identify and describe the structure
(columns) of the index table. See Appendix A.

Although INDEX.LBL is the preferred name for this file, the name axxXINDEX.LBL. may also
be used (with axx replaced by an appropriate mnemonic).

19-14 Chapter 19. Volume Organization and Naming

Exception note: PDS recommends the use of detached labels for index tables. If an attached
label is used, this file is not needed. |

INDEX.TAB -- Required i
For all volumes, this file contains the volume index in tabular format. Normally only data
files are included in an index table. In some cases, however, ancillary files may be mcluded.
Although INDEX.TAB is the preferred name for this file, the name axxXINDEX.TAB may
also be used (with axx replaced by an appropriate mnemonic).

Note that the axx- and bxx- prefixes in the sample names are neither required nc}r
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes show[n
here by a suitable mnemonic acronym.
Data Subdirectories -- Required (exception noted below) ‘
Contain the data product files. These subdirectories are organized and named according to the
Directory Types and Naming chapter in this document. Subdirectories may be nested up to eight
levels deep on a physical volume. Data products may be packaged with their PDS labels attachedi,
where the label and the data object(s) are contained in a LABELED DATA FILE, or with PDS |
labels detached, where the PDS label is contained in a LABEL FILE and the data object(s) in a ;

DATA FILE.

Data File — Contains a data object which is a grouping of data resulting from a smennﬁc
observation such as an image or table, representing the measured instrument parameters. The
associated PDS label is contained in a LABEL FILE. . :
Label File -- Contains a detached PDS label expressed in the Object Definition Language that
identifies, describes, and defines the structure of the data objects. The associated data ob_]ecLs
are contained in a DATA FILE. The LABEL FILE shall have the same basename as the
- associated DATA FILE and the extension of “.LBL".

Labeled Data File -- Contains data object(s) and associated PDS label.

|
Exception note: Data subdirectories are not present at the ROOT level of a physical volume
when logical volumes are used. Instead, they are nested below the ROOT of the logica[l
volume. |

194 Volume Naming

The Volume name provides the name of a data volume. Volume names shall be at most 60
characters in length and are in upper case. They should describe the contents of the volume in terms
that a human user can understand. Most computer systems and software use the volume ID, not the,
volume set name or volumne name, when processing media volumes. The volume set name or |
volume name are therefore more important to a human user than to a machine.

Chapter 19. Volume Organization and Naming 19-15

In most cases the volume name is more specific than the volume set name. For example, the
volume name for the first volume in the VOYAGER IMAGES OF URANUS volume set is:

' “VOLUME 1: COMPRESSED IMAGES 24476.54 - 26439.58"

194.1 Volume ID

Many types of media and the machines that read media volumes place a limit on the length of the
volume ID. Therefore, although the complete volume set ID should be placed on the outside label
of the volume, a shorter version is actually used when the volume is recorded. PDS has adopted a
limit of 9 characters for these terse volume identifiers. This terse identifier shall consist of the last
two components of the volume set ID, with the "X" wildcard values replaced by the sequence
number associated with the particular volume (see the Volume Set ID Standard below). This ID
must always be unique for PDS data volumes. Note that the ID must be in upper case.

EXAMPLES:

VG_0002 (for volume 2 of the Voyager set)
MG_0001 (for the first volume of the Magellan set)
VGRS_0001 (for a potential Voyager Radio Science collection)

If a volume is redone because of errors in the initial production the volume id should remain the
same, and the VOLUME_VERSION_ID should be incremented. This parameter is contained in
the VOLDESC.CAT file on the volume, and the version ID should also be placed on the external
volume label as “Version n” where n indicates the revision number. This indicates that the original
volume should be replaced with the new version. If a volume is redone because the data has been
enhanced it should be given a new volume id, not a new version number.

195 Volume Set Naming

The Volume Set Name provides the full, formal name of a group of data volumes containing a data
set or a collection of related data sets. Volume set names shall be at most 60 characters in length
and must be in upper case. Volume sets are normally considered as a single orderable entity.

For example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: THE MOSAIC IMAGE DATA RECORD

MAGELLAN: THE ALTIMETRY AND RADIOMETRY DATA RECORD
MAGELLAN: THE GLOBAL ALTIMETRY AND RADIOMETERY DATA RECORD
PRE-MAGELLAN RADAR AND GRAVITY DATA SET COLLECTION

In certain cases, the volume set name can be the same as the volume name, such as when the
volume set consists of only one volume.

Note that in VAX computer usage a volume set has very special attributes, and that all volumes of
a volume set must be on line for proper access. There are no plans within PDS to produce volume
sets following the VAX definition. Instead the VOLUME SET NAME and VOLUME SET ID are
used to group related data and to provide additional specificity in a volume name in case volumes
produced by different organizations have the same volume IDs.

19-16 Chapter 19. Volume Organization and Naming!
|
19.5.1 Volume Set ID

The volume set ID identifies a data volume or a set of volumes. Volume'sets are normally i
considered as a single orderable entity. |
Volume set IDs shall be at most 60 characters in length, must be in upper case, and are formed of
the following fields, separated by underscores:The country (abbreviated) of origin.

1. The government branch. ‘
2. The discipline within the branch that is producing the volumes. |
3. A campaign, mission or spacecraft identifier (2 characters) followed by an optional 2 2
character instrument or product identifier. |
4. A4 digit sequence identifier. The first digit or digits may be used to represent the vol-
ume set and the trailing “X’s are wildcards that represent the range of volumes in the
set. Up to 4 "X"s are allowed. ‘
EXAMPLE |
USA_NASA_PDS_GO_10XX could be the Volume set ID for the Galileo EDR volume set.since there are less than 100 volumes

(since the XX placeholder accommodates the range 01 - 99 only). Note that the volume IDs for volumes in the set would then be
GO_1001, GO_1002, etc.

NOTE:
Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the “X™s.
currently used as wildcards. Instead, the last digits represented the volume. For example, on ~
Magellan, a volume_set_ID "USA_NASA_JPL_MG_0001" was used ONLY for the volume w1th|
volume_ID of "MG_0001". Subsequent volumes in the same set had volume_set_IDs that differed
in the final field. :
|

|

If a set of volumes was to be distributed as one logical unit, the volume set ID included the range
of volume IDs.

EXAMPLE

USA_NASA_PDS_VG_0001_TO_VG_0003 for the three volumes that comprise the Voyager Uranus volume set. !

19.6 Logical Volume Naming

Logical volumes will retain the volume and volume set naming used at the physical volume level.
For further information, see Appendix A, Volume Object.

19.7 Exceptions to This Standard

In some rare cases, machine or software restrictions may exist on volume ids. Also, volumes made
in the past may have ids which do not meet this standard and there may be compelling reasons for
keeping the same volume id when making a new copy of the data. All new data sets, however,
should use this standard.

'APPENDICES

Appendix A PDS Data Object Defimtions A-1

Appendix A

PDS Data Object Definitions

This section provides an alphabetical reference of PDS data object definitions, including a
description, a list of required and optional keywords, a list of required and optional sub-objects (or
child objects), and one or more examples.

NOTE: Any keywords in the Planetary Science Data Dictionary may also be included 1n the
definition of a specific data object definition.

These definitions and examples are provided here for convenience. Additional examples of Data
Object Definitions can be obtained by contacting your Data Engineer.

The examples provided 1n this Appendix have been based on both existing or planned PDS archive
products, modified to reflect the most recent version of the PDS standards. They are not intended
to represent existing data products and data object definitions designed under previous PDS
standards.

The following PDS approved data object definitions are to be used for labeling primary and
secondary data objects. For a more detailed discussion on primary and secondary data objects, see
the Data Products chapter in this document.

There now exist four new Primitive Data Objects, ARRAY, BIT_ELEMENT (still under review),
COLLECTION and ELEMENT. Although these objects are available, they should only be used
after careful consideration of the current PDS Data Objects. Please see the PDS Objects chapter
in this document for guidelines on the use of primitive objects.

A2 Appendix A PDS Data Object Defimtions

TABLE OF CONTENTS

AL ALS oottt e et ety e e e e e at e aa e tne e Rt eanassoannneaneanan A-3
A2 Array (Primutive Data ODbJect)c.... coei et it ...A-4
A3 Bt COMIM e eereeeeeeeeeeee oo escreeeeseeees oeeemmemeeesseeessssseseseseseeeesresssesss s A7
A4 BitElement (Primitive Data ODJect).....cooeviieeeieciieeieecieeeeccieecee et s A-10
A5 CAtAlOZ ..ot et b e s b s A-11
A.6 Collection (Primitive Data ObBJECt)coucouerrrcerriiierececrtr et errsseessesesssesenesnsens A-14
A7 COIUMIccciiiieee ettt e e e e e s e s et e s s aaste s aeasssaaeaseensnsessessssnsaeseessassnnssssens A-15
A8 COMLAINET......euteeiireitieirrierees e aecaascveesessarrnessinsasessnessessasessssessassssssasesasssnsssnsssensesemareesss A-19
A9 Data PrOQUCET.......uvvieeciieiieececcreecieees cteeeieeasisteeeeesaesaeenseeesesessvnrasesesasnsessaneeesnessns A-25
AL10 Data SUPPLET ..ottt saeei st st r e e e saesaens A-26
AVTL DETECIOTY 1 eeoreseressees s eeseseseesesees e sesesse s snesesee s esesee e seee e A27
AL12 DOCUITIEIIL....cciriiieecieiiieeeeeeeeeeeasisveceeraeessssernnsnsssesssseesrassssonsssessnscsaesassaasasssnsnssransvrnsnne A-29
A.13 " Element (Primitive Data ODbJECE) ..covcveveieiereereeeceerireectereecveeeeras srvesesseeseassenseseessseenes A-32
ALTA FIE ot eet ettt ettt te e e e e a e e seb e e st s e ae e s na e s e n e e s e e eseebeaaaseaennnesanns A-33
ALS GAZEttEEr_TabIE ...coiiiiirieeeicceeee ettt eee e eeeeeetie e s et eeartessaarsorarbeeaeeassesannas A-37
AT HeEAAOT ..o ieieiieniire et reeeee e eee sttt e e e e s e s ras reessesaeenstesraeabbartasssian e iaansnre s rsannae A-45
ALT7 HISTOZTAIL.ciiiiiiiis ceeieeiiteenitiire s st st a e as b s es s st e amr e e b s b e esbsaeesrassssesenn A-47
ALIB HESIOTY - eerroesenrs e seeseseese e sseserseesees e eeene e e A-49
ALTO IIMIAZE....vieiiireeies cerineeereeerteeciee bt ee s et s e e s s s e r e nent e et r e e nes e e ent e e nnereeraeeen A-52
A.20 Image Map ProjeCtion.........coociiiiiiniis et sr s A-57
A21 INAEX_TADIE ..coooeeeeeeeeeeeceeeeesieeeeeeees wesessessbass s sassssrs s esssessessssss s sssssnssenseren A-62
A22 Palette. . .oomoeorereerrrerer, eeseressseeeeerr ettt ee s rereren A-67
A23 QUDE ..ottt e e e eeaae et e e reeateeae e raenserasennneesaesneesnneenranns A-70
AL24 SEIIES...coviivirirecrereieeciicisrcerntreerseraesastsraareasassansararsseasenseis nnsnssasanrenseasaasasaasannnnrennnnsns A-78
A2S SPECITUIL....coiiriiiiiiiiecinssnes st e bbb s b s b b e b eabesensasonen A-82
A.26 SPICE KEIMEL....oiooiis ceceeeceieececrtiittaes ceenteeeniesesaaesestesssaessnsesasessnessstassnsssesnnsessseans A-85
AT TADIE ettt teee et e e e e e e et s a s e et e e e e e st e aan e b se e e s s en e e erneeasreenvaanenannesaaa s A-87
A28 T L cueeeieiieeee e ccctteereeerreeeeseeasraae e s s aeesertsaesaseeesstase s nanaa e s antnbeseeaatbsseaeasestntaneeesaessnninne A-107

AL29 VOLUITIC ... eeeeeeeeeeeee et eeeeescatmaseaaeaaesssssannstesassasssaasunsssssssasesssennsssssssnessnnnsssennnenneesmmmnnnnsn A-109

Appendix A PDS Data Object Definitions : A-3

A.l ALIAS
The ALIAS object is an optional sub-object of the COLUMN obiject.

Required Keywords

1. ALIAS_NAME
2: USAGE_NOTE

Optional Keywords
None

Required Objects
None

Optional Objects

None

Example

The following 1s an example of the usage of the ALIAS object as a suboject of COLUMN 1n a Magellan ARCDR label

OBJECT = COLUMN

NAME = ALT_FOOTPRINT_LONGITUDE"
START_BYTE =1

DATA_TYPE =REAL

BYTES =10

OBIJECT = ALIAS

ALIAS_NAME =AR_LON

USAGE_NOTE ’ = "MAGELLAN MIT ARCDR SIS"
END_OBIJEC = ALIAS

END_OBIJECT = COLUMN

A-4 Appendix A PDS Data Object Definitions

A2 ARRAY (Primitive Data Object)

The ARRAY objectis provided to describe dimensioned arrays of homogeneous objects. Note that
an ARRAY can contain only a single object, which can itself be another ARRAY or
COLLECTION if required. A maximum of 6 axes is allowed in an ARRAY. The optional _AXIS_
elements can be used to describe the varniation between successive objects in the ARRAY.

Values for AXIS_ITEMS and _ AXIS_ elements for multidimensional arrays are supplied as
sequences in which the right most item varies the fastest as the default.

The optional START_BYTE data element provides the starting location relative to an enclosing
object. If a START_BYTE is not specified, a value of 1 is assumed.

Required Keywords

1. AXES
2. AXIS_ITEMS
3. NAME

Optional Keywords

1. AXIS INTERVAL
2. AXIS_NAME

3. AXIS_UNIT

4. CHECKSUM

5. DESCRIPTION -
6. INTERCHANGE_FORMAT
7. START_AXIS
8. STOP_AXIS
9. START_BYTE

Required Objects
None

Optional Objects
1. ARRAY

2. BIT_ELEMENT

3. COLLECTION
4. ELEMENT

Appendix A. PDS Data Object Defimtions

Example 1

A-5

The following 1s an example of a two dimensional Spectrum Array 1n a detached label

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
DATA_SET_ID
OBSERVATICN_ID
TARGET_NAME
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
PRODUCT_ID
OBSERYATION_TIME
START_TIME
STOP_TIME

PRODUCT_CREATION_TIME

~"ARRAY

#* Descnption of Object 1n File */

OBJECT

NAME
INTERCHANGE_FORMAT
AXES

AXIS_ITEMS
AXIS_NAME
AXIS_UNIT
AXIS_INTERVAL
START_AXIS

CBJECT

DATA_TYPE

BYTES

NAME
DERIVED_MAXIMUM
DERIVED_MINIMUM
OFFSET
SCALING_FACTOR
NOTE

END_OBIECT

END_OBJECT
END

Example 2

=PDS3

= FIXED_LENGTH

= 1600

180

"IHW-C-SPEC-2-EDR-HALLEY-V1 0"

"704283"

"HALLEY™"

“IHW SPECTROSCOPY AND SPECTROPHOTOMETRY NETWORK"
"IHW SPECTROSCOPY AND SPECTROPHOTOMETRY"
“704283"

1986-05-09T04 10 20 640Z

= 1986-05-09T04 07 50 640Z

=UNK

= 1993-01-01T00 00 00 000Z

= "SPEC2702 DAT"

It

owounnon

= ARRAY

= "2D SPECTRUM"

=BINARY

=2

= (180,800)

= ("RHO","APPROXIMATE WAVELENGTH")

= (ARCSEC . ANGSTROMS)

=(15,72164)

= (10,5034 9)

= ELEMENT

= MSB_INTEGER

=2

= COUNT

=72 424980E+04

=0 000000E+00

= 0 000000E+00

= 1 000000E+00

= "Conversion factor 1 45 may be applied to data to estimate photons/sq m/sec/
angstrom at 6800 angstroms "

= ELEMENT

= ARRAY

The following 1s an example of ARRAY, COLLECTION and ELEMENT prnimitive objects all used together

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

~ARRAY

DATA_SET_ID
TARGET_NAME

= PDS3

= FIXED_LENGTH
=122

=7387

= "MISCHAOQ1 DAT"

= "VEGA1-C-MISCHA-3-RDR-HALLEY-V1 0"
= HALLEY

A-6 Appendix A PDS Data Object Definitions

SPACECRAFT_NAME ="VEGA 1"
INSTRUMENT_NAME ="MAGNETOMETER"
PRODUCT_ID ="XYZ"
START_TIME = "UNK"

STOP_TIME . = "UNK"
SPACECRAFT_CLOCK_START_COUNT ="UNK"
SPACECRAFT_CLOCK_STOP_COUNT = "UNK"

NOTE ="VEGA 1 MISCHA DATA"

OBIECT = ARRAY

NAME = MISCHA_DATA_FILE

INTERCHANGE_FORMAT = BINARY

AXES =1

AXIS_ITEMS = 7387

DESCRIPTION = "This file contains an array of fixed length Mischa records *

OBJECT = COLLECTION

NAME =MISCHA_RECORD

BYTES =122

DESCRIPTION = "Each record m this file consists of a time tag followed by a 20-element array
of magnetic field vectors *

OBIECT = ELEMENT

NAME = START_TIME

BYTES =2

DATA_TYPE = MSB_INTEGER

START_BYTE =1

END_OBJECT = ELEMENT

OBIECT = ARRAY

NAME = MAGNETIC_FIELD_ARRAY

AXES =2

AXIS_ITEMS = (3,20) 5

START_BYTE =3

AXIS_NAME = ("XYZ_COMPONENT","TIME")

AXIS_UNIT =("N/A" ,"SECOND")

AXIS_INTERVAL = ("N/A" ,02)

DESCRIPTION = "Magnetic field vectors were recorded at the rate

of 10 per second The START_TIME field gives theume at whuch the first vector 1n the record was recorded Successive vectors
were recorded at 0 2 second intervals "

OBJECT = ELEMENT

NAME =MAG_FIELD_COMPONENT_VALUE
BYTES =3

DATA_TYPE = MSB_INTEGER

START_BYTE =1

END_OBJECT . =ELEMENT

END_OBJECT = ARRAY

END_OBJECT = COLLECTION

END_OBJECT = ARRAY

END

Appendix A PDS Data Object Definitions A7

A3 BIT COLUMN

The BIT_COLUMN object 1dentifies a string of bits that do not fall on even byte boundanes and
therefore cannot be described as a distinct COLUMN. BIT_COLUMNS defined within columns
are analogous to columns defined within rows.

Note: (1) The Planetary Data System recommends that all fields (within new objects)
should be defined on byte boundaries. This precludes having multiple values strung together in bt
strings, as occurs in the BIT_COLUMN object.

(2) BIT_COLUMN is intended for use 1n describing existing binary data strings,
but is not recommended for use in defining new data objects because 1t will not be recognized by
most general purpose software.

(3) A BIT_COLUMN must not contain embedded objects.

BIT_COLUMNS of the same format and size may be specified as a single BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_OFFSET elements. The ITEMS data element is used
to indicate the number of occurrences of a bit string.

Required Keywords

1. NAME

2. BIT_DATA_TYPE

3. START_BIT

4. BITS (required for BIT_COLUMNs without items)
5. DESCRIPTION

Optional Keywords

. BIT_MASK

. BITS (optional for BIT_COLUMNSs with items)
. FORMAT

.INVALID

. ITEMS

. ITEM_BITS

. ITEM_OFFSET

. MINIMUM

. MAXIMUM

10. MISSING

11. OFFSET

12. SCALING_FACTOR
13. UNIT

WO WK -

Required Objects

None

A-8

Optional Objects

None

Example

Appendix A. PDS Data Object Definitions

The example below was extracted from a larger example which can be found within the
CONTAINER object. The BIT_COLUMN aobject can be a sub-object of the TABLE or

CONTAINER object.

OBJECT =COLUMN

NAME =PACKET_ID
DATA_TYPE =LSB_BIT_STRING
START_BYTE =]

BYTES =2
VALID_MINIMUM =0
VALID_MAXIMUM =7

DESCRIFTION

= "Packet_1d constitutes one of three parts 1n the pnmary source information

header applied by the Payload Data System (PDS) to the MOLA telemetry packet at the time of creauon of the packet prior to

transfer frame creation "

OBJECT

NAME
BIT_DATA_TYPE
START_BIT

BITS

MINIMUM
MAXIMUM
DESCRIFTION

be set to '000" "
END_OBJECT

OBIECT

NAME
BIT_DATA_TYPE
START_BIT

BITS

MINIMUM
MAXIMUM
DESCRIPTION
END_OBJECT

OBJECT

NAME
BIT_DATA_TYPE
START_BIT

BITS

MINIMUM
MAXIMUM
DESCRIPTION

within the Source Packet

Observer "
END_OBJECT

OBJECT
NAME

This bt shall be set to

=BIT_COLUMN

" =VERSION_NUMBER

=MSB_UNSIGNED_INTEGER

=1

=3

:O

=7

= "These bits 1dentify Version 1 as the Source Packet structure’ These bits shall

=BIT_COLUMN

=BIT_COLUMN

=SPARE

=MSB_UNSIGNED_INTEGER

=4

=]

=0

=O s
="Reserved spare This bit shall be set to '0"
=BIT_COLUMN

=BIT_COLUMN

=FLAG

=BOOLEAN

=5

=1

=0

=0

="This flag signals the presence or absence of a Secondary Header data structure
‘0’ since no Secondary Header formatting standards currently exist for Mars

=BIT_COLUMN

=BIT_COLUMN
=ERROR_STATUS

Appendix A. PDS Data Object Definitions A-9

BIT_DATA_TYPE =MSB_UNSIGNED_INTEGER

START_BIT =6 :

BITS =3 .

MINIMUM =0

MAXIMUM =7

DESCRIPTION ="Thus field 1dentifies 1n part the individual application process within the
spacecraft that created the Source Packet data "

END_OBIJECT = BIT_COLUMN

OBJECT ’ = BIT_COLUMN

NAME = INSTRUMENT_ID

BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BIT =9

BITS =8

MINIMUM ="N/A"

MAXIMUM ="N/A"

DESCRIPTION = "Thus field 1dentifies in part the individual application process within the

spacecraft that creeated the Source Packet data 00100011 s the but pattern for MOLA "
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

A-10 Appendix A PDS Data Object Definitions

A4 BIT ELEMENT (Primitive Data Object)

Under review.

Appendix A PDS Data Object Definitrons A-11

AS CATALOG

The CATALOG object 1s used within a VOLUME object to reference completed PDS high level
catalog templates. These templates provide additional information related to the data sets on the
volume. Please refer to the File Specification and Naming chapter 1n this document for more
information.

Required Keywords
None
Optional Keywords

1. DATA_SET_ID
2. LOGICAL_VOLUME_PATHNAME
3. LOGICAL_VOLUMES

Required Objects

1. DATA_SET

2. INSTRUMENT

3. INSTRUMENT_HOST
4. MISSION

Optional Objects

1. DATA_SET_COLLECTION
2. PERSONNEL
3. REFERENCE

Example

The example under the VOLUME object provides an example of a CATALOG object where all
the Catalog Templates are included 1n a single file, CATALOG.CAT.

The example below demonstrates multiple data sets per volume. In this example, the Catalog
Templates are in separate files and are referenced by the use of pointers. However, the catalog
templates may also be included in-line. -

CCSD3ZF0000100000001NJPL3IFOPDSX 00000001
PDS_VERSION_ID = PDS3

VOLUME

"VOYAGERS TO THE OUTER PLANETS"

"VOYAGER NEFTUNE PLANETARY PLASMA INTERACTIONS DATA"
USA_NASA_PDS_VG_1001

1

i

OBIECT
VOLUME_SERIES_NAME
VOLUME_SET_NAME
VOLUME_SET_ID
VOLUMES

nou

A-12

VOLUME_NAME

Appendix A. PDS Data Object Definitions

="VOYAGER NEPTUNE PLANETARY PLASMA INTERACTIONS DATA"

VOLUME_ID =VG_100]

VOLUME_VERSION_ID = "VERSION 1"

VOLUME_FORMAT = "ISO-9660"

MEDIUM_TYPE ="CD-ROM"

PUBLICATION_DATE =1992-11-13

DESCRIPTION = "This volume contains a collection of non-1imaging Planetary Plasma datasets

from the Voyager 2 spacecraft encounter with Neptune Included are datasets from the Cosmic Ray System (CRS). Plasma System
(PLS), Plasma Wave System (PWS), Planetary Radio Astronomy (PRA), Magnetometer (MAG), and Low Energy Charged Particle
(LECP) mstruments, as well as spacecraft position vectors (POS) 1n several coordinate systems The volume also contains
documentation and ndex files to support access and use of the data "

DATA_SET_ID = { "VG2-N-CRS-3-RDR-D1-6SEC-V1 0",
"VG2-N-CRS4-SUMM-DI1-96SEC-V1 0%,
"VG2-N-CRS-4-SUMM-D2-96SEC-V1 07,
"VG2-N-LECP-4-SUMM-SCAN-24SEC-V1 0",
"VG2-N-LECP-4-RDR-STEP-12 8MIN-V1 Q",
"VG2-N-MAG-4-RDR-HG-COORDS-1 92SEC-V1 0",
“"VG2-N-MAG-4-SUMM-HG-COORDS-485EC-V1 0",
"VG2-N-MAG-4-RDR-HG-COORDS-9 6SEC-V1 0",
"VG2-N-MAG-4-SUMM-NLSCOORDS-12SEC-V1 0",
"VG2-N-PLS-5-RDR-2PROMAGSPH-48SEC-V1 0",
"VG2-N-PLS-5-RDR-ELEMAGSPHERE-96SEC-V1 0",
"VG2-N-PLS-5-RDR-IONMAGSPHERE-48SEC-V1 0",
"VG2-N-PLS-5-RDR-IONLMODE-48SEC-V1 0",
"VG2-N-PLS-5-RDR-IONMMODE-12MIN-V1 0",
“VG2-N-PLS-5-RDR-ION-INBNDWIND-48SEC-V1 0",
"VG2-N-POS-5-RDR-HGHGCOORDS-48SEC-V1 0°,
"VG2-N-POS-5-SUMM-NLSCOORDS-12-48SEC-V1 0",
"VG2-N-PRA-4-SUMM-BROWSE-SEC-V1 07,
"VG2-N-PRA-2-RDR-HIGHRATE-60MS-V1 0",
"VG2-N-PWS-2-RDR-SA4SEC-V1 0",
"VG2-N-PWS4-SUMM-SA48SEC-V1 0",
"VG2-N-PWS-1-EDR-WFRM-60MS-V1 0"}

OBJECT = DATA_PRODUCER
INSTITUTION_NAME "UNIVERSITY OF CALIFORNIA, LOS ANGELES"
FACILITY_NAME “PDS PLANETARY PLASMA INTERACTIONS NODE”

]

i

FULL_NAME = "Dr Raymond Walker"
DISCIPLINE_NAME = "PLASMA INTERACTIONS"
ADDRESS_TEXT ="UCLA

IGPP

LOS ANGELES. CA 90024 USA™
END_OBIECT = DATA_PRODUCER
OBIECT = DATA_SUPPLIER

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

= "NATIONAL SPACE SCIENCE DATA CENTER"
= "NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
"NATIONAL SPACE SCIENCE DATA CENTER"
= "Code 633

Goddard Space Flight Center

Greenbelt, Maryland, 20771, USA"

toWnon

TELEPHONE_NUMBER = "3012866695"
ELECTRONIC_MAIL_TYPE = "NSVDECNET"
ELECTRONIC_MAIL_ID ="NSSDCA REQUEST"

END_OBJECT = DATA_SUPFLIER

OBIECT = CATALOG

Appendix A PDS Data Object Definitions

AINSTRUMENT_HOST_CATALOG
~"MISSION_CATALOG
AINSTRUMENT_CATALOG

ADATA_SET_CATALOG

END_OBJECT

END_OBIJECT
END

“INSTHOST CAT"
"MISSION CAT"
= {"CRS_INST CAT",
"LECPINST CAT",
"MAG_INST CAT",
"PLS_INST CAT",
"PRA_INST CAT",
"PWS_INST CAT"}
= {"CRS_DS CAT",
"LECP_DS CAT",
"MAG_DS CAT",
"PLS_DS CAT",
“POS_DS CAT",
“PRA_DS CAT",
"PWS_DS CAT"}

= CATALOG

i

= VOLUME

A-14 Appendix A PDS Data Object Definitions

A.6 COLLECTION (Primitive Data Object)

The COLLECTION object allows the ordered grouping of heterogeneous objects into a named
collection. The COLLECTION object may contain a mixture of different object types including
other COLLECTIONS. The optional START_BYTE data element provides the starting location
relative to an enclosing obfect. If a START_BYTE 1s not specified, a value of 1 is assumed.

Required Keywords

1. BYTES
2. NAME

Opticnal Keywords

1. DESCRIPTION

2. CHECKSUM

3. INTERCHANGE_FORMAT
4. START_BYTE

Required Objects
None

Optional Objects
1. ELEMENT

2. BIT_ELEMENT

3. ARRAY
4. COLLECTION

Example

Please refer to the example in the ARRAY Primitive object for an example of an implementation
of the COLLECTION object.

Appendix A PDS Data Object Definitions A-15

A7 COLUMN

The COLUMN object 1dentifies a single column in a data object.

Note:(1) Current PDS-described data objects that include COLUMN objects are the TABLE,
SPECTRUM and SERIES objects.
(2) COLUMNSs must not contain embedded COLUMN objects.
(3) COLUMN:Ss of the same format and size may be specified as a single COLUMN by using
the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements. The ITEMS data element
indicates the number of occurrences of the field.
(4) BYTES and ITEM_BYTES counts do not include leading or trailing delimiters or line
' terminators.
(5) For a COLUMN with items, the value of BYTES should represent the size of the column
including delimuters between the items. See examples 1 and 2 below.

Required Keywords

1. NAME

2. DATA_TYPE

3. START_BYTE

4. BYTES (required for COLUMNSs without items)

Optional Keywords

BIT_MASK
BYTES (optional for COLUMNS with items)
DERIVED_MAXIMUM
DERIVED_MINIMUM
DESCRIPTION
. FORMAT
INVALID
ITEM_BYTES
ITEM_OFFSET
. ITEMS
. MAXIMUM
. MAXIMUM_SAMPLING_PARAMETER
. MINIMUM
. MINIMUM_SAMPLING_PARAMETER
. MISSING
. OFFSET '
. SAMPLING_PARAMETER_INTERVAL
. SAMPLING_PARAMETER_NAME
. SAMPLING_PARAMETER_UNIT
. SCALING_FACTOR
. UNIT
. VALID_MAXIMUM
. VALID_MINIMUM

R e N

| N T N T N i N T Sy e e N = S T S T
W= OWo~NTAAbhhdhAhWN=—=O

A-16 Appendix A PDS Data Object Definitions

Required Objects
None
Optional Objects

1. BIT_COLUMN
2. ALIAS

Example 1

The example below shows the use of a COLUMN with items. In this example, the data described
1s a column with three items.
XX.YY, 2z

The ITEM_OFFSET is the number of bytes from the beginning of one item to the beginning of the
next.
Note that the value of BYTES includes the comma delimiters between 1tems.

OBJECT = COLUMN

NAME = COLUMNXYZ
DATA_TYPE = ASCII_INTEGER
START_BYTE =1

BYTES = 8 /*includes delimuters*/
ITEMS =3

ITEM_BYTES =72

ITEM_OFFSET =3

END_OBJECT = COLUMN

Example 2

The example below again shows the use of a COLUMN with items. In this example, the data
described is a column with three items.

"o LA 2 1

"xx","yy","zz

OBIECT = COLUMN

NAME = COLUMNXYZ

DATA_TYPE = CHARACTER

START_BYTE =2 /* value does not include leading quote */

BYTES = 12 /* value does not include leading and trailing
quotes */

ITEMS =3

ITEM_BYTES = 2 /* value does not include leading and trailing
quotes */

ITEM_OFFSET 5 /* value does not include leading quote */

[]

END_OBIJECT COLUMN

Appendix A. PDS Data Object Defimtions A-17

Example 3

The example below was extracted from a larger example which can be found under the
CONTAINER object. The COLUMN object is a sub-object of the TABLE, SERIES, SPECTRUM,

and CONTAINER objects.

OBJECT = COLUMN

NAME = PACKET_ID

DATA_TYPE = LSB_BIT_STRING

START _BYTE ‘ =1

BYTES =2

VALID_MINIMUM =0

VALID_MAXIMUM =7

DESCRIPTION = "Packet_:d constitutes one of three parts in the pnmary source information

header applied by the Payload Data System (PDS} to the MOLA telemetry packet at the time of creation of the packet prior to
transfer frame creation "

OBJECT = BIT_COLUMN

NAME = YERSION_NUMBER

BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BIT =1

BITS =3

MINIMUM =0

MAXIMUM =7

DESCRIPTION = "These bits 1dentify Version 1 as the Source Packet structure These bits
shall be set to ‘000" *

END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = SPARE

BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BIT =4

BITS =1

MINIMUM =0

MAXIMUM =0

DESCRIPTION = "Reserved spare This bt shall be set to ‘0*"

END_OBIJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME =FLAG

BIT_DATA_TYPE = BOOLEAN

START_BIT =5

BITS =]

MINIMUM =0 '
MAXIMUM =0

DESCRIPTION = "Thus flag signals the presence or absence of a Secondary Header data structure

within the Source Packet Thus bit shall be set to '0' since no Secondary Header formatting standards currently exist for Mars
Observer *

END_OBJECT = BIT_COLUMN

OBIJECT = BIT_COLUMN

NAME = ERROR_STATUS
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT =6

BITS =3

MINIMUM . =0

A-18 Appendix A PDS Data Object Defimitions

MAXIMUM =7

DESCRIPTION = "Thus field 1dentifies in part the individual application process within the
spacecraft that created the Source Packet data "

END_OBIJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = INSTRUMENT_ID

BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BIT =9

BITS =8

MINIMUM ="N/A"

MAXIMUM ="N/A"

DESCRIPTION = "Thus field 1dentifies 1n part the individual application process within the
spacecraft that creeated the Source Packet data 00100011 1s the bit pattern for MOLA "

END_OBIJECT = BIT_COLUMN

END_OBIJECT = COLUMN

OBIJECT = COLUMN

NAME =CH_4_2ND_HALF_FRAME_BKGRND_CN

DATA_TYPE = UNSIGNED_INTEGER

START_BYTE =134

BYTES =1

MINIMUM =0

MAXIMUM =255

DESCRIPTION = "The background energy or noise count levels in channels 1, 2, 3, and 4

respectively by half-frame Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5 3 bit format Plog

base 2 of background count sum "
END_OBJECT = COLUMN

Appendix A PDS Data Object Definitions A-19

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNS) that repeat
within a data object (such as a TABLE). Use of the CONTAINER object allows repeating groups
to be defined within a data structure.

Required Keywords

1. NAME
2. START_BYTE
3.BYTES
4. REPETITIONS
5. DESCRIPTION

Optional Keywords
None

Required Objects
None

Optional Objects

1. COLUMN
2. CONTAINER

Example

The following diagram shows a data product layout 1n which the CONTAINER object 1s used The diagram depicts the modelled
data product as a TABLE with one row (or one record of data) Each record witlun the diagram begins with 48 columns (143 bytes)
of engineering data The data product acquires science data from seven different frames Since the data from each frame 1s formatted
identically, one CONTAINER description can suffice for all seven frames

In thus example there are two CONTAINER objects The first CONTAINER object describes the repeating frame information
Within this contammer there 1s a second CONTAINER object in which a 4-byte set of three COLUMN objects repeats 20 ttmes The
use of the second CONTAINER object permuts the data supplier to descnibe the three COLUMNS (4 bytes) once, instead of
specifying sixty column definitions

In the first CONTAINER, the keyword REPETITIONS 1s equal to 7 In the second CONTAINER, REPETITIONS equals 20 Both
CONTAINER objects contain a collechon of COLUMN objects In most cases 1t is preferable to save space in the product label by
placing COLUMN objects 1n a separate file and pointng to that file from within the CONTAINER object

A-20 Appendix A PDS Data Object Definitions

48 Colurmns of
Eng /Hskeeping Data
9 ping Fr1 Fr2 Fr3 | Fr4 Fr5 Fré | Fr7
1 143 277 411 545 679 813 947 1080
g g
Container # 1] 5| 46 Columns times 7 frames (Fr 1-Fr7)
0O
1 81 134
Contamner # 2 3 Columns times 20 shots (51-S20)
1 4

Thus attached label example describes the above TABLE structure using CONTAINER objects.

CCSD3ZF0000100000001NJPL3KSOPDSXAAAAAAAA

PDS_VERSION_ID =PDS3
RECORD_TYPE = FIXED_LENGTH
FILE_RECORDS =467
RECORD_BYTES = 1080
LABEL_RECORDS =4

FILE_NAME = "AEDR 001"

"MOLA_SCIENCE_MODE_TABLE
DATA_SET_ID

PRODUCT_ID
SPACECRAFT_NAME

5
“"MO-M-MOLA-1-AEDR-L0-V1 0"
"MOLA-AEDR -10010-0001"
MARS_OBSERVER

n

(LI}

PRODUCER_ID
PRODUCER_FULL_NAME
PRODUCER _INSTITUTION_NAME "GODDARD SPACE FLIGHT CENTER"

DESCRIPTION “This data product contains the aggregation of MOLA telemetry packets by
Orbit All Expenment Data Record Packets retneved from the PDB are collected i this dara product The AEDR data product 1s
put together with the Project-provided software tocl Browser "

MO_MOLA_TEAM
"DAVID E SMITH"

INSTRUMENT_ID = MOLA
INSTRUMENT_NAME = MARS_OBSERVER_LASER_ALTIMETER
TARGET_NAME = MARS
SOFTWARE_NAME = “Browser 171"
UPLOAD_ID = "53"
PRODUCT_RELEASE_DATE = 1994-12-29T02 10 09 321
START_TIME = 1994-09-29T04 12 43 983
STOP_TIME = 1994-09-29T06 09 54 221
SPACECRAFT_CLOCK_START_COUNT = "12345"
SPACECRAFT_CLOCK_STOP_COUNT = "12447"
PRODUCT_CREATION_TIME = 1995-01-29T07 30333
MISSION_PHASE_NAME = MAPPING
ORBIT_NUMBER = 0001

noH

Appendix A. PDS Data Object Definutions A-21

OBIJECT = MOLA_SCIENCE_MODE_TABLE

INTERCHANGE_FORMAT = BINARY

ROWS = 463

COLUMNS = 97

ROW_BYTES = 1080

ASTRUCTURE = "MOLASCI FMT"

DESCRIPTION = "Ths table 15 one of two that descnbe the arrangement of information on the
Mars Observer Laser Alumeter (MOLA) Aggregated Engineening Data Record (AEDR) *

END_OBIJECT = MOLA_SCIENCE_MODE_TABLE

END

CCSD$$MARKS$A AAAAAAANJPL3IIFONNNNOOOG0001

Contents of the MOLASCI FMT file

OBJIECT = COLUMN

NAME = PACKET_ID
DATA_TYPE = LSB_BIT_STRING
START_BYTE = 1

BYTES = 2
VALID_MINIMUM = 0
VALID_MAXIMUM = 7

DESCRIPTION "Packet_id constitutes one of three parts in the primary source information
header apphied by the Payload Data System (PDS) to the MOLA telemetry packet at the ime of creation of the packet prior to
transfer frame creation "

OBJECT = BIT_COLUMN

NAME = VERSION_NUMBER
BIT_DATA_TYPE = UNSIGNED_INTEGER

START_BIT =1 3

BITS = 3

MINIMUM =0

MAXIMUM =7

DESCRIPTION = "These bits 1dentify Version | as the Source Packet structure These bits shall
be set to '000"."

END_OBIJECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = SPARE

BIT_DATA_TYPE = UNSIGNED_INTEGER

START_BIT = 4

BITS =1

MINIMUM = 0

MAXIMUM =0

DESCRIPTION = "Reserved spare This but shall be set to '0™"
END_OBIECT = BIT_COLUMN

OBJECT = BIT_COLUMN

NAME = SECONDARY_HEADER_FLAG
BIT_DATA_TYPE = BOOLEAN

START_BIT = 5

BITS = |

MINIMUM =0

MAXIMUM = 0

DESCRIPTION = "This flag signals the presence or absence of a Secondary Header data

A-22 Appendix A. PDS Data Object Definttions

structure within the Source Packet This bit shall be set to ‘0" since no Secondary Header formatung standards currently exist for
Mars Observer "

END_OBIJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = ERROR_STATUS
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT = 6

BITS =3

MINIMUM = 0

MAXIMUM = 7

DESCRIPTION = "Ths field 1dentifies 1n part the individual application process within the
spacecraft that created the Source Packet data ™

END_OBIJECT = BIT,_ COLUMN
OBJECT = BIT_COLUMN
NAME = INSTRUMENT_ID
BIT_DATA_TYPE = UNSIGNED_INTEGER
START_BIT =9

BITS = 8

MINIMUM = 2#0100011#
MAXIMUM = 2#0100011#
DESCRIPTION = "Ths field identifies 1n part the individual application process within the
spacecraft that created the Source Packet data (00100011 1s the bit pattern for MOLA
END_OBIJECT = BIT_COLUMN
END_OBJECT) = COLUMN

OBJECT = COLUMN

NAME = COMMAND_ECHO
DATA_TYPE = INTEGER
START_BYTE = 125

BYTES = 16

ITEMS = 8

ITEM_BYTES = 2

MINIMUM =0

MAXIMUM = 65535

DESCRIPTION "First 8 command words recerved during current packet. only complete
commands are stored, MOLA specific commands only The software attempts to echo all valid commands If the command will fit
i the room remaining 1n the

il

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = PACKET_VALIDITY_CHECKSUM

DATA TYPE = INTEGER

START_BYTE = 141

BYTES = 2

MINIMUM =0

MAXIMUM = 65535

DESCRIPTION = "Simple 16 bit addition of entire packet contents upon completion This

location 1s zeroed for addibon This word 1s zeroed, then words 0-539 are added without carry to a vanable that 1s iutially zero The
resulting lower 16 bits ar

END_OBIJECT = COLUMN
OBJECT = CONTAINER
NAME = FRAME_STRUCTURE
~ASTRUCTURE = "MOLASCFR FMT" /*points to the columns */

/*that make up the frame descriptors */

Appendix A PDS Data Object Definitions

START_BYTE
BYTES

REPETITIONS
DESCRIPTION

A-23

143

134 C

7

"The frame_structure contamer represents the format of seven repeating

groups of attributes in this data product The data product reflects science data acquisition from seven different frames Since the

data from each frame 15

END_OBIJECT

CONTENTS OF THE MOLASCFR FMT FILE

i

CONTAINER

OBIECT
NAME
START_BYTE
BYTES
REPETITIONS
ASTRUCTURE
DESCRIPTION

o nnnun

CONTAINER

GOUNTS

1

4

20

"MOLASCCT FMT"

"This container has three sub-elements (range to surface counts, st channe]

received pulse energy, and 2nd channel received pulse energy) The three sub-elements repeat for each of 20 shots "

END_OBIJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXIMUM
DESCRIPTION
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXIMUM
DESCRIPTION
END_OBIECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM
MAXIMUM
DESCRIPTION
END_OBJECT

OBIJECT
NAME
DATA_TYPE
START_BYTE
BYTES
MINIMUM

nwwunnn

wouonnnon

CONTAINER

COLUMN
SHOT_2_LASER_TRANSMITTER_POWR
UNSIGNED_INTEGER

81

1

0

65535

noon

COLUMN

COLUMN
SHOT_1_LASER_TRANSMITTER_POWR
UNSIGNED_INTEGER

82

1

0

65535 '

= COLUMN

o oonon

COLUMN
SHOT_4_LASER_TRANSMITTER_POWR
UNSIGNED_INTEGER

83

1

0

65535

"o

COLUMN

COLUMN
CH_3_2ND_HALF_FRAME_BKGRND_CN
UNSIGNED_INTEGER

133

1

0

A-24 Appendix A PDS Data Object Definitions

MAXIMUM = 255

DESCRIPTION "The background energy or noise count levels in channels 1, 2, 3, and 4
respectively by half-frame Pseudo log value of NOISE(1, 2, 3, 4 at the end of a half-frame of current frame, 5 3 bit format Plog
base 2 of background count sum "

H

END_OBIJECT = COLUMN

OBIECT = COLUMN

NAME = CH_4_2ND_HALF_FRAME_BKGRND_CN

DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 134

BYTES =1

MINIMUM =0

MAXIMUM = 255

DESCRIPTION = "The background energy or nmse count levels in channels 1, 2, 3, and 4

respectively by half-frame Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5 3 bit format Plog
base 2 of background count sum " .

