
JPL D-7669, Part 2

Planetary Data System
Standards Reference

July 24, 1995
Version 3.2

PDS
•

Planetary Data System
Nllllanal Aen:lnaullcs and 8pii:JII Admlnlsllatlcln

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

TABLE OF CONTENTS

PDS Standards Reference Change Log. . : . ii

1. Introduction . 1-1

2. Cartographic Standards .. 2-1

3. Data Type Definitions . 3-1

4. Data Products .. 4-1

5. Data Products Labels . 5-1

6. Data Set/Data Set Collection Contents and Naming 6-1

7. Dateii"'lDle Format . 7-1

8. Directory 1'ypes and Naming ... 8-1

9. Documentation Standard . 9-1

10. File Specification and Naming .. 10-1

11. Media Formats for Data Submission and Archive. 11-1

12. Object Description Language (ODL) Specification and Usage 12-1

13. PDSObjects .. 13-1

14. Pointer Usage ... 14-1

15. Record Formats . 15-1

16. SFDU Usage .. : . . 16-1

17. UsageofN/A, UNK.andNULL .. 17-1

18. Units of Measurement .. 18-1

19. Volume Organization and Naming .. 19-1 ·

Appendix A. Data Object Definitions A-1
Appendix B. Complete PDS Catalog Object Template Set B-1
Appendix C. Internal Representation of Data Types C-1
Appendix D. Examples of Required Files D-1
Appendix E. NAIF Toolkit Directory Structure E-1
Appendix F. Acronyms and Abbreviations F-1
Index . I-1

1

Change Log

Version

3.1

.. I
Ill

PDS Standards Reference Change Log
Section

1.1

2.3

2.4

3.0

3.2

S.2.3

6.3

6.4

lO.O,ALL

10.2.1

12.5.4.2

13.2

14

17

19

Appendix. A

Appendix. A

Appendix.B

Appendix.C

Appendix.D

AppendixE

Change

PDS Data Policy added

Reference coordinate standard expanded to support body­
fixed rotating, body-fixed non-rotating, and inertial
coordinate systems.

Ring coordinate standard added.

List of internal representations of data types moved to
Appendix.C

EBCDIC_ CHARACTER added to PDS Standard data types

Minimal label option described

Data set collection naming - data processing level component
made optional

Data set naming - added support for SPICE and Engineering, i
where no instrument component applies 1

PDS use of UNIXJPOSIX forward slash separator for path
names. VMS-style bracket notation replaced.

Required file names for catalog objects included

PDS use of double quotes clarified

Use of Primitive objects described

New chapter- Pointer Usage

New chapter- PDS Usage of N/ A, UNK., and NULL

Logical Volume organization added

Primitive Objects added

Header object - required and optional keyword lists changed
Container object - Column no longer a requried sub-object

Streamlined Catalog Object Templ~s with examples replace
3.0set

New appendix containing internal representations of data
types (moved from Chapter 3)

Outline and example for AAREADME.TXT added

Version 3.0 Acronyms and Abbreviations modified and
moved to this Appendix. Spelling and Word Usage section

ill

Index

ALL

Version Section

3.2 5.1.2

5.2.3, Appendix A

6

8 and 19

8.2

9.1

9.2.1

10.1

10.2

10.2.3 and 5.1

11.1.1

' '~ ' , •I - - ; ; ·~ '.

Change Log

deleted.

The document now features an index.

No other substantive changes have been made to the
standards since the release of Version 3.0. Throughout the
document, clarifications have been made, typos corrected,
some sections have been rearranged, and new examples have
been supplied.

Change

Label format discussion added
Noted that values in labels should be upper case (except
descriptions). FIXed examples in Appendix A

Noted that for data products using minimal labels,
DATA_OBJECT_TYPE = Fn..E in the Data Set Catalog
Template

Added target IDs for DUST and SKY
Added instrument component values SEDR and POS
Noted that Data Set and Data Set Collection IDs and Names
should be upper case. FIXed examples.

Listed CALIB and GEOMETRY as recommended directory
names (as opposed to required).

SOFIW ARE Subdirectory naming recommendation added

Volumes may contain multiple versions of VOLINFO

Increased maximum line length in text file to 78 characters
plus CRJLF

Clarified file name spcification. Noted that file name must be
upper case and that full stop character required

Added recommendation that file extension identify the data
type of a file.
Added .QUB as reserved file extension for spectral image
qubes.
Added SPICE file extensions to reserved file extension list.
catalog pointer name and file name: SWINV.CAT
Added LABINFO.TXT to list of required xxxlNFO.TXT files.
Added recommended xxx INFO.TXT file names for
SOFTWARE subdirectories.

added note that detached label file (* .LBL) should have the
same base name as the associated data file

Added PDS Extended Attribute Record (XAR) policy

Change Log

11.1.2

11.1.3

14.1.2

15

15.1

15.3

15.5

17.2

18

19

19

19.2

19.3

19.3

19.4, Appendix A

19.5.1

Appendix A

Appendix A

Appendix A

Appendix A

Appendix A

Added recommendation that CDs be premastered using single~
session, single-track format.

Added section on Packaging Software tiles on a CD-ROM

Added new example of structure pointer

Added recommendation that for V AX/VMS-compatible CDs,
fixed length and variable length files be an even number of
bytes. Removed reference to VMS restriction to an even
number of bytes in section 15.2

Removed discussion of use of BLOCK_BYTES and
BLOCKING_TYPE (since this data element not in PSDD)

Added notation that CRILF is required line terminator for
PDS label and catalog files

Reworded first sentence.

Allow definition of numeric constants representing N/A,
UNK., and NULL to be defined for use in an INDEX table.

replaced reference to PDS Vl.O with a general statement

Added SOFTWARE subdirectory recommendations

Recommend that an archive volume be based on a single 1

version of the PDS standards. Volume organization guidelines'
~. I

Clarified requirements for files & directories when logical
volumes used

INDEX table standard update

use of axx- and bxx- prefixes in required file names
clarified

fixed examples-Volume and Volume set names capitalized

Volume set ID formation rule modified.

updated COLUMN, Bff_COLUMN, and HISTOGRAM
objects required and optional keyword lists to be consistent
with Table 3.1

Added ALIAS and INDEX_ TABLE objects

Added examples of COLUMN objects having ITEMs

Clarified use of ROW _SUFFIX_BYTES and
ROW YREFIX.J3YTES for SPARE fields in Tables with
fixed length records

Clarified the requirements for VOLUME objects for Logical

-~~---····· -----------------

v

Appendix A

AppendixB

AppendixB

AppendixD

Appendix D.l

Appendix E and F

ALL

Change Log

Change Log ...

volumes

Fixed examples using HEADER object to conform to current
standard. Modified description of Header object to eliminate
confusion •.

Inventory, Software_Inventory and Target templates added

Removed incorrect example of use of Personnel template

INDXlNFO.TXT and SOFITNFO.TXT outlines and
examples added

Modified eXample of AAREADME.TXT to include rutes on
how pointer statements are resolved.

Added Appendix E- NAIF Toolkit Directory Structure.
Acronyms and Abbreviations moved to Appendix F.

corrected typos, clarified text, added rationale for some
standards, updated examples to conform to latest standards

Version 3.1 change log updated-some items were missing

Chapter 1. Introduction 1-1

Chapter 1

Introduction

In order for planetary science data to be used by those not involved with its creation, certain sup­
porting information must be available with the data. Such information enables effective data access
and interpretation. Therefore, standards regarding the quality and completeness of data must be en­
forced. Also, the interchange of data is increasingly important in planetary science. Electronic
communication mechanisms have grown in sophistication, and the use of new media (such as CD­
R OMs) for data storage and transfer requires format standards to ensure readability and usability.
The Planetary Data System (PDS) has therefore developed a nomenclature that is consistent across
discipline boundaries, as well as standards for labeling data files.

1.1 PDS Data Policy

Only data that complies with PDS standards will be published in volumes which are labelled "Con­
forms to PDS Standards". Non-compliant data published in recognized formats should be authored
by the publishing institution with PDS participation acknowledged only as "funded by PDS". The
PDS Management Council will make decisions on compliance waivers. Non-compliant data sets
will be permitted only under unusual circumstances.

1.2 Purpose

This document is intended as a reference manual to be used in conjunction with the PDS Data
Preparation Workbook and the Planetary Science Data Dictionary. The PDS Data Preparation
Workbook describes the end-to-end process for submitting data to the PDS and gives instructions
for preparing data sets. In addition, a glossary of terms used throughout this document is contained
as an appendix to the workbook. The Planetary Science Data Dictionary contains definitions of
the standard data element names and objects. This reference document defines all PDS standards
for data preparation.

1.3 Scope

The information included here constitutes Version 3.2 of the Planetary Data System data prepara­
tion standards for producing archive quality data sets.

1.4 Audience

This document is intended primarily to serve the community of scientists and engineers responsible
for preparing planetary science data sets for submission to the PDS. These include restored data
from the era prior to PDS, mission data from active and future planetary missions, and data from
earth-based sites. The audience includes personnel at PDS Discipline and Data Nodes, mission
Principal Investigators, and Ground Data System engineers.

1-2 Chapter 1. Introductibn

1.5 Document Organization

The first chapter of this document, Chapter 1 - Introduction, provides introductory material and
1

lists of other reference documents. The remaining chapters provide a dictionary of data preparatio~
standards, organized alphabetically by standard name. J

1.6 Other Reference Documents

The following reference sources are mentioned in this document: i

• Batson, R. M., (1987) "Digital Cartography of the Planets: its Status and Future"; PhotJ-
grammetric Engineering 6 Remote Sensing 53, 1211-1218. I

• Davies, M.E., et al (1991) "Report of the IAUIIAG/COSPAR Working Group on cartd­
graphic Coordinates and Rotational Elements of the Planets and Satellites: 199"1 Celestidl
Mechanics, 53,377-397. l

• Greeley, R. and Batson, R.M. (1990) Planetary Mapping, Cambridge University Pres~,
Cambridge, 296p.