END_OBIECT = COLUMN

CONTENTS OF THE MOLASCCT FMT FILE

OBJECT = COLUMN

NAME = RANGE_TO_SURFACE_TIU_CNTS

DATA_TYPE = MSB_INTEGER

START_BYTE = |

BYTES = 2

DESCRIPTION = "The possible 20 vahd frame laser shots surface ranging measurements in

Timung Interval Umit (TIU) counts The least sigmificant 16 bits of TIU (SLTIU), stored for every shot B[0] = Bits 15-8 of TIU
reading, B{1] = Bits 7-0 of

END_OBJECT = COLUMN

OBIECT = COLUMN

NAME = FIRST_CH_RCVD_PULSE_ENRGY

DATA_TYPE = UNSIGNED_INTEGER

START_BYTE : =3

BYTES = 1

DESCRIPTION = "The level of return, reflected energy as recerved by the first channel and

matched filter to tngger This 1s a set ov values for all possible 20 shots within the frame Lowest numbered non-zero energy
reading for each shot "

END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = SECOND_CH_RCVD_PULSE_ENRGY

DATA_TYPE = UNSIGNED_INTEGER

START_BYTE = 4

BYTES =1

DESCRIPTION = "The level of return, reflected energy as recerved by the second channel and

matched filter to tngger Ths 1s a set of values for all possible 20 shots within the frame 2nd lowest numbered non-zero energy

reading for each shot "
END_OBJECT = COLUMN

Appendix A PDS Data Object Definitions A-25

A9 DATA PRODUCER

The DATA_PRODUCER object is used within a PDS object, such as VOLUME. The
DATA_PRODUCER, as opposed to the DATA_SUPPLIER, is an individual or organization
responsible for collecting, assembling, and/or engineering the raw data into one or more data sets.

Required Keywords

1. INSTITUTION_NAME
2. FACILITY_NAME

3. FULL_NAME

4. ADDRESS_TEXT

Optional Keywords

1. DISCIPLINE_NAME

2. NODE_NAME

3. TELEPHONE_NUMBER

4. ELECTRONIC_MAIL_TYPE
5. ELECTRONIC_MAIL_ID
Required Objects

None

Optional Objects

None

Example

The example below was extracted from a larger example which can be found within the VOLUME
object. The DATA_PRODUCER object is a required object of the VOLUME.

DATA_PRODUCER
"US GS FLAGSTAFF"
"BRANCH OF ASTROGEOLOGY"

OBJECT
INSTITUTION_NAME
FACILITY_NAME

FULL_NAME "Enc M Ehlason”
DISCIPLINE_NAME "IMAGE PROCESSING”
ADDRESS_TEXT " Branch of Astrogeology

Umnted States Geological Survey

2255 North Gemuni Dnve

Flagstaff, Anzona 86001 USA”™
END_OBJECT =DATA_PRODUCER

A-26 Appendix A PDS Data Object Definitions

A.10 DATA SUPPLIER

The DATA_SUPPLIER object is used within a PDS object, such as VOLUME. The
DATA_SUPPLIER, as opposed to the DATA_PRODUCER, 1s an individual or organization
responsible for distributing the data sets and associated data to the science community.

Required Keywords

1. INSTITUTION_NAME

2. FACILITY_NAME

3. FULL_NAME

4. ADDRESS_TEXT

5. TELEPHONE_NUMBER

6. ELECTRONIC_MAIL_TYPE
7. ELECTRONIC_MAIL_ID

Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME

Required Objects
None

Optional Objects
None

Example

The example below was extracted from a larger example which can be found within the VOLUME
object. The DATA_SUPPLIER object is an optional object of the VOLUME.

OBIECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

DATA_SUPPLIER

"National Space Science Data Center”
"Nanional Space Science Data Center”
"Nattonal Space Science Data Center”
"National Space Science Data Center”
“Code 633

Goddard Space Flhight Center

Greenbelt, Maryland, 20771, USA”
"3012866635"

nownonou

il

i

TELEPHONE_NUMBER
ELECTRONIC_MAIL_TYPE "NSVDECNET"
ELECTRONIC_MAIL_ID "NSSDCA REQUEST"
END_OBJECT = DATA_SUPPLIER

mnn

Appendix A. PDS Data Object Defimtions A-27

A.ll DIRECTORY

The DIRECTORY object is used to define a hierarchical file organization on a linear (sequential)
media, such as tape. The DIRECTORY object identifies all directonies and subdirectories below
the root level, and is a required sub-object of the VOLUME object for tape media.

Note: The root directory or a volume does not need to be explicitly defined with the DIRECTORY
object.

Subdirectories are 1dentified by embedding DIRECTORY objects. Files within the directories and
subdirectories are sequentially identified by using FILE objects with a sequence_number value
corresponding to their position on the media. A sequence_number value will be unique for each
file on the media. This format is strongly recommended when transferring or archiving volumes of

data on media which do not support hierarchical directory structures (i.e., submitting a tape volume
of data for pre-mastering or preparing an archive tape).

Although the DIRECTORY object 1s optional in the VOLUME object, 1t is a required object for
tape media.

Required Keywords
1. NAME
Optional Keywords

1. RECORD_TYPE
2. SEQUENCE_NUMBER

Required Objects
1. FILE
Optional Objects

1. DIRECTORY

A-28 ' Appendix A PDS Data Object Definitions

Example

The example below was extracted from a larger example which can be found within the VOLUME
object.

OBIJECT = DIRECTORY
NAME =INDEX

OBJECT =FILE
FILE_NAME = "INDXINFO TXT"
RECORD_TYPE = STREAM
SEQUENCE_NUMBER =5

END_OBIJECT =FILE

OBJECT =FILE
FILE_NAME = "INDEX LBL"
RECORD_TYPE =STREAM
SEQUENCE_NUMBER =6

END_OBIJECT =FILE

OBJECT =FILE
FILE_NAME ="INDEX TAB"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =512
FILE_RECORDS =6822
SEQUENCE_NUMBER =7

END_OBJECT =FILE

END_OBJECT = DIRECTORY

Appendix A. PDS Data Object Definitions A-29

A.12 DOCUMENT

The DOCUMENT object 1s used to label a particular document that 1s provided on a volume to
support an archived data product. A document can be made up of one or more files 1n a single
format. For instance, a document may be comprised of as many TIFF files as there are pages in the
document.

Multiple versions of a document can be supplied on a volume with separate formats, requirng a
DOCUMENT object for each document version (1.e., OBJECT = TEX_DOCUMENT and
OBJECT = PS_DOCUMENT when including both the TEX and Postscript versions of the same
document).

PDS requires that at least one version of any document be plain ASCII text in order to allow users
the capability to read, browse, or search the text without requiring software or text processing
packages. This version can be plain, unmarked text, or ASCII text containing a markup language.
(See the Documentation chapter of this document for more details) This means that for every
document provided on a volume, there will be a file (or files) with the extension .ASC and a
DOCUMENT label with the keywords indicating that the file's interchange format 1s ASCII, and
its document format is TEXT. (See example below.)

The DOCUMENT object contains keywords that identify and describe the document, provide the
date of publication of the document, 1ndicate the number of files comprising the document, provide
the format of the document files, and identify the software used to compress or encode the
document, as applicable.

DOCUMENT labels must be detached files unless the files are plain, unmarked text that will not
be read by text or word processing packages. A DOCUMENT object for each format type of a
document can be included 1n the same label file with pointers, such as ATIFF_DOCUMENT for a
TIFF formatted document. (See example below.)

Required Keywords

1. DOCUMENT_NAME
2.DOCUMENT_TOPIC_TYPE
3. INTERCHANGE_FORMAT
4. DOCUMENT_FORMAT

5. PUBLICATION_DATE

Optional Keywords

1. ABSTRACT_TEXT
2. DESCRIPTION

3. ENCODING_TYPE
4. FILES

A-30 . Appendix A PDS Data Object Definiuons

Required Objects
None

Optional Objects
None

Example

The following example detached label, PDSUG.LBL, 1s for a Document provided in three formats:
ASCII text, TIFF, and TEX.

CCSD3ZF0000100000001 NJPL3IFOPDS X00000001

PDS_VERSION_ID =PDS3
RECORD_TYPE = UNDEFINED
AASCII_DOCUMENT = "PDSUG ASC"
~TIFF_DOCUMENT = ("PDSUG001 TIF", "PDSUG002 TIF",
“"PDSUG003 TIF", "PDSUG004 TIF")
ATEX_DOCUMENT = "PDSUG TEX"
OBIJECT = ASCI_DOCUMENT
DOCUMENT_NAME = "Planetary Data System Data Set Catalog User's Guide”
PUBLICATION_DATE = 1992-04-13
DOCUMENT_TOPIC_TYPE = "USER'S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEXT
DESCRIPTION = "The Planetary Data System Data Ser Catalog User's Guide describes the

fundamentals of accessing. searching, browsing, and ordering data from the PDS Data Set Catalog at the Central Node The text
for this 4-page document 1s provided here 1n this plain, ASCII text file "

ABSTRACT_TEXT = "The PDS Data Set Catalog 1s simular 1n function and purpose to a card catalog
inalibrary Use a Search screen to find data items, a List/Order screen to order data items, and the More menu option to se¢ more
information *

END_OBJECT = ASCII_DOCUMENT
OBIECT = TIFF_DOCUMENT

DOCUMENT_NAME "Planetary Data System Data Set Catalog User's Guide”

DOCUMENT_TOPIC_TYPE "USER'S GUIDE"
INTERCHANGE_FORMAT = BINARY
DOCUMENT_FORMAT = TIFF
PUBLICATION_DATE = 1992-04-13
FILES =4
ENCODING_TYPE = "CCITT/3"

DESCRIPTION ="

The Planetary Data System Data Set Catalog User's Guide describes the fundamentals of accessing, searching, browsing, and
ordening data from the PDS Data Set Catalog at the Central Node

The 4-page document 15 provided here 1n 4 consecutive files, one file per page, in Tagged Image File Format (TTFF) using Group
3 compression It has been tested to successfully import into WordPerfect 5 0, FrameMaker, and Photoshop.”
ABSTRACT_TEXT =" '

The PDS Data Set Catalog 1s simular 1n funcuon and purpose to a card catalog in a library Use a Search screen to find data items,
a List/Order screen to order data items, and the More menu option to see more information "

END_OBIJECT = TIFF_DOCUMENT

OBIJECT =TEX_DOCUMENT

Appendix A. PDS Data Object Definitions A-31

DOCUMENT_NAME ="
Planetary Data System Data Set Catalog User's Guide”

DOCUMENT_TOPIC_TYPE = "USER'S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT = TEX
PUBLICATION_DATE T =1992-04-13

DESCRIPTION =

The Planetary Data System Data Set Catalog User's Guide describes the fundamentals of accessing, searching, browsing, and
ordenng data from the PDS Data Set Catalog at the Central Node

The 4-page document 15 provided here 1n TeX format with all necessary macros included "

ABSTRACT_TEXT ="

The PDS Data Set Catalog 1s sumular in function and purpose to a card catalog 1n a library Use a Search screen to find data items,
a Last/Order screen to order data tems, and the More menn option to see more information ™

END_OBIECT = TEX_DOCUMENT

END

A-32 Appendix A PDS Data Object Definitions

A.l3 ELEMENT (Primitive Data Object)

The ELEMENT object provides a means of defiming a lowest level component of a data object that
is stored in an integral multiple of 8-bit bytes. Element objects may be embedded in
COLLECTION and ARRAY data objects. The optional START_BYTE element 1dentifies a
location relative to the enclosing object. If not explicitly included, a START_BYTE = 1 1s assumed
for the ELEMENT.

Required Keywords

1. BYTES
2. DATA_TYPE
3. NAME

Optional Keywords

.START_BYTE

. BIT_MASK

. DERIVED_MAXIMUM
. DERIVED_MINIMUM
. DESCRIPTION

. FORMAT

. INVALID -

. MINIMUM

9. MAXIMUM

10. MISSING

11. OFFSET

12. SCALING_FACTOR
13. UNIT

14. VALID_MINIMUM
15. VALID_MAXIMUM

00~ NN Hh WK —

Required Objects
None

Optional Objects
None

Example

Please refer to the example in the ARRAY Primutive object for an example of the implementation
of the ELEMENT object.

Appendix A. PDS Data Object Definitions A-33

A.14 FILE

The FILE object 1s used 1n attached or detached labels to define the attributes or characteristics of
a data file. In attached labels, the file object is also used to indicate boundaries between label
records and data records in data files which have attached labels. The FILE object may be used 1n

three ways:

(1) As an implicit object 1n attached or detached labels. As depicted in the following example, all
detached label files and attached labels contain an implicit FILE object which starts at the top of
the label and ends where the label ends. In these cases, the PDS recommends against using the
NAME keyword to reference the file name.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =80
FILE_RECORDS =522
LABEL_RECORDS =10

(remainder of the label)

For data products labelled using the implicit file object (e.g. for minimal labels)
DATA_OBJECT_TYPE = FILE should be used 1n the Data Set Catalog Template.

(2) As an explicit object which 1s used when a file reference is needed 1n a combined detached or
minimal label. In this case, the optional FILE_NAME element is‘used to identify the file being
referenced.

Bl

OBIJECT =FILE
FILE_NAME = "IM10347.DAT"
RECORD_TYPE = STREAM

FILE_RECORDS =1024 .
(other optional keywords describing the file)
END_OBIJECT =FILE

For data products labelled using the explicit file object (e.g. for minimal labels)
DATA_OBJECT_TYPE = FILE should be used 1n the Data Set Catalog Template.

(3) As an explicit object to identify specific files as sub-objects of the DIRECTORY in VOLUME
objects. In this case, the optional FILE_NAME element is used to identify the file being referenced
. on atape archive volume. .

OBJECT =FILE
FILE_NAME = "VOLDESC.CAT"
RECORD_TYPE = STREAM

SEQUENCE_NUMBER =1
END_OBIJECT =FILE

A-34 Appendix A PDS Data Object Definitions

The keywords in the FILE object always describe the file being referenced, and not the file in
which the keywords are contained (i.e., if the FILE object is used in a detached label file, the FILE
object keywords describe the detached data file, not the label file which contains the keywords).
For example, if a detached label for a data file 1s being created and the label will be iIn STREAM
format, but the data will be stored in a file having FIXED_LENGTH records, then the
RECORD_TYPE keyword 1n the label file must be given the value FIXED_LENGTH.

The following table 1dentifies data elements that are required (Req), optional (Opt), and not
applicable (-) for various types of files

Labeling Method Att Det Att Det Att Det Att Det
RECORD_TYPE FIXED_LENGTH VARIABLE_LENGTH STREAM "UNDEFINED
RECORD_BYTES Req Req Rmax Rmax Omax - - -
FILE_RECORDS Req Req Regq Req Opt Opt - -
LABEL_RECORDS Req - Reg - Opt - -
Required Keywords.

1. RECORD_TYPE
2. FILE_NAME (required only in minimal detached labels and tape archives)

(See above table for the conditions of use of additional required keywords)
Optional Keywords
1. FILE_NAME (required only in munimal detached labels and tape archives)
2. LABEL_RECORDS
3. RECORD_BYTES
4. SEQUENCE_NUMBER
Required Objects
None

Optional Objects

None

Appendix A PDS Data Object Definitions

Example

A-35

Below is an example of a set of explicit file objects in a combined detached label. An additional

example of the use of explicit FILE object can be found in the VOLUME obyect.

CCSD3ZF000010000000 INJPL3IFOPDS X 00000001

PDS_VERSION_ID
HARDWARE_MODEL _ID
OPERATING_SYSTEM_ID
SPACECRAFT_NAME
INSTRUMENT_NAME
MISSION_PHASE_NAME
TARGET_NAME
DATA_SET_ID
PRODUCT_ID

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
~TIME_SERIES

OBJECT
INTERCHANGE_FORMAT

ROWS

ROW_BYTES

COLUMNS

ASTRUCTURE
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER _UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT

END_OBIJECT

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
~*TIME_SERIES

OBJECT
INTERCHANGE_FORMAT

ROWS

ROW_BYTES

COLUMNS

ASTRUCTURE
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT

END_OBIJECT

= PDS3

"SUN SPARC STATION"
“SUNOS411"

"VOYAGER 2"

"PLASMA WAVE RECEIVER"
"URANUS ENCOUNTER"

URANUS

"VG2-U-PWS-4-RDR-SA-48 0SEC-V1 0"
“T860123-T860125"

[T I N | O (N T 1}

FILE

"T860123 DAT"

= 1800

= FIXED_LENGTH

=105

= 1986-01-23T00 00 00 000Z
1986-01-24T00 00 00 000Z
"T860123 DAT"

LI

iwoni

TIME_SERIES
= BINARY

= 1800

=105

=19
“PWS_DATA FMT"
=TIME

= SECOND
=480

= TIME_SERIES
= FILE

]

_=FILE

L}

"T860124 DAT"

= 1800

= FIXED_LENGTH

= 103

= 1986-01-24TCO 00 00 000Z
= 1986-01-25T00 00 00 000Z
= "T860124 DAT"

= TIME_SERIES

= BINARY

= 1800

=105

=19

="PWS_DATA FMT"
=TIME

=TIME_SERIES
=FILE

A-36

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
~TIME_SERIES

OBJECT
INTERCHANGE_FORMAT

ROWS

ROW_BYTES

COLUMNS

ASTRUCTURE :
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT

END_OBJECT

END

= FILE

= "T860125 DAT"

=1799

= FIXED_LENGTH -

=105

= 1986-01-30T00 00 00 000Z
= 1986-01-30T23 59 12 000Z
= "T860125 DAT"

= TIME_SERIES
= BINARY

= 1799

=105

=19

= "PWS_DATA FMT"
=TIME

= SECOND
=480

= TIME_SERIES
=FILE

Appendix A PDS Data Object Defimtions

Appendix A PDS Data Object Defimitions A-37

A.15 GAZETTEER_TABLE

The GAZETTEER_TABLE object 1s a specific type of a TABLE object that provides information
about the geographical features of a planet or satellite. It contains information about a named
feature such as location, size, origin of feature name, etc. The GAZETTEER_TABLE contains one
row for each feature named on the target body. The table is formatted so that it may be read directly
by many data management systems on various host computers. All fields (columns) are separated
by commas, and character fields are enclosed by double quotation marks. Each record consist of
480 bytes, with a carriage return/line feed sequence 1n bytes 479 and 480. This allows the table to
be treated as a fixed length record file on hosts that support this file type and as a normal text file
on other hosts.

Currently the PDS Imaging Node at the USGS is the data producer for all GAZETTEER tables.

Required Keywords

1. NAME
2. INTERCHANGE_FORMAT
3.ROWS

4. COLUMNS
5.ROW_BYTES

6. DESCRIPTION

Required Objects
1. COLUMN
Required COLUMN Objects (NAME =)

TARGET_NAME
SEARCH_FEATURE_NAME
DIACRITIC_FEATURE_NAME
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
CENTER_LATITUDE
MINIMUM_LONGITUDE
MAXIMUM_LONGITUDE
CENTER_LONGITUDE
LABEL_POSITION_ID
FEATURE_LENGTH
PRIMARY_PARENTAGE_ID
SECONDARY_PARENTAGE_ID
MAP_SERIAL_ID
FEATURE_STATUS_TYPE
APPROVAL_DATE

A-38

FEATURE_TYPE
REFERENCE_NUMBER
MAP_CHART_ID
FEATURE_DESCRIPTION

Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

Example

Appendix A PDS Data Object Definitions

CCSD3ZF0000100000001NJPL3IFOPDSX 00000001

PDS_VERSION_ID =PDS3

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES =480

FILE_RECORDS = 1181

PRODUCT_ID =XYZ

TARGET_NAME =MARS

AGAZETTEER _TABLE ="GAZETTER TAB"

OBJECT = GAZETTEER _TABLE

NAME = "PLANETARY NOMENCLATURE GAZETTEER"
INTERCHANGE_FORMAT = ASCII

ROWS =118l

COLUMNS =20

ROW_BYTES =480

DESCRIPTION = "The gazetteer (file GAZETTER TAB) 1s a table of geographical features for

a planet or satellite. It contains information about a named feature such as location, size, ongin of feature name, etc The Gazetteer
Table contains one row for each feature named on the target body The table 1s formatted so that it may be read directly 1nto many
data management systems on various host computers Al fields (columns) are separated by commas, and character fields are

preceded by double quotation marks Each record consist of 480 bytes, with a camage return/line feed sequence 1n bytes 479 and
480 This allows the table to be treated as a fixed length record file on hosts that support this file type and as a normal text file on

other hosts *

OBIECT = COLUMN

NAME =TARGET _NAME
DATA_TYPE = CHARACTER
START_BYTE =2

BYTES =20

FORMAT ="A20"

UNIT ="N/A"

DESCRIPTION = "The planet or satellite on which the feature 1s located "
END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SEARCH_FEATURE_NAME

TR W

Appendix A PDS Data Object Definitions A-39

DATA_TYFE = CHARACTER

START_BYTE =25 0

BYTES =50

FORMAT = "A50"

UNIT ="N/A"

DESCRIPTION = "The geographical feature name with all diacnitical marks stripped off Thus

name 1s stored 1n upper case only so that 1t can be vsed for soring and search purposes This field should not be used to designate
the name of the feature because 1t does not contain the diacntical marks Feature names not containing diacnitical marks can often
take on a completely different meaning and in some cases the meaning can be deeply offensive ”

END_OBIECT = COLUMN

OBIECT = COLUMN

NAME = DIACRITIC_FEATURE_NAME

DATA_TYFPE = CHARACTER

START_BYTE =78

BYTES =100

FORMAT ="Al00"

UNIT ="N/A"

DESCRIPTION = "The geographical feature name contaiming standard diacritical information A

detailed descniption of the diacntical mark formats are descnbed 1n the gazetteer documentation
DIACRITICALS USED IN THE TABLE

The word diacntic comes from a Greek word meaming to separate It refers to the accent marks employed to separate, or
distinguish, one form of pronunciation of a vowel or consonant from another

This note 1s included to familianze the user with the codes used to represent diacniticals found 1n the table, and the values
usually associated with them In the table, the code for a dracnitical 1s preceded by a backslash and 1s followed. without a space, by
the letter 1t 1s modifying

This note 1s orgamized as follows the code 1s histed first, followed by the name of the accent mark, 1f applicable, a bnef
description of the appearance of the diacnitical and a short narrative on 1ts usage

acute accent, a straight diagonal line extending from upper nght to lower left The acute accent 1s used 1n most languages to
lengthen a vowel, 1n some, such as Oscan, to denote an open vowel The acute 1s also often used to indicate the stressed syllable,
1n some transcriptions 1t indicates a palatalized consonant

diaeresis or umiaut, two dots surmounting the letter In Romance langnages and English, the diaeresis 1s used to indicate that
consecutive vowels do not form a dipthong (see below), 1n modemn German and Scandinavian languages, 1t denotes palatalization
of vowels.

circumnflex, a chevron or inverted 'v’ shape, with the apex at the top Used most often 1n modem languages to indicate
lengthening of a vowel

tilde, a curving or waving line above the letter. The tilde 1s 2 form of circumflex The tilde 1s used most often in Spamsh to
form a palatalized n as n the word "ano’, pronounced ‘anyo’ It 1s also used occasionally to indicate nasalized vowels

macron; a straight line above the letter The macron 1s used almost umversally to lengthen a vowel
breve, a concave semicircle or 'u' shape surmounting the letter Onginally used 1n Greek, the breve indicates a short vowel
a small circle or ‘o’ above the letter Frequently used 1n Scandinavian languages to indicate a broad ‘o’

e dipthong or ligature, transcribed as two lefters in contact with each other The dipthong 1s a combination of vowels that are
pronounced together

cedilla, a curved line surmounted by a vertical line, placed at the bottom of the letter The cedilla 1s used in Spanish and French
to denote a dental, or soft, ‘c’ In the new Turkish transcription, 'c' cedilla has the value of English ‘ch' In Sermitic languages, the
cedilla under a consonant indicates that 1t 18 emphatic

A-40 Appendix A PDS Data Object Definitions
check or inverted circumflex, a 'v' shape above the letter This accent 1s used widely 1n Slavic languages to indicate a palatal
articulation, like the consonant sounds 1n the English words chapter and shoe and the ‘zh’ sound 1n pleasure

a single dot above the letter This diacntical denotes various things. 1n Lithuanian, 1t indicates a close long vowel In Sansknt,
when used with 'n’, 1t 15 a velar sound, as in the English 'sink’, 1n Insh orthography, 1t indicates a fricative consonant (see below)

accent grave; a diagonal line (above the letter) extending from upper left to lower right The grave accent 1s used 1n French,
Spanush and Itahian to denote open vowels

fricative, a honizontal Iine through a consonant A fncative consonant 1s characterized by a fnctional rustling of thebreath as
1t1s ermtted " h

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = MINIMUM_LATITUDE
DATA_TYPE =REAL

START_BYTE =180

BYTES =7

FORMAT ="F72"

UNIT = DEGREE

DESCRIPTION = "The munimum_latitude element specifies the southernmost latitude of a spatial
area, such as a map, mosaic, bin, feature, or region "

END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = MAXIMUM_LATITUDE
DATA_TYPE =REAL

START_BYTE =188

BYTES =7

FORMAT ="F72"

UNIT = DEGREE

DESCRIPTION = "The maxaimum_latitude element specifies the northernmost latitude of a
spaual area, such as a map, mosaic, b, feature, or region "

END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = CENTER_LATITUDE
DATA_TYPE =REAL

START_BYTE =196

BYTES =7

FORMAT ="F72"

UNIT = DEGREE

DESCRIPTION = "The center latitude of the feature "
END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = MINIMUM_LONGITUDE
DATA_TYPE =REAL

START_BYTE =204

BYTES =7

FORMAT ="F72"

UNIT = DEGREE

DESCRIPTION = "The mmmimum_long:tude element specifies the easternmost latitude of a
spatial area, such as a map, mosaic, bin, feature, or region "

END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = MAXIMUM_LONGITUDE

O peE

Y

Appendix A. PDS Data Object Definitions A-41
DATA_TYPE =REAL <
START_BYTE =212
BYTES =7
FORMAT ="F7 2"
UNIT = DEGREE
DESCRIPTION = "The maximum_longitude element specifies the westernmost longitude of a
spatial area, such as a map. mosaic, bin, feature, or region
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CENTER_LONGITUDE
DATA_TYPE =REAL
START_BYTE =220
BYTES =7
FORMAT ="F7 2"
UNIT = DEGREE
DESCRIPTION = "The center longitude of the feature "
END_OBIJECT = COLUMN
OBJECT =COLUMN
NAME = LABEL_POSITION_ID
DATA_TYPE = CHARACTER
START_BYTE =229
BYTES =2
FORMAT ="A2"
UNIT = "N/A")
DESCRIPTION = "The suggested plotting position of the feature name (UL=Upper left,

UC=Upper center, UR=Uppernght, CL=Center left, CR=Center nght, LL=Lower left, LC=Lower center, LR=Lower nght) Ttus
field 1s used to mstruct the plotter where to place the typographical label with respect to the center of the feature This code 1s used
to avoid crowding of names 1t areas where there 15 a lugh density of named features "

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = FEATURE_LENGTH

DATA_TYPE =REAL

START_BYTE =233

BYTES =8

FORMAT = "F8 2"

UNIT = KILOMETER

DESCRIPTION = "The longer or longest dimension of an object For the Gazetteer usage, this
field refers to the length of the named feature "

END_OBJECT = COLUMN

OBIJECT = COLUMN

NAME = PRIMARY_PARENTAGE_ID

DATA_TYPE = CHARACTER

START_BYTE) =243

BYTES =2

FORMAT ="A2"

UNIT ="N/A"

DESCRIPTION = "This field contains the pnmary origin of the feature name (1 ¢ where the name

onginated) It contains a code for the continent or country ongin of the name Please see Appendix § of the gazetteer documentation
(GAZETTER TXT) for a defirution of the codes used to define the continent or country "

END_OBJECT = COLUMN

OBJECT =COLUMN

NAME = SECONDARY_PARENTAGE_ID
DATA_TYPE = CHARACTER

START_BYTE =248

A-42 ‘ Appendix A PDS Data Object Definitions

BYTES =2

FORMAT ="A2"

UNIT ="N/A"

DESCRIPTION = "Thus field contans the secondary ongin of the feature name It contains a code

for a country, state, termitory, or ethnic group Please see Appendix 5 of the gazetteer documentation (GAZETTER TXT) for a
defintion of the codes 1n this field "

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME =MAP_SERIAL_ID

DATA_TYPE = CHARACTER

START_BYTE =253

BYTES =6

FORMAT ="A6"

UNIT ="N/A"

DESCRIPTION = "The 1dentification of the map that contains the named feature This field

represents the map sernial number of the map publication used for ordening maps from the U S Geological Survey. The map
1dentified 1n this field best portrays the named feature.”

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = FEATURE_STATUS_TYPE
DATA_TYPE = CHARACTER
START_BYTE =262
BYTES =12
FORMAT ="Al2"
UNIT ="N/A"
DESCRIPTION = "The AU approval status of the named feature Permutted values are

'PROPOSED', 'PROVISIONAL', TAU-APPROVED', and 'DROPPED' Dropped names have been disallowed by the IAU
However, these features have been included 1n the gazetteer for historical purposes Some named features that are disallowed by
the IAU may commonly be used on some maps "

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = APPROVAL_DATE

DATA_TYPE = INTEGER

START_BYTE =276

BYTES =4

FORMAT ="I4"

UNIT ="N/A"

DESCRIPTION = "Date at which an object has been approved by the officially sanctioned
orgamzanon This field contains the year the IAU approved the feature name "

END_OBJECT = COLUMN

OBIJECT = COLUMN

NAME = FEATURE_TYPE

DATA_TYPE = CHARACTER

START_BYTE =282

BYTES =20

FORMAT ="A20"

UNIT ="N/A"

DESCRIPTION = "The feature type 1dentifies the type of a particular feature, according to JAU

standards Examples are 'CRATER’, TESSERA',
(GAZETTER TXT)
DESCRIPTOR TERMS (FEATURE TYPES)

TERRA', etc See Appendix 7 of the gazetteer documentation

Appendix A PDS Data Object Definitions

FEATURE
ALBEDO FEATURE
CATENA

CAVUS

CHAOS

CHASMA
COLLES

CORONA
CRATER
DORSUM
ERUPTIVE CENTER
FACULA
FLEXUS
FLUCTUS

FOSSA

LABES
LABYRINTHUS
LACUS

LARGE RINGED FEATURE
LINEA

MACULA

MARE

MENSA

MONS

OCEANUS

PALUS

PATERA
PLANITIA
PLANUM
PROMONTORIUM
REGIO

RIMA

RUPES
SCOPULUS

SINUS

SULCUS

TERRA

TESSERA

A-43

DE N

Albedo feature

Chain of craters

Hollows, wrregular depressions
Distinctive area of broken terrain
Canyon

Small hull or knob

Ovoid-shaped feature

Crater

Ridge

Eruptive center

Bnght spot

Cuspate linear feature

Flow terrain

Long, narrow, shallow depression
Landshde

Intersecting valley complex

Lake

Large nnged feature

Elongate marking

Dark spot

Sea)

Mesa, fiat—topped elevation
Mountain

Ocean

Swamp

Shallow crater, scalloped, complex edge
Low plain

Plateau or lugh plain

Cape

Region v
Fissure

Scarp

Lobate or 1rregular scarp

Bay

Subparallel furrows and ndges ‘
Extensive land mass

Tile, polygonal ground

THOLUS

UNDAE

VALLIS

VASTITAS
VARIABLE FEATURE

END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

Appendix A PDS Data Object Definitions

Small domical mountain or hill
Dunes

Sinuous valley

Widespread lowlands

Varnable feature

= COLUMN
= COLUMN

= REFERENCE_NUMBER
= INTEGER

= "Literature reference from which the spelling and description of the feature

name was derived. See Appendix 6 of the gazetteer documentation (GAZETTER TXT) ”

END_OBJECT

OBJECT

NAME

DATA_TYPE

START_BYTE

BYTES

FORMAT

UNIT

DESCRIPTION

identification (example MC-19, MC-18, etc) "
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
END_OBJECT
END_OBJECT

END

= COLUMN

= COLUMN

=MAP_CHART_ID

= CHARACTER

=310

6

"A6"

"N/A"

"Ths field contains the abbreviation of the map designator or chart

COLUMN

=COLUMN

= FEATURE_DESCRIPTION

= CHARACTER

=319

=159

"A159"

"N/A™

"Short description of the feature name "
= COLUMN

= GAZETTEER_TABLE

Appendix A PDS Data Object Definttions A-45

A.16 HEADER

The HEADER object is used to 1dentify and define the attributes of commonly used header data
structures such as VICAR or FITS. These structures are usually system or software specific and
are described in detail 1n a referenced description text file. The use of bytes within the header object
refers to the number of bytes for the entire header, not a single record.

Required Keywords

1. BYTES
2. HEADER_TYPE

‘ Optional Keywords
1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. RECORDS
Required Objects
None
Optional Objects
None
Example
The following example shows the detached label file "TIMTCOZA.LBL". The label describes the

data product file "TIMTCOZA.IMG" which contains a HEADER object followed by an IMAGE
object.

CCSD3ZF0000100000001 NJPL3IFOPDSX00000001

PDS_VERSION_ID = PDS3

/* PDS labe] for a TIMS 1mage */

RECORD_TYPE =FIXED_LENGTH
RECORD_BYTES . =638

FILE_RECORDS =139277

/* Pomnters to objects */

~IMAGE_HEADER = ("TIMTCO02A IMG",1)

~IMAGE = ("TIMTC02A IMG",2)

/* Image description */

DATA_SET_ID 'C130-E-TIMS-2-EDR-IMAGE-V1 O’

PRODUCT_ID "“TIMTCO2A"

INSTRUMENT_HOST_NAME "NASA C-130 AIRCRAFT"

INSTRUMENT_NAME "THERMAL INFRARED MULTISPECTRAL SCANNER"
TARGET_NAME =EARTH

FEATURE_NAME = "TRAIL CANYON FAN"

START_TIME = 1989-09-29T21 47 35Z

oo

A-46

STOP_TIME
CENTER_LATITUDE
CENTER_LONGITUDE
INCIDENCE_ANGLE
EMISSION_ANGLE

/* Descrniption of objects */
OBJECT

BYTES

RECORDS
HEADER_TYPE
INTERCHANGE_FORMAT
~DESCRIPTION
END_OBJECT

OBIJECT

LINES

LINE_SAMPLES
SAMPLE_TYPE
SAMPLE_BITS
SAMPLE_BIT_MASK
BANDS
BAND_STORAGE_TYPE
END_OBJECT

END

= 1989-09-29T21 47 35Z
=36 38

=116 96

=00

=00

=IMAGE_HEADER
=638

=1

=VICAR2

BINARY

"VICAR2 TXT"
=IMAGE_HEADER
=IMAGE

= 6546

=638

= UNSIGNED_INTEGER
=8

=2#11111111#

=6

= LINE_INTERLEAVED
=IMAGE

Appendix A. PDS Data Object Definitions

Appendix A PDS Data Object Defimtions ‘ A-47

A.17 HISTOGRAM

The HISTOGRAM object is a sequence of numeric values that provides the number of occurrences
of a data value or a range of data values 1n a data object. The number of items 1n a listogram will
normally be equal to the number of distinct values allowed in a field of the data object. For
example, an 8 bit integer field can have a maximum of 256 values, and would result in a 256 item
histogram. Histograms may be used to bin data, in which case an offset and scaling factor indicate
the dynamuc range of the data represented.

The following equation allows the calculation of the range of each 'bin’ 1n the histogram.
'bin lower boundary' = 'bin element' * scale_factor + offset
Required Keywords

1. ITEMS

2. DATA_TYPE

3. ITEM_BYTES

Optional Keywords

1. BYTES

2. INTERCHANGE_FORMAT

3. OFFSET

4. SCALING_FACTOR

Required Objects

None

Optional Objects

None

Example

CCSD3ZF0000100000001NJPL3IFOPDSX 00000001
PDS_VERSION_ID = PDS3
* FILE FORMAT AND LENGTH */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =956
FILE_RECORDS =965
LABEL_RECORDS =3

* POINTERS TO START RECORDS OF OBJECTS IN FILE */

~IMAGE_HISTOGRAM =4

A-48 Appendix A PDS Data Object Definitions

"IMAGE =6

* IMAGE DESCRIPTION */

DATA_SET_ID = "VO1/VO2-M-VIS-5-DIM-V1 0"
PRODUCT_ID = "MG15N022-GRN-666A"
SPACECRAFT_NAME = VIKING_ORBITER_1

TARGET_NAME =MARS

START_TIME) =1978-01-14T02 00 00

STOP_TIME = 1978-01-14T02 00 00
SPACECRAFT_CLOCK_START_TIME =UNK

SPACECRAFT_CLOCK_STOP_TIME =UNK

PRODUCT_CREATION_TIME =1995-01-01T00 00 00

ORBIT_NUMBER =666

FILTER_NAME = GREEN

IMAGE_ID = "MGI15N022-GRN-666A"
INSTRUMENT_NAME = {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}

NOTE = "MARS MULTI-SPECTRAL MDIM SERIES"
/* SUN RAYS EMISSION, INCIDENCE, AND PHASE ANGLES OF IMAGE CENTER*/
SOURCE_PRODUCT_ID =" 666A36"

EMISSION_ANGLE =21794

INCIDENCE_ANGLE . = 66 443

PHASE_ANGLE =46111

* DESCRIPTION OF OBJECTS CONTAINED IN FILE */

OBJECT = IMAGE_HISTOGRAM
ITEMS =256

DATA_TYPE = VAX_INTEGER
ITEM_BYTES =4

END_OBJECT = IMAGE_HISTOGRAM
OBJECT =IMAGE

LINES =960

LINE_SAMPLES =956

SAMPLE_TYPE = UNSIGNED_INTEGER
SAMPLE_BITS =8
SAMPLE_BIT_MASK =2#11111111#
CHECKSUM = 65718982

/* UF = SCALING_FACTOR*DN + OFFSET, CONVERT TO INTENSITY/FLUX */
SCALING_FACTOR =0001000

OFFSET =00

/* OPTIMUM COLOR STRETCH FOR DISPLAY OF COLOR IMAGES */
STRETCHED_FLAG =FALSE
STRETCH_MINIMUM =(53, 0)
STRETCH_MAXIMUM =(133,255)
END_OBJECT =IMAGE

END

Appendix A PDS Data Object Definitions A-49

A.18 HISTORY

A HISTORY object 1s a dynamic description of the history of one or more associated data objects
in a file. It supplements the essentially static description contained in the PDS label.

The HISTORY object contains text in a format similar to that of the ODL statements used in the
label. It identifies previous computer manipulation of the principal data object(s) 1n the file. It
includes an identification of the source data, processes performed, processing parameters, as well
as dates and times of processing. It is intended that the history be available for display, be
dynamucally extended by any process operating on the data, and automatically propagated to the
resulting data file. Eventually, 1t might be extracted for loading in detailed level catalogs of data
set contents.

The HISTORY object 1s structured as a series of History Entries, one for each process which has
operated on the data. Each entry contains a standard set of ODL element assignment statements,
delimited by GROUP = program_name and END_GROUP = program_name statements. A
subgroup in each entry, delimited by GROUP = PARAMETERS and END_GROUP =
PARAMETERS, contains statements specifying the values of all parameters of the program.

HISTORY ENTRY ELEMENTS
Attnibute Description

VERSION_DATE Program version date, ISO standard format
DATE_TIME Run date and ume, ISO standard format
NODE_NAME Network name of computer.
USER_NAME Username.

SOFTWARE_DESC Program-generated (brief) descnption
USER_NOTE User-supplied (bnief) description

Unlike the above elements, the names of the parameters defined in the PARAMETERS subgroup
are uncontrolled, and must only conform to the program.

The last entry in a HISTORY object is followed by an END statement. The HISTORY object, by
convention, follows the PDS label of the file, beginning on a record boundary, and is located by a
pointer statement in the label. There are no required elements for the PDS label description of the
object; it is represented in the label only by the pointer statement, and OBJECT = HISTORY and
END_OBJECT = HISTORY statements.

The HISTORY capability has been implemented as part of the Integrated Software for Imaging
Spectrometers (ISIS) system (see QUBE object definition). ISIS Qube applications add their own
entries to the Qube file's cumulative History object. ISIS programs run under NASA's TAE
(Transportable Applications Executive) system, and are able to automatically insert all parameters
of their TAE procedure into the history entry created by the program. Consult the ISIS System
Design document for details and limitations imposed by that system. (See the QUBE object
description for further references.)

A-50 Appendix A PDS Data Object Definitions

Example

The following single-entry HISTORY object is from a Vicar-generated PDS-]abeled qube file.
(See the Qube object example.) There's only one entry because the qube (or rather its label) was
generated by a single program, VISIS. A qube generated by multiple ISIS programs would have
multiple history entries, represented by multiple GROUPs in the HISTORY object.

This diagram illustrates the placement of the example HISTORY object within a Qube data product
with an attached PDS label.

CCSD
. PDS
AHISTORY = LABEL
END
GROUP=VISIS
HISTORY
END-GROUP=VISIS
END
QUBE
GROUP = VISIS
VERSION_DATE =1990-11-08
DATE_TIME = 1991-07-25T10 12 52
SOFTWARE_DESC = "ISIS cube file with PDS label has been generated as systematic product by
MIPL using the following programs
NIMSMERGE to create EDR’s,
NIMSCMM to create the merged mosaic & geometry cube,
HIST2D to create a two-dimensional histogram,
SPECPLOT to create the spectral plots,
TRAN, F2, and INSERT3D to create the SII cube,
VISIS to create the 1SIS cube *
USER_NOTE = "VPDIN1/ Footpnnt, Limbfit, Height=50"
GROUP = PARAMETERS
EDR_FILE_NAME =" /*EDR accessed through MIPL Catalog*/

IMAGE_ID =NULL
SPICE_FILE_NAME =""
SPIKE_FILE_NAME
DARK_VALUE_FILE_NAME
CALIBRATION_FILE_NAME

“mupl [mupl gll]boom_obscuration mm"

"o

“ndat:mmsgs2 cal"

Appendix A PDS Data Object Definitions

MERGED_MOSAIC_FILE_NAME
DARK_INTERPOLATION_TYPE
PHOTOMETRIC_CORRECTION_TYPE
CUBE_NIMSEL_TYPE
BINNING_TYPE
FILL_BOX_SIZE
FILL_MIN_VALID_PIXELS
SUMMARY_IMAGE_RED_ID
SUMMARY_IMAGE_GREEN_ID
SUMMARY_IMAGE_BLUE_ID
ADAPT_STRETCH_SAT_FRAC
ADAPT_STRETCH_SAMP_FRAC
RED_STRETCH_RANGE
GREEN_STRETCH_RANGE
BLUE_STRETCH_RANGE
END_GROUP
END_GROUP
END

NOUPDAT

= 0000000

= 0 000000

=(0, 0

=(0, 0

=(0, 0

= PARAMETERS
= VISIS

A-51

A-52 Appendix A PDS Data Object Definitions

A.19 IMAGE

An IMAGE object is an array of sample values. Image objects are normally processed with special
display tools to produce a visual representation of the sample values. This is done by assigning
brightness levels or display colors to the various sample values. Images are composed of LINES
and SAMPLES. They may contain multiple bands, 1n one of several storage orders.

Simple IMAGE objects are defined as having LINES as the number of horizontal lines, with each
line having LINE_SAMPLES as the number of sample values defined. The default sample values
are 8-bit unsigned binary integer. The sample size can be over- ridden using the SAMPLE_BITS
keyword (e.g. SAMPLE_BITS = 32) The SAMPLE_TYPE keyword can be used to override the
default SAMPLE_TYPE (e.g. SAMPLE_TYPE = VAX_REAL).

Each line of an IMAGE object may also be organized with a set of PREFIX or SUFFIX bytes,
which provide engineering parameters related to each line. The PREFIX or SUFFIX area s treated
as a TABLE object which has been concatenated with the IMAGE object. Each physical record in
the file contains a row of the PREFIX or SUFFIX table and a line of the IMAGE. While this is a
commonly used format for IMAGE storage, it can cause difficulties if used with general purpose
display and processing software. In particular, most programs will consider the PREFIX and
SUFFIX as part of the image, meaning that statistics generated for the image (mean, standard
deviation, etc.) will be in error. It 1s recommended that PREFIX or SUFFIX information be stored
as a separate TABLE data object in separate records within the file and not concatenated with the
image data. (See Figure A.1.)

Most images are composed of LINES containing a horizontal array of SAMPLES. However some
1maging sensors may scan in a vertical direction, creating an array of vertical lines, as in the case of
the Viking Lander camera system.

More complex IMAGE formats include multi-band images, where SAMPLES or LINES of the
same scene from several spectral bands are combined in one object, by sample
(SAMPLE_INTERLEAVED), or by line (LINE_INTERLEAVED). Another IMAGE format is
TILED, where a large IMAGE 1s divided into smaller pieces (TILES) to provide efficient access.

Figure A.2 illustrates the BANDS, BAND_NAME, and BAND_STORAGE_TYPE keywords that
can be used to describe multi-band images.

Note: Additional engineering values may be prepended or appended to each LINE of an image, and
are stored as concatenated TABLE objects, which must be named LINE_PREFIX and
LINE_SUFFIX. IMAGE objects may be associated with other objects, including HISTOGRAM:s,
PALETTEs, HISTORY and TABLEs which contain statistics, display parameters, engineering
values or other ancillary data.

Appendix A PDS Data Object Definitions A-53

LINES = 10 <&—LINE_SAMPLES = 15 Record

P S ;
R u
E F '
F F :
I N .
X X

< 10

\\\ SAMPLE_BITS=8

SAMPLE_TYPE=UNSIGNED_INTEGER

Figure A.1: Prefix and Suifix Bytes attached to an Image

BANDS=3, BAND_STORAGE_TYPE=BAND_SEQUENTIAL BAND_STORAGE _TYPEXINE_INTERLEAVED

WHWWWWWWWWY
Lvez ANINININININEININY

LINE3

, LWHIWHWWWWWWWWWWW
UNE 1 FIHG{R lllllll\\
ine2 [=CRTRe il SNNNNNNN
LUNE 3 FiTHiTH] |i||||||l WE I T NS LINEE
i HHE -
UNE 6 DR s LINES &&h&kk\l\&
UNE 7 HFHNIRIE T LINES
UNE 8 RiiEEEiE R i ETC

BAND_NAME = (RED, GREEN, BLUE)

BAND_STORAGE_TYPE=SAMPLE_INTERLEAVED

RN N N [N N [N S
SN N N NN NN
es [N TN NN

oee [TNITININGINETINE NN

ETC .

Figure A.2: Keywords for a Multi-Band Image

A-54

Required Keywords

1. LINES

2. LINE_SAMPLES
3. SAMPLE_TYPE
4. SAMPLE_BITS

" Optional Keywords

WX NN PEWN e~

BAND_SEQUENCE
BAND_STORAGE_TYPE

BANDS

CHECKSUM DERIVED_MAXIMUM
DERIVED_MINIMUM
DESCRIPTION

ENCODING_TYPE

FIRST_LINE

FIRST_LINE_SAMPLE

. INVALID

. LINE_PREFIX_BYTES
. LINE_SUFFIX_BYTES
. MISSING

. OFFSET

. SAMPLE_BIT_MASK

SAMPLING_FACTOR

. SCALING_FACTOR
. SOURCE_FILE_NAME
. SOURCE_LINES

SOURCE_LINE_SAMPLES

. SOURCE_SAMPLE_BITS
. STRETCHED_FLAG
. STRETCH_MINIMUM

STRETCH_MAXIMUM

Required Objects

None R

Optional Objects

None

Appendix A. PDS Data Object Defimitions

Appendix A. PDS Data Object Definitions A-55

Example

This 1s an example of an attached IMAGE label for a color digital mosaic image from the Mars
Digital Image Map CD-ROMs. It includes a checksum to support automated volume production
and validation, a scaling_factor to indicate the relationship between sample values and geophysical
parameters and stretch keywords to indicate optimal values for image display.

CCSD3ZF0000100000001NJPL3IFOPDSX 00000001
PDS_VERSION_ID = PDS3

/* FILE FORMAT AND LENGTH */

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 956
FILE_RECORDS = 965
LABEL_RECORDS =3

/* POINTERS TO START RECORDS OF OBJECTS IN FILE */

AIMAGE_HISTOGRAM =4
AIMAGE =6

/* IMAGE DESCRIPTION */

DATA_SET _ID ="V01/V0O2-M-VIS-5-DIM-V1 0"

PRODUCT_ID = "MGI15N022-GRN-666A"

SPACECRAFT_NAME = VIKING_ORBITER _1

TARGET_NAME =MARS

IMAGE_TIME = 1978-01-14T02 0C 0C

START_TIME =UNK

STOP_TIME =UNK

SPACECRAFT_CLOCK_START_COUNT =UNK

SPACECRAFT_CLOCK_STOP_COUNT =UNK

PRODUCT_CREATION_TIME = 1995-01-01T00 00 00

ORBIT_NUMBER =666

FILTER_NAME = GREEN

IMAGE_ID = "MG15N022-GRN-666A"

INSTRUMENT_NAME = [VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}

NOTE = "MARS MULTI-SPECTRAL MDIM SERIES"

SOURCE_PRODUCT_ID = "666A36"

EMISSION_ANGLE =21 794

INCIDENCE_ANGLE =66 443

PHASE_ANGLE . =46111

/* DESCRIPTION OF OBJECTS CONTAINED IN FILE */

OBIJECT = IMAGE_HISTOGRAM
ITEMS =256

DATA_TYPE = VAX_INTEGER
ITEM_BYTES =4

END_OBJECT = IMAGE_HISTOGRAM
OBJECT = IMAGE

LINES = 960

LINE_SAMPLES =956

A-56 Appendix A PDS Data Object Defimtions

SAMPLE_TYPE = UNSIGNED_INTEGER

SAMPLE_BITS =8

SAMPLE_BIT_MASK =2#11111111#%

CHECKSUM = 65718982

SCALING_FACTOR =0001000 /* I/F = scaling factor * DN + offset, */
/* convert to intensity/flux */

OFFSET =00

STRETCHED_FLAG =FALSE /* Optimum color stretch for display */

STRETCH_MINIMUM =(53. 0) /* of color images */

STRETCH_MAXIMUM = (133,255)

END_OBJECT =IMAGE

END

Appendix A PDS Data Object Definitions A-57

A.20 IMAGE MAP PROJECTION

The IMAGE_MAP_PROJECTION object 1s one of two distinct objects that define the map
projection used in creating the digital images in a PDS data set.The name of the other associated
object that completes the definition is called DATA_SET_MAP_PROJECTION.(see Appendix B)

The map projection information resides in these two objects, essentially to reduce data
reduncdancy and at the same time allow the inclusion of elements needed to process the data at the
image level. Basically, static information that is applicable to the complete data set reside in the
DATA_SET_MAP_PROIJECTION object, while dynamic information that 1s applicable to the
individual images reside in the IMAGE_MAP_PROIJECTION object.

The line_first_pixel, line_last_pixel, sample_first_pixel, and sample_last_pixel keywords are used
to indicate which way is up in an image. Sometimes an image can be shifted or flipped prior to it
being physically recorded. These keywords are used in calculating the mapping of pixels between
the onginal image and the stored image.

The following equations give the byte offsets needed to determine the mapping of a pixel (X,Y)
from the original image to a pixel in the stored image:

The sample offset from the first pixel is:

sample_bits * (Y - sample_first_pixel) * line_samples
8 * (sample_last_pixel - sample_first_pixel + 1)

The line offset from the first image line is:

(X - Iine_first_pixel) * lines
(line_last_pixel - line_first_pixel + 1)

Additionally, in any 1mage, ABS (sample_last_pixel - sample_first_pixel + 1) 1s always equal to
line_samples, and ABS (line_last_pixel - line_first_pixel + 1) is always equal to lines.

A-58 Appendix A PDS Data Object Definitons

Example

Take a 1K by 1K 8-bit image which is rotated about the x-ax1s 180 degrees prior to being physically
recorded.

Ornginal Image: Positive direction 1s to the right and down

first pixel (sample, iine) = (1,1)

«— (1024,1)

(1,1024)—>

Image P

f

last pixel (1024, 1024)

Stored Image: Positive direction is to the right and up

first pixel (sample, line) = (1,1024)*

'

«— (1024,1024)*

1,1y —

Image P’ 3

last pixel (1024,1)*

These pixel location values (*) are the positions from the original image. For example, the first
pixel in the stored image (normally referred to as (1,1)) came from the position (1,1024) 1n the

original image. These original values are used for the followmg IMAGE_MAP_PROJECTION
keywords in the PDS label for the stored image:

sample_first_pixel = 1
sample_last_pixel = 1024
line_first_pixel = 1024
line_last_pixel = 1 '

Now, given a pixel on the original image, P(X,Y) = (2,2) determine its location (P") in the stored
image.

Appendix A PDS Data Object Definitions A-59

sample offset = (8 * (2-1)*1024)/ (8 *(1024-1+ 1)) =1
line offset = ((2 - 1024) * 1024)/ (1 - 1024 + 1) = (-1022)

Therefore, P’ is located at 1 byte from the first sample, and 1022 bytes (in the negative direction)
from the first line 1n the stored image. See diagram above.

Required Keywords

MAP_PROJECTION_TYPE
A_AXIS_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS
FIRST_STANDARD_PARALLEL
SECOND_STANDARD_PARALLEL
POSITIVE_LONGITUDE_DIRECTION
CENTER_LATITUDE

. CENTER_LONGITUDE

10. REFERENCE_LATITUDE

11. REFERENCE_LONGITUDE

12. LINE_FIRST_PIXEL

13. LINE_LAST_PIXEL

14. SAMPLE_FIRST_PIXEL

15. SAMPLE_LAST_PIXEL

16. MAP_PROJECTION_ROTATION
17. MAP_RESOLUTION

18. MAP_SCALE

19. MAXIMUM_LATITUDE

20. MINIMUM_LATITUDE

21. EASTERNMOST_LONGITUDE
22. WESTERNMOST_LONGITUDE
23. LINE_PROJECTION_OFFSET

24. SAMPLE_PROJECTION_OFFSET
25. COORDINATE_SYSTEM_TYPE
26. COORDINATE_SYSTEM_NAME

VNG AW~

Optional Keywords
1.DATA_SET_ID
2. IMAGE_ID

3. HORIZONTAL_FRAMELET_OFFSET
4. VERTICAL_FRAMELET_OFFSET

Required Objects

1. DATA_SET_MAP_PROJECTION

A-60

Optional Objects
None

Example
PDS_VERSION_ID

/* File charactenistics */
RECORD_TYPE

/* Identification data elements */
DATA_SET_ID
DATA_SET_NAME

V1o

PRODUCT_ID

MISSION_NAME
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME

ORBIT_START_NUMBER
ORBIT_STOP_NUMBER

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

PRODUCT_CREATION_TIME
PRODUCT_RELEASE_DATE
PRODUCT_SEQUENCE_NUMBER
PRODUCT_VERSION_TYPE

SOURCE_DATA_SET_ID
"MGN-V-RDRS-CDR-ALT/RAD-V1 0"}
SOURCE_PRODUCT_1D

[E I (N | R T I

Appendix A PDS Data Object Definitions

"MGN-V-RDRS-5-GVDR-V1 0"
"MAGELLAN VENUS RADAR SYSTEM GLOBAL DATA RECORD

"IMP-NORTH 100"

"MAGELLAN"
“MAGELLAN"
"RADAR SYSTEM"
"VENUS"

376
4367

"N/A"
"N/A"
“N/A™
“N/A™

1994-05-07T22-09 27 000
1994-05-13

= 00000
= "PRELIMINARY"

{"MGN-V-RDRS-5-SCVDR-V1 0",

{"SCVDR 00376-00399 17,"SCVDR.00400-00499 1~,

"SCVYDR 01100-0119% 17,"SCVDR 01200-01299 1","SCVDR 01300-01399 1",
"SCVYDR 01400-01499 1","SCVDR 01500-01599 1°,"SCVDR 01600-01699 1",
"SCVDR 01700-01799.1","SCVDR 01800-01899 1","SCVDR 01900-01999 1",
"ARCDRCD 001,2","ARCDRCD 002.1","”ARCDRCD 003,1","ARCDRCD 004,1",
"ARCDRCD 005,1","ARCDRCD 006,1","ARCDRCD 007,1","”ARCDRCD 008,1",
“ARCDRCD 017,1","ARCDRCD 018,1","”ARCDRCD 019,1"}

SOFTWARE_FLAG

PRODUCER_FULL_NAME
PRODUCER_INSTITUTION_NAME
PRODUCER_ID ‘
DESCRIPFTION

ay

"Michael J Maurer”

"Stanford Center for Radar Astronomy”
"SCRA™

“Thas file contains a single

IMAGE_MAP_PROJECTION data object with an attached PDS label *

/* Data object definitions */

OBJECT
ADATA_SET_MAP_PROJECTION
COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME

IMAGE_MAP_PROJECTION
"DSMAP CAT"

= "BODY-FIXED ROTATING"

"PLANETOCENTRIC"

Appendix A PDS Data Object Definitions

MAP_PROJECTION_TYPE = "STEREOGRAPHIC"
A_AXIS_RADIUS = 6051 0 <KM>
B_AXIS_RADIUS = 6051 0 <KM>
C_AXIS_RADIUS = 6051 0 <KM>
FIRST_STANDARD_PARALLEL ="N/A"
SECOND_STANDARD_PARALLEL ="N/A"
POSITIVE_LONGITUDE_DIRECTION = "EAST"

CENTER_LATITUDE =90
CENTER_LONGITUDE 0

REFERENCE_LATITUDE | = "N/A"
REFERENCE_LONGITUDE ="N/A"
LINE_FIRST_PIXEL =1
LINE_LAST_PIXEL =357
SAMPLE_FIRST_PIXEL =1
SAMPLE_LAST_PIXEL =357
MAP_PROJECTION_ROTATION =0
MAP_RESOLUTION =5 79478 <PIXEI /DEGREE>
MAP_SCALE = 18 225 <KM/PIXEL:>
MAXIMUM_LATITUDE ' =9000
MINIMUM_LATITUDE =60 00
EASTERNMOST_LONGITUDE = 36000
WESTERNMOST_LONGITUDE =000
LINE_PROJECTION_OFFSET =178
SAMPLE_PROJECTION_OFFSET =178

END_OBJECT =IMAGE_MAP_PROJECTION

END

A-61

A-62 Appendix A PDS Data Object Definitions

A.21 INDEX_TABLE

The INDEX_TABLE object is a specific type of a TABLE object that provides information about
the data stored on an archive volume. The INDEX_TABLE contains one row for each data file (or
data product label file, in the case where detached labels are used) on the volume. The table is
formatted so that it may be read directly by many data management systems on various host
computers. All fields (columns) are separated by commas, and character fields are enclosed by
double quotation marks. Each record ends in a carriage return/line feed sequence. This allows the
table to be treated as a fixed length record file on hosts that support this file type and as a normal
text file on other hosts.

There are two categories of columns for an Index table, identification and search. PDS data element
names should be used as column names wherever appropriate.

The required columns are used for 1dentification. The optional columns are data dependent and are
used for search. For example, the following may be useful for searching;

Location (e.g. LATITUDE, LONGITUDE, ORBIT_NUMBER)

Time (e.g. START_TIME, SPACECRAFT_CLOCK START_COUNT)

Feature (e.g. FEATURE_TYPE)

Observational characteristics (e.g. INCIDENCE_ANGLE)

Instrument characteristics (e.g. FILTER_NAME)

For archive volumes created before version 3.2 of the PDS standards, 1f the keyword
INDEX_TYPE is not present, the value is defaulted to SINGLE, unless the Index's filename is
given as CUMINDEX.TAB or axxCMIDX.TAB (with axx representing up to three alphanumeric
characters).

If the keyword INDEXED_FILE_NAME is not present for a SINGLE index, the value is defaulted
to "*.*" if attached labels are used, or "* . LBL" if detached labels are used. This indicates that the
index encompasses all data product files on the volume.

If the keyword INDEXED_FILE_NAME is not present for a cumultative index, the default value
is "*.TAB" for files in the INDEX subdirectory.
See section 17.2 for information about the use of N/A, UNK and NULL in an INDEX table.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS

3. COLUMNS

4. ROW_BYTES
5.INDEX_TYPE

Appendix A. PDS Data Object Definitions A-63

Optional Keywords

1. NAME

2. DESCRIPTION

3. INDEXED_FILE_NAME

4. UNKNOWN_CONSTANT

5. NOT_APPLICABLE_CONSTANT
6. NULL_CONSTANT

Required Objects
1. COLUMN
Required COLUMN Objects (NAME=)

FILE_SPECIFICATION_NAME or PATH_NAME and FILE_NAME
PRODUCT_ID (**)
VOLUME_ID (*)
DATA_SET_ID (*)
PRODUCT_CREATION_TIME (*)
LOGICAL_VOLUME_PATH_NAME (must be used with PATH_NAME
" and FILE_NAME for a logical volume) (¥}

(*) If the value is constant across the data in the index table, this keyword can appear in the index

table’s label.
If the value is not constant, then a column of the given name must be used.

(**) PRODUCT_ID is not required if it has the same value as FILE_NAME
or FILE_SPECIFICATION_NAME.

Required Keywords (for Required COLUMN Objects)

NAME
DATA_TYPE
START_BYTE
BYTES
DESCRIPTION

A-64 Appendix A PDS Data Object Definitions

Optional COLUMN Objects (NAME=)

MISSION_NAME
INSTRUMENT_NAME (or ID)
INSTRUMENT_HOST_NAME (or ID)
(or SPACECRAFT_NAME or ID)

TARGET_NAME

PRODUCT_TYPE
MISSION_PHASE_NAME
VOLUME_SET_ID

START_TIME

STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
any other search columns

Appendix A PDS Data Object Defimuons

Example

CCSD3ZF0000100000001NJPL3IFOPDSX 00000001

PDS_VERSION_ID = PDS3

RECORD_TYPE =FIXED_LENGTH

RECORD_BYTES =180

FILE_RECORDS =220

DESCRIPTION ="INDEX TAB lists all data files on this volume"

~INDEX_TABLE

OBJECT

INTERCHANGE_FCORMAT

ROW_BYTES
ROWS
COLUMNS
INDEX_TYPE

INDEXED_FILE_NAME

OBIJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBIECT

OBIJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBIJECT

OBJECT
NAME
DESCRIPTION

= "INDEX TAB"

=INDEX_TABLE

= ASCII

=180

=220

=9

= SINGLE

= {"* AMD","* [ON","* TIM","* TRO",
" WEA","* LIT","* MIF",”* MPD",

"* ODF","* ODR","* ODS","* SFO",
"* SOE","* TDF"})

= COLUMN

= VOLUME_ID

= "Identsfies the volume contaiming the named file"
= CHARACTER

=2

=9

= COLUMN

= COLUMN

=DATA_SET_ID

= "The data set identifier Acceptable values include
‘MO-M-RSS-1-OIDR-V1 0"

= CHARACTER

=14

=25

=COLUMN

=COLUMN
=PATH_NAME

= "Path to directory containing file
Acceptable values include
'AMD ',

‘ION ',

TIM ',

TRO',

‘WEA ',

'LIT °,

‘MIF,

‘MPD ',

'ODF",

‘ODR ',

'ODS Y,

'SFO ',

'SOE', and

TDF " "

A-65

A-66

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBIJECT

OBIECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_TYPE

START_BYTE

BYTES
END_OBIJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBIJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES
END_OBIJECT

END_OBJECT
END

= CHARACTER
=42

=9
=COLUMN

= COLUMN
=FILE_ NAME

= "Name of file in archive”

= CHARACTER
=54

=12

= COLUMN

= COLUMN
=PRODUCT_ID

Appendix A PDS Data Object Definitions

= "Onginal file name on MO PDB or SOPC"

= CHARACTER
=69

=33

= COLUMN

= COLUMN
= START_TIME

= "Time at which data in the file begin given in the format

YYYY-MM-DDThh mm ss'”

= CHARACTER
=105

=19

= COLUMN

= COLUMN
= STOP_TIME

= "Time at which data in the file end given in the format

YYYY-MM-DDThh mm.ss' "

= CHARACTER
=127

=19

= COLUMN

= COLUMN

= PRODUCT_CREATION_TIME
= "Date and ume that file was created "

= CHARACTER
= 149

=19

= COLUMN

= COLUMN
FILE_SIZE

i u

170
=9
= COLUMN

=INDEX_TABLE

“Number of bytes in file, not 1acluding label *
"ASCII INTEGER"

Appendix A. PDS Data Object Definitions A-67

b

A.22 PALETTE

The PALETTE object, a sub-class of the table object, contains entries which represent color
assignments for SAMPLE values contained in an IMAGE.

If the palette is stored in an external file from the data file, then the palette should be stored in
ASCII format as 256 ROWS, each composed of 4 COLUMNS The furst column contains the
SAMPLE value (0 to 255 for an 8-bit SAMPLE), and the remaining 3 COLUMNS contains the
relative amount (a value from O to 255) of each primary color to be assigned for that SAMPLE
value.

If the palette is stored in the data file, then it should be stored in BINARY format as 256
consecutive 8-bit values for each primary color (RED, GREEN, BLUE) resulting 1n a 768 byte
record.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS

3.ROW_BYTES

4. COLUMNS

Optional Keywords

1. DESCRIPTION
2. NAME

Required Objects
1. COLUMN
Optional Objects
None

Example

The examples below depict the differences between the two types of PALETTE objects. The first
is an example of an ASCII PALETTE object, and the second is an example of the BINARY
PALETTE object. -

CCSD3ZF0000100000001 NJPL3IFOPDSX00000001

PDS_VERSION_ID =PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =80

FILE_RECORDS =256

A-68 Appendix A. PDS Data Object Definitions

~PALETTE = "PALETTE TAB"

/* Image Palette descnption */

SPACECRAFT_NAME '=MAGELLAN
MISSION_PHASE_NAME =PRIMARY_MISSION
TARGET_NAME = VENUS

PRODUCT_ID ="GEDR-MERC 1,2"
IMAGE_ID ="GEDR-MERC 1,2"
INSTRUMENT_NAME ="RADAR SYSTEM"
PRODUCT_CREATION_TIME = 1995-01-01T00 00 00
NOTE = "Palette for browse image”

/* Descniption of an ASCII PALETTE object */

OBIJECT = PALETTE
INTERCHANGE_FORMAT = ASCII

ROWS =256

ROW_BYTES =80

COLUMNS =4

OBIJECT = COLUMN

NAME = SAMPLE
DESCRIPTION ="DN value for red, green, blue intensities"
DATA_TYPE = INTEGER
START_BYTE =1

BYTES =3

END_OBIJECT

OBJECT = COLUMN

NAME = RED

DESCRIPTION = "Red 1ntensity (0 - 253)"
DATA_TYPE = INTEGER
START_BYTE =6

BYTES =3

END_OBJECT

OBJECT = COLUMN

NAME = GREEN
DESCRIPTION = "Green mtensity (0 - 255)"
DATA_TYPE = INTEGER
START_BYTE =11

BYTES =3

END_OBJECT

OBJECT = COLUMN

NAME = BLUE

DESCRIPTION = "Blue intensity (0 - 255)"
DATA_TYPE = INTEGER
START_BYTE =16

BYTES =3

END_OBJECT

END_OBIJECT

END

/* Descniption of a BINARY PALETTE object */

OBIECT = PALETTE
INTERCHANGE_FORMAT = BINARY
ROWS =1
ROW_BYTES = 768

COLUMNS =3

Appendix A PDS Data Object Definitions

OBJECT = COLUMN

NAME =RED

DATA_TYPE = UNSIGNED_INTEGER
START_BYTE =1

ITEMS =256

ITEM_BYTES =1

END_OBIJECT = COLUMN

OBJECT = COLUMN

NAME = GREEN

DATA_TYPE = UNSIGNED_INTEGER
START_BYTE =257

ITEMS =256

ITEM_BYTES =1

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME =BLUE

DATA_TYPE = UNSIGNED_INTEGER
START_BYTE =513

ITEMS =256

ITEM_BYTES =1

END_OBIJECT = COLUMN
END_OBJECT =PALETTE

END

A-69

Appendix A. PDS Data Object Definitions

A23 QUBE

A generalized QUBE object is a multidimensional array (called the core) of sample values in
multiple dimensions. The core is homogeneous, and consists of unsigned byte, signed halfword or
floating point fullword elements. QUBE:s of one to three dimensions may have optional suffix
areas in each axis. The suffix areas may be heterogeneous, with elements of different types, but
each suffix pixel is always allocated a fullword. Special values may be defined for the core and the
suffix areas to designate missing values and several kinds of invalid values, such as instrument and
representation saturation.

The QUBE is the principal data structure of the ISIS (Integrated Software for Imaging
Spectrometers) system. A frequently used specialization of the QUBE object 1s the ISIS Standard
Qube, which is a three-dimensional QUBE with two spatial dimensions and one spectral
dimension. Its axes have the interpretations 'sample’, 'line' and 'band’. Three physical storage orders
are allowed: band-sequential, line_interleaved (band-interleaved-by-line) and sample_interleaved
(band-interleaved-by-pixel). -

An example of a Standard ISIS Qube is a spectral image qube containing data from an imaging
spectrometer. Such a qube is simultaneously a set of images (at different wavelengths) of the same
target area, and a set of spectra at each point of the target area. Typically, suffix areas in such a
qube are confined to 'backplanes’ containing geometric or quality information about individual
spectra, 1.e. about the set of corresponding values at the same pixel location 1n each band.

The following diagram illustrates the general structure of a Standard ISIS Qube. Note that this is a
conceptual or “logical” view of the qube.

EXPLODED VIEW of a - CORE STRUCTURE
QUBE OBJECT
SPECTRAL
BACKPLANE (BANV
SPATIAL
(LNES)
CORE
SIDEPLANE |
\/

{SAMPLES)

Figure A.3: Exploded View of a Qube Object

Appendix A PDS Data Object Definitons A-71

Some special requirements are imposed by the ISIS system. A QUBE object must be associated
with a HISTORY object. (Other objects, such as HISTOGRAMs, IMAGEs, PALETTEs and
TABLEs which contain statistics, display parameters, engineering values or other ancillary data,
are optional.) A special element, FILE_STATE, is required in the implicit FILE object. Some label
information is organized into GROUPs, such as BAND_BIN and IMAGE_MAP_PROJECTION.
The BAND_BIN group contains essential wavelength information, and is required for Standard
ISIS Qubes. :

The ISIS system includes routines for reading and writing files containing QUBE objects. Both
'logical’ access, independent of actual storage order, and direct ‘physical’ access are provided for
Standard ISIS Qubes. Only physical access is provided for generalized QUBEs. Most ISIS
application programs operate on Standard ISIS Qubes. Arbitrary subqubes ('virtual' qubes) of
existing qubes may be specified for most of these programs. In addition, ISIS includes software for
handling Tables (an ISIS variant of the’PDS Table object) and Instrument Spectral Libraries.

For a complete description, refer to the most recent version of 'ISD: ISIS System Design, Build 2/,
obtainable from the PDS Operator.

NOTE: The following required and optional elements of the QUBE object are ISIS-specific. Since

the ISIS system was designed before the current version of the Planetary Science Data Dictionary,
some of the element names conflict with current PDS nomenclature standards.

Required Keywords (Generalized Qube and Standard ISIS Qube)

AXES Number of axes or dimensions of qube [integer]
AXIS_NAME ‘ Names of axes [sequence of 1-6 literals]

(BAND, LINE, SAMPLE) for Standard Qube
CORE_ITEMS Core dimensions of axes [seq of 1-6 integers]
CORE_ITEM_BYTES Core element size [integer bytes. {1, 2, 4}]
CORE_ITEM_TYPE Core element type

[literal {UNSIGNED_INTERGER, INTERGER, REAL}]
CORE_BASE Base value of core item scaling [real]
CORE_MULTIPLIER Multiplier for core item scaling [real]

'true’ value = base + muluplier * 'stored’ value
(base = 0.0 and multipher = 1 0 for REALSs)

SUFFIX_BYTES . Storage allocation of suffix elements [integer: always 4]
SUFFIX_ITEMS Suffix dimensions of axes [seq of 1-6 integers]
CORE_VALID_MINIMUM Minimum valid core value -- values below this value are

reserved for 'special’ values, of which 5 are currently assigned
[1nteger or non-decimal integer: these values are fixed by ISIS
convention for each allowable 1tem type and size -- see ISD for

A-72

CORE_NULL
CORE_LOW_INSTR_SATURATION
CORE_HIGH_INSTR_SATURATION
CORE_LOW_REPR_SATURATION

CORE_HIGH_REPR_SATURATION

Appendix A PDS Data Object Definitions
details] Special value indicating’invalid’ data
Special value indicating 'imvalid’ data
Special value indicating insttument saturation at the low end
Special value indicating instrument sataration at the high end
Special value indicating representation saturation at the low end

Special value indicating representation saturation at the high
end

Required Keywords (Standard ISIS Qube) and Optional Keywords (Generalized Qube)

CORE_NAME

CORE_UNIT
BAND_BIN_CENTER
BAND_BIN_UNIT

BAND_BIN_ORIGINAL_BAND

Name of value stored 1n core of qube [literal, e g.
SPECTRAL_RADIANCE]

Umit of value stored 1n core of qube [literal]

Wavelengths of bands 1n a Standard Qube [sequence of reals]
Unit of wavelength [literal, e g MICROMETER]

Original band numbers, referring to a Qube of which the current

qube 1s a subqube In the original qube, these are sequential
ntegers [sequence of integers]

Optional Keywords (Generalized Qube and Standard ISIS Qube)

BAND_BIN_WIDTH

BAND_BIN_STANDARD_DEVIATION

BAND_BIN_DETECTOR

BAND_BIN_GRATING_POSITION

Width (at half height) of spectral response of bands [sequence
of reals]

Standard deviationof spectrometer values at each band
[sequence of reals]

Instrument detector number of band, where relevant [sequence
of integers]

Instrument grating position of band, where relevant [sequence
of integers]

Required Keywords (for each suffix present in a 1-3 dimensional qube).
Note: These must be prefixed by the specific AXIS_NAME. These are SAMPLE, LINE and
BAND for Standard ISIS Qubes. Only the commonly used BAND variants are shown:

BAND_SUFFIX _NAME
BAND_SUFFIX_UNIT
BAND_SUFFIX_ITEM_BYTES

BAND_SUFFIX_ITEM_TYPE

Names of suffix 1tems [sequence of literals]
Units of suffix items [sequence of literals]
Suffix itemn sizes [sequence of integer bytes {1, 2, 4}]

Suffix item types [sequence of literals:
{UNSIGNED_INTEGER, INTEGER, REAL, . }]

Appendix A PDS Data Object Definitions A-T73

BAND_SUFFIX_BASE Base values of suffix item scaling [sequence of reals] (see
corresponding core element)

BAND_SUFFIX_MULTIPLIER Multipliers for suffix 1tem scaling [sequence of reals] (see
corresponding core element)

BAND_SUFFIX_VALID_MINIMUM Minimum valid suffix values

BAND_SUFFIX_NULL . .and assigned special values

BAND_SUFFIX_LLOW_INSTR_SAT [sequences of integers or reals}

BAND_SUFFIX_HIGH_INSTR_SAT (see corresponding core

BAND_SUFFIX_LOW_REPR_SAT element definitions for

BAND_SUFFIX_HIGH_REPR_SAT details)

Example

The following label describes ISIS qube data from the Galileo NIMS experiment. The qube
contains 17 bands of NIMS fixed-map mode raw data numbers and 9 backplanes of ancillary
information. In other modes, NIMS can produce data qubes of 34, 102, 204 and 408 bands.

< 512 » Record
cCcsD 1
AHISTORY =
AQUBE LABEL :
: J

END 24

25
HISTORY .

47

48
QUBE .

9362

CCSD3ZF0000100000001NJPL3IFOPDSX00000001
PDS_VERSION_ID = PDS3
/* File Structure */

Appendix A. PDS Data Object Definitions

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =512
FILE_RECORDS = 9362
LABEL_RECORDS = 24
FILE_STATE = CLEAN
~HISTORY = 25
OBIECT = HISTORY
END_OBIJECT = HISTORY
~QUBE = 48

" OBIECT =QUBE

/* Qube structure Standard ISIS Cube of NIMS Data */

AXES =3
AXIS_NAME = (SAMPLE.LINE,BAND)

/* Core descniption */

CORE_ITEMS =(229,291,17)
CORE_ITEM_BYTES =2

CORE_ITEM_TYPE = VAX_INTEGER
CORE_BASE =00
CORE_MULTIPLIER =10
CORE_VALID_MINIMUM =-32752

CORE_NULL =-32768
CORE_LOW_REPR_SATURATION =-32767
CORE_LOW_INSTR_SATURATION =-32766
CORE_HIGH_INSTR_SATURATION = -32765
CORE_HIGH_REPR_SATURATION =-32764

CORE_NAME = RAW_DATA_NUMBER
CORE_UNIT = DIMENSIONLESS
PHOTOMETRIC_CORRECTION_TYPE =NONE

/* Suffix description */

SUFFIX_BYTES =4

SUFFIX_ITEMS =(0,0.9)
BAND_SUFFIX_NAME = (LATITUDE,LONGITUDE,INCIDENCE_ANGLE,

EMISSION_ANGLE,PHASE_ANGLE,SLANT_DISTANCE,INTERCEPT_ALTITUDE,
PHASE_ANGLE_STD_DEV ,RAW_DATA_NUMBER_STD_DEV)

BAND_SUFFIX_UNIT = (DEGREE,DEGREE, DEGREE,DEGREE, DEGREE, KILOMETER,
KILOMETER,DEGREE, DIMENSIONLESS)
BAND_SUFFIX_ITEM_BYTES =(4,4,4,4,4,4444)
BAND_SUFFIX_ITEM_TYPE = (VAX_REAL,VAX_REAL VAX_REAL,VAX_REAL,VAX_REAL,
VAX_REAL,VAX_REAL,VAX_REAL,VAX_REAL)
BAND_SUFFIX_BASE = (0 000000,0 000000,0 000000,0 000000,0 000000,
0 000000,0 000000,0 6000000 000000)
BAND_SUFFIX_MULTIPLIER = (1 000000,1 000000,1 000000,1 000000,1 000000,
1 000000,1 000000,1 000000,1 000000)
BAND_SUFFIX_VALID_MINIMUM = (164FFEFFFFF#, | 64FFEFFFFF#, | 64FFEFFFFF#,
| GHFFEFFFFF#, | 64FFEFFFFF#, | G4FFEFFFFF¥, | 64FFEFFFFF#, | 64 FFEFFFFFA,
| 64FFEFFFFF#)
BAND_SUFFIX_NULL = (164FFFFFFFF#,] 6#FFFFFFFE#, | 68FFFFFFEF#,] 6#FFFFFEFE#,

1 6#FFFFFFFE#, | 6GRFFFFFFFF#,1 6HFFFFFFFR#, | GRFFFFEFFE#, 1 6GBFFFFFFFE#)
BAND_SUFFIX_LOW_REPR_SAT = (164FFFEFFFF#,1 64FFFEFFFIF#,1 6HFFFEFFFF#,

Appendix A. PDS Data Object Definitions) A-75

| 6#4FFFEFFFF#, | 64FFFEFFFF#, | 6#FFFEFFFF#, | 6#FFFEFFFF#, | 64FFFEFFFF#,

1 6#FFFEFFFF#)

BAND_SUFFIX_LOW_INSTR_SAT = (164FFFDFFFF#,1 6#4FFFDFFFF#,1 64FFFDFFFF#,
16#FFFDFFFF#, 1 6#FFFDFFFF#, | 6#FFFDFFFF#, 1 6#FFFDFFFF#, | 64FFFDFFFF#,
1 6#FFFDFFFF#)

BAND_SUFFIX_HIGH_INSTR_SAT = (16#FFFCFFFF#, | 6#FFFCFFFF#, | 6#FFFCFFFF#,
1 6#FFFCFFFF#, 1 6#FFFCFFFF#, 1 6#FFFCFFFF#, | 6#FFFCFFFF#, | 6#FFFCFFFF#,
16#FFFCFFFF#)

BAND_SUFFIX_HIGH_REPR_SAT = (16#FFFBFFFF#,1 6#FFFBFFFF#,16#FFFBFFFF#,
1 6#FFFBFFFF#, 1 64 FFFBFFFF#,1 6#FFFBFFFF#, | 6#FFFBFFFF#, | 64 FFFBFFFF#,
16#FFFBFFFF#)

BAND_SUFFIX_NOTE ="
The backplanes contain 7 geometric parameters, the standard deviation of one of them, the standard deviation of a selected data
band, and O to 10 'spectral index’ bands, each a user-specified function of the data bands (See the BAND_SUFFIX_NAME

values)

Longitude ranges from O to 360 degrees, with positive direction specified by POSITIVE_LONGITUDE_DIRECTION 1n the
IMAGE_MAP_PROJECTION group

INTERCEPT_ALTITUDE contains values for the DIFFERENCE between the length of the normal from the center of the target
body to the line of sight AND the radius of the target body On-target points have zero values Points beyond the maximum
expanded radius have null values Ths plane thus also serves as a set of ‘off-limb’' flags It 1s meamngful only for the
ORTHOGRAPHIC and POINT_PERSPECTIVE projections, otherwise all values are zero The geometric standard deviation
backplane contains the standard deviation of the geometry backplane indicated in 1ts NAME, except that the special value
1 6#FFFOFFFF# replaces the standard deviation where the corresponding core pixels have been ‘filled’

The data band standard deviation plane is computed for the NIMS data band specified by
STD_DEV_SELECTED_BAND_NUMBER This may be either araw data number, or spectral radiance, whichever 1s indicated
by CORE_NAME

The (optional) spectral index bands were generated by the Vicar F2 program The corresponding BAND_SUFFIX_NAME 1s an
abbreviated formula for the function used, where Bn should be read 'NIMS data band n' For example B4/B8 represents the ratio
of bands 4 and 8 "

.

STD_DEV_SELECTED_BAND_NUMBER =9

/* Data description general */

DATA_SET_ID = "GO-V-NIMS-4-MOSAIC-V1 0"
PRODUCT_ID ="XYZ"

SPACECRAFT_NAME = GALILEO_ORBITER
MISSION_PHASE_NAME = VENUS_ENCOUNTER
INSTRUMENT_NAME = NEAR_INFRARED_MAPPING_SPECTROMETER
INSTRUMENT_ID = NIMS

AINSTRUMENT_DESCRIPTION = "NIMSINST TXT"

TARGET_NAME = VENUS

START_TIME = 1990-02-10T01 49 58Z

STOP_TIME = 1990-02-10T02 31 52Z
NATIVE_START_TIME = 180425 85

NATIVE_STOP_TIME = 180467 34

OBSERVATION_NAME ='VPDINI'

OBSERVATION_NOTE = "VPDINI1 / Footprint, Limbfit, Height=50"
INCIDENCE_ANGLE =16048

EMISSION_ANGLE =1401

PHASE_ANGLE =14739

UB_SOLAR_AZIMUTH =-17474

SUB_SPACECRAFT_AZIMUTH =-080

A-76

MINIMUM_SLANT_DISTANCE
MAXIMUM_SLANT_DISTANCE

MIN_SPACECRAFT_SOLAR_DISTANCE
MAX_SPACECRAFT_SOLAR_DISTANCE

/* Data descnption 1nstrument status */

INSTRUMENT_MODE_ID
GAIN_MODE_ID
CHOPPER_MODE_ID
START_GRATING_POSITION
OFFSET_GRATING_POSITION

MEAN_FOCAL_PLANE_TEMPERATURE
MEAN_RAD_SHIELD_TEMPERATURE
MEAN_TELESCOPE_TEMPERATURE

MEAN_GRATING_TEMPERATURE
MEAN_CHOPPER_TEMPERATURE

MEAN_ELECTRONICS_TEMPERATURE

GROUP
/* Spectral axis descniption */

BAND_BIN_CENTER

Appendix A PDS Data Object Defimtions

= 85684 10
=10317500
=1076102e+08
=1076250e+08

= FIXED_MAP
=2

= REFERENCE
=16

=04

=85 569702

= 123 636002
=139 604996
= 142 580002
=142 449997
=287 049988

= BAND_BIN

= (0798777,0 937873,1 179840,1 458040,1 736630,

2 017250,2 298800,2 579060,2 864540,3 144230,3 427810,3 710640,
3 993880.4 277290,4 561400,4 843560,5 126080)

BAND_BIN_UNIT
BAND_BIN_ORIGINAL_BAND

17)
BAND_BIN_GRATING_POSITION
16,16,16,16,16)
BAND_BIN_DETECTOR
END_GROUP

GROUP

/* Projection descniption */
MAP_PROJECTION_TYPE
MAP_SCALE
MAP_RESOLUTICON
CENTER_LATITUDE
CENTER_LONGITUDE
LINE_PROJECTION_OFFSET
SAMPLE_PROJECTION_OFFSET
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
MINIMUM_LONGITUDE
MAXIMUM_LONGITUDE
POSITIVE_LONGITUDE_DIRECTION
A_AXIS_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS
REFERENCE_LATITUDE
REFERENCE_LONGITUDE
MAP_PROJECTION_ROTATION
LINE_FIRST_PIXEL
LINE_LAST_PIXEL
SAMPLE_FIRST_PIXEL
SAMPLE_LAST_PIXEL

= MICROMETER
=(1,23.4.5,6,7,8,9,10,11,12,13,14,15,16,

il

(16,16,16,16,16,16,16,16,16,16,16,16,

=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)
=BAND_BIN

=IMAGE_MAP_PROJECTION

= OBLIQUE_ORTHOGRAPHIC
45000

2 366

12 00
350 00

149 10

oo

monow B oA
o0
(V]
)

= 6101 000000
= 6101 000000
= 6101 000000
=0 000000
={ 000000

= 000

=1

=229

=1

=291

Appendix A. PDS Data Object Definitions A-T7

END_GROUP =IMAGE_MAP_PROJECTION

END_OBJECT =QUBE
END

A-78 Appendix A. PDS Data Object Definitions

A.24 SERIES

The SERIES object is a sub-class of the TABLE object. It is used for storing a sequence of
measurements organized in a specific way (e.g. ascending time, radial distances). The current
version uses the same physical format specification as the TABLE object, but includes sampling
parameter information that describes the variation between elements in the senes.

The sampling parameter keywords are required for the SERIES object and may be optional for one
or more COLUMN sub-objects, depending on the data organization.

The sampling parameter keywords in the SERIES object represent the variation between the
ROWS of data. For data that vanes regularly between each row, the
SAMPLING_PARAMETER_INTERVAL keyword defines this regularity. For data in which
rows are irregularly spaced, the SAMPLING_PARAMETER_INTERVAL keyword 1s “N/A”, and
the actual sampling parameter values are included in the data itself and identified as a column in
the series. An example of this is a file of time series data with rows ordered by a time column (or
set of columns).