• Guide on Data Entity Naming Conventions; NBS Special Publication 500-149.

• Planetary Science Data Dictionary; JPL D-7116. (Available from PDS)

• Planetary Data System Data Preparation Workbook; JPL D-7669; (Available from PDS)

• Issues and Recommendations Associated with Distributed Computation and Data Manage,­
ment Systems for the Space Sciences; COD MAC.

International Standards Organization (ISO) References
I

• ISO 9660 "Information Processing- Volume and File Structure of CD-ROM for Informatio~
Exchange" J

• ISO 646 ASCIT character set

• ISO 8601 "Data Element and Interchange Formats -Representations of Dates and Tunes"

SFDU and PVL References .

• Standard Formatted Data Units- Structure and Construction Rules; CCSD 620.0-R-1.1J.
May 1992.

• Standard Formatted Data Units -A Tutorial; CCSD 620.0-G-1, May 1992.

• Parameter Value Language Spe_cification (ccsd0006); CCSD 641.0-R-0.2; June 19~1. ·

• Parameter Value Language --A Tutorial; CCSD 641.0-6-1.0; May 1992.

Chapter 1. Introduction 1-3

1. 7 Online Document Availability

The Planetary Science Data Dictionary, Planetary Data System Data Preparation Workbook, and
this document, the Planetary Data System Standards Reference are available online. Please con­
tact the PDS Operator, or a PDS data engineer, for instructions on methods of access.

Chapter 2. Cartographic Standards 2-1

Chapier2

Cartographic Standards

The following cartographic data standards were developed through an iterative process involving
both the NASA Planetary Cartography Working Group (PCWG) and the PDS. Members of the
PCWG are also on the key IAU committees which set these same standards for international
adoption; therefore, the PDS-adopted cartographic standards are consistent with the IAU
standards. The PDS, rather than making unilateral decisions on cartographic data standards, looks
to the PCWG as the controlling body for these standards within NASA and the PDS. It is
recognized that the IAU continually reviews its standards and may, at some time, make a change
affecting the cartographic standards. If this happens, the PDS will work with the PCWG and decide
its course of action at that time.

Cartographic standards used in a data set should be identified, and where helpful, documented on
an archive volume.

2.1 Inertial Reference Frametrimetag/Units

The Earth Mean Equator and Equinox of Julian Date 2451545.0 (referred to as the "12000" system)
is the standard inertial reference frame. The Earth Mean Equator and Equinox ofBesselian 1950
(JD 2433282.5) is also to be supported because of the wealth of previous mission data referenced
to this system. The transformations between the two systems are to be available. Time tagging of
data using UTC in Year, Month, Day, Hour, Minute and decimal Seconds is the standard, with
Julian Date being supported. SI metric units, including decimal degrees, are the standard.

2.2 Spin Axes and Prime Meridians

The IAU-defmed spin axes and prime meridians defined relative to the J2000 Inertial Reference
System are the standard for planets, satellites and asteroids where these parameters are defined. For
other planetary bodies, definitions of spin axes and prime meridians detennined in the future
should have the body-fixed axes aligned with the principal moments of inertia, with the North Pole
defined as along the spin axis and above the Invariable Plane. Where insufficient observations exist
for a body to detennine the principal moments of inertia, coordinates of a surface feature will be
specified and used to define the prime meridian. It is expected that some small, irregular bodies
may have chaotic rotations and will need to be handled on a case-by-case basis.

2.3 Reference Coordinates

There are three basic types of coordinate systems, body-fixed rotating, body-fixed non-rotating and
inertial. A body-fixed coordinate system is one associated with the body (e.g. planetary body or
satellite). In contrast to inertial coordinate systems, the body-fixed system is centered on the body

I
I

2-2 Chapter 2. Cartographic Stabdards
I

I

I

and rotates with the body (unless it is a non-rotating type), whereas the inertial coordinate systeni
is fixed at some point in space.

To support the descriptions of these reference coordinate systems, the PDS has defmed the
following set of data elements (See Planetary Science Data Dictionary for complete definitions.):

I

COORDINATE_SYSTEM_TYPE
COORDINATE_SYSTEM_NAME
LATITUDE
LONGITUDE
EASTE~OST_LONGrnJDE

WES~OST_LONGITUDE

MINIMUM_LATITUDE
MAXIMUM_LATITUDE
POSITIVE_LONGITUDE_DIRECTION

Currently, PDS has specifically defined two types of body-fixed rotating coordinate systems,
Planetocentric and Planetographic. However, the set of related data elements are modelled such
that definitions for other body-fixed rotating coordinate systems, body-fixed non-rotating and
inertial coordinate systems can be added when the need arises. If this is the case, contact a PDS
data engineer for assistance.

The definition of Planetographic longitude is dependent upon the rotation direction of the body,

I

I

I
with longitude being measured as increasing in the direction opposite to the rotation. That is to say;
that the longitude increases to the west if the rotation is prograde (or eastward) and vice versa.

1

1

Table 2.1lists the rotation direction (prograde or retrograde) of the primary planetary bodies and
the Earth's moon. It also indicates the valid longitude range for each body. In order to I

accommodate different traditions in measuring longitude, in the Planetary Science Data 1

Dictionary, PDS defmes a broad longitude range: (-180, 360). Table 2.1. indicates which part of I
that range is applicable to which body.

'
Chapter 2. Cartographic Standards 2-3

Table 2.1: Primary Bodies and Earth's Moon - Rotation Direction and Longitude Range

Planet Rotation Direction Longitude Range
Earth Prograde (0, 360)

(-180, 180)*
Mars Prograde (0, 360)
Mercury Prograde (0, 360)
Moon Prograde (0, 360)

(-180, 180)*
Jupiter Prograde (0, 360)
Neptune Prograde (0, 360)
Pluto Retrograde (0, 360)
Saturn Prograde (0, 360)
Sun Prograde (0, 360)

(-180, 180)*
Uranus Retrograde (0, 360)
Venus Retrograde (0, 360)

* The rotations of the Earth, Moon and Sun are prograde, however it has been tradition to measure
longitudes for these bodies as increasing to the east instead of the west PDS recommends that the
Planetographic longitude standard be followed, but it also will support the tradition. Therefore, the
longitude range of (-180, 180) is supported for the Earth, Moon and Sun.

2.3.1 Body-Fixed Rotating Coordinate Systems

2.3.1.1 Planetocentric

The Planetocentric system has an origin at the center of mass of the body. Planetocentric latitude
is the angle between the equatorial plane and a vector connecting the point of interest and the origin
of the coordinate system. Latitudes are defined to be positive in the northern hemisphere of the
body, where north is in the direction ofEarth's angular momentum vector, i.e., pointing toward the
hemisphere north of the solar system invariant plane. Longitudes increase toward the eas~ making
the Planetocentric system right-handed.

2.3.1.2 Planetographic

The Plane to graphic system has an origin at the center of mass of the body. The planetographic
latitude is the angle between the equatorial plane and a vector through the point of interest, where
the vector is normal to a biaxial ellipsoid reference surface. Planetographic longitude is defined to
increase with time to an observer flxed in space above the object of interest. Thus, for prograde
rotators (rotating counter clockwise as seen from a fiXed observer located in the hemisphere to the
north of the solar system invariant plane), planetographic longitude increases toward the west For
a retrograde rotator, planetographic longitude increases toward the east.

2-4 ~ter 2. Cartographic Starldards
I

2.4 Rings

Locations in planetary ring systems are specified in polar coordinates by a radius distance
(measured from the center of the planet) and a longitude. Longitudes increase in the direction of
orbital motion, so the ring pole points in the direction of right-handed rotation. Note that this
corresponds to the !AU-defined north pole for Jupiter, Saturn and Neptune but the south pole for

I
I
!

~s. I

Longitudes are given relative to the ascending node of the ring plane on the Earth's mean equator:
of 12000. However, the Earth's mean equator ofB1950 is also supported as a reference longitudell
because of the wealth of data already reduced using this coordinate frame. The difference is

I

generally a small, constant offset to the longitude. All longitude values fall between 0 and 360 [
de~ I

i
I

Note that ring coordinates are always given in an inertial frame. It is impossible to define a suitable'
rotating coordinate frame for a ring system because features rotate at different rates. When it is I
necessary to specify the location of a moving body or feature, one must give the rotation rate and!
the epoch in addition to the longitude. ,

The Planetary Science Data Dictionary (PSDD) contains a set of data elements designed to
describe ring-related longitudes. Please see the PSDD for' these elements and their complete
definitions.

2.5 Reference Surface

The Digital Terrain Model (DTM), giving body radius as a function of Cartographic latitude and
longitude in a sinusoidal equal-area projection, is the standard. Mars is to be an exception where
Planetographic latitude is to be used. Spheroids, ellipsoids and harmonic expansions giving
analytic expressions for radius as a function of Cartographic coordinates are to be supported.

The Digital Image Model (DIM) giving body "brightness" in a specified spectral band or bands as I
a function of Cartographic latitude and longitude in a sinusoidal equal-area projection, and 1

associated with the surface radius values in the DTM, is the standard. Mars is to be an exception
where Planetographic latitude is to be used. DIMs registered to spheroids, ellipsoids and harmonic 1

expansions are to be supported.