For data that varies regularly between items of a single column, sampling parameter keywords
appear as part of the COLUMN sub-object. Data sampled at irregular intervals described as
separate columns may also provide sampling parameter information specific to each column.

Optional MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER keywords should be added whenever possible to
indicate the range in which the data was sampled. For data sampled at a single point rather than
over a range, both the MINIMUM_SAMPLING_PARAMETER and
MAXIMUM_SAMPLING_PARAMETER are set to the specific value. For TIME_SERIES data,
where the sampling parameter specified is time, these keywords are not used.

Required Keywords

1. INTERCHANGE_FORMAT

2. ROWS

3. COLUMNS

4. ROW_BYTES)

5. SAMPLING_PARAMETER_NAME

6. SAMPLING_PARAMETER_UNIT

7. SAMPLING_PARAMETER_INTERVAL

Optional Keywords

1. NAME

2. ROW_PREFIX_BYTES

3. ROW_SUFFIX_BYTES

4. MINIMUM_SAMPLING_PARAMETER
5. MAXIMUM_SAMPLING_PARAMETER

Appendix A. PDS Data Object Definitions

6. DERIVED_MINIMUM
7. DERIVED_MAXIMUM
8. DESCRIPTION
Required Objects

1. COLUMN

Optional Objects

1. CONTAINER

Example

A-78

This example illustrates the use of the SERIES object for data that vanes regularly in two ways.
Rows of data in the SERIES occur at 60 millisecond intervals while the COLUMN occurs at

.03472222 millisecond intervals.

ENGINEERING_TABLE

Rec / \

1 243-byte Eng rec Spare

2 1600 8-bit waveform samples

St
.03472222 ms between samples

801
bytes 1-220 bytes 221-1820
ROW_PREFIX TIME_SERIES

_TABLE

60 ms
between
rows

A-80

Appendix A PDS Data Object Defimtions

CCSD3ZF000010000000 1NJPL3IFOPDSX00000001

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
AENGINEERING_TABLE
~ROW_PREFIX_TABLE
~TIME_SERIES

/* Observation descniption */
DATA_SET_ID
PRODUCT_ID
PRODUCT_CREATION_TIME
SPACECRAFT_NAME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
EARTH_RECEIVED_TIME
START_TIME
STOP_TIME
MISSION_PHASE_NAME
TARGET_NAME

/* Instrument description */
INSTRUMENT_NAME
INSTRUMENT_ID
SECTION_ID

/* Object descnipnions */
OBJECT
INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
ROW_SUFFIX_BYTES
DESCRIFTION

=PDS3
=FIXED_LENGTH

= 1820

= 801

= ("C0900313 DAT", 1)
= ("C0900313 DAT", 2)
("C0900313 DAT", 2)

H

"VG2-N-PWS-2-EDR-WFRM-60MS-V1 0"

“C0900313 DAT"

VOYAGER_2

"09003 13 002"

"09003 13 002"

1989-159T13 35 00 1212 .
1989-157T14 16 56 979Z

"N/A™

=NEPTUNE_ENCOUNTER

= NEPTUNE

"

fl

#oaonoH

=PLASMA_WAVE_RECEIVER
=PWS
= WFRM

= ENGINEERING_TABLE

= BINARY

=1

=106

=243

=1577

= "Ths table descnibes the format of the engineenng record which 1s included as

the the first record 1n each PWS high rate waveform file This record contains the first 242 bytes of data extracted from the Mission
and Test Imaging System (MTIS) header record on each file of an 1maging EDR tape A 243rd byte contaiming some flag fields
has been added to the iable for all data collected dunng the Neptune encounter "

ASTRUCTURE
END_OBJECT

OBJECT
INTERCHANGE_FORMAT
ROWS .
COLUMNS

ROW_BYTES
ROW_SUFFIX_BYTES
DESCRIFTION

= "ENGTAB FMT"
= ENGINEERING_TABLE

= ROW_PREFIX_TABLE

= BINARY

=800

=47

=220

=1600

= "Ths table describes the format of the engineenng data associated with the

collection of each row of waveform data (1600 waveform samples).”

ASTRUCTURE
END_OBIJECT

OBJECT

NAME

INTERCHANGE_FORMAT

ROWS

COLUMNS

ROW_BYTES
ROW_PREFIX_BYTES
SAMPLING_PARAMETER_NAME

= "ROWPRX FMT"
= ROW_PREFIX_TABLE

= TIME_SERIES

= WAVEFORM_FRAME
= BINARY

=799

=1

= 1600

=220

=TIME

Appendix A PDS Data Object Definitions A-81

SAMPLING_PARAMETER_UNIT = SECOND '
SAMPLING_PARAMETER_INTERVAL = 06 /* 60 MS between rows */
DESCRIPTION = "This ime_senes consists of up to 800 records (or rows, lines) of PWS

waveform sample data Each record 2-801 of the file (or frame) contains 1600 waveform samples, prefaced by 220 bytes of MTIS
information The 1600 samples are collected 1n 55 56 msec followed by a 4 44 msec gap Each 60 msec 1nterval constitutes a line
of waveform samples Each file contains up to 800 lines of waveform samples for a 48 sec frame "

OBJECT = COLUMN

NAME = WAVEFORM_SAMPLES

DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BYTE =221

BYTES = 1600

ITEMS = 1600

ITEM_BYTES =1

SAMPLING_PARAMETER_NAME =TIME

SAMPLING_PARAMETER_UNIT = SECOND
SAMPLING_PARAMETER_INTERVAL =0 00003472222 /* ume between samples */
OFFSET =-75

VALID_MINIMUM =0

VALID_MAXIMUM =15

DESCRIPTION = "The 1 byte waveform samples constitute an array of waveform measurements

which are encoded 1nto binary values from 0 to 15 and may be re-mapped to reduce the artificial zero-frequency component For
example, stored values can be mapped to the following floating point values The onginal 4-bit data samples have been repackaged
mnto 8-bit (1 byte) items without modification for archival purposes \n

0=-75 1=-6.5 2=-55 3=-45
4=-235 5=-25 6=-15 =-05
8=05 9=15 10=2.5 11=35
12=45 13=55 14=65 15=75
END_OBIJECT =COLUMN

END_OBIJECT =TIME_SERIES

END

A-82 Appendix A PDS Data Object Definitions

A.25 SPECTRUM

The SPECTRUM object 1s a form of TABLE used for storing spectral measurements. The
SPECTRUM object 1s assumed to have a number of measurements of the observation target taken
in different SPECTRAL bands. The SPECTRUM object uses the same physical format
specification as the TABLE object, but includes a SAMPLING PARAMETER definition which
indicates the spectral region measured 1n successive COLUMNSs or ROWs The common sampling
parameters for SPECTRUM objects are wavelength, frequency, or velocity

A regularly sampled SPECTRUM can be stored either horizontally as a 1 row table with 1 column
containing n samples (expressed as ITEMS=n), or vertically as a 1 column table with n rows where
each ROW contains a sample of the spectrum. The vertical format allows additional columns to be
defined for related parameters for each sample value (e.g. ERROR factors) These related columns
can be described in a separate PREFIX or SUFFIX table.

An irregularly sampled SPECTRUM must be stored horizontally, with each specific spectral range
identified as a separate column, and defined by a specific set of sampling parameter keywords for
each column.

In the horizontal format, the sampling parameter specifications are included 1n the COLUMN
definition. For a vertically defined SPECTRUM, the sampling parameter information 1s provided
in the SPECTRUM object, since it is descnbing the spectral variation between the ROWs of the
data.

Required Keywords

- 1. INTERCHANGE_FORMAT
2. ROWS

3. COLUMNS

4. ROW_BYTES

Optional Keywords

.NAME

. SAMPLING_PARAMETER_NAME

. SAMPLING_PARAMETER_UNIT

. SAMPLING_PARAMETER_INTERVAL
. ROW_PREFIX_BYTES

. ROW_SUFFIX_BYTES

. MINIMUM_SAMPLING_PARAMETER

. MAXIMUM_SAMPLING_PARAMETER
. DERIVED_MINIMUM

10. DERIVED_MAXIMUM

11. DESCRIPTION -

O 00~ v N —

Appendix A PDS Data Object Definitions

Required Objects
1. COLUMN
Optional Objects
1. CONTAINER

Example

A-83

This example illustrates a SPECTRUM data object stored in a vertical format. The data is regularly
sampled at intervals of 99.09618 meters/second and data samples are stored in successive ROWS.

row +— 2 hbytes —»

256

CCSD3ZF0000100000001NJPL3IFOPDS X00000001

PDS_VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
PRODUCT_ID
DATA_SET_ID
TARGET_NAME
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
OBSERVATION_ID
START_TIME
STOP_TIME

. PRODUCT_CREATION_TIME
/* Record Pointer to Major Object */
~TOTAL_INTENSITY_SPECTRUM
/* Object Description */

OBJECT

INTERCHANGE_FORMAT

ROWS

ROW_BYTES

COLUMNS
SAMPLING_PARAMETER_NAME
MINIMUM_SAMPLING_PARAMETER

=PDS3

= FIXED_LENGTH

=2

=256

"RSSLO07 DAT"
“IHW-C-RSSL-3-EDR-HALLEY-V1 0"
"HALLEY"

"IHW RADIO STUDIES NETWORK"
"RADIO SPECTRAL LINE DATA"
v621270"

1985-11-10T00 43 12 000
1985-11-10T00 43 12 000

“UNK"

mn a0 nn

"RSSLO007 DAT"

= SPECTRUM
=BINARY
=256

=32

=]
="VELO_COM"
= -1 268431E+04

-258111.21 M/S

-254599.47 M/S

A-84 Appendix A PDS Data Object Definitions

SAMPLING_PARAMETER_INTERVAL =9 909618E+01
SAMPLING_PARAMETER_UNIT = "METERS/SECOND"
DESCRIPTION = "Radio Studies, Spectral Line intensity spectrum Spectrum is organized as |

column with 256 rows Each row contains a spectral value for the velocity derived from the sampling parameter information
associated with each row "

OBJECT = COLUMN
NAME = FLUX_DENSITY
DATA_TYPE = MSB_INTEGER
START_BYTE =1

BYTES _ =2
SCALING_FACTOR =7 251200E-04
OFFSET =0 000000E+01
DERIVED_MINIMUM = 2 380000E+01
DERIVED_MAXIMUM = 2 380000E+01
END_OBJECT = COLUMN
END_OBJECT = SPECTRUM

END

Appendix A. PDS Data Object Definitions A-85

A.26 SPICE KERNEL

The SPICE_KERNEL object defines a single kernel (file) from a collection of SPICE Kernels.
SPICE kemels provide ancillary data needed to support the planning and subsequent analysis of
space science observations.

The SPICE system 1ncludes the software and documentation required to read the SPICE Kernels
and use the data contained therein to help plan observations or interpret space science data. This
software and associated documentation are collectively called the NAIF Toolkit.

Kernel files are the major components of the SPICE system. The EPHEMERIS KERNEL_TYPE
(SPK) contains spacecraft and planet, satellite or other target body ephemeris data that provides
position and velocity of a spacecraft as a function of time. The TARGET_CONSTANTS
KERNEL_TYPE (PCK) contains planet, satellite, comet, or asteroid cartographic constants for
that object. The INSTRUMENT KERNEL_TYPE (IK) contains a collection of science instrument
information, including specification of the mounting alignment, internal timing, and other
information needed to interpret measurements made with the instrument. The POINTING
KERNEL_TYPE (CK) contains pointing data (e.g., the inertially referenced attitude for a
spacecraft structure upon which instruments are mounted, given as a function of time). The
EVENTS KERNEL_TYPE (EK) contains event information (e.g, spacecraft and instrument
commands, ground data system event logs, and experimenter's notebook comments). The
LEAPSECONDS KERNEL_TYPE (LSK) contains an account of the leapseconds needed to
correlate civil time (UTC or GMT) with ephemerns time (TDB). This 1s the measure of time used
in the SP kernel files. The spacecraft Clock coefficients kernel (SCLK) contains the data needed
to correlate a spacecraft clock with ephemeris time.

Data products referencing a particular SPICE kernel would do so through the

SOURCE_PRODUCT_ID keyword in their label with the value corresponding to that of the
PRODUCT_ID within the SPICE_KERNEL label. The PRODUCT_ID keyword is unique to a

data product.

Required Keywords

1. DESCRIPTION

2. INTERCHANGE_FORMAT
3. KERNEL_TYPE

Optional Keywords

None

Required Objects

None

A-86 Appendix A PDS Data Object Definitions

Optional Objects

o

None
Example

NOTE: The following example of a SPICE CK (Pointing) Kernel attached label may have been
modified to reflect current PDS standards and 1s not intended to contain actual PDS ingested
values. You will notice that some label information 1s actually inside the Kernel file which allows
NATF tools to extract information to produce the PDS label.

CCsD

PDS_VERSION_ID =PDS3

RECORD_TYPE = STREAM
MISSION__NAME = MARS_OBSERVER
SPACECRAFT_NAME = MARS_OBSERVER
DATA_SET_ID = “MO-M-SPICE-6-CK-V10”
FILE_NAME = "NAF0000D TC"
PRODUCT_ID = "NAF0000D-CK"
PRODUCT_CREATION_TIME = 1992-04-14T12 00 00
PRODUCER_ID = "NAIF"
MISSION_PHASE_TYPE = "ORBIT"
PRODUCT_VERSION_TYPE = "TEST"

START_TIME = 1994-01-06T00 00 00
STOP_TIME = 1994-02-04T23 55 00
SPACECRAFT_CLOCK_START_COUNT = "3/76681108 213"
SPACECRAFT_CLOCK_STOP_COUNT ="4/79373491 118"
TARGET_NAME =MARS

INSTRUMENT _NAME = "MARS OBSERVER SPACECRAFT"
INSTRUMENT_ID MO

SOURCE_PRODUCT_ID
{ "NAF0000C BSP","NAF0000C TLS","NAF0000C TSC"})

NOTE = "BASED ON EPHEMERIS IN NAF0O00OOC BSP FOR SOFTWARE
TESTING ONLY "

OBJECT . = SPICE_KERNEL

INTERCHANGE_FORMAT = ASCII

KERNEL_TYPE = POINTING

DESCRIPTION = "Thus 15 2 SPICE kemel file, designed to be accessed using NAIF Toolkat

software Contact your flight project representative or the NAIF node of the Planetary Data System 1f you wish to obtain a copy of
the NAIF Toolkit The Toolkit consists of portable FORTRAN 77 code and extensive user documentation *

END_OBIJECT = SPICE_KERNEL

END

CCsD

INTERNAL SPICE LABEL
SPICE DATA

Appendix A PDS Data Object Definitions A-87

A.27 TABLE

TABLE:s are the natural storage format for collections of data from many instruments. They are
also the most effective way of storing much of the meta-data which is used to identify and describe
instrument observations.

The TABLE object is a uniform collection of rows containing ASCII or binary values stored 1n
columns. The ROWS and COLUMNS of the TABLE object provide a natural correspondence to
the records and fields often defined in interface specifications for existing data products. The value
to use for the COLUMNS keyword 1n a TABLE object should be the actual number of COLUMN
objects defined 1n the label. The INTERCHANGE_FORMAT keyword 1s used to distinguish
between ASCII and binary table values.

ASCII vs. BINARY formats

ASCII tables provide the most portable format for access across a wide variety of computer
platforms. They are also easily imported into a number of database management systems and
spreadsheet applications. For these reasons, the PDS recommends the use of ASCII table formats
whenever possible for archive products.

ASCII formats are generally less efficient for storing large quantities of data. In addition, raw or
mimmally processed data products and many pre-existing data products undergoing restoration are
only available in binary formats.Where conversion to an ASCII format is neither cost effective nor
desirable, BINARY table formats can be used.

Required Keywords

1. INTERCHANGE_FORMAT
2. ROWS

3. COLUMNS

4. ROW_BYTES

Optional Keywords

1. NAME

2. DESCRIPTION

3. ROW_PREFIX_BYTES

4. ROW_SUFFIX_BYTES

5. TABLE_STORAGE_TYPE

Required Objects

1. COLUMN

A-88 Appendix A. PDS Data Object Definitions

Optional Objects
1. CONTAINER

Many variations of the TABLE object are possible with the addition of the “optional” keywords
and/or objects to the basic TABLE definition. While PDS supports these options, they are often not
the best choices for archival data products. Recommended ASCII and binary table formats are
provided in the following sections (A.20.1, A.20.2) with examples. Section A.20.3 provides
examples of several TABLE variations and their possible application. Section A.20.4 provides
specific guidelines for SPARE columns or unused fields within a TABLE.

A.27.1 Recommended ASCII TABLE Format

The recommended PDS table format uses ASCH COLUMN values, with a fixed size for each
COLUMN. Each RECORD within the table is the same length and is termunated with a carriage-
return/line-feed <CR><LF> pair. COLUMNSs are separated by commas and character fields are
enclosed in QUOTATION MARKS (). The QUOTATION MARKSs should surround the
maximum COLUMN width. For example, a twelve character COLUMN called
SPACECRAFT_NAME would be represented in the table as:

"VOYAGER 1 ", nstead of "VOYAGER 1"
Numeric fields are nght-justified in the allotted space and character fields are left-justified and
blank padded on the right. This table format can be imported into many data management systems

such as DBASE, FoxBase, Paradox, and Britton-Lee and into EXCEL spreadsheets.

The following label subset and illustration provide the general characteristics of a PDS
recommended ASCII table with 1000 byte records:

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES = 1000 +—1000—> Record
OBJECT = TABLE Row 1 CR|LF 1
INTERCHANGE_FORMAT = ASCII , Row 2 cRlLF 5

ROW_BYTES = 1000

END_OBJECT = TABLE

Row n CR|LF n

Appendix A. PDS Data Object Defimitions A-89

Example - Recommended ASCII TABLE

The following example is an ASCII index table with fixed length 80 byte records. Note that for
ASCII tables, the delimuters (1.e., double quotes, commas, and line terminators <CR><ILF>) are
included in the byte count for each record (RECORD_BYTES). In this example, the delimiters are
also included 1n the byte count for each row (ROW_BYTES). The <CR><LF> characters have
been placed 1n columns 70 and 71

Contents of file "INDEX.TAB"

*F-MIDR ","F-MIDR.40N286;1 *,*C", 42, 37,283,282, "F40N286/FRAME.LBL "<CR><LF>
*F-MIDR ", "F-MIDR.20N280;1 *,6*C*, 22, 17,283,277,"F20N280/FRAME.LBL "<CR><LF>
"F-MIDR ", "F-MIDR.20N286;1 ","C%", 22, 17,289,283, “F20N286/FRAME.LBL "<CR><LF>
"F-MIDR ", "F-MIDR.OON279:;1 *","R", 2, -2,281,275,*FOON279/FRAME.LBL "<CR><LF>
*P-MIDR *, "F-MIDR.OS5N290;1 *,*C", 7, 2,292,286,"F05N290/FRAME.LBL "<CR><LF>
“P-MIDR ", "F-MIDR.058279;1 *,*R", -2, -7,281,275,"F055279/FRAME.LBL "<CR><LF>
"F-MIDR *,"F-MIDR.105284;1 *,"C*, -7,-12,287,281,"F10S284/FRAME.LBL "<CR><LF>
"F-MIDR ", *F-MIDR.10S290;1 *,"R", -7,-12,292,286,"F105250/FRAME.LBL "<CR><LF>
*F~-MIDR ","F-MIDR.155283;1 *,"R",-12,-17,286,279,"F155283/FRAME.LBL "<CR><LF>

“F-MIDR ", "F-MIDR.155289;1 *,"R*,-12,-17,291,285,"F158289/FRAME.LBL "<CR><LF>

123456789012345678901234567890123456789012345678901234567890123456789

Contents of file "INDEX LBL"

CCSD3ZF0000100000001NJPL3IFOPDSX 00060001

PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =71
FILE_RECORDS =10

AINDEX_TABLE "INDEX TAB"

DATA_SET_ID ="MGN-V-RDRS-5-MIDR-FULL-RES-V1 0"
VOLUME_ID =MG_7777

PRODUCT_ID = "FMIDR XYZ"

SPACECRAFT_NAME = MAGELLAN

INSTRUMENT_NAME = "RADAR SYSTEM"

TARGET_NAME VENUS

PRODUCT_CREATION_TIME "N/A"

MISSION_PHASE_NAME PRIMARY_MISSION

NOTE "Thus table lists all MIDRs on this volume It also includes the lantude and
longitude range for each MIDR and the directory in whuch 1t 1s found *

OBJECT =INDEX_TABLE

INTERCHANGE_FORMAT = ASCII

ROWS =10

COLUMNS =8

ROW_BYTES =71

INDEX_TYPE = SINGLE

OBJECT = COLUMN

NAME = PRODUCT_TYPE

DESCRIPTION = "Magellan DMAT type code Possible values are F-MIDR, C1-MIDR, C2-

A-90

DATA_TYPE
START_BYTE
BYTES
END_OBIJECT

OBIJECT
NAME
DESCRIPTION

DATA_TYPE
START_BYTE
BYTES
END_OBIECT

OBIJECT
NAME
DESCRIPTION

DATA_TYPE
START _BYTE
BYTES
END_OBJECT

OBIJECT
NAME
DESCRIPTION
DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBIJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBIJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
UNIT
START_BYTE
BYTES
END_OBIECT

Appendix A. PDS Data Object Definitions

MIDR, C3-MIDR, and P-MIDR "

= CHARACTER
=2

=7

= COLUMN

= COLUMN
= PRODUCT_ID

= "Magellan DMAT name of product

Example F-MIDR 20N334,1¢

= CHARACTER
=12

=16

= COLUMN

= COLUMN

it

SEAM_CORRECTION_TYPE

="A value of C indicates that cross- track seam correction has been applied A
value of R indicates that the correction has not been apphed *

= CHARACTER
=31

=1

= COLUMN

= COLUMN

MAXIMUM_LATITUDE

“Northernmost frame lautude rounded to the nearest degree *

= INTEGER
= DEGREE
=34

=3

= COLUMN

= COLUMN

= MINIMUM_LATITUDE

="Southemmost frame lantude rounde d tothe nearest degree "

= INTEGER
= DEGREE
=38

=3

= COLUMN

= COLUMN

= EASTERNMOST_LONGITUDE
= "Easternmost frame longitude rounded to the nearest degree *

= INTEGER
= DEGREE
=42

=3

= COLUMN

= COLUMN

= WESTERNMOST_LONGITUDE
="Westernmost frame longitude rounded to.the nearest degree *

= INTEGER
= DEGREE
=46

=3

= COLUMN

Appendix A PDS Data Object Definitions A-91

OBJECT = COLUMN

NAME = FILE_SPECIFICATION_NAME .

DESCRIPTION = "Pathand file name of frame table relative to CD-ROM root directory
DATA_TYPE = CHARACTER

START_BYTE =51

BYTES =18

END_OBIJECT = COLUMN

END_OBIECT =TABLE

END

A.27.2 Recommended BINARY TABLE Format

The recommended PDS binary table format uses FIXED_LENGTH records, with each row of the
table occupying a complete physical record (1.e. RECORD_BYTES = ROW_BYTES). This
recommended format also discourages the use of BIT_COLUMN objects within COLUMNS i1n
binary tables, primarily for portability reasons. Whenever possible, bit fields should be unpacked
into more portable byte oriented COLUMNS. Unused bytes embedded within the binary table
should be explicitly 1dentified with COLUMNSs named “SPARE” for completeness and to facilitate
automated validation of these table structures.

The following label subset and illustration provide the general characteristics of a PDS
recommended binary table with 1000 byte records:

RECORD_TYPE = FIXED_LENGTH <+ 1000~ Record
RECORD_BYTES = 1000
. Row 1 1
OBJECT = TABLE Row 2 2
INTERCHANGE_FORMAT = BINARY -
ROW_BYTES = 1000
END_OBJECT = TABLE . .
Row n n

Example - Recommended Binary TABLE

The following is an example of a binary table consisting of 3 columns of data. The first two

columns provide TIME information in both the PDS standard UTC format and an alternate format.
The third column provides uncalibrated instrument measurements for the given times. Thus table
could also be represented as a TIME_SERIES by the addition of sampling parameter keywords to
describe the variation between each row of the table. The following 1llustration shows the layout
and contents of the binary table in file "T890825.DAT". The detached label file, "T890825.LBL"

provides the complete description.

A-92

Contents of file "T890825 DAT"

Appendix A PDS Data Object Definitions

byte 1

8¢9 3233 36 Record

Row 1 1

cTIME| PDSTIME | DI .

RATE

Row 350 350

Contents of file "T890825 LBL"

CCSD3ZF0000100000001INTPL3IFOPDSX 00000001

PDS_VERSION_ID

/* File Characteristic Keywords */
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
HARDWARE_MODEL_ID
OPERATING_SYSTEM_ID

/* Data Object Pointers */
~TABLE

/* Identificatton Keywords */
DATA_SET_ID

SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME

START_TIME

STOP_TIME

MISSION_PHASE_NAME
PRODUCT_ID
PRODUCT_CREATION_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

/* Data Object Descniptions */
OBIJECT
INTERCHANGE_FORMAT
ROWS

COLUMNS

ROW_BYTES
~STRUCTURE
END_OBIJECT

END

=PDS3

= FIXED_LENGTH

=350

="SUN SPARC STATION"
="SUNOS411"

= "T890825 DAT"

"VG2-N-CRS-4-SUMM-D1-96SEC-V1 0"
"VOYAGER 2"

"COSMIC RAY SYSTEM"

NEFPTUNE

= 1989-08-25T00 00 00 000Z
1989-08-25T09 58 02 000Z

"NEPTUNE ENCOUNTER"

"T890825 DAT"

"UNK"

il

:

now

:

=TABLE

= BINARY

=350

=3

=36

"CRSDATA FMT"
TABLE

o

Appendix A PDS Data Object Definitions A-93

Contents of file "CRSDATA FMT"

OBJECT = COLUMN
NAME ="C TIME"
UNIT ="SECONDS"
DATA_TYFE =REAL
START_BYTE =1

BYTES =8

MISSING =] OE+32
DESCRIPTION ="

Time column This field contains ime 1n seconds after Jan 01, 1966 but is displayed 1n the default ime format selected by the user *
END_OBJECT = COLUMN

OBJECT =COLUMN
NAME ="FDS TIME"
UNIT = "TIME"
DATA_TYPE =CHARACTER
START BYTE =9

BYTES =24
DESCRIPTION ="

Date/Time string of the form yyyy-mm-ddThh mm ss sss such that the representation of the date Jan 01, 2000 00 00 00.000 would
be 2000-01-01T00 00.00.000Z (Z indicates Umversal Time) *

END_OBJECT = COLUMN
OBJECT =COLUMN
NAME = "Dl RATE"
UNIT ="COUNTS"
DATA_TYPE ="REAL"
START _BYTE =33

BYTES =4
MISSING =1 0E+32
DESCRIPTION ="

The D1 rate 1s approximately porportional to the ommdirectional flux of electrons with kinetic energy > ~1MeV To obtain greater
accuracy, the D1 calibration tables (see catalog) should be applied *
END_OBIJECT = COLUMN

A.273 TABLE Variations

This section addresses a number of structural vanations of “table based” data objects. As the
structure of SERIES and SPECTRUM objects are similar and can be identical to the TABLE
object, all three objects (TABLE, SERIES, and SPECTRUM) can be of the following structure
types. The structural vanations presented here are primarily due to the physical placement of the
data (ROW_BYTES) in relation to the size of the data record (RECORD_BYTES), the type of the
data (ASCII or BINARY), and the format of the data (FIXED_LENGTH or STREAM).

This section is not intended to be a complete reference for TABLE variations. Within the following
examples, some illustrate a recommended data modelling approach, some illustrate alternate
approaches, and other examples are included solely to document their existence.

Note: The examples 1n the following sections use OBJECT = TABLE, but OBJECT = SERIES or
OBIJECT = SPECTRUM could be substituted.

A-94 Appendix A PDS Data Object Definttions

A.27.3.1 Record blocking in Fixed Length TABLES

The PDS recommended TABLE format requires the ROW_BYTES of the TABLE object to be
equal to RECORD_B YTES of the file. Thus is not always the case, particularly when describing
existing binary TABLE formats.

A common use of blocking occurs when two or more data objects are packaged 1nto the same file,
each requiring a different size record. In addition, rows in a TABLE are sometimes blocked into

larger physical records to minimize input/output operations.

Rows in both ASCII or binary tables can be either larger or smaller than the physical record size
specified by the RECORD_BYTES keyword.

Example - Binary Table with ROW_BYTES > RECORD_BYTES

The following label subset and illustration provide the general charactenstics of a product
containing an 800 byte IMAGE object together with a TABLE with 1200 byte rows:

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =800
ATABLE ' =("IMAGEIMG,1) Record
— — ecor
AIMAGE =("IMAGE IMG,7) 800
Row 1 1
OBJECT =TABLE r——- 5
INTERCHANGE_FORMAT = BINARY @ -—=-
ROW_BYTES ° =1200 2 | Row2 3
[.
END_OBJECT =TABLE :
7
OBJECT =IMAGE
SAMPLES =800 IMAGE
SAMPLE_BITS -8

END_OBIJECT =IMAGE

Appendix A. PDS Data Object Definitions A-95

Example - ASCIH Table with ROW_BYTES < RECORD_BYTES

The following label subset and illustration provide the general characteristics of a product
containing a SERIES object containing 800 byte rows together with a TABLE object with 400 byte
TOWS:

BODY_TYPE = FIXED_LENGTH
RECORD_BYTES =800

Row | CRl'L]iJ Row ZI—CR LF
OBJECT =TABLE el — —_— A b
INTERCHANGE_FORMAT = ASCII
ROW_BYTES =400
END_OBJECT =TABLE

TABLE

OBJECT =SERIES
INTERCHANGE_FORMAT =ASCII
ROW_BYTES =800 SERIES
END_OBJECT = SERIES

Example - Binary Table with ROW_BYTES < RECORD_BYTES

The following label subset and illustration provide the general characteristics of a product
containing an HEADER object containing one 500 byte row together with a TABLE with 1032
byte rows. In this case, both the HEADER and TABLE rows are blocked into 32500 byte records.
Note that the rows cross record boundaries.

. 32492
byte 1 501 v Record

KE}‘DERW Row 1 l .- _lFiow 31|R 1

Row 32]_ 2

Row 1425 % 46

V' N
W
N
8,
o
o
A 4

A-96

Appendix A PDS Data Object Definitions

CCSD3ZF0000100000001NJPL3IFOPDSX00000001

PDS_VERSION_ID

f* FILE CHARACTERISTICS */
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

~HEADER

~TABLE

1* IDENTIFICATION KEYWORDS */
DATA_SET_ID

PRODUCT_ID
TARGET_NAME
SPACECRAFT_NAME
INSTRUMENT_NAME
MISSION_PHASE_NAME
PRODUCT_CREATION_TIME
OREIT_NUMBER
START_TIME

STOP_TIME

SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT

HARDWARE_VERSION_ID
SOFTWARE_VERSION_ID
UPLOAD_ID
NAVIGATION_SOLUTION_ID
DESCRIPTION

= PDS83

=FIXED_LENGTH

= 32500

=46

= ("ADF01141 3",1)

= ("ADF01141 3",501<BYTES>)

="MGN-V-RDRS-5-CDR-ALT/RAD-V1 0"
= "ADF01141 3"
= VENUS

=MAGELLAN

="RADAR SYSTEM"

= PRIMARY_MISSION

= 1991-07-23T06 16 02 000Z

= 1141

=UNK

= UNK

= UUNK

= UNK

=01

=02

= MO356N

= "ID = M0361-12 "

=" Thus file contains binary records descnbing, in tume order, each alumeter

footprint measured during an orbit of the Magellan radar mapper ",

/* DATA OBJECT DEFINITION DESCRIPTIONS */

OBJECT
HEADER_TYPE
BYTES
END_OBJECT
OBJECT
INTERCHANGE_FORMAT
ROWS
COLUMNS
ROW_BYTES
ASTRUCTURE
END_OBJECT
END

Contents of format file "ADFTBL FMT"

OBIECT
NAME

START BYTE
DATA_TYPE
BYTES

UNIT
DESCRIPTION

= HEADER
= SFDU
=500
= HEADER
= TABLE
= BINARY
= 1425
=40
= 1032
= "ADFTBL FMT"
=TABLE

= COLUMN

= SFDU_LABEL_AND_LENGTH
=]

= CHARACTER

20

"N/A"

oo

The SFDU_label_and_length element idenufies the label and length of the Standard Format Data Unit (SFDU) *

END_OBIJECT

OBJECT
NAME
START_BYTE

= COLUMN

= COLUM
= FOOTPRINT_NUMBER
=2]

Appendix A. PDS Data Object Definitions A-97

DATA_TYPE =LSB_INTEGER

BYTES =4

UNIT ="N/A"

DESCRIPTION = "The footpnint_number element provides a signed integer value The alumetry

and radiometry processing program assigns footpnnt O to that observed at nadir at penapsis The remaining footpnnts are located
along the spacecraft nadir track, with a separation that depends on the Doppler resolution of the altumeter at the epoch at which that
footpnnt 1s observed Pre-periapsis footpnints will be assigned negative numbers, post-penapsis footpnints will be assigned positive
ones A loss of several consecutive burst records from the ALT-EDR will result 1in missing footprint numbers *

END_OBIJECT = COLUMN
OBJECT = COLUMN
NAME = DERIVED_THRESH_DETECTOR_INDEX
START_BYTE = 1001
DATA_TYPE = LSB_UNSIGNED_INTEGER
BYTES =4
UNIT ="N/A"
DESCRIPTION = "The derived_thresh_detector_index element provides the value of the element

mrange_sharp_echo_profile that satisfies the alimeter threshold detection algonthm, representing the distance to the nearest object
1n this radar footprint 1n units of 33 2 meters, modulus a 10 02 kilometer altimeter range ambiguity "
END_OBIJECT = COLUMN

Example - Alternate format; PDS Recommended

The following label subset and illustration provide an alternate data orgamzation for the preceding
example. In this example, a record size of 1032 is used to match the row size of the TABLE, and
the 500 byte HEADER uses only a portion of the first record. This organization would conform to
the PDS recommended TABLE structure.

4— 1032—p Record

HEADER[/////] 1

Row 1 2

Row 2 3

Row 1425 1426

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES =1032

FILE_RECORDS = 1426 /
"HEADER = ("ADF01141 3",1)

"TABLE = ("ADF(1141 3",2)

A-98 Appendix A. PDS Data Object Definitions

/* DATA OBJECT DEFINITIONS */

OBIJECT = HEADER
HEADER_TYPE =SFDU
BYTES =500
END_OBIECT
OBIECT =TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 1425
COLUMNS =40
ROW_BYTES =1032
~STRUCTURE = "ADFTBL FMT"
END_OBIJECT
END

Example - Alternate format; Rows on Record Boundaries

The following label subset and illustration provide a second alternate data organization for the
preceding example. In this example, a record size of 66048 1s used hold 30 rows of the TABLE.
Again the 500 byte HEADER uses only a portion of the first record

-¢ 30960 » Record
L,
wor 17777
Row 1 « e Row 30 2
Row 31 - = o Row 60 3
TABLE

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES =30960

FILE_RECORDS =49

AHEADER = ("ADF01141 3",1)

ATABLE = ("ADF01141 3",2)

/* DATA OBJECT DEFINITIONS */

OBIECT = HEADER
HEADER_TYPE = SFDU
BYTES = 500

END_OBIECT

Appendix A. PDS Data Object Definitions A-99

OBJECT \ =TABLE
INTERCHANGE_FORMAT =BINARY
ROWS = 1425
COLUMNS =40
ROW_BYTES =1032
ASTRUCTURE ‘ = "ADFTBL FMT"
END_OBJECT

END

A.273.2 Multiple TABLESs with varying ROW_BYTES

A data product may contain several ASCII or binary tables, each with a different row size.

Example - Fixed Length Records - Multiple ASCII tables

The following label subset and illustration utilizes fixed length records of the maximum row size.
The smaller table is padded with spares preceding the <CR><LF>. Note that the ROW_BYTES
keyword in A_TABLE could be replaced by ROW_BYTES = 800 and ROW_SUFFIX_BYTES =
200. See section A.1.20.5 for further information on handling spares.

<+ 800— «—200—>

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =1000 | []
OBJECT = A_TABLE | [
INTERCHANGE_FORMAT = ASCII A_TABLE | Spare e
ROW_BYTES = 1000 Q
|
END_OBJECT = A_TABLE I
| L]
OBJECT =B_TABLE
INTERCHANGE_FORMAT = ASCII |
ROW_BYTES =1000 |
B_TABLE ol
END_OBJECT =B_TABLE | Q | -
[

«— 1000 /™™

A-100 Appendix A. PDS Data Object Definitions

Example - Stream Records - Multiple ASCII tables

The following label subset and illustration utilizes stream records for the same data as the previous
example, placing the <CR><LF> pair at the end of the data 1n each table. There is no need to pad
out the smaller table using the STREAM format, and the RECORD_BYTES keyword is not

applicable.

RECORD_TYPE = STREAM «— 802 —
[
OBJECT = A_TABLE |
INTERCHANGE_FORMAT = ASCII
ROW_BYTES =802 A_TABLE : |
|
END_OBJECT = A_TABLE |
OBJECT = B_TABLE || |
INTERCHANGE_FORMAT = ASCIH
ROW_BYTES = 1000 |
|
END_OBJECT = B_TABLE B_TABLE 15
|
|

— 1000 ——

Appendix A PDS Data Object Definitions A-101

Example - Fixed Length Records - Multiple Binary tables

The following label subset and 1llustration utilizes fixed length records of the maximum row size.
The smaller table has a spare set of bytes in each record, explicitly defined in a “spare” COLUMN
object. Note that the ROW_BYTES keyword 1n A_TABLE could be replaced by ROW_BYTES
= 800 and ROW_SUFFIX_BYTES = 200, instead of explicitly defining the SPARE column. See
section A.25 for further information on handling spares.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000

<4“——800—» «200—
OBJECT = A_TABLE |
INTERCHANGE_FORMAT = BINARY]
ROW_BYTES = 1000 |

A_TABLE I Spare

OBJECT = COLUMN
NAME = "SPARE" |
DATA_TYPE = "N/A’ |
START_BYTE =801
BYTES =200
END_OBJECT = COLUMN
END_OBJECT = A_TABLE
OBJECT - =B_TABLE B_TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES = 1000
END_OBJECT = B_TABLE “— 1000 —

A.27.3.3 ROW_PREFIX or ROW_SUFFIX use

There are currently two methods to utilize ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES
1n TABLE objects. The first application is limited to Binary TABLE objects that are adjacent to
another object, such that each object shares the same record in a file. The second application is for
1dentifying spare bytes at the beginning or end of a record that are not considered part of the
TABLE data.

A-102 Appendix A PDS Data Object Definitions

Example - Row Suffix use for compound TABLE and IMAGE

The following label subset and illustration utilizes fixed length records each containing a row of a
TABLE data object, and a line of an IMAGE object. This 1s a common format for providing
ancillary information applicable to each IMAGE line.

«800 &+ «—200 —» Record

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES =1000 Row 1 Line 1 1
OBJECT = TABLE
INTERCHANGE_FORMAT = BINARY
ROW_BYTES =200 IMAGE
ROW_SUFFIX_BYTES =800
END_OBJECT =TABLE PREFIX IMAGE
OBJECT =IMAGE TABLE
LINE_SAMPLES = 800
SAMPLE_BITS =8
LINE_PREFIX_BYTES =200
END_OBJECT = IMAGE
Row 800 Line 800 800

—— 1000 —

The following RULES apply to the use of ROW_PREFIX_BYTES and ROW_SUFFIX_BYTES:

1. For compound “table based” objects (TABLE, SPECTRUM, SERIES) in a data
product, or for identifying Spare parts of a record:

RECORD_BYTES = ROW_BYTES + ROW_PREFIX_BYTES + ROW_SUFFIX_BYTES
2. For compound “table based” and IMAGE objects in a data product:

RECORD_BYTES = (LINE_SAMPLES * SAMPLE_BITS / 8) + ROW_PREFIX BYTES +
ROW_SUFFIX_BYTES

A.27.34 CONTAINER Object use

Complicated or lengthy tables that have a set of COLUMNS that repeat are often easier to describe
with an illustration and the use of the CONTAINER sub-object in a TABLE description. The use
of the container sub-object eliminates the need for repeating a group of COLUMN objects and
adjusting the START_BYTE locations and descrniptions for each repetition. Section A.7 provides
an example of a TABLE utilizing the CONTAINER sub-object.

Appendix A PDS Data Object Definitions A-103

A274 Guidelines for SPARE fields

There is often a need to reserve SPARE (or pad, filler, etc.). bytes in TABLE, SPECTRUM, and
SERIES objects. While this is not required, 1t facilitates validation and ensures that the data
producer did not inadvertently forget to account for some fields in the data These guidelines differ
slightly for BINARY and ASCII tables and FIXED_LENGTH or STREAM record files.

In all of the following guidelines, “embedded spares” refer to empty or spare bytes that are
currently unused and are not defined as part of a data COLUMN.

A.274.1 BINARY Tables - Fixed Length Records

The guidelines for handling SPARE fields in Fixed Length Binary Tables are

- Embedded spares are allowed.
- Embedded spares are explicitly defined (with COLUMN Objects)
- Multiple Spare columns may all have NAME = SPARE
- Spares are allowed at the beginmng or end of each row of data.
- Spares at the beginning or end of the data can be 1dentified with

1) an explicit COLUMN object or
or

2) use of ROW_PREFIX_BYTES or ROW_SUFFIX_BYTES (note that these bytes should not
be included in the value of ROW_BYTES)
- DATA_TYPE for Spare COLUMNS in binary table is 'N/A'

Example - SPARE field embedded in a Binary TABLE

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES = 1000 Columni1. . 99
Ll []
OBJECT =TABLE I
INTERCHANGE_FORMAT =BINARY l
ROW_BYTES = 1000 TABIT IE
COLUMNS =99 |
. ' | g
OBJECT = COLUMN | &
NAME = SPARE |
START_BYTE =800 L
BYTES =20 i I
DATA_TYPE = "N/A" l I
’ 1 1
END_OBJECT = COLUMN <«— 800—— 20

END_OBJECT =TABLE +— 1000——>

A-104 Appendix A PDS Data Object Definitions

Example - Spares at end of a Binary TABLE - Explicit 'SPARE' Column

RECORD_TYPE = FIXED_LENGTH Columnl1 = - - 09
RECORD_BYTES = 1000 T
|
OBJECT =TABLE - |
INTERCHANGE_FORMAT =BINARY
ROW_BYTES = 1000 TABLE |
COLUMNS =99 I w
|
OBJECT = COLUMN g
NAME = SPARE o
BYTES =20 |
DATA_TYPE ="N/A" i
START_BYTE =980 :
END_OBJECT = COLUMN |
END_OBJECT = TABLE .
20
< 1000 >

Example - Spares at end of a Binary TABLE - ROW_SUFFIX use

RECORD_TYPE = FIXED_LENGTH Column 1 08
RECORD_BYTES = 1000 T
|
OBJECT =TABLE i
INTERCHANGE_FORMAT = BINARY ,
~ >
ROW_BYTES =980 TABLE =
ROW_SUFFIX_BYTES =20 | o
COLUMNS = 98 l a
1
END_OBJECT =TABLE s
| O
o
|
i
]
i
20

+— 1000 ——»

A.274.2 ASCII Tables - Fixed Length Records

In ASCII tables, field delimiters (") and (,) and the <CR><LF> pair are considered part of the data,
even though the COLUMN objects attributes do not include them. Spares in ASCII tables are
limited to the “space” character (ASCII 20). The guidelines for handling SPARE fields in Fixed
Length ASCII Tables are:

Appendix A PDS Data Object Definitions A-105

- Embedded spares are not allowed.