2.6 Map Resolution

The suggested spatial resolution of a map is 1/2° degrees. The s:uggested vertical resolution is 1
x 1om meters, with m and n chosen to preserve all the resolution inherent in the data.

2. 7 References

The following references give more detail on the cartographic data standards:

Chapter 2. Cartographic Standards 2-5

Davis, M. E., et al (1991) "Report of the IAUIIAG/COSPAR Working Group on Cartographic
Coordinates and Rotational Elements o:fthe Planets and Satellites: 1991" Celestial Mechanics, 53,
377-397.

Batson, R.M., (1987) "Digital Cartography of the Planets: New Methods, its Status and Future".
Photogrammetric Engineering & Remote Sensing 53, 1211-1218.2.

Greeley, R. and Batson, R.M. (1990) Planetary Mapping Cambridge University Press, Cambridge,
296p.

2-6
I

Chapter 2. Cartographic s~

I

I

Chapter 3. Data Type Definitions 3-1

Chapter 3

Data Type Definitions

Each PDS-archived product is described using label objects that provi4e information apout the data
types of stored values. The data elements DATA_ TYPE, BIT_DATA_TYPE, and
SAMPLE_ TYPE appear together with related data elements that provide starting location and
applicable length information for specific data fields. Within all PDS data object definitions, the
byte, bit, and record positions are counted from left to right, or first to last encountered. beginning
with 1. ·

Data values may be represented within data files as ASCTI or BINARY format. The ASCll storage
format is simpler to transfer between different hardware systems and often between different
application programs on the ~ame computer. However, strictly numeric data often are stored in
binary numeric types, since the ASCll representation of most numeric values requires more storage
space than does the binary format. For example, each 8-bit pixel value in an image :file would
require 3 bytes if stored in ASCll format. ·

3.1 Data Elements

Table 3.1 identifies the data elements that provide data type, location, and length information
according to the objects in which they appear.

3.2 Data Types

Table 3.2 identifies the valid values that may appear for the DATA_ TYPE, BIT..-DATA.,..TYPE,
and SAMPLE_ TYPE data elements (or their aliases) in PDS data object defmitions. Many of the
values in this table have been aliased to other values. Providing aliases allows the PDS to support
and maintain backward compatibility. However, the preferred method is to use the value rather
than its alias.

·Unless noted as ASCll, all values in the table are'binary.

I
I

3-2 Chapter 3. Data Type Definitiohs
I

I

Table 3.1: Data-Type-Related Elements Used in Data Label Objects 1

Data Object

COLUMN

(without ITEMS)

COLUMN

(with ITEMS)

BIT_COLUMN

(without ITEMS)

BIT_COLUMN

(with ITEMS)

IMAGE

IDSTOGRAM

Dat8 Elements

DATA_ TYPE

START _BYTE

BYTES

DATA_ TYPE

START_BYTE

BYTES (opt)

ITEMS

ITEM_BYTES

BIT_DATA_TYPE

START_BIT

BITS

BIT_DATA_TYPE

START_BIT

BITS (opt)

ITEMS

ITEM_BITS

SAMPLE_ TYPE

SAMPLE_BITS

DATA_ TYPE

BYTES (opt)

ITEMS

ITEM_BYTES

Notes

ITEM_ TYPE is an alias

total bytes in COLUMN

size for each ITEM

Total bits in BIT_COLUMN

size for each ITEM

ITEM_ TYPE is alias

total bytes in lflS10GRAM

size for each ITEM (bin)

Chapter 3. Data Type Definitions 3-3

Table 3.2: PDS Standard Data Types

Data Element Usage Codes:

D = DATA._TYPE
B = BIT_DATA._TYPE
S = SAJdPLE_TYPE

Data Element

Usage

D

D

D

D

D,B

D

D

D

D

D

D

D

D

D,S

D

D

D,S

D,S

D

Value

ASCII_REAL

ASCII_ INTEGER

ASCII_ COMPLEX

BIT_STRING

BOOLEAN

CHARACTER

COMPLEX

DATE

EBCDIC_ CHARACTER

FLOAT

IBM_ COMPLEX

IBM_ INTEGER

IBM _REAL

IBM_UNSIGNED_INTEGER

IEEE._ COMPLEX

IEEE_REAL

INTEGER

INTEGER

LSB_BIT_STRING

LSB_INTEGER

LSB_UNSIGNED_INTEGER

MAC_COMPLEX

MAC _INTEGER

MAC _REAL

MAC_ UNSIGNED _INTEGER

MSB_BIT_STRING

Description

ASCII character string representation of real J1lliDber

ASCII c::baracter string representation of integer

ASCII character string representation of complex

alias for MSB_BIT_STRING

True/False indicator; l, 2, or 4 byte unsigned number or

1-32 bit number; all O's False;anytbing else True

any ASCII eharacter stnng

alias for IEEE_ COMPLEX

ASCII eharacter string representation of PDS date

any EBCDIC character string

alias for IEEE_R.EAL

IBM 360/370 mainframe complex number (8.16 byte)

IBM 360/370 mamframe 1, 2. and 4 byte J1lliDbers

IBM 3601370 mainframe real number (4 and 8 byte)

IBM 3601370 mamframe 1, 2. and 4 byte numbers

includes 8, 16, and 20 byte complex numbers

includes 4, 8 and 10 byte real J1lliDbers

Smgle byte integers only

alias for MSB_INTEGER (2+ bytes)

includes 1, 2. and 4 byte columns containing bit

columns

includes 1, 2, and 4 byte numbers

includes 1, 2, and 4 byte numbers

alias for IEEE_ COMPLEX

alias for MSB_INTEGER

alias for IEEE_REAL

alias for MSB_UNSIGNED_INTEGER

includes 1, 2. and 4 byte columns containing bit

3-4

D,B

D,B,S

D,B

D

D

D

D,B,S

D

D,S

D

D

MSB_INTEGER

MSB_UNSIGNED_INTEGER

N/A

PC_COMPLEX

PC_INTEGER

PC_REAL

PC_UNSIGNED_INTEGER

REAL

SUN_COM.PLEX

SUN _INTEGER

SUN _REAL

SUN_UNSIGNED_INTEGER

11ME

UNSIGNED _INTEGER

UNSIGNED _INTEGER

VAX_BIT_STRING

VAX_ COMPLEX

VAX_DOUBLE

VAX_INTEGER

VAX_REAL

VAX_ UNSIGNED _INTEGER

VAXG_COM.PLEX

VA.XG_REAL

3.3 Binary Integers

' I
I
I

Chapter 3. Data Type DefinitioA.s
I
I

columns

includes 1, 2, and 4 byte numbers I
includes 1, 2. and 4 byte numbers, and 1-32 bit numbers

Used for spare (or unused) fields, if identified

includes 8, 16,20 byte complex numbers

alias for LSB_INTEGER

includes 4, 8, and 10 byte real numbers

alias for LSB_UNSIGNED_INTEGER

alias for IEEE_REAL

alias for IEEE_ COMPLEX

alias for MSB_INTEGER

alias for IEEE_REAL

alias for MSB_UNSIGNED_INTEGER

I

I
I

I

ASCII character string representation of PDS date/ti~

alias for MSB_UNSIGNED_INTEGER (2+bytes)

single byte numbers, or 1-32 bit numbers

alias for LSB_BIT_STRING

includes D, F, and H type complex numbers

alias for VAX_REAL

alias for LSB_INTEGER I

includes D (8 byte), F (4 byte), and H (16 byte) type real
numbers

alias for LSB_UNSIGNEDJNTEGER

G type complex numbers only

G type (8 byte) real numbers only

There are two widely used formats for integer representations in 16-bit and 32-bit binary fields.
These are the most-significant-byte first (MSB) and least-significant-byte first (LSB) architectures,
The MSB architectures are used on IBM mainframes. many UNIX minicomputers (SUN. Apollo)1

and Macintosh computers. The LSB architectures are used on VAX systems and IBM PCs. The [
default interpretation for PDS labeled data is the MSB architecture. and non-specific data types 1

(e.g. UNSIGNED_INTEGER) are aliased to MSB types. Therefore. files written on VAX or IBM
PC hosts must specify LSB data types for binary integer fields, or use the appropriate aliases. I

3.4 Signed versus Unsigned I

The PDS default binary integer is a signed value in 2's complement notation. Therefore. a data~
specified as INTEGER is interpreted as a signed integer. Unsigned binary integers must be I
identified using a valid UNSIGNED_INTEGER data type from Table 3.2 1

Chapter 3. Data Type Definitions 3-5

3.5 Floating Point Forma~':

The PDS default representation for floating point numbers is in ANSI/IEEE standard. This
representation is defined as the PDS IEEE_REAL data type, and aliases are identified in Table 3.2.
Several specific floating point representations are supported by PDS, and are further described in
Appendix C.

3.6 Bit String Data

A BIT_STRING data type is used for COLUMNs to hold individual bit field values. Each bit field
is defined in a BIT _COLUMN object. A BIT_STRING data type can be a I, 2, or 4 byte field,
much like a binary integer. Extraction of specific bit fields within a 2 or 4 byte BIT_STRING is
dependent on the host architecture (MSB or LSB), and follows the binary integer specifications
identified in Section 3.3 above. In interpreting bit fields (BIT_COLUMNS) within a
BIT_STRING, any necessary conversions (byte swapping from LSB to MSB) are done fli'St, and

. then bit field (START_BIT, BITS) values are used to extract the appropriate bits. This will assure
that bit fields are not fragmented due to differences in hardware architectures.

3. 7 Fo~t Specifications

The data format specification is used to determine the format for display of a data value.
The following FORTRAN data format specifications will be used:

Aw
Iw
Fw.d
Ew.d[Ee]
Where:

w=
d=
e=

3.8

Character data value.
Integer value.
Floating point value, displayed in decimal format.
Floating point value, displayed in exponential format.

Total number of positions in tbe output field (including sign, decimal point or "E'').
Number positions to the right of tbe decimal point.
Number of postions in exponent length field.

Internal Representations of Data Types

Appendix C contains the detailed intemal representation of the PDS standard data types listed in
Table 3.2.

PDS has developed tools which are designed to use the specifications outlined in Appendix C for
interpreting data values for display and validation.

3-6 Chapter 3. Data Type Definitio~
I
i

Chapter 4. Data Products 4-1

Chapter 4

Data Products

A data product is a grouping of primary and secondary data objects and their associated PDS labels
resulting from a scientific observation. Three examples of a data product are a PDS labeled image,
a spectrum, and a time series table. A data product is a component of a data set (see the Data Set/
Data Set Collection Contents and Naming chapter of this document).

Each data product is made up of one or more primary data objects, secondary data objects, and PDS
data product labels.

•

A Primary data object is a grouping of data results from a scientific observation. The actual science
data, such as an image or table, represents the measured instrument parameters.

A Secondary data object is any data needed for processing or interpreting the primary data object.
Each primary data object may have one or more associated secondary data objects. An example of
a secondary data object is a histogram derived from an image.

A PDS data product label, expressed in ODL, identifies, describes and defines the structure of the
data. There may be a single label to describe the data product, or separate labels for each data
object.

4.1 Data Product File Configurations

The grouping of primary and associated secondary data objects and their PDS label(s) into one or
more physical files can be done in a variety of ways. An important consideration in choosing a file
organization scheme for a data product is the intended use of the PRODUCT_ID data element. The
PRODUCT_ID uniquely identifies an individual data product and can be based on physical file
names.

Example·
An image (the data product in this example) is a color triplet having three primary data objects, stored in separate physical

files, one for each of the red, blue, and green images. Each is uniquely identified by a PRODUCf_ID, additionally they are logically
associated through the IMAGE_ID data element

for the red image:
PRODUCf_ID = "22Al9~RED"
IMAGE_ID = "22A190"

for the blue image:
PRODUCT_ID = "22Al9~BLUE"
IMAGE_ID = "22A 190"

for the green image:
PRODUCf_ID = "22Al~GREEN"
IMAGE_ID = "22A190"

4-2

I
I

Chapter 4. Data Products

I
i

!

Figure 4.1 illustrates file configurations for a data product with a single data object.

0 Attached Label

file A

PRODUCT _ID =A PDS Label
Primary Data Object

0 Detached Label

file A

PRODUCT_ID =A ~-Po_s_La_be_•----~~ ~
fileB)

Primary Data Object

Figure 4.1 Data Product with a Single Data Object

For a data product having multiple data objects (one or more primary data objects and one or morJ
secondary data objects), the assignment of the PRODUCT_Ib is identified within the label of~
data product file(s). I

I

Figure 4.2 shows five possible file configurations for a single data product that consists of two~
objects, a primary and secondary data object. Similar examples could be made using data products
composed of several primary data objects. I

Note that the use of options (2) and (4) would require a logical linking by another identification
data element in each label.

Chapter 4. Data Products

G) Attached Label
PRODUCf_l) =A-------+-

file A

PDS Label
Primary Data Object
Secondary Data ObJect

- -ftieA-
@)Attached Label I

PRODUCT_I) = A --------tL...~--P-DS-Labe--1-------1) Primary Data Object .

file B

PRODUCT_ID = B -------+- PDS Label I
Secondary Data Object

{i) Detached Label file A

PRODUCf_ID =A -------:: ___ PD~S~Lab~el ___ __.l)
fileB

Primary Data Object I
Secmdary Data Object .

- fiieA - - -
@Detached Label r----~..;;..;;...------,

PRODUCT_ID =A ·I PDS Label I)

I
PRODUCT_I) = B --------t!- IJ

=============I

Fitpre 4.2 Data Pmduct with Multiple Data Objects

4-3

Chapter 5. Data Product Labels 5-1

Chapter 5

Data Product Labels

PDS data product labels are required for describing the contents and format of each individual data
product within a data set. PDS data product labels are written in the Object Description Language
(ODL). The PDS has chosen to label the wide variety of data products under archival preparation
by implementing a standard set of data object definitions, data elements, and standard values for
the elements. These data object definitions, data elements, and standard values are defined in the
Planetary Science Data Dictionary (PSDD). Appendix A of this document provides general
descriptions and examples of the use of these data object definitions and data elements for labeling
data products. ,

5.1 Format of PDS Labels

5.1.1 Labeling methods

In order to identify and describe the organization, content, and format of each data product, PDS
requires a distinct data product label for each individual data product file. These distinct product
labels may be constructed in one of three ways:

Attached - The PDS data product label is embedded at the beginning of the data product ftle.
There is one label attached to each data product file.

Detached - The PDS data product label is detached from the data and resides in a separate file
which points to the data product file. There is one detached label file for every data product :file.
T;he label file should have the same base name as its associated data file, but the extension .LBL .

Combined Detached -A single PDS detached data product label ftle is used to describe the contents
of more than one data product file. The combined detached label points to individual data products.

NOTE: Although all three labeling methods are equally acceptable, the PDS tools do not currently
support the Combined Detached label option.

Figure 5.1 illustrates the use of each of these methods for labeling individual data product files.

5-2

file A

PDS
Label

DATA

file A

PDS
Label

file A

PDS
Label

fileB

DATA

fileB

DATA

fileC

DATA '

i
Chapter 5. Data Product Labels

Attached Label

Detached Label

Combined
Detached Label

Figure 5.1 Attached, Detached, and Combined Detached PDS LBbels

5.1.2 Label format

PDS recommends that labels have stream record format, and line lengths of at most 80 characters
(including line terminators) so that the entire label can be seen on a computer screen without I
horizontal scrolling. <CR><LF> is the required line terminator. (See the Record Formats chapterl
of this document.) .

Chapter 5. Data Product Labels

All values in a PDS label should be in upper case, except values for description fields. It is also
recommended that the equal signs in the labels be aligned for ease of reading. TAB characters
should not be used in the labels since they are interpreted differently by different programs.

For a fixed length data file with an attached label, the label is padded with blanks in one of the
following ways:

1) Blanks are added after the label's END <CR><LF> statement and before the data so that the
total size of the label is an integral multiple of the record length of the data.

Example:
In the example below, the label portion of the file is 7 x 324 = 2268 bytes in length, including blank fill between the
EN'D<CR><LF> statement and the first byte of data. The actual data portion of the file starts at record 8 (ie. byte 8 x 324 = 2592)

RECORD_TYPE
RECORD _BYTES
Fli..E_RECORDS
LABEL_RECORDS

II.IMAGE.

EN'D<CR><LF>
.... blank fill

data

= FIXED_LENGIH<CR><LF>
= 324<CR><LF>
= 334<CR><LF>
:;: 7<CRxLF>

= 8<CR><LF>

2) Each line in the label may be padded with blanks so that each line in the label has the same record
length as the data :file. In this case, the label line length may exceed the recommended 80
characters.

Example:
In the example below, the label portion of the file is 80 x 85 = 6800 bytes in length. Each line in the label portion of the file is 85
bytes long, the same length as each data record. Notice the blank space between the actual values in the label and the line delimiters.
In the example, the label is 80 lines long (ie., 80 records long) and the data begins at recon:l81. Note that the label is padded so that
<CR><LF> are in bytes 84 and 85.

RECORD_TYPE = FIXED_LENG1H
RECORD _BYTES= 85
F'ILE_RECORDS = 300
LABEL_RECORDS = 80

II.TABLE =81

END
data

I
I

Chapter 5. Data Product Labels

5.2 Data Product Label Content

5.2.1 Attached and Deta_clled Labels

PDS data product labels have a general stmcture that is used for all attached and detached labelsl
except for data products described by minimal labels. (Minimal labels are described in Section I
5.2.3.)

• LABEL STANDARDS identifier

• Fll..E CHARACTERISTIC data elements

• DATA OBJECT pointers

• IDENTIFICATION data elements

• DESCRIPTIVE data elements

• DATA OBJECT DEFINITIONS

• END statement

I
: I

Figure 5.2 provides an example of how this general stmcture appears in an attached or detached !
label for a data product flle containing multiple data objects. ·

Chapter 5. Data Product Labels

PDS LABEL

CCSD· • •
PDS_ VERSION.JD =

r FILE CHARACTERISTICS */
RECORD_TYPE =
RECORD_BYTES =
RLE_RECORDS =
LABEL_RECORDS =

f:P'c)ir:JTER"STT DATA OBJECTS*/ -- -- -
AIMAGE =
/\HISTOGRAM =

r IDENTIRCATION DATA ELEMENTS-:r- -- -
DATA_SET_ID =
PRODUCT_ID =
SPACECRAFT _NAME =
INSTRUMENT _NAME =
TARGET_NAME =
START_TIME =
STOP_TIME =

• • •
PRODUCT_CREATION_TIME--=.... ____ _

r DESCRIPTIVE DATA ELEMENTS*/
RL TER_NAME =
OFFSET _MODE_ID =

r DAT~OB..iECT'DEFINiiiONS~ ---­
OBJECT= IMAGE

• • •
END_OBJECT = IMAGE
OBJECT= HISTOGRAM

- .
• •

END_OBJECT = HISTOGRAM

END CCSD • ••

• LABEL STANDARDS
IDENTIFIERS

• FILE CHARACTERISTICS
DATA ELEMENTS

• DATA OBJECT
POINTERS
(pnmary, secondary)