- Spares are allowed at the end of each row of data.

- The <CR><LF> follows the spare data.

- There are no delimiters (commas or quotes) surrounding the spares.

- Spares at the end of the data can be ignored (like field delimiters and CR LF) or they can be
identified

1) in the Table Description

or
2) by using ROW_SUFFIX_BYTES (note that these bytes should not be included in the value of

ROW_BYTES)

Example - SPARE field at end of ASCII TABLE - Table description note

RECORD_TYPE = FIXED_LENGTH P o
RECORD_BYTES = 1000 ¢ 1000 >
OBJECT =TABLE l
INTERCHANGE_FORMAT = ASCII

ROW_BYTES = 1000

DECRIPTION ="Ths table contains TABLE Spare % 5

980 bytes of table data followed by 18 bytes of blank spares
Byte 999 and 1000 contain the <CR> <LF>
par”

g2 —P>4¢—]8 —»

A-106

Appendix A PDS Data Object Definitions

Example - Spares at end of a ASCII TABLE - ROW_SUFFIX use.

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 1000

OBJECT =TABLE
INTERCHANGE_FORMAT = ASCII
ROW_BYTES =980
ROW_SUFFIX_BYTES =20
END_OBIJECT =TABLE

A.27.5

ASCII Tables - STREAM Records

4080 4 20—

|

l

|

I
TABLE : Spare
I
|
|
|
|

ROW_§UFFIX

Spares are not used with ASCII Tables in STREAM record formats. In STREAM files, the last data
field explicitly defined with a COLUMN object is followed immediately by the <CR><LF> pair.
Since there is no use for spares at the end of the data, and embedded spares are not allowed in

ASCH tables, spares are not applicable here.

Appendix A PDS Data Object Defimtions A-107

A.28 TEXT

The TEXT object contains plain text which begins immediately after the END statement. It is
recommended that TEXT objects contain no special formatting characters, with the exception of
the carnage return/line feed sequence and the page break. Tabs are discouraged, since they are
interpreted differently by different programs. It is important to include BOTH the carriage return
and line feed characters when preparing files for use on a variety of host systems.

Use of the Macintosh or Unix line terminators will cause text to be unreadable on other host
computers. It 1s recommended that text lines be limited to 70 characters maximum, followed by the
Carriage Return (Control M, HexOxOd) and Line Feed (Control I, HexOxOa) characters.
NOTE: The text object 1s used in files describing the contents of an archive volume or the contents
of a directory, such as AAREADME.TXT, DOCINFO.TXT, VOLINFO.TXT, SOFTINFO.TXT,
etc. These files must be in plain unmarked ASCII text and always have the file name extension of

.TXT. Documents placed on the volume in plain ASCII text, on the other hand, must be described
using the DOCUMENT object. (See the definition of the DOCUMENT Object 1n Appendix A.)

The NOTE field provides a brief introduction to the TEXT.
Required Keywords

1. NOTE
2. PUBLICATION_DATE

Optional Keywords

1. INTERCHANGE_FORMAT

A-108 Appendix A PDS Data Object Defimtions

Example

The example below is a portion of an AAREADME.TXT file.

CCSD3ZF(0000100000001 NJPL31FOFDSX 00000001

PDS_VERSION_ID =PDS3

RECORD_TYPE =STREAM

OBJECT =TEXT

PUBLICATION_DATE = 1991-05-28

NOTE = "Introduction to this CD-ROM volume *
END_OBJECT

END

GEOLOGIC REMOTE SENSING FIELD EXPERIMENT

Thus set of compact read-only optical disks (CD-ROMs) contamns a data collecuon acquired by ground-based and airborne
nstruments during the Geologic Remote Sensing Field Expennment (GRSFE) Extensive documentation 1s also included GRSFE
took place 1n July, September, and October, 1989, 1n the southern Mojave Desert, Death Valley, and the Lunar Crater Volcanic
Field, Nevada The purpose of these CD-ROMs 1s to make available 1n a compact form through the Planetary Data System (PDS)
a collection of relevant data to conduct analyses 1n preparation for the Earth Observing System (EQS), Mars Observer (MO), and
other missions The generation of this set of CD-ROMSs was sponsored by the NAS A Planetary Geology and Geophysics Program,
the Planetary Data System (FDS) and the Pilot Land Data System (FLDS)

This AAREADME TXT file 1s one of the two nondirectory files located 1n the top level directory of each CD-ROM velume 1n this
collecuon, The other file, VOLDESC CAT, contains an overview of the data sets on these CD-ROMs and 1s written 1n a format that
15 designed for access by computers These two files appear on every volume i the collection All other files on the CD-ROMs
are located 1n directories below the top level directory

Appendix A PDS Data Object Definitions A-109

A.29 VOLUME

The VOLUME object describes a physical or logical unit used to store or distribute data products
(e.g. a magnetic tape, CD-ROM disk, On-Line Magnetic disk or floppy disk) which contain
directories and files. The directories and files may include documentation, software, calibration
and geometry information as well as the actual science data.

Required Keywords

. DATA_SET_ID

. DESCRIPTION

. MEDIUM_TYPE

. PUBLICATION_DATE

. VOLUME_FORMAT

. VOLUME_ID

. VOLUME_NAME

. VOLUME_SERIES_NAME
. VOLUME_SET_NAME
10.VOLUME_SET_ID
11.VOLUME_VERSION_ID
12.VOLUMES

O 00U b~ WHN —

Optional Keywords

1. BLOCK_BYTES

2. DATA_SET_COLL_ID

3. FILES

4. HARDWARE_MODEL_ID

5. LOGICAL_VOLUMES

6. LOGICAL_VOLUME_PATH_NAME
7. MEDIUM_FORMAT

8. NOTE

9. OPERATING_SYSTEM_ID

10. PRODUCT_TYPE

11. TRANSFER_COMMAND_TEXT
12. VOLUME_INSERT_TEXT

Required Objects

1. CATALOG
2. DATA_PRODUCER

A-110 Appendix A. PDS Data Object Defimitions

Optional Objects

1. DIRECTORY
2. FILE
3. DATA_SUPPLIER

Example 1 (Typical CD-ROM Volume)
Please see example in A.5 CATALOG.
Example 2 (Tape Volume)

The following VOLUME object example shows how directories and files are indicated when a
volume is stored on ANSI tape for transfer. This form should be used when transferring volumes
of data on media which do not support hierarchical directory structures (for example, submitting a
volume of data for premastering). The VOLDESC.CAT file will contain the standard volume
keywords, but the values of MEDIUM_TYPE, MEDIUM_FORMAT and VOLUME_FORMAT
indicate that the volume is stored on tape.

In this example two files are defined in the root directory of the volume, VOLDESC.CAT and
AAREADME.TXT. The first directory object defines the CATALOG directory which contains
meta data in the High Level Catalog Templates. Here they all exist in one file, CATALOG.CAT.
The second directory object defines an INDEX subdirectory, with three files embedded in 1t
(INDXINFO.TXT, INDEX.LBL, INDEX.TAB). Following that directory, the first data directory
is defined. Note that the sequence number field indicates the sequence of the file on the tape
volume.

CCSD3ZF000010000000 1NJPL3IFOPDSX00000001

PDS_VERSION_ID =PDS3

OBJECT = VOLUME

VOLUME_SERIES_NAME = "MISSION TO MARS"

VOLUME_SET_NAME = "MARS DIGITAL IMAGE MOSAIC AND DIGITAL TERRAIN MODEL"
VOLUME_SET_ID = USA_NASA_PDS_VO_2001_TO_VO_2007

VOLUMES =7

VOLUME_NAME ="MDIM/DTM VOLUME 7 GLOBAL COVERAGE"

VOLUME_ID = VO_2007

VOLUME_VERSION_ID = "VERSION 1*

PUBLICATION_DATE = 1992-04-01

DATA_SET_ID ="VO1/YO2-M-VIS-5-DTM-V1 0"

MEDIUM_TYPE = "8-MM HELICAL SCAN TAFPE"

MEDIUM_FORMAT ="2GB"

VOLUME_FORMAT = ANSI

HARDWARE_MODEL_ID ="VAX 11/750"

OPERATING_SYSTEM_ID ="VMS 4 6"

DESCRIPTION = "This volume contains the Mars Digttal Terrain Model and Mosaicked Digatail

Image Model covening the enure planet at resolutions of 1/64 and 1/16 degree/pixel The volume also contains Polar Stereographic
projection files of the north and south pole areas from 80 to 90 degrees latitude, Mars Shaded Relief Airbrush Maps at 1/16 and 1/
4 degree/pixel; a gazetteer of Mars features, and a table of updated viewing geometry files of the Viking EDR 1mages that compnse
the MDIM "

MISSION_NAME = VIKING

SPACECRAFT_NAME = {VIKING_ORBITER_1,VIKING_ORBITER_2}

SPACECRAFT_ID = {VO1,VO2}

Appendix A PDS Data Object Defimitions

OBIECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

END_OBIECT

OBJECT
AMCATALOG
END_OBIJECT

OBIJECT

FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT

FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT -
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBIJECT
END_OBJECT

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBIECT

OBIECT

FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

OBJECT
NAME

OBJECT
FILE_NAME

I}

DATA_PRODUCER

"“USGS FLAGSTAFF"
"BRANCH OF ASTROGEOLOGY"
"Enc M Elason™

"IMAGE PROCESSING"

=" Branch of Astrogeology \n

United States Geological Survey\n
2255 North Gemun1 Dnve\n

Flagstaff, Anizona 86001 USA"

= DATA_PRODUCER

[I O (O ||

=CATALOG
="CATALOG CAT"
= CATALOG

=FILE
="VOLDESC CAT"
= STREAM

=1

= FILE

= FILE

= "AAREADME TXT"
= STREAM

=3

= FILE

= DIRECTORY
= CATALOG

= FILE

= "CATALOG CAT"
= STREAM

=3

=FILE

= DIRECTORY

= DIRECTORY
= DOCUMENT

= FILE
="VOLINFO TXT"
= STREAM

=4

= FILE

= FILE

= "DOCINFO TXT"
= STREAM

=5

=FILE

= DIRECTORY

= DIRECTORY
=INDEX

=FILE
= "INDXINFO TXT"

A-111

A-112

RECORD_TYPE
SEQUENCE_NUMBER
END_OBIJECT

OBIECT

FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

SEQUENCE_NUMBER.

END_OBJECT
END_OBIJECT

OBIECT
NAME

OBIJECT

FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBIECT

OBIECT

FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBJECT

END_OBJECT

END_OBIJECT
END

= STREAM
=6
=FILE

=FILE
="INDEX LBL"
= STREAM

=7

=FILE

= FILE

="INDEX TAB"

= FIXED_LENGTH
=512

= 6822

=8

=FILE
=DIRECTORY

=DIRECTORY
= MGOONXXX

=FILE

= "MGOONQOO7 IMG"
= FIXED_LENGTH
= 064

=965

=9

=FILE

=FILE
="MGOON(012 IMG”
= FIXED_LENGTH
=964

= 965

=10

= FILE

= DIRECTORY

= VOLUME

Appendix A PDS Data Object Definitions

Appendix A PDS Data Object Defintions A-113

Example 3a (CD-ROM Volume containing logical volumes)
Examples 3a and 3b 1llustrate the use 6f the VOLUME Object 1n the top level and at the logical
volume level of an archive volume. Note that the VOLUME Object is required at both levels.

For examples 3a and 3b, the CD-ROM is structured as three separate logical volumes with root
directories named PPS/, UVS/ and RSS/. An additional SOFTWARE directory 1s supplied at
volume root for use with all logical volumes.

Example 3a illustrates the use of the VOLUME Object present at the top level of a CD-ROM
containing logical volumes. Note usage of the keywords DATA_SET_ID,

LOGICAL_VOLUMES, and LOGICAL_VOLUME_PATH_NAME.
PDS_VERSION_ID PDS3.
OBJECT = VOLUME
VOLUME_SERIES_NAME
VOLUME_SET_NAME
VOLUME_SET_ID
VOLUMES

"VOYAGERS TO THE OUTER PLANETS"

"PLANETARY RING OCCULTATIONS FROM VOYAGER"
"USA_NASA_PDS_VG_3001"

1

MEDIUM_TYPE ="CD-ROM"

VOLUME_FORMAT = "ISO-9660"

VOLUME_NAME ="VOYAGER PPS/UVS/RSS RING OCCULTATIONS"

VOLUME_ID ="VG_3001"

VOLUME_VERSION_ID = "VERSION 1"

PUBLICATION_DATE =1994-03-01

DATA_SET_ID = {"VG2-SR/UR/NR-PPS-4-OCC-V1 0",
"VG1/VG2-SR/UR/NR-UVS-4-OCC-V1 0","VG1/VG2-SR/UR/NR-RSS-4-
OCC-V1 0"} .

LOGICAL_VOLUMES =3

LOGICAL_VOLUME_PATH_NAME = {"PPS/", "UVS/", "RSS/"}

DESCRIPTION = "This volume contains the Voyager 1 and Voyager 2 PPS/UVS/RSS ring

occultation and ODR data sets Included are data files at a vanety of levels of processing, plus ancillary geometry, calibration and
trajectory files plus software and documentation

This CD-ROM 1s structured as three separate logical volumes with root directories named PPS/, UVS/ and RSS/ An additional
SOFTWARE directory 1s supplied at volume root for use with all logical volumes "

OBJECT =DATA_PRODUCER
INSTITUTION_NAME = "PDS RINGS NODE"
FACILITY_NAME ="NASA AMES RESEARCH CENTER"

"DR MARKR SHOWALTER"
"RINGS™
"Mail Stop 245-3

FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

NASA Ames Research Center
Moffett Field, CA 94035-1000"

END_OBJECT = DATA_PRODUCER

OBJECT = CATALOG

DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-OCC-V1 0"
LOGICAL_VOLUME_PATH_NAME = "PPS/"

AMISSION_CATALOG = "MISSION CAT"
AINSTRUMENT_HOST_CATALOG = "INSTHOST CAT"
AINSTRUMENT_CATALOG ="INST.CAT"
ADATA_SET_COLLECTION_CATALOG ="DSCOLL CAT"
ADATA_SET_CATALOG = "DATASET CAT"

AREFERENCE_CATALOG ="REF.CAT"
APERSONNEL_CATALOG = "PERSON CAT"

A-114 Appendix A PDS Data Object Definitions

END_OBIJECT = CATALOG
OBJECT = CATALOG
DATA_SET_ID ="VGI/VG2-SR/UR/NR-UVS-4-OCC-V1 0"
LOGICAL_VOLUME_PATH_NAME ="UvSs/”
AMISSION_CATALQG = "MISSION CAT"
AINSTRUMENT_HOST_CATALOG = "INSTHOST CAT"
AINSTRUMENT_CATALOG = "INST CAT"
“DATA_SET_COLLECTION_CATALOG ="DSCOLL CAT"
~DATA_SET_CATALOG = "DATASET CAT"
~REFERENCE_CATALOG ="REF CAT"
APERSONNEL_CATALOG = "PERSON CAT"
END_OBIJECT =CATALOG
OBJECT =CATALOG
DATA_SET_ID = "VG1/VG2-SR/UR/NR-R§S-4-OCC-V1 0"
LOGICAL_VOLUME_PATH_NAME = "RS§S/”
AMISSION_CATALOG = "MISSION CAT"
AINSTRUMENT_HOST_CATALOG = "INSTHOST CAT"
AINSTRUMENT_CATALOG = "INST CAT"
~DATA_SET_COLLECTION_CATALOG = "DSCOLL CAT"
*DATA_SET_CATALOG = "DATASET CAT"
AREFERENCE_CATALOG ="REF CAT"
~PERSONNEL_CATALOG = "PERSON CAT"
END_OBJECT = CATALOG
END_OBJECT = VOLUME

END

Example 3b (PPS/VOLDESC.CAT -- CD-ROM logical volume)

Example 3b illustrates the use of the Volume object which 1s required at the top level of a logical
volume. Note the difference in values for the keywords DATA_SET_ID and
LOGICAL_VOLUME_PATH_NAME from those used at the top level of the CD-ROM (example
3a). Also note that the keyword LOGICAL_VOLUMES does not appear here.

PDS_VERSION_ID =PDS3

OBJECT = VOLUME

VOLUME_SERIES_NAME = "VOYAGERS TO THE OUTER PLANETS"
VOLUME_SET_NAME = "PLANETARY RING OCCULTATIONS

FROM VOYAGER"
VOLUME_SET_ID ="USA_NASA_PDS_VG_3001"
VOLUMES =1
MEDIUM_TYPE ="CD-ROM"
VOLUME_FORMAT = "ISO-9660"
VOLUME_NAME = "VOYAGER PPS/UVS/RSS RING
OCCULTATIONS"
VOLUME_ID = "VG_3001"
VOLUME_VERSION_ID = "VERSION 1"
PUBLICATION_DATE = 1994-03-01
DATA_SET_ID = "VG2-SR/UR/NR-PPS-4-OCC-V1 0"
LOGICAL_VOLUME_PATH_NAME ="PPS/"
DESCRIPTION = "Thus logical volume contains the Voyager 2 PPS ring occultation data sets

Included are data files at a vanety of levels of processing, plus ancillary geometry, calibration and trajectory files plus software and
documentation "

OBJECT =DATA_PRODUCER

Appendix A PDS Data Object Definitions

"PDS RINGS NODE"
"NASA AMES RESEARCH CENTER"
"DR MARKR SHOWALTER"

INSTITUTION_NAME
FACILITY_NAME
FULL_NAME

i uwn 4

DISCIPLINE_NAME "RINGS"

ADDRESS_TEXT "Mail Stop 245-3

NASA Ames Research Center

Moffett Field, CA 94035-1000"

END_OBIJECT =DATA_PRODUCER

OBIJECT = CATALOG

DATA_SET_ID "VG2-SR/UR/NR-PPS4-OCC-V1 0"

LOGICAL_VOLUME_PATH_NAME “PPS/"

~MISSION_CATALOG = "MISSION CAT"
AINSTRUMENT_HOST_CATALOG = "INSTHOST CAT"
AINSTRUMENT_CATALOG = "INST CAT"
~*DATA_SET_COLLECTION_CATALOG = "DSCOLL CAT"
"DATA_SET_CATALOG ="DATASET CAT"
~REFERENCE_CATALOG = "REF CAT"
~PERSONNEL_CATALOG = "PERSON CAT"
END_OBIECT = CATALOG
END_OBJECT = VOLUME

END

A-115

A-116 Appendix A PDS Data Object Definitions

Appendix B Complete PDS Catalog Object Template Set B-1

Appendix B

Complete PDS Catalog Object Template Set

This appendix provides a complete set of the PDS catalog objects 1n alphabetical order. Each
section includes a description, a list of sub-objects, guidelines to follow in filling them out, and a
specific example of the object.

The templates are used to load the PDS Data Set Catalog. (DATA_SET_MAP_PROJECTION and
SOFTWARE_INVENTORY are exceptions. They are not used currently to load data into the
catalog.)

Templates are also used as documentation on PDS archived data sets. PDS requires that either the
full set of templates be present in the CATALOG subdirectory or the file VOLINFO.TXT be
present 1n the DOCUMENT subdirectory of an archive volume. See the File Specification and
Naming chapter of this document for pointer and file names used with catalog object templates.

Depending on the type of data you are submitting, you may not need to complete every template.
Your PDS Central Node Data Engineer will supply you with blank catalog templates to be
completed. '

Definitions and examples are provided here for your convenience. Additional examples may be
obtained by contacting your Data Engineer.

The examples reflect the format to ingest metadata into the PDS catalog. Of note 1s the underlining
convention for headings and subheadings in longer text fields. Main headings are double-
underlined through the use of the equal-sign key (=) on the typing keyboard. Subheadings are
single-underlined through the use of the hyphen (-) key. This underlining convention enhances
legibility, and in the future will facilitate the creation of hypertext links.

B-2 Appendix B. Complete PDS Catalog Object Template Set

TABLE OF CONTENTS

B.1 DATASET.......ccccvvinins R ORROTTORPITON e s B-3
B.2 DATA SET COLLECTION........ccoiiiiiiiiiininteitnees ctee ceiees ot e seneeesseessarsesseens B-11
B3 DATA SET MAP PROJECTION ..ottt crieeries cereee rvieinesvssneerenseenens B-14
B.4 INSTRUMENT ..ottt ettt tes eeemeatesssteessrasaannens B-17
B.S INSTRUMENT HOSToeiiiiiiiiiiiictitccieciiecnns « e cavee cetreaeecmnneeneesneen B-23
B.6 INVENTORY ..ottt esee s eaeseesteceeeneeeeneesneesaes B-25
B.7 MISSION ..t st sasseeteoreeseanessesaenesonns B-27
B.8 PERSONNEL ..ottt st sss b s serescssasnssone B-33
B.9 REFERENCE ...ttt eae sasesessesesnsineannns B-35
B.10 SOFTWARE _INVENTORY ..o B-36

B.11 TARGET ..ottt saeeeneise st n e sasenes B-38

Appendix B Complete PDS Catalog Object Template Set B-3

B.1 DATA SET

The DATA SET catalog object is used to submut information about a data set to the PDS The
catalog object includes a free-form textual description of the data set and sub-objects for
identifying associated targets, hosts, and references. A separate REFERENCE object will need to
be completed for any new references not already part of the PDS catalog.

(1) The DATA SET INFORMATION catalog object includes two free-form textual
descriptions, DATA_SET_DESC and CONFIDENCE_LEVEL_NOTE.

NOTE: The following paragraph headings and subheadings are recommended as the minimum set
of headings needed to describe a data set adequately. Additional headings and sub-headings may
be added as desired. Should any of the more common headings not appear within a textual
description, it will be considered not applicable to the data set.

Under DATA_SET_DESC =

Data Set Overview'
A high level description of the characteristics and properties of a data set.

Parameters
Describe the primary parameters (measured or derived quantities) included in the
data set, also units and sampling intervals.

Processing
Describe the overall processing used to produce the data set. Include a description

of the input data (and source), processing methods or software, and primary
parameters or assumptions used to produce the data set.

Data
Describe in detail each data type identified in the Data Set Overview, (e.g.,
Ancillary Data, Image Data, Table Data, etc.).

Ancillary Data
Describe ancillary information needed 1n interpreting the data set. These may or
may not be provided along with the data set. Include sources or references for
locating ancillary data

Coordinate System
Describe the coordinate system or frame of reference to be used for proper

interpretation of the data set.

Software
Describe software for use with the data set. This may include software supplied
with the data set, or software or systems that may be accessed independently to
assist in visualization or analysis of the data.

B-4 Appendix B Complete PDS Catalog Object Template Set

Media/Format
Describe the media on which the data set is available for distribution. Include
format information that may limit the use of the data set on specific hardware
platforms (e.g., binary/ascii, IBM EBCDIC format).

Under CONFIDENCE_LEVEL_NOTE =

Confidence Level Overview

A high level description of the level of confidence (e.g., reliability, accuracy, or
certainty) of the data.

Review
Briefly describe any review process that took place prior to release of the data set
to insure the accuracy and completeness of the data and associated documentation.

Data Coverage and Quality
Describe the overall data coverage and quality. This should include information
about gaps in the data (both for times or regions). Include descriptions of how
missing or poor data is flagged or filled, if applicable.

Limitations
Describe limitations on the use of the data set. For example, discuss other data
required to properly interpret the data, or special processing systems expected to be
used to further reduce the data set for analysis. If the data set is calibrated or
otherwise corrected or derived, describe any known anomalies or uncertainties in
the results.

(OTHER - Data Supplier provided):

Add any other important information in additional headings as desired (e.g., Data
Compression, Time-Tagging, etc.)

(2) The DATA SET TARGET catalog object is completed for each target associated with the
data set. If there is more than one target, this object is repeated.

3 The DATA SET HOST catalog object is completed for each host/instrument pair
associated with the data set. If there is more than one host/instrument pair, this object is
repeated.

4) The DATA SET REFERENCE INFORMATION catalog object is completed for each
reference associated with the data set (e.g., articles, papers, memoranda, published data,
etc.). If there is more than one reference, this object 1s repeated. A separate REFERENCE
template is completed to provide the proper citation for each reference.

Important references including data set description, calibration procedures, processing
software documentation, review results, etc. should be included. These can be both

oL ottt D N T B PRrt
20 . EAUEDREY

Appendix B Complete PDS Catalog Object Template Set

published and internal documents or informal memoranda.

Example:

/* Template Data Set Template

/*

/* Note Complete one for each data set Identify multiple targets associated with

1*
/*
/*
/*
/¥

the data set by repeating the 3 lines for the DATA_SET_TARGET object
Identify multiple hosts associated with the data set by repeating the 4 lines
for the DATA_SET_HOST object Identify multiple references associated
with the data set by repeating the 3 lines of the
DATA_SET_REFERENCE_INFORMATION object

/* Hierarchy DATA_SET

/*
/*
/*
/¥

DATA_SET_INFORMATION
DATA_SET_TARGET

DATA_SET_HOST
DATA_SET_REFERENCE_INFORMATION

CCSD3ZF0000100000001 NJPL3IFOPDS X 00000001

PDS_VERSION_ID =PDS3

OBJECT = DATA_SET

DATA_SET_ID

OBIECT

DATA_SET_COLLECTION_MEMBER_FLG =“N”
DATA_OBIJECT_TYPE =TABLE
START_TIME = 1990-08-01T00 00 00
STOP_TIME =1993-12-31T23 59 59
DATA_SET_RELEASE_DATE) =1994-07-01

PRODUCER_FULL_NAME

DETAILED_CATALOG_FLAG =“N”
DATA_SET_DESC =

Data Set Overview

The Global Vector Data Record (GVDR) 1s a sorted collection of scattering and emission measurements from the

Rev 1993-09-24

= “MGN-V-RDRS-5-GVDR-V1 0”
DATA_SET_INFORMATION

DATA_SET_NAME =“MGN V RDRS DERIVED GLOBAL VECTOR
DATA RECORD V1 0~

=“MICHAEL] MAURER”

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

Magellan Mission The sorting 1s 1nto a grid of equal area 'pixels’ distributed regularly about the planet For data acquired
from the same pixel but in different observing geometries, there 1s a second level of sorting to accommodate the different

geometrical conditions. The ‘pixel’ dimension 1s 18 225 km. The GVDR 1s presented in Sinusoidal Equal Area
(equatonal), Mercator (equatorial), and Polar Steredgraphic (polar) projections

The GVDR 1s intended to be the most systematic and comprehensive representation of the electromagnetic properties of
the Venus surface that can be derived from Magellan data at this resolution It should be useful in charactenzing and

companng disunguishable surface units

Parameters

The Magellan data set comprses three basic data types echoes from the nadir-viewing alumeter (ALT), echoes from the
oblique backscatter synthetic aperture radar (SAR) 1maging system, and passive radio thermal emssion measurements
made using the SAR equipment The objective in compiling the GVDR 1s to obtain an accurate estimate of the surface
backscattering function (sometimes called the specific backscatter function or 'sigma-zero') for Venus from these three

B-6

Appendix B Complete PDS Catalog Object Template Set

data types and to show 1ts vanation with incidence (polar) angle, azimuthal angle, and surface location

The ALT data set has been analyzed to yield profiles of surface elevauon [FORD&PETTENGILL1992] and estimates of
surface Fresnel reflectivity and estimates of meter-scale rms surface tilts by at least two independent methods
[FORD&PETTENGILL1992, TYLER1992] The ‘inversion’ approach of [TYLER1992] provides, 1n addition, an
empincal esumate of the surface backscatter function at incidence angles from nadir to as much as 10 degrees from nadir
in steps of 0 3 degrees

Stanstical analysis of SAR i1mage pixels for surface regions about 20 km (across track) by 2 km (along track) provided
estimates of the surface backscatter function over narrow angular ranges (1-4 degrees) between 15 and 50 degrees from
normal incidence [TYLER1992] By combimung results from several orbital passes over the same region 1n different
observing geometnes, the backscatter response over the full oblique angular range (15-50) could be compiled In fact, the
number of independent observing geometnies attempted with Magellan was mited, and some of these represented
changes 1n azimuth rather than changes 1n incidence (or polar) angle Nevertheless, data from many regions were collected
1n more than one SAR observing geometry. Histograms of pixel values and quadratc fits to the surface backscattenng
function over narrow ranges of incidence angle were computed by [TYLER1992)]

Passive microwave emussion by the surface of Venus was measured by the Magellan radar receiver between ALT and
SAR bursts These measurements have been converted to estmates of surface emssivity [PETTENGILLETAL 1992]
With certain assumptions the emussivity derived from these data should be the complement of the Fresnel reflecuvity
denved from the ALT echo strengths In cases where the two guantities do not add to unity, the assumptions about a simple
dielectric (Fresnel) interface at the surface of Yenus must be adjusted

Processing

The processing carrted out at the Massachusetts Institute of Technology (MIT) to obtain altimetry profiles and esumates
of Fresnel reflectivity and rms surface tilts has been described elsewhere [FORD&PETTENGILL1992] In brief it
involves fitting pre-computed templates to measured echo profiles, the topographic profiles, Fresnel reflectivities, and
rms surface tilts are chosen to munimmuze differences between the data and templates 1n a least-squares sense The estimates
of emussivity require calibration of the raw data values and correction for attenuation and ermmssion by the Venus
atmosphere [PETTENGILLETAL1992] These data have been collected by orbit number on a set of compact discs
[FORD1992] and 1nto a set of global maps, alse distnibuted on compact disc [FORD1993]

At Stanford ALT-EDR tapes were the input for calculation of near-nadir empinical backscattering functions For obligue
backscatter, C-BIDR tapes from the Magellan Project and F-BIDR files obtained via Internet from Washington University
were the mput products Output was collected on an orbit-by-orbit basis nto a product known as the Surface
Charactenstics Vector Data Record (SCVDR) The SCVDR has been delivered to the Magellan Project for orbats through
2599, processing of data beginning with orbut 2600 and continuing through the end-of-Mission 1s spending completion
of the first version of the GVDR

Data

The GVDR data set compnses several ‘tables’ of results based on analysis of each of the data types described above These
include

(1) Image Data Table

(2) Radiometry Data Table
(3) MIT ALT Data Table

(4) Stanford ALT Data Table

(1) Image Data Table

This table contains results from analysis of SAR image stnps The results are parameterized by the azimuth angle, the
incidence (polar) angle, and the polanzation angle Quantities include the number of 1mage frame lets used to compute
the scattering paramneters, the median, the mode, and the one-standard-deviation limuts of the pixel histogram, and the
three coefficients and the reference angle of the quadratic approximation to sigma-zero as a function of incidence angle

Appendix B Complete PDS Catalog Object Template Set B-7

(2) Radiometry Data Table

Thus table contains results from MIT analysis of the radiometry data The results are parameterized by the azimuth angle,
the mcidence angle, and the polanzation angle The results include the number of radiometry footprints used to compute
the estimate of thermal emussivity, the emussivity, and its vanance

(3) MIT ALT Data Table

This table contains results derived from the MIT altimetry data analysis The results include the number of ARCDR ADF
footprints used 1n computing the estimates of scattening properties for the pixel and estimates (and vanances) of radius,
rms surface tilt, and Fresnel reflectivity from the ARCDR

(4) Stanford ALT Data Table

This table contains results from the Stanford analysis of altimetry data Results include the number of SCVDR footprints
used 1n computing the estimates of surface properties for this pixel, the centroid of the Doppler spectrum, the dentved
scattering function and the angles over which it 1s valid, vanance of the individual ponts 1n the derived scattering
function, and results of fitting analyuc functions to the denived scattering function

Ancillary Data

Ancillary data for most processing at both MIT and Stanford was obtained from the data tapes and files received from the
Magellan Project These included trajectory and pointing information for the spacecraft, clock conversion tables,
spacecraft engmeenng data, and SAR processing parameters For calibration of the radar instrument 1tself, Magellan
Project reports (including some received from Hughes Aircraft Co [BARRY 1987, CUEVAS1989, SE011]) were used
Documentation on handling of data at the Jet Propulsion Laboratory was also used [BRILL&MEISL1990, SCIEDR,
SDPS101]

Coordinate System

The data are presented 1n gridded formats, tiled to ensure that closely spaced points on the surface occupy nearby storage
locations on the data storage medium Four separate projections are used sinusoidal equal area and Mercator for points
within 89 degrees of the equator, and polar stereographic for points near the north and south poles The projections are
described by [SNYDER1987], IAU conventions described by [DAVIESETAL1989] and Magellan Project assumptions
[LYONS1988] have been adopted '

Software

A special library and several example programs are provided 1n source code form for reading the GVDR data files The
general-purpose example program will serve the needs of the casual user by accessing a given GVDR quanuty over a
specified region of GVDR pixels More advanced users may want to write therr own programs that use the GVDR library
as a toolkit The library, written in ANSI C, provides concise access methods for reading every quantity stored 1n the
GVDR It conveniently handles allgeometric and tiling transformations and converts any compressed qualitites to a
standard native format The general purpose program mentioned above provides an example of how to use this library

Media/Format

The GVDR will be delivered to the Magellan Project (or 1ts successor) using compact disc write once (CD-WO) media
Formats will be based on standards for such products established by the Planetary Data System (PDS) [PDSSR1992]

CONFIDENCE_LEVEL_NOTE =
Confidence Level Overview

The GVDR 1s intended to be the most systematic and comprehensive representation of the electromagnetic properties of
the Venus surface that can be derived from Magellan data at this resolution Nevertheless, there are limitations to what
can be done with the data

B-8

Appendix B. Compiete PDS Catalog Object Template Set

Review

The GVDR will be reviewed internally by the Magellan Project prior to release to the planetary community The GVDR
will also be reviewed by PDS

Data Coverage and Quality

Because the orbit of Magellan was elliptical duning most of 1ts mapping operations, parts of the orbital coverage have
higher resolution and ligher signal-to-noise than others

Cycle 1 Mapping
Duning Mapping Cycle 1, penapsis was near 10 degrees N latitude at alutudes of approximately 300 km over the

surface The altitude near the poles, on the other hand, was on the order of 3000 km For all data types this means
lower confidence 1n the results obtained at the poles than near the equator

Further, the spacecraft attitude was adjusted so that the SAR antenna was pointed at about 45 degrees from nadir
near periapsis, this was reduced to near 15 degrees at the poles The objective was to compensate somewhat for the
changing elevation and to provide scattering at higher incidence angles when the echo signal was expected to be
strongest The ALT antenna, at a constant 25 degree offset from the SAR antenna, followed 1n tandem but at angles
which were not optimized for obtaining the best alametry echo

Dunng Mapping Cycle 1 almost half the orbits provided SAR 1mages of the north pole, because of the orbit
inclinanon, ALT data never extended beyond about 85N latitude in the north and 85S in the south No SAR 1mages
of the south pole were acquired dunng Mapping Cycle 1 because the SAR antenna was always pointed to the left of
the ground track, the Cycle 1SAR 1mage stnp near the south pole was at a lantude equator ward of 838

C 2 Mapp1
Durning much of Mapping Cycle 2, the spacecraft was flown ‘backwards’ so as to provide SAR 1mages of the same
terrain but with ‘opposite side’ 1llumination Thus adjustment also meant that the SAR could image near the Venus
south pole (but not near the north pole) The ALT data continued to be limted to latitudes equator ward of 85N and
'858

Cycle 3 Mapping
Dunng Mapping Cycle 3 the emphasis was on obtaining SAR data from the same side as in Cycle 1 but at different

incidence angles (for radar stereo) In fact, most data were acquired at an incidence angle of about 25 degrees, which
meant that the ALT antenna was usually aimed directly at nadir instead of dnifting from side to side, as had been the
case 1n Cycle 1 These Cycle 3 data, therefore, may be among the best from the alameter Dynamuc range 1n SAR
data was larger than in Cycle! because the incidence angle was fixed rather than varying to compensate for the
changing spacecraft height

All Cycles
It 1s important to remember that, since the SAR and ALT antennas were aimed at different parts of the planet during

each orbit, building up a collection of composite scattering data for any single surface region requires that results
from several orbits be integrated Inthe case of data from polar regions, where only the SAR was able to probe, there
will be no ALT data When scheduling or other factors interrupted the systematc collection of data, there may be
ALT data for some regions but no comparable SAR or radiometry data (or viceversa).

Note that for all Cycles outages played an important role in determsmung coverage For example, although a goal of
Cycle 3 radar mapping was radar stereo, early orbits were used to collect data at nominal incidence angles that had
been mussed during Cycle 1 because of thermal problems with the spacecraft A transmtter failure duning Cycle 3
caused a loss of further data It 1s not within the scope of this descniption to provide detailed information on data
coverage.

Limutations

Both the template fitting approach and the inversion approach will have their imitations 1n estimating overall surface
properties for a region on Venus The template calculation assumes that scattering 1s well-behaved at all incidence angles
from O to 90 degrees and that a template representing that behavior can be constructed The Hagfors function
[HAGFORS1964]used by MIT, however, fails to give a finite rms surface tilt 1f used over this range of angles, so

Appendix B Complete PDS Catalog Object Template Set

approximations based on a change in the scattering mechamsm must be applied[HAGFORS&EVANS1968]) The

B-9

inversion method [TYLER 1992] 1s susceptible to noise at the higher incidence angles and this will corrupt solutions 1f
not handled properly Users of this data set should be aware that radar echoes are statistically vanable and that each result

has an uncertainty

A nominal nadir footpnnt can be assigned to alumetry results, but this footprint 1s biased near penapsis because the ALT
antenna s rotated about 20 degrees from nadir {duning Cycle 1) Over polar regions 1n Cycle 1, the ALT antenna 1s rotated
about 10 degrees to the opposite side of nadir A more important consideration 1n polar regions 1s that the area 1llurminated
by the ALT antenna 1s approximately 100 nmes as large as near penapsis because of the higher spacecraft altitnde The
region contributing to echoes 1n polar regions -- and therefore the region over which estimates of Fresnel reflectivity and

rms surface ults apply -- 1s much larger than at penaps:s

END_OBIJECT
OBJECT
TARGET_NAME
END_OBJECT

OBJECT

INSTRUMENT_HOST_ID

INSTRUMENT_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBIJECT

OBJECT
REFERENCE_KEY_ID
END_OBIJECT

OBIECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBIECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBIJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE KEY_ID
END_OBJECT

113

=DATA_SET_INFORMATION

=DATA_SET_TARGET
= VENUS
=DATA_SET_TARGET

=DATA_SET_HOST
=MGN
= RDRS
= DATA_SET_HOST

= DATA_SET_REFERENCE_INFORMATION

= “BARRY1587"

= DATA_SET_REFERENCE_INFORMATION

= “BRILL&MEISL1990”

= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION

= “CUEVAS1989”

= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION

=*“DAVIESETALI1989”

= DATA_SET_REFERENCE_INFORMATION

“FORD1992”

noaon

= DATA_SET_REFERENCE_INFORMATION

=“FORD1993"

= DATA_SET_REFERENCE_INFORMATION
= DATA_SET_REFERENCE_INFORMATION
= “FORD&PETTENGILL1992*

= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION

= “HAGFORS1964"

= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
= “HAGFORS&EV ANS1968”
= DATA_SET_REFERENCE_INFORMATION

DATA_SET_REFERENCE_INFORMATION

DATA_SET_REFERENCE_INFORMATION

DATA_SET_REFERENCE_INFORMATION

OBJECT
REFERENCE_KEY_ID
END_OBIECT

OBIJECT
REFERENCE_KEY_ID
END_OBIJECT

OBIECT
REFERENCE_KEY_ID
END_OBIECT

OBJECT
REFERENCE_KEY_ID
END_OBIJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBIECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT
OBJECT
REFERENCE_KEY_ID
END_OBJECT
END_OBJECT

END

=DATA_SET

Appendix B Complete PDS Catalog Object Template Set

=DATA_SET_REFERENCE_INFORMATION
="“LYONS1988”
=DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
= “PDSSR1992"
= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
= “PETTENGILLETAL1992"
= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
= “SCIEDR”
=DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
= “SDPS101”
= DATA_SET_REFERENCE_INFORMATION

=DATA_SET_REFERENCE_INFORMATION
=“SEQ11"
= DATA_SET_REFERENCE_INFORMATION

= DATA_SET_REFERENCE_INFORMATION
=“SNYDER1987”
= DATA_SET_REFERENCE_INFORMATION

=DATA_SET_REFERENCE_INFORMATION
=“TYLER1992”
= DATA_SET_REFERENCE_INFORMATION

Appendix B Complete PDS Catalog Object Template Set ' B-11

B.2 DATA SET COLLECTION

The DATA SET COLLECTION catalog object is used to link several data sets as a collection to
be used and distributed together.

(1) The DATA SET COLLECTION INFO catalog object provides a description and usage, as
well as other information specific to the data set collection. This object includes a free-form
textual description, DATA_SET_COLLECTION_DESC.

NOTE: The paragraph headings and subheadings are recommended as the minimum set of
headings needed to describe a data set collection adequately. Additional headings and sub-

headings may be added as desired. Should any of the more common headings not appear
within a textual description, 1t will be considered not applicable to the data set collection.

Under DATA_SET_COLLECTION_INFO =

Data Set Collection Overview

A high-level description of the characteristics and properties of a data set collection.

Data Set Collection Usage Overview

A high-level description of the intended use of a data set collection.

2) The DATA SET COLL ASSOC DATA SET catalog object is repeated for each data set
assoclated with the collection. For example, if there are three distinct data sets which make
up a collection, this object will be repeated three different times, one object per data set.

3) The DATA SET COLL REF INFO catalog object associated a reference with the data set
collection. It is repeated for each reference to be identified for the collection. A separate
REFERENCE template is completed to provide the associated reference citation for each
new reference submitted to PDS.

Example:

/* Template Data Set Collection Template Rev 1993-09-24 */
/* Note Complete one template for each data set collecion Identfy */
/* mdividual data sets that are included tn the collection by */
/* repeating the 3 lines for the DATA_SET_COLL_ASSOC_DATA_SETS */
/* object Identify each data set collection reference by */
/* repeating the 3 hines for the DATA_SET_COLL_REF_INFO object */
1* Also complete a separate REFERENCE template for each new */
I* reference submutted to PDS */
/* Hierarchy DATA_SET_COLLECTION */

/* DATA_SET_COLLECTION_INFO */

B-12 Appendix B Complete PDS Catalog Object Template Set

* DATA_SET_COLL_ASSOC_DATA_SETS */

* DATA_SET_COLLECTION_REF_INFO */

OBJECT = DATA_SET_COLLECTION

DATA_SET_COLLECTION_ID = “PREMGN-E/L/H/M/V-4/5-RAD/GRAV-V1 0"

OBJECT =DATA_SET_COLLECTION_INFO
DATA_SET_COLLECTION_NAME =“PRE-MGN E'L/H/M/V 4/5 RADAR/GRAVITY DATA V1 0”
DATA_SETS =15

START_TIME = 1968-11-09T00 00 00

STOP_TIME = 1988-07-27T00 00 00
DATA_SET_COLLECTION_RELEASE _DT = 1990-06-15

PRODUCER_FULL_NAME =“Raymond E Arvidson”
PRODUCER_INSTITUTION_NAME = “Washington Unversity”

DATA_SET_COLLECTION_DESC =
Data Set Collection Overview

Thus entaty 15 a collection of selected Earth-based radar data of Venus, the Moon, Mercury, and Mars, Pioneer Venus radar
data, airborne radar images of Earth, and line of sight acceleration data derived from tracking the Pioneer Venus Orbiter
and Viking Orbiter 2 Included are 12 6 cenumeter wavelength Arecibo Venus radar images, 12 6 to 12 9cm Goldstone
Venus radar 1mages and altimetry data, together with alimetry, bnghtness temperature, Fresnel reflectivity and rms
slopes denved from the Pioneer Venus Radar Mapper For the Moon, Haystack 3 8 centimeter radar 1images and Arecibo
12 6 and70 centimeter radar images are included Mars data include Goldstone alimetry data acquired between 1971 and
1982 and araster data set containing radar units that model Goldstone and Arecibo backscatter observations Mercury data
constst of Goldstone altimetry files The terrestnal data were acquired over the Pisgah lava flows and the Kelso dune field
1n the Mojave Desert, Cahiformia, and consist of multiple frequency, muluple incidence angle views of the same regions
Data set documentation 15 provided, with references that allow the reader to reconstruct processing histones The entire
data set collecuon and documentation are available on a CD-ROM entitled Pre-Magellan Radar and Gravity Data.”

DATA_SET_COLLECTION_USAGE_DESC=*“

Data Set Collecuon Usage Overview

The intent of the data set collection 1s to provide the planetary science commumty with radar and gravity data similar to
the kinds of data that Magellan will begin collecting 1n the summer of 1990 The data set collection wall be used for pre-
Magellan analyses of Venus and for comparisons to actual Magellan data The enure data set collection and
documentation are available on a CD-ROM entitled Pre-Magellan Radar and Gravity Data A hist of the hardware and
software that may be used to read this CD-ROM can be obtatned from the PDS Geosciences Discipline Node ™

END_OBJECT = DATA_SET_COLLECTION_INFO
OBJECT =DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “NDCS8-E-ASAR-4-RADAR-V1 0”
END_OBJECT =DATA_SET_COLL_ASSOC_DATA_SETS
OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID = “ARCB-L-RTLS-5-12 6CM-V1 0”
END_OBIJECT =DATA_SET_COLL_ASSOC_DATA_SETS
OBJECT = DATA_SET_COLL_ASSOC_DATA_SETS
DATA_SET_ID =*“ARCB-L-RTLS-4-70CM-V1 0"
END_OBIJECT =DATA_SET_COLL_ASSOC_DATA_SETS

OBJECT

=DATA_SET_COLL_ASSOC_DATA_SETS

Appendix B. Complete PDS Catalog Object Template Set

DATA_SET_ID
END_OBJECT

OBIJECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBJECT

OBIECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBIJECT
DATA_SET_ID
END_OBJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBJECT
DATA_SET_ID
END_OBJECT

OBJECT
DATA_SET_ID
END_OBIJECT

OBJECT

REFERENCE_KEY_ID

END_OBJECT

END_OBIJECT
END

= DATA_SET_COLLECTION

= “ARCB-V-RTLS-4-12 6CM-V1 0"
= DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
=“ARCB-L-RTLS-3-70CM-V1 0™
=DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
= “GSSR-M-RTLS-5-ALT-V] 0"
=DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
= “GSSR-H-RTLS-4-ALT-V! 0~
=DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
= “GSSR-V-RTLS-5-12 6-9CM-V1 Q"
=DATA_SET_COLL_ASSOC_DATA_SETS

=DATA_SET_COLL_ASSOC_DATA_SETS
= “HSTK-L-RTLS-4-3 8CM-V1 0"
= DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
=“ARCB/GSSR-M-RTLS-5-MODEL- V1 0"
=DATA_SET_COLL_ASSOC_DATA_SETS

=DATA_SET_COLL_ASSOC_DATA_SETS
= *“P12-V-RSS4-LOS-GRAVITY-V1 0”
=DATA_SET_COLL_ASSOC_DATA_SETS

= DATA_SET_COLL_ASSOC_DATA_SETS
= *“P12-V-ORAD-4-ALT/RAD-V1 0"
=DATA_SET_COLL_ASSOC_DATA_SETS

DATA_SET_COLL_ASSOC_DATA_SETS

“P12-V-ORAD-5-RADAR-IMAGE-V1 0”

=DATA_SET_COLL_ASSOC_DATA_SETS
3

= DATA_SET_COLL_ASSOC_DATA_SETS

= “P12-V-ORAD-5-BACKSCATTER-V1 0"

= DATA_SET_COLL_ASSOC_DATA_SETS

[}

DATA_SET_COLL_ASSOC_DATA_SETS
“VO2-M-RS5-4-LOS-GRAVITY-VI1 0~
=DATA_SET_COLL_ASSOC_DATA_SETS

n

= DATA_SET_COLLECTION_REF_INFO
= ARVIDSONETAL 1990A
=DATA_SET_COLLECTION_REF_INFO

B-14 Appendix B Complete PDS Catalog Object Template Set

B3 DATA SET MAP PROJECTION

The DATA SET MAP PROJECTION object is one of two distinct objects that define the map
projection used in creating the digital images in a PDS data set. The other associated object that
completes the definition is the IMAGE MAP PROJECTION, which is fully described in Appendix
A of this document.

The map projection information resides in these two objects essentially to reduce data redundancy
and at the same time allow the inclusion of elements needed to process the data at the image level.
Static information that 1s applicable to the complete data set reside in the
DATA_SET_MAP_PROJECTION object. While, dynamic information that is applicable to the
individual images reside in the IMAGE_MAP_PROIJECTION object.

(1) The DATA_SET_MAP_PROJECTION catalog object unambiguously defines map
projection of an image data set.

Under MAP_PROJECTION_DESC =

Map Proiection Overview

A description of the map projection of the data set, indicating mathematical expressions
used for latitude/longitude or line/sample transformations, line and sample projection
offsets, center longitudes, etc., as well as any assumptions made 1n processing. (These
categories of description may be subheadings indicated by single-underlining.)

Under ROTATIONAL_ELEMENT_DECRIPTION_DESC =

Rotational Element Overview

A description of the standard used for the definition of a planet’s pole orientation and prime
meridian, right ascension and declination, spin angle, etc. (Please see the Planetary Science
Data Dictionary for complete description.).

NOTE: The value 1n this field may also be a bibliographic citation to a published work
containing the rotation element description. In this case there would be no need to have the
‘Overview’ heading. Please see the example provided below.

(2) The REFERENCE object provides citations of papers, articles, and other published and
unpublished works pertinent to the data set map projection.

Appendix B. Complete PDS Catalog Object Template Set B-15

Example

CCSD3ZF0000100000001NJPL3IFOPDSX00000001

PDS_VERSION_ID =PDS3

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES =80

SPACECRAFT_NAME =MAGELLAN

TARGET_NAME = VENUS

OBJECT =DATA_SET_MAP_PROJECTION
DATA_SET_ID ="MGN-V-RDRS-5-DIM-V1 0"

OBJECT = DATA_SET_MAP_PROJECTION_INFO

MAP_PROJECTION_TYPE "SINUSOIDAL"
MAP_PROJECTION_DESC ="

Map Protection Overview

The FMAP (Magellan Full Resolution Radar Mosaic) 1s presented 1n a Sinusoidal Equal-Area map projection In this
projection, parallels of latitude are straight lines, with constant distances between equal latitude intervals Lines of
constant longitude on either side of the projection mendian are curved since longitude intervals decrease with the cosine
of latitude to account for their convergence toward the poles This projection offers a number of advantages for storing
and managing global digital data, 1n particular, 1t 1s computationally simple, and data are stored 1n a compact form

The Sinusoidal Equal-Area projection 1s characterized by a projection longitude, which 1s the center mendian of the
projection, and a scale, which 1s given 1n unts of pixels/degree The center latitude for all FMAP's 1s the equator Each
FMAP contains its own central mendian The tiles that make up an FMAP all have the same central meridian as the
FMAP

Lat/Lon, Line/Sample Transformations

The transformation from latitude and longitude to line and sample 1s given by the following equations
line = INT(LINE_PROJECTION_OFFSET - lat*MAP_RESOLUTION + 1.0)

sample = INT(SAMPLE_PROJECTION_OFFSET - (lon -
CENTER_LONGITUDE)*MAP_RESOLUTION*cos(lat) + 1 0)

Note that integral values of line and sample correspond to center of a pixel Lat and lon are the latitude and longitude
of a given spot on the surface

Line Projection Offset

LINE_PROJECTION_OFFSET 1s the Iine number minus one on which the map projection onigin occurs The map
projection origin 1s the intersection of the equator and the projection longitude The value of
LINE_PROJECTION_OFFSET 1s positive for images starting north of the equator and 1s negative for images
starting south of the equator

Sample Projection Offset

SAMPLE_PROJECTION_OFFSET is the nearest sample number to the left of the projection longitude The value
of SAMPLE_PROJECTION_OFFSET 1s positive for images starting to the west of the projection longitude and 1s
negative for images starting to the east of the projection longitude

B-16

Center Longitude

Appendix B Complete PDS Catalog Object Template Set

CENTER_LONGITUDE 1s the value of the projection longitude,which 1s the longitude that passes through the

center of the projection

The values for FMAP products will be 1408, 235, and 35

There are four PDS parameters that specify the latirude and longitude boundanes of an 1mage
MAXIMUM_LATITUDE and MINIMUM_LATITUDE specify the lautude boundanes of the image.and
EASTERNMOST_LONGITUDE and WESTERNMOST_LONGITUDE specify the longitudinal boundares of

the map

Defimtions of other mapping parameters can be found 1n the Planetary Science Data Dictionary

ROTATIONAL_ELEMENT_DESC

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

END_OBJECT
END_OBJECT

END

= "See DAVIESETAL1989 ~

=DS_MAP_PROJECTION_REF_INFO
= "DAVIESETAL1989"
= DS_MAP_PROJECTION_REF_INFO

= DS_MAP_PROJECTION_REF_INFO
="BATSON1987"
=DS_MAP_PROJECTION_REF_INFO

DS_MAP_PROJECTION_REF_INFO
"EDWARDS1987"
DS_MAP_PROJECTION_REF_INFO

= DS_MAP_PROJECTION_REF_INFO
="SNYDER&JOHNI1987"
= DS_MAP_PROJECTION_REF_INFO

= DATA_SET_MAP_PROJECTION_INFO
= DATA_SET_MAP_PROJECTION

Appendix B Complete PDS Catalog Object Template Set B-17

B4

INSTRUMENT

The INSTRUMENT catalog object is used to submit information about an instrument to PDS.
Instruments are typically associated with a particular spacecraft or earth based host, so the
INSTRUMENT_HOST_ID keyword may identify either a valid SPACECRAFT_ID or
EARTH_BASE_ID. The catalog object includes a textual description of the instrument and a sub-
object for identifying reference information. A separate REFERENCE object will need to be
completed for any new references not already part of the PDS catalog.

(1)

The INSTRUMENT INFORMATION catalog object provides a description of the
instrument. The following paragraph headings and suggested contents are strongly
recommended as the minimal set of information necessary to adequately describe an
instrument. Additional headings may be appropriate for specific instruments and these also
may be added here. Should any of the recommended headings not appear within a textual
description, they will be considered not applicable to the data set.

Instrument Overview

A high-level descrption of the characternistics and properties of an instrument.
Scientific Objectives

The scientific objectives of data obtained from this instrument. .
Calibration

Methods/procediires/schedules of instrument calibration. Calibration stability,
parameters, etc.

Operational Considerations

Special circumstances or events that affect the instrument's ability to acquire high
quality data (which are reflected in the archive product). Examples might be
spacecraft charging, thruster firings, contamination from other instruments, air
quality, temperatures, etc.

Detectors

General description of deterector(s). Type of detector used. Sensitivity and noise
levels. Detector fields of view, geometric factors, etc. Instrument/detector
mounting descriptions (offset angles, pointing positions, etc.)

Electronics ’

Description of the instrument electronics and internal data processing (A-D
converter).

(2)

Appendix B Complete PDS Catalog Object Template Set

Filters

Description of instrument filters and filter calibrations (filter type, center
wavelength, min/max wavelength) if applicable.

@)

tics

Description of instrument optics (focal lengths, transmittance, diameter, resolution,
t_number, etc.) if applicable.

Location

Latitude and longitude location, for earth based instraments.

Operational Modes

Descrption of instrument configurations for data acquisitions. Description of
“modes” (scan, gain, etc.) of data acquisition and of measured parameter(s) and/or
data sampling rates or schemes are used in each mode.

Subsystems

Logical subsystems of the instrument. Description of each subsystem, how it's used,
which “modes” make use of which subsystem, etc.

Measured Parameters

Description of what the instrument directly measures (particle counts, mag.field
components, radiance, current/voltage ratios, etc.) Description and defimition of
these measurements (min/max, noise levels, units, time interval between
measurements, etc.)

(OTHER - Data Supplier provided):

Any other important information in additional headings as desired (e.g. Data
Reduction, Data Compression, Time-Tagging, Diagnostics, etc.)

The INSTRUMENT REFERENCE INFO catalog object associates a reference with the
instrument description. It is repeated for each reference identified for the instrument. A
separate REFERENCE template is completed to provide the associated reference citation
for each reference.

Include any important references such as instrument description and calibration documents.
These can be both published and internal documents or informal memoranda.

Appendix B Complete PDS Catalog Object Template Set

Example:
/* Template Instrument Template Rev 1993-09-24

/* Note Complete one template for each instrument Identfy each

/* instrument reference by repeating the 3 lines for the
* INSTRUMENT _REFERENCE_INFO object Also complete a separate
* REFERENCE template for each new reference submitted to PDS

/* Hls:rarchy INSTRUMENT

1* INSTRUMENT_INFORMATION

/¥ INSTRUMENT _REFERENCE_INFO
CCSD3ZF0000100000001 NJPL3IFOPDS X00000001
PDS_VERSION_ID =PDS3

OBIJECT = INSTRUMENT

INSTRUMENT_HOST_ID ="“MGN”
INSTRUMENT_ID = “RDRS”

OBIECT =
INSTRUMENT_NAME = “RADAR SYSTEM”
INSTRUMENT_TYPE =“RADAR”

“

INSTRUMENT_DESC

Instrument Overview

INSTRUMENT_INFORMATION

*/

*/
*/
*/
*/

*/
*/
*/

B-19

The Magellan radar system included a 3 7 m diameter high gain antenna (HGA) for SAR and radiometry and a smaller
fan-beam antenna (ALTA) for almetry The system operated at 12 6 cm wavelength Common electronics were used 1n
SAR, altimetry, and radiometry modes The SAR operated 1n a burst mode, alametry and radiometry observations were

interfeaved with the SAR bursts

Radiometry data were obtained by spending a partion of the time between SAR bursts and after altimeter operation 1n a
passive (receive-only) mode, with the HGA antenna captunng the microwave thermal emission from the planet Noise
power within the 10-MHz receiver bandwidth was detected and accumulated for50 ms To reduce the sensitivity to
recerver gain changes in this mode, the receiver was connected on alternate bursts first to a companson dummy load at a
known physical temperature and then to the HGA The short-term temperature resolution was about 2 K, the long-term

absolute accuracy after calibration was about 20 K

The radar was manufactured by Hughes Aircraft Company and the ‘build date’ 1s taken to be 1989-01-01 The radar

cimensions were 0 304 by 1 35 by 0.902 (height by length by width 1n meters) and the mass was 126 1 kg

Instrument Id RDRS

Instrument Host Id MGN

P1 PDS User Id GPETTENGILL
Instrument Name RADAR SYSTEM
Instrument Type RADAR

Build Date 1989.01-01
Instrument Mass 126 100000
Instrument Length 1 350000
Instrument Width 0 902000
Instrument Height 0 304000
Instrument Manufacturer Name HUGHES AIRCRAFT

B-20

Appendix B Complete PDS Catalog Object Template Set

Platform Mounting Descniptions

The spacecraft +Z axis vector was in the nomnal direction of the HGA boresight’ The +X axis vector was parallel
to the nominal rotation axis of the solar panels The +Y axis vector formed a nght-handed coordinate system and
was 1n the nomunal direction of the star scanner boresight The spacecraft velocity vector was 1n approximately the
-Y direction when the spacecraft was onented for left-looking SAR operation The norminal HGA polanzation was
linear 1n the y-direction

Cone Offset Angle 000
Cross Cone Offset Angle - 000
Twist Offset Angle 000

The alumetry antenna boresight was 1n the x-z plane 25 degrees from the +Z direction and 65 degrees from the +X
direction The alumetry antenna was aimed approximately toward nadir duning nominal radar operation The
albmetry antenna polanzatuon was hinear 1n the y-directuon

The medium gain antenna boresight was 70 degrees from the +Z directuon and 20 degrees from the -Y direction

The low gain antenna was mounted on the back of the HGA feed, 1t's boresight was 1n the +Z direction and 1t had a
hemusphencal radiation pattern

Principal Investigator

The Principal Investigator for the radar instrument was Gordon H Pettengill

For more information on the radar system see the papers by [JOHNSON1990] and [SAUNDERSETAL 1990)

Scientific Objectives

See MISSION_OBJECTIVES_SUMMARY under MISSION

Operauonal Considerations

The Magellan radar system was used to acquire radar back-scatter(SAR) images. altimetry, and radiometry when the
spacecraft was close to the planet Normunal operation extended from about 20minutes before penapsis untl about 20
minutes after periapsis In the SAR mode output from the radar receiver was sampled, blocks of samples were quantzed
using an adaptive procedure, and the results were stored on tape In the alnmetry mode samples were recorded directly,
without quantization Radiometry measurements were stored in the radar header records Dunng most of the remainder
of each orbit, the HGA was pointed toward Earth and the contents of the tape recorder were transmutted to a station of the
DSN at approximately 270 kilobits/second SAR, altimetry, and radiometry data were then processed using ground
software 1nto 1mages, altimetry profiles, estmates of backscatter coefficient, emssivity, and other quantities

Calibration

The radar was calibrated before flight using an active electronuc target simulator [CUEVAS1989)

Operational Modes

The Magellan radar system consisted of the following sections, each of which operated 1n the following modes

Section Mode
SAR Synthetic Aperture Radar (SAR)
ALT Altimetry

RAD Radiometry

Appendix B Complete PDS Catalog Object Template Set B-21

(1) SAR Charactensucs

In the Synthetic Aperture Radar mode, the radar transmitted bursts of phase-modulated pulses through its ligh gan
antenna Echo signals were captured by the antenna, simple dat the receiver output, and stored on tape after being

quantized to reduce data volume Pulse repeution rate and incidence angle were chosen to meet a minimum signal-
to-noise ratio requirement (8 dB) for image pixels after ground processing Multple looks were used 1n processing
to reduce speckle noise Incidence angles varied from about 13 degree sat the pole to about 44 degrees at penapsis
dunng normal mapping operations (e g , Cycle 1), but other 'look angle profiles' were used dunng the mission

Peak transmut power 350 watts

Transmutted pulse length 26 5 microsecs

Pulse repetiuon frequency 4400-5800 per sec

Time bandwidth product 60

Inverse baud width 226 MHz

Data quantization (I and Q) 2 bats each

Recorded data rate 750 kilobits/sec

Polanization (nominal) linear honzontal

HGA half-power full beam width 2.2 deg (azimuth)
2 5deg (elev)

one-way gain (from SAR RF port) 357

dB1 Systern temperature (viewing Venus) 1250 K

Surface resolution (range) 120-360 m

(along track) 120-150 m

Number of looks 4 or more

Swath width 25 km (approx)

Antenna look angle 13-47 deg

Incidence angle on surface 18-50 deg

Data Path Type RECORDED DATA

PLAYBACK Instrument Power Consumption UNK

(2) ALT Charactenstics

After SAR bursts (typically several imes a second) groups of altimeter pulses were transimtted from a dedicated
fan beam alumeter antenna (ALTA) directed toward the spacecraft's nadir Output from the radar receiver was
sampled, and the samples were stored on tape for transmussion to Earth Duning nomunal left-looking SAR operation
the ALTA pointed approximately 20 deg to the left of the spacecraft ground track at penapsis and about 10 deg to
the nght of the ground track near the north and south pole

Data quantization (I and Q) 4 bits each

Recorded data rate 35 kbs

Polanization linear

ALTA half-power full beam width

(along track) 11 deg

(cross track) 31 deg

one-way gain referenced to ALT RF port 189

dB1 ALTA offset from HGA 25 deg

Burst interval 05-10sec

duration . 1 0 mulbisec

Dynamic range 30 dB (or more)
1

Data Path Type RECORDED DATA

PLAYBACK Instrument Power Consumption UNK

(3) RAD Charactenstics

Radiometry measurements were made by the radar receiver and HGA 1n a receive-only mode that was activated after
the alumetry mode to record the level of microwave radio thermale mission from the planet Noise power within the
10-MHz rece1ver bandwidth was detected and accumulated for 50 ms To reduce the sensitivity to receiver gain

changes 1n this mode, the receiver was connected on alternate bursts first to a companson dummy load at a known

B-22

Appendix B Complete PDS Catalog Object Template Set

physical temperature and then to the HGA. The short-term temperature resolution was about 2K, the long-term
absolute accuracy after calibration was about20 K At several imes dunng the mission, radiometry measurements
were carnried out using known cosmic radio sources

Receiver Bandwidth
Integration Time
Polanzauon (nominal)
Data Quantization

Data Rate

HGA half-power full bearn width
System temperature (viewing Venus)
Antenna look angle

Incidence angle on surface

Surface resolution (along track)
(cross track)

Data Path Type
Instrument Power Consumption

END_OBJECT

OBJECT
REFERENCE_KEY_ID
END_OBJECT

OBJECT .
REFERENCE_KEY_ID
END_OBJECT
OBJECT
REFERENCE_KEY_ID
END_OBJECT
END_OBJECT

END

10 MHz

50 mllisecs
linear honzontal
12 bits

10-48 bits/sec
22 deg

1250 K

1347 deg
18-50 deg
15-120 km
20-125 km

RECORDED DATA PLAYBACK
UNK”

= INSTRUMENT_INFORMATION

= INSTRUMENT_REFERENCE_INFO
=“CUEVAS1989”
= INSTRUMENT_REFERENCE_INFO

= INSTRUMENT_REFERENCE_INFO
= “JOHNSON1990"
= INSTRUMENT_REFERENCE_INFO

= INSTRUMENT_REFERENCE_INFO
="“SAUNDERSETAL1990”
= INSTRUMENT_REFERENCE_INFO

= INSTRUMENT

Appendix B Complete PDS Catalog Object Template Set B-23

B.5 INSTRUMENT HOST

The INSTRUMENT HOST catalog object is used to describe a variety of instrument hosts, such
as a spacecraft or an earth based observatory.

(1) The INSTRUMENT HOST INFORMATION catalog object provides a textual description
that may be used to describe any important information about an instrument host. For
spacecraft, this typically includes paragraphs on the various subsystems. Earthbased
instrument host descriptions may focus on geographic and facility elements.

Instrument Host Overview

A high-level description of the characteristics and properties on the instrument host.

(2) The INSTRUMENT HOST REFERENCE INFO catalog object is completed for each
reference associated with the host. If there is more than one reference, this object is
repeated. A separate REFERENCE template is completed to provide the proper citation for

each reference. .

Example:

/* Template Instrument Host Template Rev 1993-09-24 */
/* Note Complete one template for each instrument host Identify each . */
1* instrument host reference by repeating the 3 lines for the */
1* INSTRUMENT_HOST_REFERENCE_INFO object Also complete a separate */
r* REFERENCE template for each new reference submutted to PDS */
/* Hierarchy INSTRUMENT_HOST */
* INSTRUMENT_HOST_INFORMATION */
1* INSTRUMENT_HOST_REFERENCE_INFO */

CCSD3ZF0000100000001NJPL3IFOPDS X00000001

@

PDS_VERSION_ID =PDS3

OBJECT = INSTRUMENT_HOST
INSTRUMENT_HOST_ID =“MGN”

OBJECT = INSTRUMENT_HOST_INFORMATION
INSTRUMENT_HOST_NAME =“MAGELLAN"
INSTRUMENT_HOST_TYPE = “SPACECRAFT”

INSTRUMENT_HOST_DESC

Instrument Host Overview

The Magellan spacecraft was built by the Martin Manetta Corporation The spacecraft structure included four major
sections. High-Gain Antenna (HGA), Forward Equipment Module (FEM), Spacecraft Bus (including the solar array), and
the Orbit Insertion Stage Spacecraft subsystems mncluded those for thermal control, power, attitude control, propulsion,
command data and data storage, and telecommunications

The Magellan telecommunications subsystem contained all the hardware necessary to maintain communications between

B-24 Appendix B. Complete PDS Catalog Object Template Set

Earth and the spacecraft The subsystem contained the radio frequency subsystem, the LGA, MGA, and HGA The RFS
performed the functions of carrier transponding, command detection and decoding, and telemetry modulation The
spacecraft was capable of simultaneous X-band and S-band uplink and downlink operations The S-band operated at a
transmitter power of 5 W, while the X-band operated at a power of 22 W Uplink data rates were 31 25 and 62 5 bps (bits
per second) with downlink data rates of 40 bps (emergency only), 1200 bps (real-ime engineenng rate), 115 2 kbps
(kilobits per second) (radar down link backup), and 268 8 kbps (nominal)

For more informatton on the Magellan spacecraft see the papers by [SAUNDERSETAL1990] and

[SAUNDERSETAL1992] ”
END_OBJECT = INSTRUMENT_HOST_INFORMATION
OBIJECT = INSTRUMENT_HOST_REFERENCE_INFO
REFERENCE_KEY_ID = “SAUNDERSETAL1990”
END_OBJECT = INSTRUMENT_HOST_REFERENCE_INFO
OBIJECT = INSTRUMENT_HOST_REFERENCE_INFO
REFERENCE_KEY_ID = “SAUNDERSETAL1992”
END_OBJECT = INSTRUMENT_HOST_REFERENCE_INFO
END_OBIJECT = INSTRUMENT_HOST

END

Appendix B Complete PDS Catalog Object Template Set B-25

B.6 INVENTORY

The INVENTORY catalog object shall be completed once for each node that 1s responsible for
‘orderable data sets from the PDS catalog. This object provides the inventory information necessary
to facilitate the ordering of these data sets.

(1) The INVENTORY DATA SET INFO catalog object identifies a product through the
product data set id. This object 1s repeated for each orderable and cataloged PDS data set.

2) The INVENTORY NODE MEDIA INFO catalog object provides information about data
set distribution medium. This object 1s repeated for each type of distribution medium.

Example

/* Template InventoryTemplate Rev 1990-03-20 */
/* Note The INVENTORY template shall be completed once for each noede that 1s responsible */
1* for orderable data sets from the PDS catalog The following huerarchy of templates provide */
1* the necessary inventory information which will facilitate the ordering of these data sets */
/* Hierarchy INVENTORY */
* INVENTORY_DATA_SET_INFO *f
* INVENTORY_NODE_MEDIA_INFO */
OBIECT =INVENTORY

NODE_ID = “IMAGING”

OBJECT =INVENTORY_DATA_SET_INFO

PRODUCT_DATA_SET_ID “VG2-N-ISS-2-EDR-V1 0~

OBJECT = INVENTORY_NODE_MEDIA_INFO
MEDIUM_TYPE =“MAG TAPE”

MEDIUM_DESC =“INDUSTRY STD 1/2IN,1600 OR 6250 BPI"
COPIES =1
INVENTORY_SPECIAL_ORDER_NOTE = “Not applicable ”

END_ORBIJECT = INVENTORY_NODE_MEDIA_INFO
OBJECT = INVENTORY_NODE_MEDIA_INF
MEDIUM_TYPE = “CD-ROM™ .
MEDIUM_DESC = “Compact Disk”

COPIES =1
INVENTORY_SPECIAL_ORDER_NOTE = *“Not applicable ”

END_OBJECT =INVENTORY_NODE_MEDIA_INFO
END_OBIJECT = INVENTORY_DATA_SET_INFO
END_OBIJECT = INVENTORY

OBIECT = INVENTORY

NODE_ID = “NSSDC”

OBIJECT =INVENTORY_DATA_SET_INFO

B-26 Appendix B Complete PDS Catalog Object Template Set

PRODUCT_DATA_SET_ID " =*“VG2-N-1S§-2-EDR-V1 0~
OBIJECT =INVENTORY_NODE_MEDIA_INFO

MEDIUM_TYPE =“CD-ROM”

MEDIUM_DESC = *“Compact Disk”

COPIES =]

INVENTORY_SPECIAL_ORDER_NOTE = “Not applicable ”

END_OBJECT = INVENTORY_NODE_MEDIA_INFO

END_OBJECT =INVENTORY_DATA_SET_INFO

END_OBJECT = INVENTORY

END

Appendix B Complete PDS Catalog Object Template Set - B-27

B.7 MISSION

The MISSION catalog object 1s used to submut information about a mission or campaign to PDS.
Sub-objects are included for identifying associated instrument hosts, targets, and references. A
separate REFERENCE object will need to be completed for any new references not already a part
of the PDS catalog.

(1) The MISSION INFORMATION catalog object provides start and stop times and textual
descriptions, MISSION_DESC and MISSION_OBJECTIVES_SUMMARY. Suggested
contents include agency mnvolvement, spacecraft/observatory utilized, mission scenario
including phases, technology and scientific objectives.

Under MISSION_DESC =

Mission Overview

A high-level description of a mission.

Mission Phases

A description of each phase of a mission, starting with the pre-launch phase and continuing
through end-of-mussion. This includes start and stop times of each phase, mtended
operations, targets, and mission phase objectives.

Under MISSION_OBJECTIVES_SUMMARY =

Mission Objectives Overview

A high-level description of the objectives of the mussion.

(2) The MISSION HOST catalog object 1s completed for each instrument host associated with
the mission or campaign. If there is more than one instrument host involved in the mission,
this object is repeated.

(3) The MISSION TARGET catalog object is completed for each target associated with an
instrument host. If there is more than one target for a given host, this object is repeated.

4) The MISSION REFERENCE INFORMATION catalog object is completed for each
reference associated with the mission. If there is more than one reference, this object 1s
repeated. A separate REFERENCE template is completed to provide the proper citation for
each reference.

B-28 Appendix B Complete PDS Catalog Object Template Set

Example:

/* Template Mission Template Rev 1993-09-24 */
/* Note Complete one template for each mussion or campaign Ident:fy */
1* multiple hosts associated with the mussion by repeatng the */
/* lines beginming and ending with the MISSION_HOST values For ~ */
/* each instrument_host 1dentified, repeat the 3 lines for the */
/* MISSION_TARGET object for each target associated with the host */
I* Also complete a separate REFERENCE template for each new */
1* reference submutted to PDS */
/* Hierarchy MISSION */
r* MISSION_INFORMATION */
1* MISSION_HOST */
/* MISSION_TARGET */
r* MISSION_REFERENCE_INFORMATION */

CCSD3ZF0000100000001NJPL31FOPDS X 00000001

PDS_VERSION_ID =PDS83

OBJECT = MISSION

MISSION_NAME = “"MAGELLAN"

OBJECT = MISSION_INFORMATION
MISSION_START_DATE = 1989-05-04
MISSION_STOP_DATE =UNK
MISSION_ALIAS_NAME = “Venus Radar Mapper (VRM)”

MISSION_DESC= *
Mission Overview

The Magellan spacecraft was launched from the Kennedy Space Center on 4 May 1989 The spacecraft was deployed
from the Shuttle cargo bay after the Shuttle achieved parking orbit Magellan, using an tnertial upper stage rocket, was
then placed into a Type I'V transfer orbit to Yenus where 1t camed out radar mapping and gravity studies starting 1n August
1990 The Mission has been described 1n many papers including two special 1ssues of the Journal of Geophysical Research
[WVRMPP1983,SAUNDERSETAL1990, JGRMGN1992] The radar system 15 also descnibed 1n [JOHNSQN1990]

The aerobraking phase of the mission was designed to change the Magellan orbit from eccentnc to nearly circular This
was accomplished by dropping penapsis to less than 150 km above the surface and using atmosphenc drag to reduce the
energy in the orbit Aerobraking ended on 3 August 1993, and penapsis was boosted above the atmosphere leaving the

spacecraft 1n an orbit that was 540 km above the surface at apoapsis and 197 km above the surface at penapsis The orbit
period was 94 minutes The spacecraft remained on i1ts medium-gain antenna in this orbat until Cycle 5 began officially

on 16 August 1993

Dunng Cycles 5 and 6 the orbit was low and approximately circular The emphasis was on collecting high-resolution
gravity data Two bistatic surface scattening expenments were conducted, one on 6 October (orbits 9331, 9335, and 9336)
and the second on 9 November (orbits 9846-9848)

Mission Phases

Mission phases were defined for sigmficant spacecraft activity pertods Dunng orbital operations a ‘cycle’ was
approximately the time required for Venus to rotate once under the spacecraft (about 243 days) But there were orbit
adjustments and other activities that made some mapping cycles not stnictly contiguous and shightly longer or shorter than
the rotation period

Appendix B. Complete PDS Catalog Object Template Set B-29

PRELAUNCH

The prelaunch phase extended from delivery of the spacecraft to Kennedy Space Center until the start of the launch

countdown

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

LAUNCH

MGN
VENUS
1988-09-01
1989-05-04
ORBITER

The launch phase extended from the start of launch countdown until completion of the injection into the Earth-

Venus trajectory

Spacecraft Id

Target Name

Maission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

CRUISE

MGN
VENUS
1989-05-04
1989-05-04
ORBITER

The cruise phase extended from imjection into the Earth-Venus trajectory until 10 days before Venus orbit insertion

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

ORBIT INSERTION

MGN
VENUS
1989-05-04
1990-08-01
ORBITER

The Venus orbit insertion phase extended from 10 days before Venus orbit insertion until burnout of the sold rocket

1njection motor

Spacecraft Id

Target Name

Maission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

ORBIT CHECKO

MGN
VENUS
1990-08-01
1990-08-10
ORBITER

The orbit tnm and checkout phase extended from burnout of the solid rocket injection motor until the beginming of

radar mapping

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

MGN
VENUS
1990-08-10
1990-09-15
ORBITER

B-30

MAPPING CYCLE 1

?

Appendix B. Complete PDS Catalog Object Template Set

The first mapping cycle extended from completion of the orbit tnm and checkout phase until completion of one
cycle of radar mapping (approximately 243 days)

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

MAPPING CYCLE 2

MGN
VENUS
1990-09-15
1991-05-15
ORBITER

The second mapping cycle extended from completion of the first mapping cycle through an additional cycle of
mapping Acquisition of ‘nght-looking' SAR data was emphasized Radio occultanon measurements were carned
out on orbits 3212-3214 A penod of battery recondizoning followed completion of Cycle 2

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

1 YCLE 3

MGN
VENUS

- 1991-05-16
:1992-01-17
. ORBITER

The third mapping cycle extended from completion of battery recondiioning through an additional cycle of
mapping (approximately 243 days) Acquisition of ‘stereo’ SAR data was emphasized The last orbit 1n the third

cycle was orbit5747

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

MAPPING CYCLE 4

MGN
VENUS
1992-01-24
1992-09-14
ORBITER

The fourth mapping cycle extended from completion of the third mapping cycle through an additional cycle of
mapping Acquisition of radio tracking data for gravity studies was emphasized. Radio occultation measurements
were carmed out on orbits 6369, 6370, 6471, and 6472 Because of poor observing geometry for gravity data
collection at the beginrung of the cycle, this cycle was extended 10 days beyond the norminal 243 days Orbits
included within the fourth cycle were 5748 through 7626. Penapsis was lowered on orbit 5752to improve sensitivity

to gravity features 1in Cycle 4

Spacecraft Id

Target Name

Mission Phase Start Time
Mission Phase Stop Time
Spacecraft Operations Type

AEROBRAKING

MGN
VENUS
1992-09-14
1993-05-25
ORBITER

The aerobraking phase extended from completion of the fourth mapping cycle through achievement of a near-
circular orbit Circulanzation was achieved more quickly than expected, the first gravity data collection 1n the
circular orbit was not scheduled until 11 days later Orbuts included within the aerobraking phase were 7627 through

8392

Spacecraft Id
Target Name

MGN
YENUS

Appendix B Complete PDS Catalog Object Template Set B-31

Mission Phase Start Time 1993-05-26
Mission Phase Stop Time 1993-08-05
Spacecraft Operatons Type ORBITER
MAPPING CYCLE 5

The fifth mapping cycle extended from completion of the aerobraking phase through an additional cycle of mapping
(approximately 243 days) Acquisition of radio tracking data for gravity studies was emphasized The first orbit 1n
the fifth cycle was orbit 8393

Spacecraft Id MGN
Target Name VENUS
Mission Phase Start Time 1993-08-16
Muission Phase Stop Time 1994-04-15
Spacecraft Operations Type ORBITER

MAPPING CYCLE 6

The sixth mapping cycle extended from completion of the fifth mapping cycle through an addiuonal cycle of
mapping (approximately 243 days) Acquisition of radio tracking data for gravity studies was emphasized The first
orbit 1n the sixth cycle was orbit 12249

Spacecraft Id MGN
Target Name VENUS
Mission Phase Start Time 1994-04-16
Mission Phase Stop Time TBD
Spacecraft Operatuons Type ORBITER”

MISSION_OBIJECTIVES_SUMMARY =*

Mission Objectives Overview
Volcanic and Tectonic Processes

Magellan images of the Venus surface show widespread evidence for volcanic activity A major goal of the
Magellan mission was to provide a detailed global characterization of volcanic land forms on Venus and an
understanding of the mechamics of volcanism in the Venus context Of particular interest was the role of volcamsm
1n transporting heat through the lithosphere Whule this goal will largely be accomphshed by a careful analysis of
1mages of volcanic features and of the geological relationships of these features to tectonic and impact structures,
an essential aspect of charactenzauon will be an integration of 1mage data with alumetry and other measurements
of surface propertes .

For more information on volcanic and tectomic investigations see papers by [HEADETAL1992] and
{SOLOMONETAL1992], respectively

Impact Processes

The final physical form of an impact crater has meaning only when the effects of the cratenng event and any
subsequent modification of the crater can be disunguished To this end, a careful search of the SAR 1mages can
identify and charactenze both relatively pnstine and degraded impact craters, together with their ejecta deposits (1n
each s1ze range) as well as disunguishing impact craters from those of volcanic ongin The topographic measures of
depth-to-diameter ratio, ejecta thickness distnbuuon as a funcuon of distance from the crater, and the rehef of
central peaks contrnibute to this documentation

For more information on investigations of impact processes see{ SCHABERETAL1992]

Erosional, Depositional, and Chemucal Processes

B-32 Appendix B Complete PDS Catalog Object Template Set

The nature of erosional and depositional processes on Venus 1s poorly known, pnmarnly because the diagnostic
landforms typically occur at a scale too small to have been resolved 1n Earth-based or Venera 15/16 radar images
Magellan images show wind eroded terrains, landforms produced by deposition (dunefields), possible landslides
and other down slope movements, as well as aecolian features such as radar bnght or dark streaks 'downwind’ from
promunent topographic anomalies One measure of weathering, erosion, and deposition 1s provided by the extent to
which soil covers the surface (for Venus, the term so1l 1s used for porous matenal, as implied by 1ts relatively low
value of bulk dielectric constant) The existence of such matenal, and 1ts dependence on elevation and geologic
setting, provide 1mportant 1nsights 1nto the interactions that have taken place between the atmosphere and the
lithosphere

For more information on erosional, depositional, and chemical processes see papers by [ARVIDSONETAL1992],
[GREELEYETAL1992].and [GREELEYETAL1994]

Isostatic and Convective Processes

Topography and gravity are intimately and mextricably related, and must be jointly examined when undertaking
geophysical investigations of the interior of a planet, where 1sostatic and convective processes dominate.
Topography provides a surface boundary condition for modeling the interior density of Venus

For more information on topography and gravity see papers by[FORD&PETTENGILL1992],
[KONOPLIVETAL1993], and[MCNAMEEETAL1993] ”

END_OBJECT = MISSION_INFORMATION

OBJECT = MISSION_HOST
INSTRUMENT_HOST_ID =“MGN”

OBJECT = MISSION_TARGET

TARGET_NAME =“VENUS”

END_OBIECT = MISSION_TARGET

END_OBIJECT = MISSION_HOST

OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID =“ARVIDSON1991”

END_OBIJECT = MISSION_REFERENCE_INFORMATION
OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID =“ARVIDSONETAL1992”

END_OBJECT = MISSION_REFERENCE_INFORMATION
OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “CAMPBELLETAL1992”

END_OBJECT = MISSION_REFERENCE_INFORMATION
OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID =“TYLER1992”

END_OBIECT = MISSION_REFERENCE_INFORMATION
OBJECT = MISSION_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “VRMPP1983”

END_OBJECT = MISSION_REFERENCE_INFORMATION
END_OBJECT = MISSION

END

Appendix B Complete PDS Caralog Object Template Set B-33

B.8 PERSONNEL

The PERSONNEL catalog object is used to provide new or updated information for personnel

associated with PDS in some capacity. This includes data suppliers and producers for data sets or

volumes archived with PDS, as well as PDS node personnel and contacts within other agencies and
* Institutions.

(1) The PERSONNEL INFORMATION catalog object provides name, address,
telephone, and related information.

(2) The PERSONNEL ELECTRONIC MAIL catalog object provides electronic
mail information for personnel. This object may be repeated if more than one electronic
mail address 1s applicable.

Example

/* Template Personne]l Template Rev 1993-09-24 */

/* Note Complete one for each new PDS user, data supplier, or data */
* producer If more than one electronic mail address 1s available */
/* repeat the hines for the PERSONNEL_ELECTRONIC_MAIL object */
/* Hierarchy PERSONNEL */
* PERSONNEL_INFORMATION */
* PERSONNEL_ELECTRONIC_MAIL */
OBIJECT = PERSONNEL

PDS_USER_ID = PFORD

OBJECT = PERSONNEL_INFORMATION
FULL_NAME =“PETER G FORD”

LAST_NAME =FORD

TELEPHONE_NUMBER = “6172536485”
ALTERNATE_TELEPHONE_NUMBER = “6172534287”

FAX_NUMBER = “6172530861"

INSTITUTION_NAME = “MASSACHUSETTS INSTITUTE OF TECHNOLOGY”
NODE_ID = “GEOSCIENCE”

PDS_AFFILIATION = “NODE OPERATIONS MANAGER”
REGISTRATION_DATE = 1990-02-06

“Massachusetts Institute of Technology
Center for Space Research Building 37-601Cambndge, MA 02139

ADDRESS_TEXT

END_OBIECT = PERSONNEL_INFORMATION
OBJECT = PERSONNEL_ELECTRONIC_MAIL
ELECTRONIC_MAIL_ID = “PGF@SPACE MIT EDU”

1

ELECTRONIC_MAIL_TYPE
PREFERENCE_ID

onon

END_OBIECT PERSONNEL_ELECTRONIC_MAIL
OBJECT = PERSONNEL_ELECTRONIC_MAIL
ELECTRONIC_MAIL_ID = “PFORD”
ELECTRONIC_MAIL_TYPE =“NASAMAIL”

PREFERENCE _ID =2

END_OBIJECT = PERSONNEL_ELECTRONIC_MAIL

B-34

OBJECT
ELECTRONIC_MAIL_ID
ELECTRONIC_MAIL_TYPE
PREFERENCE_ID
END_OBJECT

END_OBIJECT
END

Appendix B Complete PDS Catalog Object Template Set

PERSONNEL_ELECTRONIC_MAIL
“JPLPDS PFORD”

“NSI/DECNET”

=3

= PERSONNEL_ELECTRONIC_MAIL

= PERSONNEL

Appendix B Complete PDS Catalog Object Template Set B-35

B.9 REFERENCE

The REFERENCE catalog object 1s completed for each reference associated with a mission,
instrument host, instrument, data set, or data set collection catalog object. Submit any important
references, including both published and unpublished internal documents or informal memoranda.
" This also may include references to published data, such as PDS archive volumes. A copy of an
unpublished reference should be forwarded to the PDS node responsible for your data set archive,

whenever possible.

N The REFERENCE catalog object provides a reference citation and a unique
identifier for every reference associated with the PDS data archive.