• IDENTIFICATION
DATA B..EMENTS

• DESCRIPTIVE
DATA ELEMENTS

• DATA OBJECT
DEFINmONS
(primary, secondary)

• END STATEMENT

Note: Actual Data Elements, Pointers, and Objects vary by data product

Figure 5.2 PDS Attached/Detached Label Structure

5-5

I

5-6
I

Chapter 5. Data Product Labels
I

i

5.2.2 Combined Detached Labels I

For the Combined Detached label option, the general label structure is modified,slightly to !
explicitly reference each individual file within its own Fll..E object. In addition, identification and
descriptive data elements that apply to all of the files can be located before the FILE objects. I

• LABEL STANDARDS identifiers

• IDENTIFICATION data elements that apply to all referenced data flies

• DESCRIPTIVE data elements that apply to all reference data flies

• OBJECT=FILE statement (Repeats for each data product flie)

• FILE CHARACTERISTIC data elements
• DATA OBJECT pointers
• IDENTIFICATION data elements
• DESCRIPTIVE data elements
• DATA OBJECT DEFINITION

• END_OBJECT=FILE statement [
I

• END statement I

I
Figure 5.3 provides an example of how this general structure appears in a combined detached label
that describes more than one data product file. I

Chapter 5. Data Product Labels

PDSLABEL

CCSD• • •

PDS_VERSIONJD =

DATA_SETJD =
PRODUCT_ID ..
SPACECRAFTJD =
INSTRUMEHT_NAME =
TARGET_NAME =
PRODUCT_CREA110N_ 11ME =

OBJECT= FILE
RECORD_ TYPE = . . .
FILE_RECORDS =
A11ME_SERIES = "file A"
START_nME =
STOP_nME ..
OBJECT= 11ME_SERIES . . .
END_OBJECT= 1"1ME_SERIES

END_OBJECT= FILE ---------OBJECT=FILE
RECORD_TYPE =

I:JLE_RECORDS =
lo. 11ME_SERI ES . •toea•
START_11ME =
STOP_TIME ..
OBJECI" .. 11ME_SERIES . . .
END_OBJECT,. TIME SERIES

~ OBJECT=FI'=L_ ____

END CCSD • • •

• LABEL STANDARDS
IDENnFIERS

• IDEN11FICA 110N a
DESCRIPTIVE DATA ELEMENTS
for all files

• For Detached FILE A:
FILE CHARACTERIS11CS
DATA ELEMENTS

• DATAOBJECTPOINTERS
• IDENTIFICA110NIDESCRIP11VE

DATA ELEMENTS
• DATA OBJECT DEFINI110NS

For Detached FILE B:
• FILE CHARACTERISnCS

DATA ELEMENTS

• DATA OBJECT POINTERS
• IDEN11FICA110NIDESCRIP11VE

DATA ELEMENTS
• DATAOBJECTDEFINmONS

• END STATEMENT

Note: Actual Data Elements, Pointers, and Objects vary by data P'ocUCt

Figure 5.3 PDS Ctlmblned Detat:llsd Label Structure

5-7

5-8 Chapter 5. Data Product Labels
r
r

5.2.3 Minimal Labels !

Use of the minimal label option is only allowed when the format of the data cannot be supported!
by the current documented Data Objects. I

!

For minimal labels, the general label structure has removed the required use of data objects. A
1

minimal label does not contain any PDS data object definitions or pointers-to data objects. The
above applies to both attached and detached labels_.

Minimal labels must satisfy the following two requirements:

(1) Provide the ability to locate the data (file) associated with the label.

a. Attached labels

Since data objects and pointers are not required in the minimal label, by definition the data
I

follows immediately after the label. ;

b. Detached Labels

Both the implicit and explicit use of the Fll...E object are supported. The Fll...E_NAME
keyword, contained in the Fll...E object, is required.

(2) Provide the ability to locate a description of the format/content of the data.

One of the following must be provided in the minimal label:

(1) "DESCRIPTION= "<filename>'' 1

This is a pointer to a file containing a detailed description of the data forinat; may be located 1

in the same directory as the data or in the DOCUMENT subdirectory.

(2) DESCRIPTION= "<text appears here>"
This is either a detailed description of the data file, its format, data types,and use, or it is a
reference to a document available externally, e.g., a Software Interface Specification (SIS)
or similar document.

When minimal labels are used, DATA_OBJECT_TYPE = Fll...E should be used in tl!e Data Set
Catalog template.

, r ·~· .

Chapter 5. Data Product Labels 5-9

5.2.3.1 Implicit File Object (Attached and Detached Minimal Label)

The general structure for minimal labels with implicit file objects is as follows:

• LABEL STANDARDS identifier

• FILE CHARACfERISTIC data elements

• IDENTIFICATION data elements

• DESCRIPTIVE data elements

• END statement

5.2.3.2 Explicit File Object (Detached Minimal Label)

The general structure for minimal labels with explicit file objects is as follows:

• LABEL STANDARDS identifier

• IDENTIFICATION data elements

• DESCRIPTIVE data elements

• OBJECT=FlLE statement

• FILE CHARACTERISTIC data element

• END_OBJECT=FILE

• END statements

Figure 5.4 provides an example of how this general structure appears in a detached minimal label.
In this example, an implicit FILE object is used.

I
5-10 Chapter 5. Data Product Lalicls

I

PDSLABEL

CCSO· · •
PDS_ VERSION_ID =

r FILE CHARACTERISTICS · .,
RECORD_ TYPE =
RECORD_BYTES =
RLE_NAME =
RLE_RECORDS =
LABEL_RECORDS =
r IDENTIFICATION DATA ELEMENTS */
DATA_SET_ID =
PRODUCT _ID =
SPACECRAFT _NAME =
INSTRUMENT_NAME =
TARGET_NAME =
START_TIME =
STOP_TIME =

• • •
PRODUCT_CRE'ATION_TIME =
r DESCRIPTIVE DATA ELEMEN1S */
RLTER_NAME =
OFFSET_MOOE_ID =
ADESCRIPTION

END

• • •
=

CCSD· • •

• LABEL STANDARDS
IDENTIRERS

• FILE a-IARACTERISTICS
DATA ELEMENTS

• ·IDENTIRCA TION
DATA ELEMB'.JTS

• DESCRIPTIVE
· DATA ELEMENTS

• ENDSTATBVIENT

Note: Actual Data Elements, Pointa"s, and Objects vary by data product

Figure 5.4 PDS Detached Minimal Label Stnlcture

5.3 Detailed Label Contents Description

This section describes the detailed requirements for the content of PDS labels. The subsections
describe label standards identifiers, file characteristic data elements, data object pointers.
identification data elements, descriptive data elements, data object definitions, and the END
statement.

5.3.1 Label Standards Identifiers

Each PDS label begins with an optional Standard Formatted Data Unit (SFDU) label and a
PDS_ VERSION_ID data element:

CCSD.... [optional SFDU label]
PDS_ VERSION_lD

Chapter 5. Data Product Labels 5-11

The PDS does not require SFDU labels on individual products~ but they may be needed for
conformance with specific project or other agency t;equirements. If SFDUs are provided on a data
product they must follow the standards described in the SFDU Usage chapter in this document.
The PDS requires the PDS_ VERSION_ID data element to identify the PDS published standards
and data dictionary that the label adheres to. This version id will be used to provide PDS software
tool support for a specific set of standards and will allow the evolution and expansion of both
standards and tools as required by the PDS user community.

For labels adhering to the standards described in this document -the PDS Standards Reference~
Version 3.2- and its associated Planetary Science Data Dictionary~ Version 3.0, this will be:

PDS_ VERSION_ID = PDS3

5.3.2 File Characteristic Data Elements

PDS data product labels contain data element information that describe important attributes of the ,
physical structure of a data product'file. PDS file characteristic data elements are:

RECORD_1YPE
RECORD _BYlES
FILE_RECORDS
LABEL_RECORDS

The RECORD_TYPE data element ideni:ifies the record characteristics of the data product file. A
complete discussion of the RECORD_TYPE data element and its use in describing data products
produced on various platforms is provided in the Record Formats chapter in this document. The
RECORD_BYTES data element identifies the number of bytes in each physical record in the data
product file. The FILE_RECORDS data element identifies the number of physical records in the
file. The LABEL_RECORDS identifies the number of physical records containing the PDS
product label.

Not all of these data elements are required in every data product label. Table 5.11ists the required
(Req) and optional (Opt) file characteristic data elements for a variety of data products and labeling
methods for both attached (Att) and detached (Det) labels. Where (max) is specified, the value'
supplied must be $e maximum size physical record in the file.

I

I

5-12 Chapter 5. Data Product Labels
I

Table 5.1: File Characteristic Data Element Requirements

Labeling Method Att Det Att Det Att Det Att Det

RECORD_TYPE FIXED_LENGTH VARIABLE_LENGTH STREAM UNDEFINED

RECORD _BYTES Req Req Rmax Rmax Omax - - - I
FILE _RECORDS Req Req Req Req Opt Opt - - I
L,A.BEL_.RECORDS Req - Req - ~t - - - I

Note: For detached minimal labels, the FILE_NAME keyword is required.

5.3.3 Data Object Pointers
I

The actual data whose structure and attributes are defined in a PDS label are "data objects". Each!
data product file may contain one or more data objects. I

The PDS uses a pointer mechanism within product labels to identify the starting locations for all
primary and secondary data objects in a data product. PDS primary and secondary data objects
usually requiring data object pointers include IMAGE. TABLE. SERIES, SPECTRUM, QUBE,
PALEITE, IITSTOGRAM, HEADER, and DOCUMENT.