Example:

/* Template Reference Template Rev 1993-09-24 5
/* Note This template shall be completed for each reference associated with a mission, */

/* instrument host, instcument, data set, or data set collection template */
OBIJECT = REFERENCE

REFERENCE_KEY_ID ="“GURNETTETAL1991”

REFERENCE_DESC =“Gamet, D A, W § Kurth, A Roux,R Gendnn, C F Kennel, S J
Bolton, Lightning and Plasma Wave Observations from the Gahleo Flyby of Venus, Science, 253, 1522, 1991 "
END_OBJECT = REFERENCE

OBIECT = REFERENCE

REFERENCE_KEY_ID = ARVIDSONETAL1990A

REFERENCE_DESC =“Arvidson,R E ,E A Guinness, S

Slavney, D Acevedo,J Hyon, and M Martin, Pre-Magellan radar and gravity data, Jet Propulsion Laboratory, COROM
(USA_NASA_JPL_MG_1001)”

END_OBJECT = REFERENCE

END

B-36 Appendix B. Complete PDS Catalog Object Template Set

B.10 SOFTWARE_INVENTORY

The SOFTWARE_INVENTORY catalog object is completed for each software program
registered in the PDS Software Inventory. This Inventory includes software available within the
Planetary Science community, including software on PDS archive volumes. Of interest are any
applications, tools, or libraries that have proven useful for the display, analysis, formatting,
transformation, or preparation of either science data or meta-data for the PDS archives.

(1) The SOFTWARE_INVENTORY catalog object provides general information about the
software tool including a description, availability information, and dependencies.

Example: 2

/* Template Software Inventory Template Rev 1995-05-01 */
/* Note This template should be completed to register software in the */
/* PDS Software Inventory. */

OBJECT = SOFTWARE_INVENTORY

/* Software Inventory General Information */

SOFTWARE_ID = CLIMDISP

SOFTWARE_NAME ="CLEMENTINE IMAGE DISPLAY V10"

SOFTWARE_VERSION_ID =410

GRAPHIC_FILE_SFECIFICATION_NAME ="N/A"

SOFTWARE_DESC = "Image Display program for Clementine Mission
EDR Image Data Products "

SOFTWARE_PURPOSE_ID = DISPLAY

DATA_FORMAT = PDS
MISCELLANEOUS_DESC =
program, version 7 9g The modifications made are transparent to the user, therefore the IMDISP user’s guide 1s suitable for
CLIMDISP users There have been no changes to the IMDISP user guide, which 1s included on the Clementine EDR Archuve
However, the user should be aware of the following

1 This user gmde and the executable and help files have been renamed from IMDISP DOC, IMDISP.EXE, IMDISP HLP to
CLIMDISP TXT, CLIMDISP EXE, CLIMDISP.HLPrespectively Therefore, the programis invoked by typing 'CLIMDISP'
or 'CLIMDISP <filename>'

2 There have been no changes to the exisung IMDISP environment vanables (IMDISP, IMBROWSE, IMPALETTE,
IMREFRESH, IMHELP), they remainas defined inthe user guide CLIMDISP was created by the Planetary Data System (PDS) to
specifically provide support for the Clementine Mission EDR Image Data Products *

/* Software Inventory Availability Information */
SOFTWARE_LICENSE_TYPE = PUBLIC_DOMAIN

FTP_SITE_ID ="N/A"

FILE_SPECIFICATION_NAME ="N/A"

FTP_FILE_FORMAT ="N/A"

"G M WOODWARD"
"gwoodward @)plpds jpl nasa gov"

COGNIZANT_FULL_NAME
ELECTRONIC_MAIL _ID

TELEPHONE_NUMBER = "8183066047"
AFFILIATION_ID =PDS_CN
SUPPORT_TYPE = PROTOTYPE

SUPPORT_MATERIAL_TYPE = {SOURCE, BINARIES, INSTALLATION, DOCUMENTATION}

Appendix B Complete PDS Catalog Object Template Set B-37

/* Sofware Inventory Dependencies Information */

PROGRAMMING_LANGUAGE_NAME = {"MICROSOFT C V6 0","MICROSOFT MACRO ASSEMLBER
V517}

PLATFORM_TYPE ="IBM/DOS"

SUPPORT_SOFTWARE_NAME ="N/A"

REQUIRED_STORAGE_BYTES =433664 <BYTES>

END_OBJECT = SOFTWARE_INVENTORY

END

B-38 Appendix B Complete PDS Catalog Object Template Set

B.11 TARGET

The TARGETcatalog object forms part of a standard set for the submission of a target to the PDS.
The TARGET object contains the following sub-objects: TARGET_INFORMATION and
TARGET_REFERENCE_INFORMATION

(D The TARGET INFORMATION catalog object provides target physical and dynamic
parameters.

2 The TARGET REFERENCE INFORMATION catalog object 1s completed for each
reference associated with the target. If there 1s more than one reference, this object is
repedted. A separate REFERENCE template is completed to provide the proper citation for
each reference.

Example

/* Template Target Template Rev 1995-01-01 */
/* Note The following template 1s used for the */
/¥ subrussion of a target to the PDS */
OBJECT =TARGET

TARGET_NAME = JUPITER

OBJECT = TARGET_INFORMATION

TARGET_TYPE = PLANET

PRIMARY_BODY_NAME = SUN

ORBIT_DIRECTION =PROGRADE

ROTATION_DIRECTION = PROGRADE

TARGET_DESCRIPTION = ¢

A_AXIS_RADIUS 71492 000000
B_AXIS_RADIUS 71492 000000
BOND_ALBEDO UNK .
C_AXIS_RADIUS 66854 000000

FLATTENING 0006500

MAGNETIC_MOMENT 155000000000006000000 000000
MASS 1898799999999999953652202602496 000000
MASS_DENSITY 1330000
MINIMUM_SURFACE_TEMPERATURE UNK
MAXIMUM_SURFACE_TEMPERATURE UNK
MEAN_SURFACE_TEMPERATURE UNK
EQUATORIAL_RADIUS : 71492 000000
MEAN_RADIUS 69911 000000
SURFACE_GRAVITY 25 900000\
REVOLUTION_PERIOD 4333 0600000
POLE_RIGHT_ASCENSION 268 000000
POLE_DECLINATION 64 500000
SIDEREAL_ROTATION_PERIOD 0410000
MEAN_SOLAR_DAY 0410000

OBLIQUITY 3 100000
ORBITAL_ECCENTRICITY 0048000
ORBITAL_INCLINATION 1.300000
ORBITAL_SEMIMAJOR_AXIS 778376719 000000
ASCENDING_NODE_LONGITUDE 100 500000

Appendix B. Complete PDS Catalog Object Template Set

'

PERIAPSIS_ARGUMENT_ANGLE 275 200000

“

END_OBJECT = TARGET_INFORMATION

OBJECT = TARGET_REFERENCE_INFORMATION
REFERENCE_KEY_ID = “XYZ95”

END_OBJECT = TARGET_REFERENCE_INFORMATION
END_OBIJECT = TARGET

END

B-39

B-40 Appendix B Complete PDS Catalog Object Template Set

Appendix C Internal Representation of Data Types C-1

APPENDIX C

Internal Representation of Data Types

This appendix contains the detailed internal representations of the PDS standard data types listed
in Table 3.2 of the Data Type Definitions chapter of this document.

C1 MSB_INTEGER
Aliases: INTEGER, MAC_INTEGER, SUN_INTEGER

MSB 4-byte integers:

i-sign

‘I/ 13 12 il 10
76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 b3

* Bit 7 in i3 is used for the sign bit.

MSB 2-byte integers:

i-sign

l: 1] i0

76543210 | 76543210

b0 bl

* Bit 7 in 11 is used for the sign bit.

MSB 1-byte ntegers:

i-sign

| o

76543210

b0
* Bit 7 is used for the sign bit.

Where:

c-2 Appendix C Internal Representation of Data Types

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, and b3).

1-s1gn = integer sign bat

i0-13= Arrangement of bytes 1n the integer, from lowest order to highest order. The

bits within each byte are intergreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:
4-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In i1, bits O-7 represent 2**8 through 2**15

In 12, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:

In 10, bits 0-7 represent 2**0 through 2**7
In 11, bits 0-6 represent 2**8 through 2**14

1-byte:
In 10, bits 0-6 represent 2**(through 2**6

All negative signed values are assumed to be twos-compliment.

C.2 MSB_UNSIGNED_INTEGER

Aliases: MAC_UNSIGNED_INTEGER, SUN_UNSIGNED_INTEGER,
UNSIGNED_INTEGER

MSB 4 byte unsigned integers:

13 12 il 10

76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 b3

Appendix C Internal Representation of Data Types C-3

MSB 2-byte unsigned integers:

il 10

76543210 | 76543210

b0 bl

MSB 1-byte unsigned integers:

i0
76543210
b0
Where:
b0 -b3 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then bl, b2, and b3).
10-13= Arrangement of bytes in the integer, from lowest order to highest order. The

bits within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value =
bit 7) in the following way:

4-bytes: ,
In i0, bits 0-7 represent 2**0 through 2**7 -
In il, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:
In 10, bits 0-7 represent 2**0 through 2**7
Inil, bits 0-7 represent 2**8 through 2**15

1-byte:
In 10, bits 0-7 represent 2**0 through 2**7

c4
C3 LSB_INTEGER
Aliases: PC_INTEGER, VAX_INTEGER

Appendix C Internal Representation of Data Types

LSB 4-byte integers:

1-sign
i0 il i2 J’ 13
76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3

* Bit 7 in 13 is used for the sign bit.

LSB 2-byte integers:

i-sign
i0 l‘ il
76543210 | 76543210
b0 bl

* Bit 7 in 11 is used for the sign bat.

LSB 1-byte integers:

1-sign

} 0

76543210

b0

* Bit 7 in i1 is used for the sign bat.

Where:
b0-b3 =

i-sign =

i0-13=

Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then bl, b2, and b3).

1integer sign bit

Arrangement of bytes 1n the integer, from lowest order to highest order. The
bits within each byte are interpreted from right to left, (e.g., lowest value =

Appendix C Internal Representation of Data Types

bit O, highest value = bit 7) in the following way:

4-bytes:
In 10, bits 0-7 represent 2**0 through 2**7
Inil, bits 0-7 represent 2**8 through 2**15
In i2, bits 0-7 represent 2**16 through 2**23
In 13, bits 0-6 represent 2**24 through 2¥*30

2-bytes:
In i0, bits 0-7 represent 2**0 through 2**7
In il, bits 0-6 represent 2**8 through 2**14

1-byte:
In 10, bits 0-6 represent 2**0 through 2**6

All negative signed values are assumed to be twos-compliment.

C4 LSB_UNSIGNED_INTEGER
Aliases: PC_UNSIGNED_INTEGER, VAX_UNSIGNED_INTEGER

LSB 4-byte unsigned integers:
i0 il i2 i3

76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 b3

LSB 2-byte unsigned integers:
10 il

76543210 | 76543210

b0 bl

LSB 1-byte unsigned integers:
10

76543210

b0

C-6 Appendix C Internal Representation of Data Types

Where:

b0 - b3 = Arrangement of bytes as they appear when read from a file (e.g., read bO first, then
bl, b2, and b3).

i0 - 13 =Arrangement of bytes in the integer, from lowest order to highest order. The bats
within each byte are interpreted from right to left, (e.g., lowest value =bit 0, highest value = bit 7)
in the following way:

4-bytes:
In 10, bits 0-7 represent 2**0 through 2**7
In i1, bats O-7 represent 2**8 through 2**15

In i2, bits 0-7 represent 2**16 through 2**23
In 13, bits 0-7 represent 2**24 through 2**31

2-bytes:
In 10, bits 0-7 represent 2**0 through 2**7
In i1, bits O-7 represent 2**8 through 2**15
1-byte:

In i0, bits 0-7 represent 2**0 through 2**7

C.s IEEE_REAL
Aliases: FLOAT, MAC_REAL, REAL, SUN_REAL

IEEE 4-byte real numbers:
m-sign

l el
el ‘]/ mO ml m2

76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 ' b3

Appendix C Internal Representation of Data Types

IEEE 8-byte (double precision) real numbers:

m-sign

l el e0 mo ml

c-7

m2 m4 m6
76543210 76543210 |76543210 }76543210 |76543210 ,76543210 l76543210 ’76543210
b0 bl b2 b3 b4 b5 b7
* Bit 7 1n el is used for the mantissa sign bat.
IEEE 10-byte (temporary) real numbers:
m-sign int-bit (always 1)
l el e0 mO ml m2
76543210 | 76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3 b4
m3 m4 mS mb m7
76543210 | 76543210 | 76543210 | 76543210 | 76543210
b5 b6 b7 b8 b9

* Bit 7 in el 15 used for the mantissa sign bit.

Where:

b0 - b9 =

m-sign =

int-bit =

e0-el =

Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then b1, b2, b3, etc.).

Mantissa sign bt

In 10 byte reals only, the implicit "1" is actually specified by this bit.

Arrangement of the portions of the bytes that make up the exponent, from
lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g.,Jowest value = rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision):
In e0, bit 7 represents 2**0

In el, bits 0-6 represent 2**] through 2**7

Exponent bias = 127

8-bytes (double precision):

C-8

m0 - m7 =

)

Appendix C Internal Representation of Data Types

<.

In €0, bits 4-7 represent 2**0 through 2**3
In el, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

10-bytes (temporary):
In €0, bits 0-7 represent 2**0 through 2**7
In el, bats 0-6 represent 2**8 through 2**14

Exponent bias = 16383

Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to the lowest order fractions. The order of the bits
within each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4 -bytes (single precision):
In mO, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

" 8-bytes (double precision):

In mO, bits 3-0 represent 1/2**1 through 1/2**4
In m1, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2*¥*13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In mS$, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2*¥*45 through 1/2**52

10-bytes (temporary):)

In mO, bits 6-0 represent 1/2**1 through 1/2**7
In m1, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-Q represent 1/2**32 through 1/2**39
In m3, bits 7-0 represent 1/2**40 through 1/2**47
In mb, bits 7-0 represent 1/2**48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

These representations

all follow the format:

1. (mantissa) x 2** (exponent - bias)
with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored

in the third byte (b2)),

Appendix C Internal Representation of Data Types

C-9

In all cases, the exponent is stored as an unéigned, biased integer (e.g., exponen -as-stored - bias =
true exponent value).

C.6

Two contiguous IEEE_REALs in memory, representing the real and imaginary parts.

IEEE_COMPLEX
Aliases: COMPLEX, MAC_COMPEX, SUN_COMPLEX

C.7

PC_REAL

Aliases: None

PC 4-byte real numbers:

e0-bit m-sign
m?2 ml l m0 ‘L el
76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3

* Bit 7 1n el is used for the mantissa sign bit.

PC 8-byte (double precision) real numbers:

m-sign

1 el mQ0 l

mé mS5 m4 m3 m2 m el
76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3 b4 b5 b6 b7

* Bit 7 1n el is used for the mantissa sign bit.

C-10 Appendix C Internal Representation of Data Types

PC 10-byte (temporary) real numbers:

m7 mb m5 m4 m3

76543210 | 76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 b3 b4
int-bit m-sign
m2 ml m0 el el

76543210 | 76543210 | 76543210 | 76543210 | 76543210

b5 b6 b7 b3 b9
Where:
b0 - b9 = Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then bl, b2, b3, etc.).
m-sign = Mantissa sign bit
int-bit = In 10 byte reals only, the implicit "1" is actually specified by this bit.
el-el = Arrangement of the portions of the bytes that make up the exponent, from

lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value = rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (single precision) :
In €0, bit 7 represents 2**0
In el, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

8-bytes (double precision) :
In €0, bits 4-7 represent 2**0 through 2**3
In el, bits 0-6 represent 2**4 through 2**10
Exponent bias = 1023

10-bytes (temporary):

In €0, bits 0-7 represent 2**(through 2**7
In el, bits 0-6 represent 2**4 through 2**10

Appendix C Internal Representation of Data Types C-11

Exponent bias = 16383

mO-m7 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (single precision) :
In mO, bits 6-0 represent 1/2**1 through 1/2**7
In ml, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (double precision) :

In mO, bits 3-0 represent 1/2**1 through 1/2**4
In m1l, bits 7-0 represent 1/2**35 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In m5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

10-bytes (temporary) :

In mO, bits 6-0 represent 1/2**1 through 1/2**7
In ml, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2¥*39
In m$, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2¥*48 through 1/2**55
In m7, bits 7-0 represent 1/2**56 through 1/2**63

These representations all follow the format:
1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored
in the third byte (b2)),

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored -
bias=true exponent value).

C-12

C.8

PC_COMPLEX

Aliases: None

Appendix C Internal Representation of Data Types

Two contiguous PC-REALSs in memory, representing the real and imaginary parts.

C9

VAX_REAL, VAXG_REAL
Ahases: VAX_DOUBLE (for VAX-REAL only, none for VAXG_REAL)

VAX F-type 4-byte real numbers:

el m-sign

l mQ el m?2 ml

76543210 176543210 | 76543210 | 76543210
b0 bl b2 b3

* Bit 7 i el 1s used for the mantissa sign bat.

VAX D-type 8-byte real numbers:

e0-bt m-S1gn
‘l' mO l el m2 ml m4 m3 mé m3
76543210 }76543210 | 76543210 | 76543210 | 76543210 |76543210 |76543210 |76543210
b0 bl b2 b3 b4 b5 b6 b7
* Bit 7 1n el 1s used for the mantissa sign but.
VAX G-type 8-byte real numbers:
m-sign
e0 m0 l’ el m?2 m] m4 m3 m6 m3
76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3 b4 b5 b6 b7

VAX H-type 16-byte real numbers:

Appendix C Internal Representation of Data Types

m-s12n
e0 el ml m0 m3 m?2 m5 m4
76543210 |76543210 |76543210 | 76543210 | 76543210 | 76543210 |76543210 |76543210
b0 bl b2 b3 b4 b5 b6 b7
m7 m6 m9 m8 mll m10 ml3 ml2
76543210 |76543210 | 76543210 | 76543210 | 76543210 76543210 |76543210 [76543210
b8 b9 b10 bll b12 bl3 bl4 bl5
Where:
b0 -bl5= Arrangement of bytes as they appear when read from a file (e.g., read b0
first, then bl, b2, b3, etc.).
m-sign = Mantissa sign bit
e0-el = Arrangement of the portions of the bytes that make up the exponent, from

lowest order to highest order. The bits within each byte are interpreted from
right to left, (e.g., lowest value= rightmost bit in the exponent part of the
byte, highest value = leftmost bit in the exponent part of the byte) in the
following way:

4-bytes (F-type, single precision) :
In €0, bit 7 represents 2**0
In el, bits 0-6 represent 2**1 through 2**7
Exponent bias = 129

8-bytes (D-type, double precision) :
In €0, bit 7 represents 2**0
In el, bits 0-6 represent 2**1 through 2**7
Exponent bias = 129

- 8-bytes (G-type, double precision) :

In €0, bits 4-7 represent 2**0 through 2**3
In el, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1025

Appendix C Internal Representauion of Data Types

16-bytes (H-type) :

In €0, bits 0-7 represent 2**Q through 2**7
In el, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16385

mO0-ml3 = Arrangement of the portions of the bytes that make up the mantissa, from
highest order fractions to lowest order fractions. The order of the bits within
each byte progresses from left to right, with each bit representing a
fractional power of two, in the following way:

4-bytes (F-type, single precision) :
In mO, bits 6-0 represent 1/2**] through 1/2**7
In ml, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23

8-bytes (D-type, double precision) :

In mO, bits 6-0 represent 1/2**] through 1/2**7
In ml, bits 7-0 represent 1/2**8 through 1/2**15
In m2, bits 7-0 represent 1/2**16 through 1/2**23
In m3, bits 7-0 represent 1/2**24 through 1/2**31
In m4, bits 7-0 represent 1/2**32 through 1/2**39
In mS5, bits 7-0 represent 1/2**40 through 1/2**47
In m6, bits 7-0 represent 1/2**48 through 1/2**55

8-bytes (G-type, double precision) :

In mO, bits 3-0 represent 1/2**1 through 1/2**4
In ml, bits 7-0 represent 1/2**5 through 1/2**12
In m2, bits 7-0 represent 1/2**13 through 1/2**20
In m3, bits 7-0 represent 1/2**21 through 1/2**28
In m4, bits 7-0 represent 1/2**29 through 1/2**36
In mS5, bits 7-0 represent 1/2**37 through 1/2**44
In m6, bits 7-0 represent 1/2**45 through 1/2**52

16-bytes (H-type) :

In mO, bits 7-0 represent 1/2**] through 1/2**8
In ml, bits 7-0 represent 1/2**9 through 1/2**16
In m2, bits 7-0 represent 1/2**17 through 1/2**24
In m3, bits 7-0 represent 1/2**25 through 1/2**32
In m4, bats 7-0 represent 1/2**33 through 1/2**40
In m5, bits 7-0 represent 1/2**41 through 1/2**48
In mé6, bits 7-0 represent 1/2**49 through 1/2**56
In m7, bits 7-0 represent 1/2**57 through 1/2**64
In m8, bits 7-0 represent 1/2**65 through 1/2**72
In m9, bits 7-0 represent 1/2**73 through 1/2**80

Appendix C Internal Representation of Data Types

C-15

In m10, bits 7-0 represent 1/2**81 through 1/2**88
In m11, bits 7-0 represent 1/2**89 through 1/2**96
In m12, bits 7-0 represent 1/2**97 through 1/2**104
In m13, bits 7-0 represent 1/2**105 through 1/2**112

These representations all follow the format:
1. (mantissa) x 2**(exponent - bias)

with the "1." part implicit

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored

- bias = true exponent value).

C.10 VAX_COMPLEX, VAXG_COMPLEX

Aliases: None

Two contiguous VAX_REALSs or VAXG_REALSs 1n memory, representing the real and imaginery

parts.

Cc11 MSB_BIT_STRING
Aliases: BIT_STRING

MSB n-byte bit strings:

As read from a file:

bits bits bits bits
1-8 9-16 17-24 25-32

76543210 | 76543210 | 76543210 | 76543210

b0 bl b2 b3

No byte swapping is needed.

Note: for n-byte bitstrings, continue pattern above.

bits
((nx8)-7) - (nx8)

b x (n-1)

MSB 2-byte bit strings:

C-16
As read from file;
bits bits
1-8 9-16

76543210 | 76543210

b0 bl

No byte swapping is needed.

Appendix C Internal Representation of Data Types

MSB 1-byte bit strings:

As read from file:

bits
1-8

76543210

b0

No byte swapping is needed.

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then

bl, b2, and b3).

The bits within a byte are numbered from left to nght:

bit 8

C.12 LSB_BIT_STRING
Aliases: VAX_BIT_STRING

LSB 4-byte bit strings:

Appendix C Internal Representation of Data Types

As read from a file:

bits bits bits bits
25-32 17-24 9-16 1-8
76543210 | 76543210 | 76543210 | 76543210
b0 bl b2 b3
After bytes are swapped:
bits bits bits bits
1-8 9-16 17-24 25-32
76543210 | 76543210 | 76543210 | 76543210
b3 b2 bl b0

LSB 2-byte bit strings:

As read from a file:

bits bits
9-16 1-8

765432101 76543210
b0 bl

After bytes are swapped:

bits bits
1-8 9-16
76543210 | 76543210
bl b0

LSB 1-byte bit strings:

As read from file:

bits
1-8

76543210

b0

No byte swapping is needed.

C-18 Appendix C Internal Representation of Data Types

Where:

b0 - b3 =Arrangement of bytes as they appear when read from a file (e.g., read b0 first,
then bl, b2, and b3).

The bits within a byte are numbered from left to right:

76543210

bitl bit8

Appendix D Examples of Required Files D-1]

APPENDIX D

Examples of Required Files

The examples in this Appendix are based on both existing or planned PDS archive volumes, but
have been modified to reflect the most recent version of the PDS standards.

D.1

AAREADME.TXT

Each PDS archive volume shall include an “AAREADME.TXT"” file that contains an overview of
the contents and structure of the volume. An annotated outline is provided here as guidance for
compiling thas file.

Annotated Outline

I PDS TEXT Object (must appear 1n an attached or detached label)
IL. Volume Title

. Contents

1. Introduction
a. Science data content
b. Conformance to PDS standards
c. Document or institutional references for additional science information

2. Volume format
a. Computer systems that can access the volume
b. International standards to which the volume conforms

3. File formats
a. Data record formats
b. Specifications for specialized files (e.g., Postscript)
c. Description of PDS objects, pointers, etc.

4. Volume contents
-a. Directory structure of the volume

5. Recommended CD-ROM drives (if applicable)
a. Dniver descriptions and notes for all appropriate computer platforms

D-2 Appendix D Examples of Required Files

6. Errata (if applicable)
a. Known errors, cautionary notes, disclaimers, etc.
b. Reference to the ERRATA.TXT file on the volume or online

7. Contacts
a. Names and addresses of people or organizations to contact for questions
concerning science data, technical support, data product generation and labelling,
etc.

Example:

The following is an example of an AAREADME.TXT file used on a PDS archive volume that does
not use the logical volume construct. Note that section 3 in the example would need to be updated
if logical volumes were present.

PDS_VERSION_ID = PDS3

RECORD_TYPE ' = FIXED_LENGTH

RECORD_BYTES =80

SPACECRAFT_NAME = MAGELLAN

TARGET _NAME = VENUS

OBJECT =TEXT

PUBLICATION_DATE= 1994-06-01

NOTE = "MAGELLAN LOSAPDR ARCHIVE CD-WO"
END_OBJECT =TEXT

END

MAGELLAN LOSAPDR ARCHIVE CD-WO
1. Introduction

This CD-WO contains Magellan Cycle 4 LOSAPDR (Line of Sight Acceleration Profile Data Record) products It also contains
documentauon which describe the LOSAPDRs Each LOSAPDR product contains the results from processing of radio tracking data
of the Magellan spacecraft There are 866 LOSAPDRs on this volume

The LOSAPDR products archived on thts volume are the exact products released by the Magellan Project Supporting
documentation and label files conform to the Planetary Data System (PDS) Standards, Version 3 0, Jet Propulsion Laboratory (JPL)
document JPL D-7669

Additional information about the Magellan gravity expeniment, including the acquisition, processing, and quahty of the LOSAPDR
data, can be found 1n JPL documents that are available from the PDS Geosciences Node, Washington University, St Louis, MO
2. Disk Format

The disk has been formatted so that a vanety of computer systems (e g IBM PC, Macintosh, Sun) may access the data Specifically,
1t 1s formatted according to the 1SO 9660 Jevel 1 Interchange Standard For further informauon, refer to the I1SO 9660 Standard
Document RF# ISO 9660-1988, 15 Apnl 1988

3. File Formats

Each orbit for which gravity data exists 1s represented by one LOSAPDR data file The LOSAPDR 1s an ASCII file The data file
contains 3 tables 1) HEADER_TABLE, 2) TIMES_TABLE, and 3) RESULTS_TABLE The HEADER_TABLE is a single-row
multi-column table contaimng information on 1mual values, control parameters, and simple calculations required by the program

Appendix D Examples of Required Files D-3

that generates the data files The TIMES_TABLE 1s a single column containing exact times bounding spline intervals to the Doppler
residuals The number of rows 1s variable The RESULTS_TABLE contains the results from spline fits to Doppler residuals Each
row 1n the table contains times, Doppler residuals. spacecraft position and velocity information, and inferred spacecraft acceleration
The data files are descnbed by PDS labels embedded at the beginning of the file Further information on LOSAPDR file formats
and contents can also be obtained from the Magellan Software Interface Specificaton (SIS) document NAV-138 A copy of the
document 1s stored on this disk as file LOSAPDR TXT 1n the DOCUMENT directory

All document files and detached label files contain 80-byte fixed-length records, with a carnage return character (ASCII 13) 1n the
79th byte and a line feed character (ASCII 10) 1n the 80th byte This allows the files to be read by the MacOS, DOS, Unix, and VMS
operating systems All tabular files are also descnbed by PDS labels, either embedded at the beginming of the file or detached If
detached, the PDS label file has the same name as the data file 1t descnbes, with the extension LBL, for example, the file
INDEX TAB 1s accompanied by the detached label file INDEX LBL 1n the same directory

Tabular files are formatted so that they may be read directly into many database management systems on vanous computers All
fields are separated by commas, and character fields are enclosed in double quotation marks (") Character fields are left justified,
and numenc fields are nght justified The “start byte™ and "bytes” values hsted in the labels do not include the commas between
fields or the quotation marks surrounding character fields The records are of fixed length, and the last two bytes of each record
contain the ASCII carniage return and line feed characters Thus allows a table to be treated as a fixed length record file on computers
that support this file type and as a normal text file on other computers

A PostScript file, REPORT PS. 1s included on this volume This PostScrnipt document 1s a vahdation report that hists all LOSAPDRs,
and gives specific information, comments, and the status of each data file after a quality check and validation at the PDS Geophysics
Subnode The document 1s descnbed by the detached label file, REPORT LBL The document can also be viewed by a Display

PostScnpt program and can be pnnted out from a PostScnipt pnnter The ASCII text version of the PostScnpt file 1s REPORT ASC

PDS labels are object-oriented The object to which the label refers (e g , IMAGE, TABLE, etc) 1s denoted by a statement of the
form

~object = location

in which the carat character (#, also called a pointer 1n this context) indicates that the object starts at the given location In an attached
label, the location 1s an integer representing the staring record number of the object (the first record 1n the file 1srecord 1) Ina
detached label, the location denotes the name of the file contaiming the object, along with the starting record-or byte number For
example

ATABLE = "INDEX TAB"
indicates that the TABLE object points to the file INDEX TAB

Pointers to data objects are always required to be located in the same directory as the label file, so the file INDEX TAB 1n this
example 15 located n the same directory as the detached label file

Other types of pointer statements can also be found on this volume To resolve the pointer statement, first look 1n the same directory
as the file contarnung the pornter statement. If the pointer 1s stll unresolved, look 1n the following top level directory ‘
A STRUCTURE - LABEL directory

ACATALOG - CATALOG directory

ADATA_SET_MAP_PROJECTION - CATALOG directory

ADESCRIPTION - DOCUMENT directory

Below 15 a list of the possible formats for the #object keyword

“object =n

~object = n<BYTES>

Aobject = "filename ext”

Aobject = ("filename ext”,n)

*object = (“filename ext",n<BYTES>)

where
n
<BYTES>
filename
ext
4. CD-ROM Contents

Appendix D Examples of Required Files

15 the starting record or byte number of the object,
counting from the beginning of the file (record 1,
byte 1)

indicates that the number given 1s 1n units of bytes
1s the upper-case file name

1s the upper-case file extension

The files on this CD-ROM are organized 1n one top-level directory with several subdirectories The following table shows the
structure and content of these directones In the table, directory names are enclosed 1n square brackets ([]), upper-case letters
indicate an actual directory or file name, and lower-case letters indicate the general form of a set of directory or file names

FILE

Top-level directory

- AAREADME TXT

I- ERRATA TXT

VOLDESC CAT

[CATALOG]

CATALOG CAT

|
|
I- CATINFO TXT
i
I

[DATA]
|-
|
|
!

DATASET CAT

[mmmmannn]

|- LOmmmm 001

[DOCUMENT]

|
I-
|
I
I-
|
I
|
I-
|

DOCINFO TXT

LOSAPDR TXT

REPORT ASC

CONTENTS

The file you are reading

Description of known anomalies and errors
present on this volume

A descniption of the contents of this CD-
ROM volume 1n a format readable
by both humans and computers

A directory contaimung information about the
LOSAPDR dataset

PDS catalog objects Mission, spacecraft
and instrument descriptions

Description of files 1n the CATALOG
directory

PDS dataset catalog object A description
of the dataset, parameters, processing, data
coverage and quality

A directory contaimng LOSAPDR data files
Directones containing LOSAPDR data files
for orbits between ‘mmmm’ and 'nnnn’

LOSAPDR file for orbit number ‘mmmm’

A directory contaiming document files
relating to this disk

Descrption of files in the DOCUMENT
directory

A machine readable version of the LOSAPDR

SIS document descnbing the format and
content of the data files

ASCII text version of REPORT PS

Appendix D Examples of Required Files D-5

|- REPORT LBL A PDS detached label describing REPORT ASC & REPORT PS
!
- REPORT PS A PostScnpt document that gives specific

information about each LOSAPDR after a

quality check and validation

!
!

|

|

I

!

I- [INDEX] A directory containing index files relating
|

I

]

!

!

!

l

| to this disk
:- INDEX LBL A PDS detached label descnbing INDEX TAB
:- INDEX TAB Tabular summary of data files
:- INDXINFO TXT Descnption of files i the INDEX directory
L Recommended CD-ROM Drives and Driver Software
VAX/VMS

Dnive Digital Equipment Corporation (DEC) RRD40 or RRD350 Dniver DEC VFS CD-ROM dnver V4 7 or V5 2 and up

Note The driver software may be obtained from Jason Hyon at
JPL It 1s necessary to use this dniver to access
Extended Attribute Records (XARs) on a CD-ROM

VAX/Ultnx s
Dnive DEC RRD40 or RRD50 Dnver: Supplied with Ultnx 3 1

Note Internet users can obtain a copy of the “cdio” software
package via anonymous ftp from the "space mit edu”
server 1n the file named "“src/cdio shar” Contact Dr
Peter Ford at Massachuseits Institute of Technology
for details (617-253-6485 or pgf@space mt edu)

IBM PC '
Dnve Toshiba, Hitachi, Sony, or compatible Dnver Microsoft MSCDEX version 2 2

Note The latest version of MSCDEX (released 1n February
1990) 1s generally available Contact Jason Hyon for
assistance 1n locaung a copy

Apple Macintosh
Dnve Apple CD SC (Sony) or Toshuba Dniver Apple CD-ROM driver

Note The Toshiba drive requires a separate dniver, which may
be obtained from Toshiba

Sun Micro (SunOS 4 0 x and earlier)
Drive Delta Microsystems SS-660 (Sony) Dnver Delta Microsystems driver or SUN sr o Driver

Note For questions concerming this driver, contact Dems
Down at Delta Microsystems, 415-449-6881

Sun Micro (SunOS 4 0 x and later)
Dnve Sun Microsystems Dnver SunOS sro dnver

Note A patch must be made to SunOS before the Sun dnver can
access any CD-ROM files containing Extended Atnbute
Records A copy of thts patch 1s available to Internet

D-6 Appendix D Examples of Required Files

users via anonymous ftp from the "space mit edu” server
in the file named "sre/SunQS 4 x CD-ROM patch”
6. Errata and Disclaimer
A cumulative list of anomalies and errors 1s maintained 1n the file ERRATA TXT at the root directory of this volume

Although considerable care has gone 1nto making this volume, errors are both possible and likely Users of the data are advised to
exercise the same caution as they would when dealing with any other unknown data set

Reports of errors or difficulties would be appreciated Please contact one of the persons listed heretn

7. Whom to Contact for Information
For questions concermung this volume set, data products and documentation

Jim Alexopoulos Washington University Dept of Earth and Planetary Sciences 1 Brookings Dnve Campus Box 1169
St Lows, MO 63130 314-935-5365

Electromic mail address® Internet nm@ wuzzy wustl edu

For questions about how to read the CD-ROM

Jason I Hyon Jet Propulsion Laboratory Califorma Institute of Technology 4800 Oak Grove Drive MS 525-3610
Pasadena, CA 91109 818-306-6054

Electronic mail addresses Internet jhyon@jplpds jpl nasa gov NASAmail JHYON NSI JPLPDS JHYON X 400
(ID JHYON,PRMD NASAMAIL ADMD TELEMAIL,C USA)
For questions concerming the generation of LOSAPDR products

Wilham L Syogren Magellan Gravity Principal Invesugator Jet Propulsion Laboratory Califorma Institute of Technology
4800 Oak Grove Dnve MS 301-150 Pasadena, CA 91109 818-354-4868

Electromic mail address Internet wls@nomad)pl nasa gov

For questions concerming LOSAPDR data
Wilbam L Sjogren
Jet Propulsion Laboratory Pasadena, CA
Dr Roger J Phillips Washington University Dept. of Earth and Planetary Sciences 1 Brookings Dr Campus Box 1169
St. Lowss, MO 63130 314-935-6356
Electronic mail address Internet phillips@wustte wustl edu
For questions concerming LOSAPDR labels
Dr. Richard Simpson Stanford University Durand Bldg Room 232 Stanford, CA 94305-4055 415-723-3525

Electronic mail address' Intemnet rsimpson@magellan stanford edu

This disk was produced by Jim Alexopoulos

Appendix D Examples of Required Files D-7

D.2 INDXINFO.TXT

Each PDS archive volume shall include an “INDXINFO.TXT" file in the INDEX subdirectory that
contains an overview of the contents and structure of the index table or tables on the volume as well
as usage notes. An example is provided here as guidance for compiling this file.

Example:

CCSD3ZF0000100000001NJPL3IFOPDSX00000001

PDS_VERSION_ID =PDS3

RECORD_TYPE = STREAM

OBJECT N =TEXT

NOTE = "Notes on using the image index tables "
PUBLICATION_DATE =1990-12-20

END_OBIJECT =TEXT

END

NOTES ON USING THE IMAGE INDEX TABLES
These notes describe the contents and format of the two 1mage index tables on this CD-ROM, INDEX TAB and CUMINDEX TAB

The 1mage 1ndex table (INDEX TAB) contains one record for each image file on this Viking Orbiter CD-ROM The cumulative
1mage index table (CUMINDEX TAB) contains one record for each 1mage file on all the Viking Orbiter CD-ROMs published so
far The following description applies to both of these tables

The 1mage 1ndex tables are formatted so that they may be read directly 1nto many database management systems on various
computers

All fields are separated by commas, and character fields are enclosed 1n double quotation marks (*) Each record contains 512 bytes
of ASCII character data (1 character = 1 byte} Bytes 511 and 512 contain the ASCII carmage return and line feed characters This
allows the table to be treated as a fixed length record file on computers that support this file type and as a normal text file on other
computers The structure and content of the image index tables are described 1n the file VOLINFO TXT located in the DOCUMENT
directory The files INDEX LBL and CUMINDEX LBL contain labels for INDEX TAB and CUMINDEX TAB coded 1n the
Object Description Language (ODL), providing a formal description of the index table structure

Users of most commercial database management systems should be able to use the list below to define the names and characternstics
of each field and then to load the tables 1nto their systems using a delimited ASCII text input format If necessary the specific
column start positions and lengths can be used to load the data

For personal computer users, DBASE III DBF structures are also provided in the files INDEX DBF and CUMINDEX DBF These
files can be used to load the INDEX TAB or CUMINDEX TAB files into DBASE III or IV with the following commands

USE INDEX
APPEND FROM INDEX TAB DELIMITED

USE CUMINDEX .
APPEND FROM CUMINDEX TAB DELIMITED

Once the table 1s loaded into DBASEIII, 1t can generally be automatically loaded 1nto other data managers or spreadsheets that
provide search and retneval capabilities

D-§ ‘ ' Appendix D Examples of Required Files

D.3 SOFTINFO.TXT

Each PDS archive volume that contains software (1n the SOFTWARE subdirectory) shall include
an “SOFTINFO.TXT” file. Thus file contains a description of the software and usage information.
An outline and example are provided here as guidance for compiling this file.

Outline

I PDS TEXT Obiject (must appear 1n an attached or detached label)
II. Contents
L. Introduction
2. Software Description
A bref description of software included on the volume. This can be broken down into
separate sections for each type of software. This should indicate where the software and
its documentation reside in the software hierarchy, as well as describe any known
limitations or problems.

3. Software Directory Structure (optional)

4. Software License Information and Disclaimers (if appropriate)

Example:

PDS_VERSION_ID =PDS3
RECORD_TYPE =FIXED_LENGTH
RECORD _BYTES =80

OBIJECT . =TEXT
INTERCHANGE_FORMAT = ASCII
PUBLICATION_DATE =1994-10-01
NOTE = “Description of software provided with the Clementine CD-ROM
set”

END_OBIJECT = TEXT

END

Clementine Software
1. Introduction

This directory contains software that provides display and processing
capabilities for the Clementine data archived on this CD-ROM set '

Appendix D Examples of Required Files D-9

2. Software Description
2.1. Decompression Software

The PCDOS, MACSYS7 and SUNOS subdirectories all contain software which can be used to decompress the Clementine raw
images CLEMDCMP will decompress the raw 1mage and output 1t into one of four formats

1) decompressed PDS labeled file which contains PDS labels, the histogram object, and an 1mage object, either the browse
1mage or the full image

2) decompressed 1mage file, no labels

3) a decompressed 1mage 1n the GIF format

4) a decompressed 1mage 1n the TIFF format

The source code 1s provided in the SRC subdirectory, of each platform subdirectory Instructions on how to install and run the
software 1s 1n the file CLEMDCMP TXT 1n the DOC subdirectory, of each platform subdirectory

Because the image decompression program, CLEMDCMP, requires a Discrete Cosine Transform (DCT) 1t may take several
munutes to decompress an 1mage on hardware platforms with slow processors For example, 1n tests on a Macintosh

IIc1, the decompression takes approximately 4 minutes CLEMDCMP has been tested on hardware platforms with processors, such
as an Intel 486DX2/66-Mhz, and the decompression takes just several seconds

2.2. Display Software

CLIMDISP 1n the PCDOS/BIN subdirectory 1s an 1mage display and processing program It can be used to display Clementine
uncompressed images and histograms See CLIMDISP TXT 1n the PCDOS/DOC subdirectory for instructions on how to 1nstall

and run the program

Note CLIMDISP currently can not create GIF formatted files for the Clementine images Additionally, 1t can not read the version
of GIF files created by the Clementine Decompression (CLEMDCMP) program which 1s also included on the Clementine EDR
Archive CD-ROMs If you wish to display Clementine images with CLIMDISP, generate a PDS format image file when
decompressing with CLEMDCMP

A special version of NIH Image, found 1n the MACSYS7/BIN subdirectory, will display PDS decompressed Clementine 1mages
This program 1s stored 1n a Stuffit file which 1s 1n BinHex format See IMAGE TXT 1n the DOC subdirectory for instructions on
how to 1nstall and run the program

The Clemenune EDR 1mage files use the PDS label constructs RECORD_TYPE = "UNK", and AIMAGE = xxxxx <BYTES> to
define the structure of the file This form of the labels 1s not supported by the current versions of IMDISP and IMAGE4PDS that
are widely distributed by the PDS To read Clementine decompressed formatted files use the version of IMAGE

and CLIMDISP programs that are supplied on this CD-ROM The Clementine versions CLIMDISP and IMAGE have been tested
only on the Clementine data products No attempt has been made to determune 1f the Clementine program versions will work on any
other PDS data product

XV 1s a shareware program for displaying images XV was written by John Bradley of the University of Pennsylvama Itisimna
compressed tar file in the SUNOS/SRC subdirectory See XV TXT in the SUNOS/DOC subdirectory for instructions on how to
decompress and untar this file X'V will not display PDS labeled files, but will display TIF and GIF formatted files

The XV software, for image display on a sun/urux environment, 1s not able to read the Clementine PDS labeled files If you
mtend to use XV as the display system for the CLementine data products, output GIF or TIFF images with the CLEMDCMP

program .
2.3. SPICE Software

Included on one of the ancillary disks associated with this volume set 1s the Navigation and Ancillary Information Facility (NAIF)
Toolkit and some additional NAIF software The major component of the NAIF Toolkit 1s the SPICE Library (SPICELIB), a
collection of portable ANSI FORTRAN 77 subroutines Some of these subroutines are used to read the SPICE kemel files
contaiming Clementine ancillary data, such as spacecraft position, spacecraft atutude, instrument orientation and target body

size, shape and onentation Other SPICELIB subroutines may be used to compute typical observation geometry parameters--such
as range, lighung angles, and LAT/LON of camera optic axis intercept on the target body Several utility programs and SPICELIB

D-10 Appendix D Examples of Required Files

demonstration programs are also included 1n the Toolkit Versions of this software tested on many popular platforms are provided,
as are structions for porting the code to additional platforms The FORTRAN subroutines can be called from a user's own
apphicaton program, whether wntten tn FORTRAN or C, or possibly yet another language Consult your compiler's Reference
Manual for instructions One of the NAIF programs included 1n this software collection 1s PICGEQ (for Picture Geometry) It was
used to compute all of the geometnic parameters appeanng in the image labels and index tables It 1s included so that users may
clearly see the algonthms used 1n computing these quantities, and so that recalculation of 1mage label geometry parameters using
revised algonthms, or adding additional parameters, can be easily achieved

2.4. Miscellaneous Image Processing Software

MSHELL 15 an interactive command line and menu dnven Image and Signal processing language, developed by ACT Corp , which
runs under the Microsoft Windows 3 x or Microsoft NT MSHELL provides powerful scientific image and signal visualization and
processing A number of custom features were added to the MSHELL Image/Signal Processing Environment to support the Clem-
entine Program This software 1s included on one of the ancillary disks associated with this volume set, and will be under a subdi-
rectory of the PCDOS directory

3. Software Directory Hierarchy

The SOFTWARE subdirectonies are based on hardware platforms Under each platform subdirectory, the executables are 1n the
BIN subdirectory, the source 1s 1n the SRC subdirectory and documentation on each program 1s in the DOC subdirectory Each
DOC subdirectory contains a file, SWINV CAT which 1s part of the PDS Software Inventory describing software available within
the Planetary Science Community The contents of the SOFTW ARE directory are shown below

[SOFTWARE]

I

I-SOFTINFO TXT
|

I-[PCDOS]

|
I-CLEMDCMP EXE
I-CLIMDISP EXE

!