5.3.3.1 Use of Pointers in Attached LabeJs
i

For attached labels. if there is only one data object referenced, a data object pointer is not required. I'

However, it is strongly recommended that data object pointers be used at all times. The data object
is assumed to start in the next physical record after the PDS product label area. This is commonlyll
the case with ASCn text tiles described f?y a TEXT object and ASCn SPICE tiles described by a
SPICE_KERNEL object. The top two illustrations in Figure 5.5 show example files that do not I
require data object pointers. !

i

If multiple data objects are stored in the data product file, object pointers are required for all data I
objects. The syntax for data object pointers in attached labels may take one of two forms: •

"<object_identifier> = nnn (see the Object Description Lo.nguage chapter in this document) I

where nnn represents the starting record number within the file,
Or.

"<object_identifier> = nnn <BYTES>

where nnn represents the starting byte location within the file.

Chapter 5. Data Product Labels 5-13

The bottom two illustrations in Figure 5.5 show the required 1lse of data object pointers for attached
label products containing multiple data objects.

record

1

11

31

END

TEXT

ATABLE1 =11
ATABLE2=31

END

TABLE1

TABLE2

END

JDm

SPICE
KERNEL

LABEL

DATA

~----------------------~
1 AIMAGE = 160 <BYTES>

AHISTOGRAM = 640160 <BYTES>

END
160

IMAGE

640160
HISTOGRAM

Figure 5.5 Data Object Pointers-Attached Labels

LABEL

DATA

5.3.3.2 Use of Pointers in Detached and Combined Detached Labels

If the PDS data product label is a detached or a combined detached label, data object pointers are
required for all data objects referenced. '

The syntax for data object pointers may be take one of three forms:

(1) Aobject_identifier = ''filename"
(2) Aobject_identifier = ("filename". nnn)
(3) Aobject_identifier =("filename", nnn <BYTES>)

5-14 I
Chapter 5. Data Product Labels

i

I
In all three cases, the filename is the name of the file containing the data object. In the first easel
the data object is located at the beginning of the referenced file. In the second case, the data object
begins nnn physical records from the beginning of the referenced file. In the third case, the datal
object begins nnn bytes from the beginning of the referenced file. I

Figure 5.6 illustrates several examples of data object pointer usage-for data product files with I
detached or combined detached labels. The top example shows a data product consisting of a !

HEADER data object and aT ABLE data object together in a single file. The detached label for thi$
product includes pointers for both data objects, with the TABLE object starting at byte 601 of fil~
A. The middle example illustrates a combined detached label for a data product contained in two
data objects, each in a separate file. A separate pointer is provided for each data object. The bottorrl
ex@ID.ple shows a detached label for a data product containing multiple data objects.

i
Where multiple data objects are stored within a data product file, and where multiple data objects I
occupy portions of the same physical record, the data object pointer indicates the first physical i
record containing the data object. Additional data elements within the Data Object Definitions (e.gJ
LINE_PREFIX_BYTES, ROW _SUFFIX_BYTES) provide the relative byte locations within eac~
record for each line or row of data within the data object. I

5.3.3.3 Note Concerning Minimal Attached and Detached Labels

By definition, data object pointers do not exist in minimal labels. The format of the data is fully
described in a separate file or document.

!

Chapter 5. Data Product Labels 5-15

• DATA LABEL .. tum file A --1 HEADER A HEADER = "fileA a
...

A TABLE = ("fiieA a, 601 <bytes>) • 601
TABLE

file A

AT ABLE = afileA" --+----.....
A SERIES = "fileB" TABLE

fileB

TABLE

DRml

r.====-.==~~~--~1 A HEADER = "fileA ..
HEADER

AIMAGE = ("fileA .. ,4) --1--:==4 4
ATABLE = ("fileA",4

w _,
IMAGE m

;!

Figure 5.6 Data Object Pointers-Detached & Combined Labels

5.3.4 Identification Data Elements

The identification data elements provide important information about the data to uniquely identify
the data product and to associate it with other data products that may be related. This information
is often used to populate the PDS product level catalogs or inventories. PDS requires a minimum
set of these identification data elements to be included in all product labels. These requirements
vary depending on the type of data product being archived. Additional identifying data elements
may be required by specific projects or organizations (e.g. AMMOS).

Additional data elements which might be needed to further identify the data objects or which would
be needed to catalog the data product to support potential search criteria should also be included.
These additional data elements are selected from the Planetary Science Data Dictionary (PSDD).

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it can be proposed to be added to the dictionary. See a PDS Data Engineer for assistance.

I
I
I

5-16 Chapter 5. Data Product ~Is

5.3.4.1 Spacecraft Science Data Products I
The following identification data elements shall be included in data product labels for all spacecraft
science data products:

DATA_SET_ID
PRODUCI'_ID
SPACECRAFT _NAME or INSTRUMENT_HOST_NAME
INSTRUMENJ'_NAME
TARGET_NAME
START_TIME .
STOP_TIME
SPAcEcRAFr_CI.OCICSTART_COUNT
SPACECRAFf_CLOCK_STOP _COUNT
PRODUCI'_CREAnON_TIME

5.3.4.2 Earthbased Science Data Products

The following identification data elements shall be included in data product labels for all
earthbased science and radio science data products:

DATA_SET_ID
PRODUCI'_ID
INSTRUMENT_HOST_NAME
INSTRUMENT _NAME
TARGET _NAME
START_TIME
STOP_TIME
PRODUCI'_CREATION_TIME

5.3.4.3 Ancillary Data Products
i
I

The following identification data elements shall be included in data product labels for all ancillary I
data sets. These types of products may be more gen~ral in nature, supporting a wide variety of i
instruments for a particular mission. For example, SPICE data sets, general engineering data sets,i
and uplink data are considered ancillary data products. 1

DATA_SET_ID
PRODUCI'_ID
PRODUCI'_CREATION_TIME

The following data elements are highly recommended, and should be included in ancillary data
products whenever they apply:

SPACECRAFI'_NAME or INSTRlJMENT_HOST_NAME
INSTRUMENT _NAME
TARGET_NAME
START_TIME
STOP_TIME
SPACECRAFI'_CI.OCICSTART_COUNT
SPACECRAFI'_CLOCK_STOP _COUNT

Chapter 5. Data Product Labels 5-17

5.3.5 Descriptive Data Elements

In addition to the identification data elements required for various types of data, PDS strongly
recommends including additional data elements related to specific types of data These descriptive
data elements must include any data elements which might be needed to interpret or process the
data objects or which would be needed to catalog the data product to support potential search
criteria at the product level.

Not only will these values be available with the data to the user, but they are also used to load PDS
product level catalogs and inventories with descriptive information about each data product. PDS
product level catalogs and inventories at PDS Discipline Nodes support both online data product
access and ordering capabilities.

In addition, PDS is developing software display and analysis packages for standard data objects.
These software packages will be built to utilize various descriptive data elements.

Recommendations for descriptive data elements to consider supplying will come from working
with PDS Mission Interface personnel as well as the data producer's own suggestions. These
additional data elements are selected from the Planetary Science Data Dictionary.

NOTE: When a data element is needed for a data product label, but is not yet recorded in the
PSDD, it can be proposed to be added to the dictionary. See the PDS Data Engineer for assistance
with submitting new data elements for inclusion in the PSDD.

Pointers are sometimes used in this area of a PDS label to provide a shorthand method for including
a set of descriptive data elements or a long descriptive text passage referenced in several data
product labels.

5.3.6 Data Object Definitions

The PDS requires a separate data object definition within a product label for describing the
structure and associated attributes of each data object in the data product. There will be one data
object definition for every primary and secondary data object pointer identified in Section 5 .2.3.
These data object definitions are of the form:

OBJECf=aaa where aaa is the uame of the dal:a object

END_OBJECT = aaa

The PDS has designed a set of standard data object definitions to be used for labeling data products.
Among these standard objects are those designed to describe data structures commonly used for
scientific data storage. Appendix A provides a complete set of PDS data object definition
requirements, along with examples of data product labels.

Pointers are sometimes used in this area of a PDS label to provide a shorthand method for including
a set of data sub-objects referenced in several data product labels. For example, a ASTRUCTURE
is often used to include a set of COLUMN sub-objects for aT ABLE structure that is used in many

5-18

labels.

NOTE: Minimal labels do not contain any data object definitions.

5.3.7 End Statement

' i
Chapter 5. Data Product Labels

I

I

The end of the PDS label is identified by the END statement followed by an optional SFDU. •

The PDS does not require SFDU labels on individual products, but they may be needed for I

conformance with specific project or other agency requirements. If SFDUs are provided on a data
product, they must follow the standards described in the SFDU Usage chapter in this document.!
In some, but not all cases, another SFDU label is required after the PDS END statement to providc.r
"end label" and sometimes "start data" information. i

I

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-1

Chapter6

Data Set/Data Set Collection Contents and Naming

One of the objectives of the PDS is to introduce consistency in the contents, organization and
naming of planetary data sets. The PDS has introduced the concept that an archive quality data set
colleetion or data set must include everything that is needed to uriderstand and utilize the data.
Towards this goal, the PDS has worked with the NSSDC, PDS Discipline Nodes, numerous Flight
Projects, and individual scientists and programmers to develop approaches to ensure that this
consistency is achieved.

Figure 6.1 shows the relationships between Data Set Collection, Data Sets, and Data Products.
Figure 6.2 shows the logical and physical relationships.

CONTENTS

DATA SET----~· ANCILLARY PRODUCT

l
DATA PRODUCT

PDS LABELS PRIIUIARY DATA OBJECT
(e.g. IMAGE, TABLE, QUBE,

SERIES, KERNEL)

SECONDARY
DATA OBJECT
(e.g. HISTOGRAM,

PALETTE,
ENG. TABLE)

FIGURE 6.1

CALIBRATION

GEOMETRY

DOCUMENTATION

CATALOGINFORIUIATION

INDICJES

DATA DICTIONARY INFORIUIATION

GAZETTEER

SOFTWARE

6-2 Chapter 6. Data Set/Data Set Collection Contents and Naunla
I"'

LOGICAUPHYSICAL RELATIONSHIPS

VOLUME SERIES
DATA SET COLLECTION

~
!

DATASET

..._------------ VOWrE SET

!
DATA PRODUCT

PDS Label

Primary Data Object

Secondary Data Object

one to one

---11-• one to many

111 IJil many to many

}

RGURE 6.2

6.1 Data Set/Data Set Collection Contents

Data Set Collection and Data Set defined:

VOLUME

+
DIRECTORY

!
FILE

I
I

I

I

i
I'

Data Set Collection - A data set collection consists of data sets that are related by observation typej
discipline, target, or time, and therefore are to be treated as a unit, to be archived and distributed !I

together for a specific scientific objective and analysis.

An example of a data set collection is the Pre-Magellan CD-ROM containing a collection of I
selected Earth-based radar data of Venus, the Moon, Mercury, and Mars, Pioneer Venus radar datal

I

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-3

airborne radar images of Earth, and line of sight acceleration data derived from tracking the Pioneer
Venus Orbiter and Viking Orbiter 2.

Data Set - The accumulation of data products, secondary data, software, and documentation, that
completely document and support the use of those data products. A data set can be part of a data
set collection.

A data set collection or a data set may include all of the following:

Data Products - Labeled groupings of data resulting from a scientific observation. Examples of a
data product are planetary iinages, spectrum tables, and time series tables. A data product is a
component of a data set

Calibration data - Calibration :files used in the processing of the raw data or needed to use the data

Geometly data- Relevant :files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.

Documentation - All the textual material which describes the mission, spacecraft, instrument, and
data set. This can include references to science papers, or the actual papers.

Catalog Information- High-level descriptive information about a data set (e.g. mission description,
spacecraft description, instrument description), expressed in Object Description Language (ODL)
which is suitable for loading into a catalog.

Indices - Information which allows the user to locate the data of interest, such as a table mapping
latitude/longitude ranges to file names.

Data Dictionary Information- A portable version of the Plonetary Science Data Dictionary which
is pertinent to the data set. The dictionary is expressed in ODL.

Gazetteer - Information about the named· features on a target body associated with the data sets.

Software- The software libraries, utilities, or applicati,on programs to acce~s/process the data
objects.

All data sets submitted to the PDS shall include the software used and/or algorithms for original
data reduction, processing, calibration and, decalibration of the data, or documentation stating how
to obtain such software. When software accompanies a data set, the source code, build instructions,
and software documentation shall be included

There are several other types of data set software which may be provided with a data set:

1. Special software which is developed and maintained for certain hardware platforms. This
is often a refined version of the processing software developed for mission data analysis.

I

Chapter 6. Data Set/Data Set Collection Contents and N~g

I

2. Utilities which allow a user to select parameters from the data set and to extract these i
I

parameter values to a data flle based on certain key values (event time, for example). The outpu~
format should be a simple ASCTI table or one of the other generic PDS data object formats. This is
a minimum level of access for conducting a peer review of a data set. I

I
3. Data analysis tools such as plotting programs. I

6.2 Data Set Naming and Identification

This standard contains instructions for naming a PDS data set and forming a Data Set Identifier.l
Every PDS data set shall be given a DATA_SET _NAME and DATA_SET_ID, both formed froth

I

seven components. All components are required except for the Data Set Type and Description !

components. These components are described in section 6.4. '

The only characters allowed within a data_set_id are the upper case alphanumeric set (A-Z, 0-9j,
a forward slash (f)~ a period(.), and a hyphen(-). The period is only :used with numerics, i.e., Vl.O
or 12.5SEC. No other special characters are allowed (e.g., underscore U). ·

Multiple instrument hos~ instruments~ or targets shall be referenced in a DATA_SET _NAME o~
DATA_SET _ID by concatenation of the values with a forward slash (f) which is interpreted as !
"and."

i
The data set identifier (DATA_SET_ID) shall not exceed 40 characters in length. Each compone~t
shall be the acronym rather than a full length name used in forming the DATA_SET_NAME. i
Within the data_set_id, acronyms shall be separated by hyphens.(See section 6.4 for valid ·
acronyms.)

.
A DATA_SET _NAME shall not exceed 60 characters in length. Where the character limitation~
not excee~ the full length name of each component should be used. If the full length name is too
long, an a.Cronym shall be used to abbreviate components of the name. (See section 6.4 for valid!
full length names and acronyms.) 1

The intent of the data set name and identifier is primarily to uniquely identify the data set.

The components of the DATA_SET_NAME and DATA_SET_ID are:

lostru.ment host
Target
Instrument
Data processing level number
Data set type (optional)
D~ption(optional)

Version number

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-5

Example·

• Full length data set name. Mariner 9 and Viking Orbiter I and Viking Orbiter 2 Mars Imaging Science Subsystem and Visual
Imaging Subsystem denved cloud data Version 1.0

• DATA_SET_NAME = "MR9NOIN02 MARS IMAGING SCIENCE SUBSYSTEM/VIS 5 CLOUD VI.O"

• DATA_SET_ID = "MR9NOIN02-M-ISSNIS-5-CLOUD-VI.O"

In this example, Instrument hosts are Mariner 9, Viking Orbiter 1 and Viking Orbiter 2
Target is Mars
Instruments are the Imaging Science Subsystem and Visual lmagmg Subsystem
Data Processing Level number is 5
Description is CLOUD
Version number is VI.O
The optional Data set type is not used in this example.

6.3 Data Set Collection Naming and Identification

This standard contains instructions for naming a PDS data set collection and forming an identifier.
A data set collection consists of data sets that ~ related by observation type, discipline, target, or
time (which are treated as a unit), for a specific scientific pwpose.

A data set collection will contain data sets that may cover several targets, be of different processing
levels, and ~ave different instrument hosts and instruments. Since the individual data sets will be
identified by their own data set names, some of this information is not necessary to repeat at the
collection level. Therefore, the DATA_SET_COLLECTION_NAME uses a subset of the
DATA_SET_NAME components in addition to a new component, collection name, which
identifies the group of related data sets.

TheDATA_SET_COLLECTION_NAMEandDATA_SET_COLLECTION_IDareformedfrom
the six components listed below. All are required, except for data processing level number, data set
type, and description. However, it is recommended that data set type or description be used
whenever possible.

The only characters allowed within a data_set_collection_id are the upper case alphanumeric set
(A-Z. 0-9), a forward slash (/), a period (.), and a hyphen (-). The period is only used with
numerics, i.e., Vl.O or 12.5SEC. No other special characters are allowed (e.g., underscore U).

Multiple targets or data processing levels shall be referenced in the data set collection name or
identifier by concatenation of the values with a forward slash (f) which is interpreted as "and."

A DATA_SET_COLLECTION_NAME shall not exceed 60 characters in length. Where the
character limitation is not exceeded, the full length name of each component should be used. If the
full length name is too long, an acronym shall be used to abbreviate it. (See Section 6.4 for valid
full length names and acronyms.)

The DATA_SET_COLLECTION_ID shall not exceed 40 characters in length. Each component

Chapter 6. Data Set/Data Set Collection Contents and N~g

shall be the acronym rather than a full length name used in forming the
DATA_SET_COLLECTION_NAME. Within the DATA_SET_COlLECTION_ID, acronyms
shall be separated by hyphens. (See Section 6.4 for valid acronyms.)

The components of the DATA_SET_COlLECTION_NAME and
DATA_SET_COLLECTION_ID are:

Collection name
Target
Data processing level number (optional)
Data set type (optional)
~ption(optional)

Version number

Example: !
The Pre-Magellan Data Set Collection contains radar and gravity data similar to the kinds of data that Magellan will collect and will
be used for pre-Magellan analyses of Venus and for comparisons to actual Magellan data !

i
• Full-length data set collection name: Pre-Magellan Earth, Moon, Mercury, Mars, and Venus resampled and derived radar and
gravity data Version 1 0 '

• DATA_SET_COll.EcnON_NAME ="PRE-MAGELLAN EIIJHIMIV 415 RADAR/GRAVITY DATA Vl.O"

• DATA_SET_COlLECilON_ID = "PREMGN-EIUHIMIV-415-RAD/GRA V-Vl.O"

6.4 Description of Name and ID Components

If the information needed to describe your data is not listed, consult the PDS Data Engineer to
determine what the appropriate acronyms are for you to use.

When a reference is made to the PSDD, see the standard values list for the data elements.

1. Instrument host component valid values are:
full length names: INSTRUMENT _HOST _NAME data element in the PSDD
acronyms: INSTRUMENT_HOST_ID data element in the PSDD
exceptions: for Earth based data sets with no instrument host defined, the default

value of EAR is recommended.

2. Collection name component valid values may be one of the following:

GRSFE Geological Remote Sensing Field Experiment
IHW International Halley Watch
PREMGNPre-Magellan

3. Target component valid values are:

full length names: T ARGET_NAME data element in the PSDD
acronyms: one of the following target IDs

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-7

target ID target name

A Asteroid

c Comet

CAL Calibration

D Dust

E Earth

H Mercury

J Jupiter

L Moon

M Mars

MET Meteorite

N Neptune

p Pluto

R Ring

s Saturn

SA Satellite

ss Solar System

u Uranus l.

v Venus

X Other, ex. Checkout

y Sky

NOTE: Satellites or rings shall be referenced in a DATA_SET_NAME and DAT A_SET_ID by
the concatenation of the satellite or ring identifier with the associated planet identifier; for example:

JR = Jupiter's rings
JSA = Jupiter's satellites

If Jupiter data is also included in the ring and/or satellite data set, then only Jupiter, J, is
referenced as the target.