-CLIMDISP HLP
-[SRC]

|
!

]

]

i

!

|

| .CLEMDCMP C

| I-PDS C

| 1-BITSTRM C

{ -DECOMP C ’
| FHUFFMAN C

| FWRITEGIF C

| -PDSH

| FJPEG_CH

{ CLEMDCMP MAK

i

{

{DOC]
|
I-CLEMDCMP TXT
I-CLIMDISP TXT
I-SWINV CAT

-[MACSYS7]
BIN]

CLEMDEXE HQX
IMAGE HQX

[
[
1
I
I
1

Appendix D Examples of Required Files

|
|
|
{
!
[
|
|
|
!
-

I-{SRC]
: i—CLEMDSRC HQX
:-[DOC]

l[-CLEMDCMP TXT

-IMAGE TXT
-SSWINV CAT

[SUNOS]

|

[-{BIN]

il

| I-CLEMDEXE TZU

-CLEMDCMP TXT
XV TXT
-SSWINV CAT

D-12 Appendix D Examples of Required Files

Appendix E NAIF Toolkit Directory Structure E-1

APPENDIX E

NAIF TOOLKIT DIRECTORY STRUCTURE

This appendix contains the software directory structure of the NAIF Toolkit for a SUN. It 1s an
example of a platform-base model for a single platform. Note that the directory organization shown
here does not strictly conform to the recommendations discussed in the Volume Organization and
Naming chapter of this document.

NAIF

The NAIF directory contains one subdirectory, TOOLKIT. The TOOLKIT tree contains all of the
files that make up the NAIF Toolkit.

(directory under which you 1nstalled the NAIF Toolkit)

naif
toolkit
TOOLKIT

The TOOLKIT directory contains the file make_toolkit.csh. This is a C shell script that builds all
of the object libraries and executables in the TOOLKIT.

(directory under which you installed the NAIF Toolkit)

l
naif
I

toolkit

I
make_toolkit.csh

E-2 Appendix E NAITF Toolkit Directory Structure

TOOLKIT also contains several subdirectories that will be described in more detail 1n the
following sections.

(directory under which you 1nstalled the NAIF Toolkit)

|
n;l,uf

toolkit

| I I | I 1
src lib exe doc etc example_data

1. SRC
The subdirectories of this directory contain all of the source for the products 1n the TOOLKIT.

2. LIB
Thus directory contains all of the TOOLKIT object libraries.

3. EXE
This directory contains all of the TOOLKIT executables, and where applicable, scripts to run the
executables. ‘

4. DOC

This directory contains all of the TOOLKIT documentation. This includes User's Guides for the
programs, Required Reading files for SPICELIB, documents describing the contents of SPICELIB
such as the Permuted Index and Module Summary, and documents describing the contents and
installation of the Toolkit.

5. ETC

The subdirectories of this directory contain product-specific files that are neither source,
documentation, nor data. This includes configuration files, set up files, and help files. The
subdirectory build contains the C shell script that creates the toolkit object libraries and
executables.

6. EXAMPLE_DATA
This directory contains example data for use with the COOKBOOXK and SPTEST programs. These
files are to be used only with these programs.

Appendix E. NATF Toolkit Directory Structure E-3

SRC

The SRC directory contains one subdirectory for each product in the NAIF Toolkit. Each of these
product directortes contains the source code files and procedures to create the executable or object

library.
(directory under which rou mnstalled the NAIF Toolkit)
naif

toolkit

SIC

|] i I ! T 1
spicelib support spacit communt cookbook sptest inspekt

SPICELIB

SPICELIB is a Fortran source code library that contains approximately 650 functions, subroutines,
and entry points.

This directory contains the SPICELIB source files.

(directory under which rou installed the NATF Toolkit)

naif

toolkit

Src

l
spicelib

*f

E-4 Appendix E NATF Toolkit Directory Structure

SUPPORT

SUPPORT is a Fortran source code library that contains routines that support the Toolkit programs.
These routines are not intended to be used by anyone except NAIF. These routines are not officially
supported and may undergo radical changes such as calling sequence changes. They may even be
deleted. Do not use them!

This directory contains the SUPPORT library source files.

(directory under which rou installed the NAIF Toolkit)
naif

toolkat

Src

support

*f

SPACIT

SPACIT is a utility program that performs three functions: it converts transfer format SPK, CK and
EK files to binary format, 1t converts binary SPK, CK and EK files to transfer format, and 1t
summarizes the contents of binary SPK, CK and EXK files.

This directory contains the source code for the SPACIT main program
and supporting routines.

(directory under which rrou installed the NAIF Toolkit)
naif

toolkit

SIC
spaclit

spaclit.main

*f

Appendix E NAIF Toolkat Directory Structure E-5

COMMNT

COMMNT is a utility program that is used to add comments, extract comments, read comments,
or delete comments 1n SPICE SPK, CK and EXK files.

This directory contains the COMMNT main program source file

(directory under which rou installed the NAIF Toolkit)
naif

toolkit

Src

|

commnt

commit.main

COOKBOOK

The cookbook programs are sample programs that demonstrate how to use SPICELIB routines to
obtain state vectors, convert between different time representations, manipulate the comments in
binary SPK and CK files, and solve sumple geometry problems.

This directory contains the COOKBOOK program source files.

(directory under which rou installed the NAIF Toolkit)
naif

toolkit

Src

cookbook

fstspk.main
simple.main
states.main
subpt.main
tictoc.main

E-6 Appendix E NAIF Toolkit Directory Structure

INSPEKT

INSPEKT is a program that allows you to examine the contents of an events component of an E-
kernel.

This directory contains the source code for the INSPEKT main program and supporting routines.

(directory under which i/ou installed the NAIF Toolkit)

naif

toolkit

SIC

inspekt

inspekt.main
*f
*.inc

SPTEST

SPTEST is a utility program that tests the SPK file readers by comparing states read on the NAIF
VAX with states read on the target machine.

This directory contains the SPTEST program source file.

(directory under which rou installed the NAIF Toolkit)
naif

toolkit

SIc

Sptest

sptest.main

Appendix E NAIF Toolkit Directory Structure E-7

LIB

The LIB directory contains spicelib.a, the object library for SPICELIB. It also contains the object
library support.a, but this library is for use by the Toolkit programs only. Do not link your
applications with it!

(directory under which you installed the NAIF Toolkit)
naif

toolkit

Iib

spicelhib.a
support.a

EXE

The EXE directory contains the NAIF Toolkit executables and, where applicable, scripts to run
executables.

(directory under which you installed the NAIF Toolkat)

naif

toolkit

€xe

commnt
fstspk
mspekt
simple
spacit
sptest
states
subpt
tictoc

E-8 Appendix E NAIF Toolkit Directory Structure

DOC -

The DOC directory contains all of the TOOLKIT documentation that 1s available on-line. This
includes the user's guides for the programs, all Required Reading files for SPICELIB, all
documents describing the contents and porting of SPICELIB, and documents describing the
installation and contents of the Toolkit Please note that the INSPEKT User's Guide is not available
on-line.

(directory under which you 1nstalled the NAIF Toolkit)
naif

toolkit

doc

commnt.ug
fstspk.ug

simple.ug

spacit.ug

sptest.ug

states.ug

subpt.ug

tictoc.ug

*req

category.txt
libsum.txt
permuted_index.txt
porting.txt
toolkit_install.txt
toolkit_description.txt

Appendix E NAIF Toolkit Directory Structure E-9

ETC

The ETC directory contains all files for the Toolkit products that are not source, documentation, or
data such as set up files, configuration files or help files. It also contains the C shell script used to
build the toolkit object libraries and executables.

(directory under which you 1nstalled the NAIF Toolkit)

naif

toolkit

etc

spicelib support spacit ~ commnt cookbook sptest build build_it.csh

EXAMPLE_DATA

The EXAMPLE_DATA directory contains all of the NATF Toolkit data. This data is intended only
to be used with the TOOLKIT programs, and is included only to help you get started using the
Toolkat.

(directory under which rou installed the NATF Toolkit)

naif
example_data

cook_Ol.tc
cook_Ol.tls
cook_Ol.tpc
cook_Ol.tsc
cook_01.tsp
cook_02.tc
cook_02.tsp
sptest.gen
sptest.rqs
sptest.tsp

E-10 Appendix E NAIF Toolkit Directory Structure

Using the NAIF Toolkit

After the installation has been completed successfully, there are a few things that you need to do
to get started using SPICELIB. We recommend that you print out the source code for the cookbook
programs (./naif/toolkit/src/cookbook/*.main) and examine it. Try running some of the cookbook
programs yourself. The cookbook programs demonstrate how to use SPICELIB routines to obtain
state vectors, convert between different time representations, manipulate the comments in binary
SPK and CK files, and solve simple geometry problems.

Once you're ready to get your hands dirty, you should read the required reading files for SPICELIB.
The required reading files are located 1n the directory ./naif/toolkit/doc and have the extension
“*.req". They are text files that describe families of subroutines and how they interact with the rest
of SPICELIB.

The most important required reading files are: TIME, KERNEL, SPK, CK, SCLK, SPC, and
NAIF_IDS. You should read at least these

After you've done these things, you're ready to start programming with SPICELIB!

Appendix -- NAIF's File Naming Conventions

NATF follows a set of conventions for naming files based on the contents of the files. This allows
you to find certain types of files in a directory tree quickly.

1. *for, *.f

Fortran-77 source code files.

2. *.main
Source code files for program modules.

3. *.inc
Fortran-77 include files.

4, *c
C source code files.

5. *o
Unix object files.

6. *.obj
VAX/VMS object files.

7. *.a .
Unix object library files.

8. *.0lb

Appendix E. NAIF Toolkit Directory Structure

VAX/VMS object library files.

9. *.tsp
Transfer format SPK (ephemeris) files

10. *.bsp
Binary format SPK (ephemeris) files.

11. *.tc
Transfer format CK (pointing) files.

12. *bc
Binary format CK (pointing) files.

13. *.u
Text IK (1instrument parameters) files.

14. *.tls »
Leapseconds kernel files.

15. *.tpc

Physical and cartographic constants kernel files.

16. *.tsc

Spacecraft clock coefficients kernel files.

17. *.txt
Text format documentation files.

18. *.ug
Text format User's Guides.

19. *.req

Text format SPICELIB Required Reading files. -

20. make_toolkit.csh, build_it.csh

Unix C shell script files for creating the toolkit object libraries and executables.

21. make_toolkit.sh, build_it.sh

Unix Bourne shell script files for creating the toolkit object libraries and executables.

22. (product name)

Unix executable files. For example, spacit is the executable file for the product spacit.

23. make_(product name).com

E-11

E-12 Appendix E NAIJF Toolkit Directory Structure

VAX/VMS command procedures for creating products. For example, make_spicelib.com creates
the object library spicelib.olb, while make_spacit.com creates the executable spacit.exe.

24. (product name).exe '
VAX/VMS executable files. For example, spacit.exe is the executable file for the product spacit.

These conventions are preliminary. As coordination with AMMOS and the Planetary Data System
(PDS) occurs, these conventions may be revised.

Appendix F. Acronyms and Abbreviations

APPENDIX F

Acronyms and Abbreviations

The following list contains the acronyms and abbreviations which shall be used 1n all PDS

documentation.

AMMOS
CCSDS
CD-ROM
CD-WO
CN
CODMAC
DA

DBA

DN

ECR
GSFC
IDS

ISO

JPL
NAIF
NASA
NBS

NSI/DECNET

NSSDC
ODL
PC

PDS
PSDD
PI

Advanced Multi-Mission Operations System
Consultative Committee for Space Data Systems
Compact Disc - Read Only Memory

CD Write Once

Central Nodes

Committee on Data Management and Computation

Data Administrator

Database Administrator

Discipline Node

Engineering Change Request

Goddard Space Flight Center
Inter-Disciplinary Scientist

International Standards Organization

Jet Propulsion Laboratory

Navigation and Ancillary Information Facility
National Aeronautics and Space Administration
National Bureau of Standards

DEC Network

National Space Science Data Center

Object Description Language

Personal Computer

Planetary Data System

Planetary Science Data Dictionary

Principle Investigator

F-2

PVL
RPIF
SFDU
SIS
SPICE

SQL
UTC
VAX
WORM

Appendix F.Acronyms and Abbreviations

Parameter Value Language

Regional Planetary Image Facility

Standard Formatted Data Unit

System Interface Specification

Spacecraft, Planetary & Probe Ephemens, Instrument,
C-Matrix, Event File - A system for storing and accessing
ancillary information.

Structured Query Language

Universal Time Coordinated (often called GMT)
Virtual Address/Access Extension (DEC Computer)
Wnte Once Read Many

Index

INDEX

A
AAREADME TXT 10-3, 19-8
annotated outline D-1
example D-2
TEXT object use A-107
use as documentation 9-1
abbreviations and acronyms list F-1
aggregation markers 12-26
ALIAS object
defimion A-3
ahases 3-1
alternate time zones 12-26
as date/ume formats 7-3
ancillary data products

mmimum set of data elements needed to 1dentify 5-16

apostrophes
ODL symbolic values 12-20
ODL text values 12-25
See also - quotation marks

archive quality data set collecuon See data set collections

ARRAY object

defimtion A-4

use as pnmitive object 13-3
asc

as required file extension 10-4
ASCII data See file formats
ASCII_COMPLEX

data type 3-3
ASCII_INTEGER

data type 3-3
ASCII_REAL

data type 3-3
assignment symbols (=) 12-26

B »
B1950 system 2-1

as a reference longitude 2-4
Backus-Naur format (BNF) 12-3
backward compatibility 3-1
be

as reserved file extension 10-5
binary data See file formats
binary integers

use of 3-4
BIT COLUMN object

data type elements within 3-2

defimtion A-7

See also - ITEMS
BIT ELEMENT object

defimtion A-10

use as pnmtive object 13-3
bit string data

use of 3-5
BIT_STRING

data type 3-3

blocking
1n fixed length record formats 15-1
1n fixed length tables A-94
BNF See Backus-Naur format
BOOLEAN
data type 3-3
bsp
as reserved file extension 10-5
byte counts
exclusion of line termunators and delimzters 1n objects A-
15
1n HEADER objects A-45
1n pointer statements 14-1
multiple tables with varying row_bytes A-99
numbernng convention 3-1
use of START_BYTE in the ARRAY object A-4
use of START_BYTE in the COLLECTION object A-14

C
CALINFO TXT 10-3, 19-12
cartographic standards 2-1-2-3
case sensitivity

data element 12-25

strings and literals 12-25
cat

as required file extension 10-4
CATALOG object

defimbon A-11

use with VOLUME object A-11
CATALOG CAT 10-2, 19-9

use within the VOLUME object A-11

vs VOLINFO TXT files 10-2, 10-3, 19-9
CATINFO TXT 104, 19-9
CCSDS See Consultative Commuttee for Space Data Systems

(CCSDS)

CD-ROM

recomendations for compilation 11-1-11-3
CHARACTER
data type 3-3
character sets
allowable in
data set collecuon naming 6-5
data set namung 6-4
directory naming 8-2
file naming 10-1
ODL 124
ISO standard 12-4
special characters in ODL 12-12
CODMALC levels 6-8—6-9
COLLECTION object
definiuon A-14
use as primitive object 13-3
COLUMN object
data type elements within 3-2
definition A-15
See also - ITEMS

I-2

comment termunators See line terrinators and delimiters
comments 12-14, 12-25
COMPLEX
data type 3-3
Consultative Commuttee for Space Data Systems (CCSDS) 16-
1
PVL vis-a-vis ODL 12-25
CONTAINER object
definition A-19
relationship with TABLE object A-102
coordinates, reference
cartographic standards 2-1
coordinates, nng
frame standard 2-4
CUBE object See QUBE object

D

dat
as reserved file extension 10-4
data elements
allowable length 12-25
case sensitivity 12-25
data type, location, length information 1n data objects 3-1,
32
descniptive 5-17
use of pointers 5-17
file charactenstic 5-11
identification 5-15
mumumum sets to 1dentify data products 5-15-5-16
required and optional 5-11
data formats
FORTRAN specifications 3-5
data object pointers See pointers
data objects See objects, data
Data Policy
PDS Data Policy 1-1
Data Preparation Workbook
bibhiographic citation 1-2
online availability 1-3
data processing level numbers 6-8—6-9
use in names and IDs 6-4, 6-5, 6-6, 6-10
DATA PRODUCER object
defimition A-25
data product labels See labels
data products
defimition 4-1, 6-3
file configurations 4-1
muumum set of data elements needed to 1dentify 5-15-5-
16
multiple data objects
constructton of PRODUCT_ID 4-2
PRODUCT_ID, use of 4-1-4-3
relatonships to data sets, data set collections 6-1
data record formats. See record formats-
DATA SET COLLECTION object
defimtion B-11

Index
data set collections
contents 6-1-6-12
definition 6-2
naming 6-1-6-12
allowable character set 6-5
components of
DATA_SET_COLLECTION_NAME and

_ID6-5
descriptions 6-6
relationships to data sets, data products 6-1
DATA SET MAP PROJECTION object
defimtion B-14
DATA SET object
defiution B-3
data set types
use in NAMEs and IDs 6-10
data sets
contents 6-1-6-12
definition 6-3
naming 6-1-6-12
allowable character set 6-4
components of DATA_SET _NAME and ID 6-4
descriptions 6-6
PDS catalog object template set B-1-B-39
relationships to data set collections, data products 6-1
software, to accompany 6-3, 11-2
DATA SUPPLIER object
defimtion A-26
data types
defimtions 3-1-3-5
mtemal representations 3-5, C-1-C-18
PDS standard data types 3-3
use of
binary integers 3-4
bit stnng data 3-5
floating point formats 3-5
signed versus unsigned 3-4
valid values 3-1-3-5
data volumes See volumes, data
DATASET CAT 10-2
DATE
data type 3-3
date/ime formats 7-1, 12-8, 12-26
alternate ume zones 7-3
ephemens time (ET) 7-3
ISO standards 7-1
local ime 7-3
longitude of sun (L sub S) 7-2
NATIVE_TIME, use of 7-2-7-3
relative titme 7-3
spacecraft clock count (sclk) 7-2
UTC, use of 7-2-7-3
delimiters See line terminators and delimuters
Digital Image Model (DIM) 2-4 ‘
Digital Terrain Model (DTM) 2-4

Index

directonies

ISO standards, use of 8-2
NAIF Toolkit directory structure E-1
name formation 8-2

allowable character set 8-2

hierarchy for disciplines and sub-disciplines 8-3

path name formation 8-4, 10-1

use of ISO standards 8-4
standard names on data volumes 8-1
structures on tape volumes 8-4
volume and volume set 19-8-19-14
See also - file specification and naming

DIRECTORY object

definitron A-27
use 1n tape volumes 8-4

DOCINFO TXT 10-3, 19-8

TEXT object use A-107
use as documentation 9-1

DOCUMENT object

definition A-29

1n document labels 9-2

use for multiple document formats A-29
use of .asc for file containing 10-4

use of pomnters 5-12-5-14

documentation

E

AAREADME TXT 9-1, 10-3, 19-8
CALINFO TXT 10-3, 19-12
CATINFO TXT 10-4, 19-9
content guidelines 9-6
DOCINFO TXT 9-1, 10-3, 19-8
file formatting
ASCII, use of 9-1, 9-2, A-29
line length limitations 9-2
line terminators and delimiters 9-2
multiple formats on a volume A-29

pros/cons of various document formats 9-2-9-6

file labelling

DOCUMENT object, use of 9-2, A-29, A-107

TEXT object, use of 9-1, A-107
GAZETTER TXT 19-10
GAZINFO TXT 19-10
GEOMINFO TXT 10-3, 19-13
INDXINFO TXT 10-4, 19-13
LABINFO TXT 10-4, 19-9
SOFTINFO TXT 9-1, 10-4, 19-10
standards for submission to archive 9-1-9-6
validation 9-6
VOLINFO TXT 9-1, 10-3, 19-8

earthbased science data products

munimum set of data elements needed to 1dent:fy 5-16

EBCDIC_CHARACTER

data type 3-3

ELEMENT object

defirution A-32
use as primitive object 13-3

Encapsulated Postscript (EPS)

END statements 5-18, 12-13, 12-14, 12-26, 16-5-16-8

documentation file formatting, use 1n 9-6

ephemens time (ET)
as date/time format 7-3
ERRATA TXT 10-3. 19-8
Extended Attribute Records (XARs) 11-1

F

file extensions See file specification and naming

file formats
ASCH 3-1
as storage forrpal 3-1
recommended table formats A-88
use 1n documentauon 9-1, 9-2, A-29
line length limitations 9-2
binary 3-1
as storage format 3-1
recommended table formats A-91
pros/cons of tabular data formats A-87

pros/cons of vanious document formats 9-2-9-6

See also - documentation
file names See file specification and naming
FILE object

defimtion A-33

use with various record formats A-34
file specification and naming 10-1-10-5

8 3 file name standard 10-1

allowable character set 10-1

path name formation 10-1

required file examples D-1-D-11

required file extensions 10-4

required file names 10-2-10-4

reserved file extensions 10-4

reserved file names 10-4

terms to avoid 10-1

use of ISO standards 10-1

See also - directonies
files contained on data volumes

required and optional 19-8-19-14
FITS

use of HEADER object A-45
fixed length records. See record formats
FLOAT

data type 3-3
floating point formats

use of 3-5
fmt

as required fije extension 10-4
FrameMaker

documentation file formatting, use 1n 9-5
FrameMaker Interchange Files (MIF)

documentation file formatting, use 1n 9-4

G

GAZETTEER_TABLE object
defirution A-37

GAZETTER TXT 19-10

GAZINFO TXT 10-3, 19-10

GEOMINFO TXT 10-3, 19-13

H
HEADER object
defimiion A-45
use of pointers 5-12-5-14
HISTOGRAM object
data type elements within 3-2
definiion A-47
use of pointers 5-12-5-14
See also - ITEMS
HISTORY object
defimizon A-49

I

1bg

as reserved file extension 10-4
IBM_COMPLEX

data type 3-3
IBM_INTEGER

data type 3-3
IBM_REAL

data type 3-3
IBM_UNSIGNED_INTEGER

data type 3-3
IEEE_COMPLEX

data type 3-3

internal representation C-9
IEEE_REAL

data type 3-3

intemnal representation C-6
IMAGE MAP PROJECTION object

definiion A-57
IMAGE object

data type elements within 3-2

defimition A-52

use of pointers 5-12-5-14
img

as reserved file extension 104
1mq

as reserved file extension 104

indentation within aggreganons 12-26

INDEX_TABLE object
defimtion A-62

INDXINFO TXT 10-4, 19-13
example D-7

inertial reference frames 2-1
B1950 system 2-1, 2-4
J2000 system 2-1

use n measunng nng longitudes 2-4

INSTRUMENT HOST object
definiion B-23
INSTRUMENT object
defimition B-17
INTEGER
data type 3-3
Interleaf

documentation file formatting, use in 9-4

International Standards Orgamzation (ISO)

date/time formats 7-1

use of standard in
archive media 11-1
directones 8-2
directory path names 8-4
file specificauons 10-1
ODL character set 12-4

INVENTORY object

defimition B-25

ITEMS 3-2, 12-1, 13-3

J

See also - BIT COLUMN object
See also - COLUMN object
See also - HISTOGRAM object

J2000 system 2-1

K

use 1n measunng ring longitudes 2-4

keywords See data elements

L

label format 5-2

See also - record formats

labels

attached 5-1-5-15

general structure 5-4-5-10
combined detached 5-1-5-15

general structure 5-6-5-10
detached 5-1-5-15

general structure 5-4-5-10
END statements 5-18
indentation within aggregations 12-26
line length hmitanons 12-26
mimmal 5-8-5-9

caveats regarding use 5-8, 5-14, 5-18

ODL/PVL usage 12-25
tabs 1n 12-26

LABINFO TXT 104, 19-9
LaTeX

1bl

documentation file forrnatting, use 1 9-4

as required file extension 10-4

line length lirmitauons 12-26

1n documentation 9-2

line termunators and delimuters

comment termunators 12-25

CR/LF as PDS standard 15-3

in ASCITI documentation 9-2

1n ODL 12-13

1n stream record formats 15-3

in TABLE objects A-88

in TEXT objects A-107.

statement terminators 12-25
vis-a-vis byte counts in objects A-15

literals. See stnngs and hiterals

Index

local ume

as date/time format 7-3
logical volumes See volumes, logical
longitude of sun (L sub §)

as date/time format 7-2
LSB_BIT_STRING

data type 3-3

mternal representation C-16
LSB_INTEGER

data type 3-3

internal representation C-4
LSB_UNSIGNED_INTEGER

data type 3-3

1nternal representation C-5

M
MAC_COMPLEX

data type 3-3
MAC_INTEGER

data type 3-3
MAC_REAL

data type 3-3
MAC_UNSIGNED_INTEGER

data type 3-3
map resolution, cartographic standard 2-4
media formats

as data volumes 19-|

for data submussion and archive 11-1

use of ISO standards I1-1
MISSION object

defimtion B-27
MSB_BIT_STRING

data type 3-3

mntemnal representation C-15
MSB_INTEGER

data type 3-4

internal representation C-1
MSB_UNSIGNED_INTEGER

data type 3-4

internal representation C-2

N

N/A
data type 3-4
defimtion 17-1

implementation recommendations 17-2

NAIF Toalkit

directory structure for the SUN E-1
NASA processing levels

vi1s-a-vis CODMAC levels 6-9

See also - data processing level numbers 6-9

NATIVE_TIME

date/ume formats, use in 7-2-7-3
non-decimal numbers 12-26
NROFF/TROFF

documentation file formatting, use 1n 9-4

NULL
definition 17-2

1mplementation recommendations 17-2

Object Descnpuon Language (ODL) 5-1, 6-3

aggregation markers 12-26
allowable character set 12-4, 12-25
alternate time zones 12-26
apostrophes

use with symbolic values 12-20
assignment symbols (=) 12-26
attribute assignment statements 12-14
Backus-Naur format (BNF), use of 12-3
case sensitvity 12-25
comment termunators 12-25
comments 12-14, 12-25
dates and umes 12-8

See also - date/time formats
differences between ODL versions 12-23
END statements 12-13, 12-26
GROUP statements 12-16
1dentifiers 12-11
indentation within aggregations 12-26
keyword length 12-25
language subsets 12-2
language supersets 12-2
line length kmitations 12-26
line termunators 12-13
lines and records 12-13
non-decimal numbers 12-26
numbers 12-6
numenc values 12-17
OBIJECT statements 12-15

See also - objects, data
pointer statements 12-15

See also - pointers
PVL-specific extensions, PDS implementation of 12-2
quotation marks 12-25

PDS recommendation on use 12-21
sequences 12-21, 12-26
sets 12-21
special characters 12-12
statement termunators 12-25
statements 12-13
strings 12-11
summary 12-22
symbolic literal values 12-20
tabs 12-26
text stnng values 12-19
umnts expressions 12-17
values 12-17

objects, catalog

DATA SET B-3

DATA SET COLLECTION B-11
DATA SET MAP PROJECTION B-14
INSTRUMENT B-17
INSTRUMENT HOST B-23
INVENTORY B-25

MISSION B-27

PERSONNEL B-33

REFERENCE B-35
SOFTWARE_INVENTORY B-36
TARGET B-38

objects, data

ALIAS A-3
ARRAY A4
use as primit:ve object 13-3
BIT COLUMN A-7
data type data elements, use of 3-2
BIT ELEMENT A-10
use as pnmuttve object 13-3
CATALOG A-11
COLLECTION A-14
use as pnimitive object 13-3
COLUMN A-15
data type data elements, use of 3-2
CONTAINER A-19
relationstup with TABLE object A-102
DATA PRODUCER A-25
DATA SUPPLIER A-26
defimition of term 5-12
defimtions 5-1, 5-17, 13-1
data type, location, length information data elements
n 3-2
genenc and specific 13-1-13-3
use of pointers 5-17
DIRECTORY A-27
use 1n tape volumes 8-4
distinction between pnmary and secondary 4-1
DOCUMENT A-29
document labels, use 1n 9-2
use for multiple document formats on a volume A-29
use of asc file extension 10-4
use of pointers 5-12-5-14
ELEMENT A-32
use as pnmuve object 13-3
FILE A-33
use with vanous record formats A-34
GAZETTEER_TABLE A-37
HEADER A-45
use of pointers 5-12-5-14
HISTOGRAM A-47
data type data elements, use of 3-2
use of pointers 5-12-5-14
HISTORY A-49
IMAGE A-52
data type data elements, use of 3-2
use of ponters 5-12-5-14
IMAGE MAP PROJECTION A-57
INDEX_TABLE A-62
multiple in one data product
construction of PRODUCT_ID 4-2
ODL specifications 12-15
PALETTE A-67
use of pointers 5-12-5-14
PDS standard objects 5-17
requinng pointers 5-12
QUBE A-70
use of pointers 5-12--5-14
SERIES A-78
relationship to TABLE object A-93
use of pointers 5-12-5-14
use of spare fields A-103-A-106

Index

objects, data (con't) .

SPECTRUM A-82
relationship to TABLE object A-93
use of pointers 5-12-5-14
use of spare fields A-103-A-106
SPICE KERNEL A-85
use of pointers 5-12
use of pointers 1n attached labels 5-12-5-13
TABLE A-87
muluple tables with varying row_bytes A-99
recommended ASCII table formats A-88
recommended binary table formats A-91
record blocking in fixed length tables A-94
relationship to SERIES and SPECTRUM objects A-
93
relationship with CONTAINER object A-102
use of pointers 5-12-5-14
use of quotation marks A-88
use of spare fields A-103~A-106
TEXT A-107
document labels. use 1n 9-1
use of wxt file extension 10-4
use of pointers in attached labels 5-12-5-13
VOLUME A-109
use 1n tape volumes 8-4
use of CATALOG object A-11

objects, pnmitive

ARRAY 13-3

BIT ELEMENT 13-3
COLLECTION 13-3

discussion of use 13-3
ELEMENT 13-3

operating system/environments

P

standards concerning various 3-3-3-4, 11-1-11-3, 15-1,
15.-2, 15-3, 19-11, 19-15
See also - VAX/VMS platform support

padding See spare fields
PALETTE object

definution A-67
use of pointers 5-12-5-14

Parameter Value Language (PVL) 12-2, 12-25
path name formation 8-4, 10-1

See also - directones
See also - file specification and naming

PC_COMPLEX

data type 3-4
internal representation C-12

PC_INTEGER

data type 3-4

PC_REAL

data type 3-4
nternal representation C-9

PC_UNSIGNED_INTEGER

data type 3-4

PDS catalog object template set B-1-B-39
PDS Data Policy 1-1
PDS standard objects A-1-A-115

Index

PDS_VERSION_ID
standard for this document set 5-11
use with SFDU 5-10
PERSONNEL object
defimtion B-33
Planetary Cartography Working Group (PCWQ@) 2-1
Planetary Science Data Dictionary (PSDD)
bibhiographic citation 1-2
onhine availability 1-3
planetocentric coordinate system 2-2-2-3
planetographic coordinate system 2-2-2-3
pointers 5-12-5-15, 14-1-14-3
ODL specifications 12-15
RDS objects that generally require 5-12
rules for resolving 14-3
types of pointers 14-1-14-3
use 1n '
data object defimtions 5-17
labels 5-4-5-15
use with
descriptive data elements 5-17
Postscript
documentation file formatting, use 1n 9-6
prefix or suffix data
in IMAGE objects A-52
in QUBE object A-70-A-75
in SPECTRUM object A-82
in TABLE object A-101-A-102, A-103-A-106
primary data object
definition 4-1
pnime mendians, cartographic standard 2-1
PRODUCT_ID
construction for products with muluple data objects 4-2
use as a umque data product identfier 4-1-4-3
PVL See Parameter Value Language

Q

qub
as reserved file extension 10-4
QUBE object ’
definition A-70
use of pointers 5-12-5-14
quotation marks
PDS recommendation on use 12-21
use 1n ASCII TABLE objects A-88
use in GAZETEER_TABLE object A-37
use in ODL 12-4, 12-11, 12-12, 12-25
See also - apostrophes
See also - character sets
quotation marks, single See apostrophes

R

"REAL

data type 3-4
record formats 5-11, 15-1-15-3
FILE object
use with A-34
fixed length 15-1
physical and logical structure 15-2
record blocking in tables A-94
setting record length = RECORD_BYTES 15-2
recommended 15-1
SFDU use 16-4, 16-6, 16-7
stream 15-3
utilities to convert between operating systems 15-3
undefined 15-3
use 1n detached label files 15-3
vanable length 15-2
PDS VAX/VMS convention 15-2
See also - label format
reference coordinates, cartographic standard 2-1
reference documents
cartographic standards 2-4
Data Preparation Workbook
bibliographic citation 1-2
online availabihty 1-3
Intemnational Standards Orgamzauon (ISQ) 1-2, 7-1, 8-2,
8-4,10-1,11-1, 12-4
Planetary Science Data Dictionary (PSDD)
bibhographic citabon 1-2
online availability 1-3
SFDU and PVL 1-2, 5-11
REFERENCE object
defimbion B-35
reference surface, cartographic standard 2-4
relative time
as date/tme format 7-3
required data elements
fmummum sets to identify data products 5-15-5-16
required file names on data volumes 10-2
required files on data volumes 19-8-19-14
rings, coordinate frame standard 2-4
RUNOFF
documentation file formatting, use in 9-4

S
samphing parameter data
mn SERIES object A-78-A-81
i SPECTRUM obyect A-82
secondary data object
defimition 4-1
sequences 12-26
SERIES object
defimtion A-78
relanonship to TABLE object A-93
use of pointers 5-12-5-14
use of spare fields A-103-A-106
SFDU See Standard Formatted Data Umt (SFDU)
SGML See Standard Generalized Markup Language
signed/unsigned data types
use of 34

SOFTINFO TXT 10-4, 19-10
annotated outline D-8
example D-8
TEXT object use A-107
use as documentation 9-1
software
to accompany data sets 6-3, 11-2
SOFTWARE_INVENTORY object
defimition B-36
spacecraft clock count (sclk)
- as date/time format 7-2
spacecraft science data products
minimum set of data elements needed to 1dentify 5-16
spare fields
use i1n TABLE, SPECTRUM and SERIES objects A-103~
A-106
SPECTRUM object
defimition A-82
relationship to TABLE object A-93
use of pointers 5-12-5-14
use of spare fields A-103-A-106
SPICE KERNEL object
definiion A-85
use of pointers 5-12
spin axes, cartographic standard 2-1
Standard Formatted Data Unut (SFDU)
PDS use of 16-1
record formats, use with various 16-4, 16-6, 16-7
reference documents 1-2, 5-11
use 1n PDS labels 5-10
use with END statements 5-18
Version 3 components 16-1
Z] orgamization 16-2
ZKI1 orgamzation 16-5
Standard Generalized Markup Language (SGML)
documentation file formatting. use 1n 9-3
standards, complhance
PDS Data Policy 1-1
statement terrmunators. See line terminators and delimiters
stream records See record formats
strings and literals
case sensiuvity 12-25
suffix data See prefix or suffix data
SUN_COMPLEX
data type 34
SUN_INTEGER
data type 34
SUN_REAL
data type 3-4
SUN_UNSIGNED_INTEGER
data type 3-4
Systeme Internanonale d'Unites (SI) 18-1

Index

T
tab
as reserved file extension 104
TABLE object
defirution A-87
multple tables with varying row_bytes A-99
recommended ASCII table formats A-88
recommended binary table formats A-91
record blocking 1n fixed length tables A-94
relationship to SERIES and SPECTRUM objects A-93
relationship with CONTAINER object A-102
use of pointers 3-12-5-14
use of quotation marks A-88
use of spare fields A-103-A-106
tabs
use 1n PDS labels 12-26 '
use 1n TEXT objects A-107
tape volumes See volumes, data
TARGET object
defimuon B-38
targets
use in NAMEs and IDs 6-6
tc
as reserved file extension 10-5
terminators See line termunators and delimters
TeX)
documentation file formatting, use 1n 9-3
TEXT object
definiion A-107
1n document labels 9-1
use of .txt for file containing 104
1)
as reserved file extension 10-5
TIFF
documentation file formatting, use 1n 9-5
TIME
data type 34
time formats. See date/ume formats
timetags, cartographic standard 2-1
tls
as reserved file extension 10-5
tpc
as reserved file extension 10-5
tsc
as reserved file extension 10-5
tsp
as reserved file extension 10-5
txt
as required file extension 10-4

U

undefined records See record formats

units expressions 12-17, 12-26

umits of measurement 18-1-18-3

Umniversal Time Coordinated (UTC)
date/time formats, use 1n 7-2-7-3

UNK
defimtion 17-1
implementation recommendations 17-2

Index

UNSIGNED_INTEGER
data type 3-4

\%
vanable length records See record formats
VAX/VMS platform support 3-4, 11-1, 15-1, 15-2, 15-3, 19-12,
19-15 i
See also - operating system/environments
standards concerrung various
VAX_BIT_STRING
data type 3-4
VAX_COMPLEX
data type 3-4
internal representation C-15
VAX_DOUBLE
data type 3-4
VAX_INTEGER
data type 3-4
VAX_REAL
internal representation C-12
VAX_UNSIGNED_INTEGER
data type 3-4
VAXG_COMPLEX .
data type 3-4
internal representation C-15
VAXG_REAL
data type 3-4
internal representation C-12
version numbers
use 1n NAMEs and IDs 6-12
VICAR
use of HEADER object A-45
VOLDESC CAT 10-2, 19-8
VOLDESC SFD 10-4, 19-8
VOLINFO TXT 10-3, 19-8
TEXT object use A-107
use as documentation 9-1
vs CATALOG CAT files 10-2, 10-3, 19-9
VOLUME object
definition A-109
use 1n tape volumes 8-4
use of CATALOG object within A-11
use of CATALOG CAT file A-11
volumes, data
required and optional files 19-8-19-14
required file names 10-2
standard directory names 8-1
tape volume directory structures 8-4
volume ID formation 19-15
volume namung 19-14
volume organizations 19-1-19-14
volume set ID formation 19-16
volume set naming 19-15
volume set organizations 19-1-19-14
volume types 19-1
volumes, logical 14-3, 19-1, 19-8, 19-9, 16-13, 19-14

W
WordPerfect 50
documentation file formatting, use in 9-5

X
XARs (Extended Attribute Records) 11-1

SOFTINFO TXT 10-4, 19-10
annotated outline D-8
example D-8
TEXT object use A-107
vse as documentation 9-1
software
to accompany data sets 6-3, 11-2
SOFTWARE_INVENTORY object
definiion B-36
spacecraft clock count (sclk)
as date/time format 7-2
spacecraft science data products
mimmum set of data elements needed to 1dentify 5-16
spare fields
use 1n TABLE, SPECTRUM and SERIES objects A-103-
A-106
SPECTRUM object
definition A-82
relationship to TABLE object A-93
use of pointers 5-12-5-14
use of spare fields A-103-A-106
SPICE KERNEL object
defimbon A-85
use of pointers 5-12
spin axes, cartographic standard 2-1
Standard Formatted Data Unt (SFDU)
PDS use of 16-1
record formats, use with various 16-4, 16-6, 16-7
reference documents 1-2, 5-11
use 1n PDS labels 5-10
use with END statements 5-18
Version 3 components 16-1
ZI organization 16-2
ZKI orgamization 16-5
Standard Generahzed Markup Language (SGML)
documentation file formatting, use 1n -3
standards, comphance
PDS Data Pohicy 1-1
statement termunators See line terminators and delimiters
stream records See record formats
strngs and literals
case sensitivity 12-25
suffix data. See prefix or suffix data
SUN_COMPLEX
data type 34
SUN_INTEGER
data type 3-4
SUN_REAL
data type 3-4
SUN_UNSIGNED_INTEGER
data type 3-4
Systeme Internauonale d'Unites (SI) 18-1

Index

T

tab
as reserved file extension 10-4
TABLE object
defimtion A-87
muluaple tables with varying row_bytes A-99
recommended ASCII table formats A-88
recommended binary table formats A-91
record blocking 1n fixed length tables A-94
relauonship to SERIES and SPECTRUM objects A-93
relatonship with CONTAINER object A-102
use of pointers 5-12-5-14
use of quotation marks A-88
use of spare fields A-103-A-106
tabs
use 1n PDS labels 12-26 '
use 1n TEXT objects A-107
tape volumes See volumes, data
TARGET object
defimtion B-38
targets
use in NAMEs and IDs 6-6
tc
as reserved file extenston 10-5
termnators See line terminators and delimiters
TeX
documentation file formatting, use 1n 9-3
TEXT object
defimition A-107
1n document labels 9-1
use of txt for file contaiming 10-4
u
as reserved file extension 10-5
TIFF
documentation file formatting, use 1n -5
TIME
data type 34
tume formats See date/ume formats
timetags, cartographic standard 2-1
tls
as reserved file extension 10-5
tpec
as reserved file extension 10-5
tsc
as reserved file extension 10-5
tsp
as reserved file extension 10-5
txt
as required file extension 10-4

U

undefined records See record formats

umts expressions 12-17, 12-26

umts of measurement 18-1-18-3

Universal Time Coordinated (UTC)
date/tyrme formats, use in 7-2-7-3

UNK
defimtion 17-1
implementation recommendations 17-2

Index

UNSIGNED_INTEGER
data type 3-4

\%

variable length records See record formats

VAX/VMS platform support 3-4, 11-1,15-1, 15-2, 15-3,19-12,

19-15
See also0 - operating system/environments
standards concerning vanous
VAX_BIT_STRING
data type 3-4
VAX_COMPLEX
data type 3-4
internal representation C-15
VAX_DOUBLE
data type 3-4
VAX_INTEGER
data type 3-4
VAX_REAL
mnternal representat:on C-12
VAX_UNSIGNED_INTEGER
data type 3-4
VAXG_COMPLEX
data type 3-4
intemnal representation C-15
VAXG_REAL
data type 3-4
internal representation C-12
version numbers i
use 1n NAMEs and IDs 6-12
VICAR
use of HEADER object A-45
VOLDESC CAT 10-2, 19-8
VOLDESC SFD 10-4, 19-8
VOLINFQ TXT 10-3, 19-8
TEXT object use A-107
use as documentation 9-1
vs CATALOG CAT files 10-2, 10-3, 19-9
VOLUME object
defimtion A-109
use 1n tape volumes 8-4
use of CATALOG object withun A-11
use of CATALOG CAT file A-11
volumes, data
required and optional files 19-8-19-14
required file names 10-2
standard directory names §-1
tape volume directory structures 8-4
volume ID formation 19-15
volume narming 19-14
volume orgamzations 19-1-19-14
volume set ID formation 19-16
volume set namung 19-15
volume set organizations 19-1-19-14
volume types 19-1
volumes, logical 14-3, 19-1, 19-8, 19-9, 19-13, 19-14

W
WordPerfect 5 0
documentation file formatting, use in 9-5

X
XARs (Extended Attribute Records) 11-1