!
Chapter 6. Data Set/Data Set Collection Contents and NailliDg

In cases where there are data sets of comet or asteroids this component represents the
T ARGET_TYPE rather than the target name, for example:

A=Asteroid
C=Comet

CAL= Cah'bration
MET.= Meteorite

Valid values for the target_type data element are found in the PSDD.

4. Instrument component valid values are:

full length names:
acronyms·
exceptions:

INSTRUMENT_NAME data element in the PSDD
INSTRUMENT_ID data element in the PSDD
ENG or ENGINEERING for engineering data sets
SPICE for SPICE data sets
GCM for Global Circulation Model data
SEDR for supplemental EDR data
POS for positional data

5. Data processing level number

This component is the National Research Council (NRC) Committee on Data Management and !
1 Computation (COD MAC) data processing level number.

Normally a data set contains data of one processing level. PDS recommends that data of different
processing levels be trea~ as different data sets. However, if it is not possible to separate the ~
then a single data set with multiple processing levels will be accepted. Use the following when i
specifying the data processing level number component of the data set identifier and name: ~

(a) the processing level number of the largest subset of data or
(b) the highest processing level number if there is no predominant subset.

Chaptei 6. Data Set/Data Set Collection Contents and Naming

2

3

4

5

6

7

8

N

DATA LEVEL NUMBER (CODMAC AND NASA LEVELS)

Proc. Tv.pe

Raw Data

Edited Data

Calibrated
Data

Resampled
Data

Derived Data

Ancillary Data

CoiTelative
Data

User Descrip­
tion

N

Data Processing Level Description

Telemetry data with data embedded.

Conected for telemetry errors and split or decommutated into a data set for a given
instrument. Sometimes called Experimental Data Record. Data are also tagged with
time and location of acquisition. Corresponds to NASA Level 0 data.

Edited data that are still in units produced by instrument, but that have been cor­
rected so that values are expressed in or are proportional to some physical unit such
as radiance. No resampling, so edited data can be reconstructed. NASA Level lA.

Data that have been resampled in the time or space domains in such a way that the
original edited data cannot be reconstructed. Could be calibrated in addition to being
resampled. NASA Level m.

Derived results, as maps, reports, graphics, etc. NASA Levels 2 through 5.

Nonscience data needed to generate calibrated or resampled data sets. Consists of in­
strument gains, offsets; pointing information for scan platforms, etc.

Other science data needed to interpret spacebome data sets. May include ground­
based data observations such as soil type or ocean buoy measurements of wind drift

Description of why the data were required, any peculiarities associated with the data
sets, and enough documentation to allow secondary user to extract information from
the data.

Not Applicable

6-9

6-10

6. Data set type

i
I

Chapter 6. Data Set/Data Set Collection Contents and Naming
I
:
I
I

I

I
Normally, the data processing level (CODMAC) component is sufficient to be able to identify th~
type or level of data However, if additional identification is desired, this component may be used~
The following is a list of valid values (both full length names and acronyms) that may be used fot
this component. i

NOTE: Several of the values in this table are currently unique to a particular mission (e.g. BIDR.l
MIDR were used on Magellan). These values should also be used on other missions, if deemed [
appropriate. !

I

Acronym

ADR

BIDR

CDR

CK

DDR

DIDR

DLC

EDC

EDR

EK

GDR

IDR

IK

MDR

MIDR

ODR

PGDR

RDR

REFDR

SDR

Description

Analyzed Data Record

Basic Image Data Record

Composite Data Record

SPICE CD (Pointing Kernel)

!
I
I
I

I
Derived Data Record (possibly multiple instruments)

I

Digitalized Image Data Record I

Detailed Level Catalog

Existing Data Catalog

Experiment Data Record

SPICE EK (Instrument Kernel)

Global Data Record

Intermediate Data Record

SPICE IK (Instrument Kernel)

Master Data Record

Mosaicked Image Data Record

Original Data Record

Photograph Data Record

Reduced Data Record

Reformatted Data Record

System Data Record

Chapter 6. Data Set/Data Set Collection Contents and Naming 6-11

7. Description

SEDR

SPK

SUMM

SAMP

Supplementary Experiment Data Record

SPICE SPK (Ephermeris Kernel)

Summary (data) (to be used in the browse function)

Sample data from a data set (not subsampled data)

The following is a list of example values (both full length names and acronyms) that could be used
for this component.

While the description is optional, it allows the user to provide information to help describe the data
set. such as identifying a specific comet or asteroid.

Acronym Description

ALTIRAD Altimetty and Radiometty

BR Browse

CLOUD Cloud

ELE Electron

ETA-AQUAR Meteor Eta-Aquarius

FULL-RES Full Resolution

GIACOBIN-ZIN Comet Giacobini Zinner

HALLEY Comet Halley

ION Ion

LOS Line of Sight Gavity

MOM Moment

PAR Parameter

SA Spectrum Analyzer

SA-4.0SEC Spectrum Analyzer 4.0 second

SA-48.0SEC Spectrum Analyzer 48.0 second

6-12

I

Chapter 6. Data Set/Data Set Collection Contents and NamiJg

I
8. Version number I
The rules for determining version numbers for PDS Data Sets/Data Set Collections are as follows:

(a) If there is not a previous version of the PDS data set/data set collection, then use I

Version 1.0.

(b) If a previous version exists, then consider the following:

i.

ii.

iii.

If the data sets/data set collections contain the same set of data, but the new
one is on a different medium (e.g., CD-ROM), then no new version n~
is required (i.e. no new data set identifier). The inventory system will hand!~
the different media for the same data set. I

If the data sets/data set collections contain the same set of data, but the new
version has minor corrections or improvements such as a change in I
descriptive labeling, then the version number is incremented by a tenth. For
example, Vl.O becomes Vl.l. I

i

If a data set/data set collection has been reprocessed, using, for example, J
new processing algorithm or different calibration data, then the version 1

number is incremented by one (Vl.O would become V2.0). Also, if one data
set/data set collection contains a subset, is a proper subset, or is a superset I
of another, then the version number is incremented by one.

Chapter 7. Date/I'im.e Format 7-1

Chapter?

Datetrime Format

The representation of time within a system is of particular concern, since time is often used to
constrain searches. PDS has adopted a subset of the International Standards Organization/Draft
Standard (ISO/DIS) 8601 standard entitled "Data Element and Interchange Formats -
Representations of Dates and Times" for this purpose, and applies the standard across all
disciplines in order to give the system generality. See also Dates and Times in the Object
Description Language chapter of this document.

It is important to note that the ISO/DIS 8601 standard covers only ASCIT representations of dates
and times.

7.1 I>ateflimmes

In the PDS there are two date/time formats recognized as legal. These are
CCYY-MM-DDTHH:MM:SS.sssZ and CCYY -DDDTHH:MM:SS:sssZ. Each format represents
a concatenation of the conventional date and time expressions described in this chapter, with the
two parts separated by the letter T. The time part of the expression represents time in Uriiversal
Time Coordinated (UTC), hence the Z at the end of the expression (see Section 7 .3.1 for further
discussion). Note that in both the PDS Data Set Catalog and data product labels the "Z" is optional
and is assumed.

The preferred date/time format both for labels and Data Set Catalog templates is
CCYY -MM-DDTHH:MM:SS.sssZ.

7.2 I>ates

The PDS allows dates to be expressed in conventional and native (alternate) formats.

7 .2.1 Conventional I>ates

Conventional dates shall be represented as either year, month, and day-of-month or as year and
day-of-year using the full ISO/DIS 8601 format, which has the fields separated by dash characters,
as follows: CCYY -MM-DD or CCYY -DDD. Both formats are acceptable for use in PDS labels
and Data Set Catalog templates, but the PDS prefers the CCYY -MM-DD convention.

7 .2.2 Native I>ates

The format of a native date is user specified. An example of a native date is Julian Day, an integer
count of days since a given reference day (January 1, 4713 B.C.)

7-2 Chapter 7. Datetrime Fozmit

7.3 Times

The PDS allows times to be expressed in conventional and native (alternate) formats.

I

I
7.3.1 Conventional Times

Conventional times shall be represented as hour, minutes, and seconds u~ing the full ISO DIS860~
format. The hour, minutes, and seconds consist of three two-digit fields separated by colons, with
the field values being modulo 24, 60, and 60, respectively. The seconds field may be optionally j
followed by a fractional part; if fractions of seconds are specified, a period shall be used as the •
decimal point and not the European-style comma. The fractional part shall be at most 3 digits long.
The PDS has adopted the use of Universal Time Coordinated (UTC) for expressing time, using the
format HH:MM:SS.sssZ. Note that in both the PDS Data Set Catalog and data product labels th¢
"Z:' is optional and is assum~. Fractions of seconds are limited to milliseconds. The ·
START_TIME and STOP _TIME data elements required in data product labels and catalog
templates use this format.

For data collected by spacecraft-mounted instruments, the date/time shall be a time which
corresponds to "spacecraft event time". For data collected by instruments not located on a
spacecraft, this time shall be an earth-based event time value.

Adoption of UTC (rather than spacecraft-clock-count, for example) as the standard facilitates
comparison of data from a particular spacecraft or ground-based facility with data from other
sources.

7 .3.2 Native Times

Native or alternate time formats may be represented in a data product label or Data Product Catalog
using the element NATIVE_ TIME. Native times also can be represented using specific data
elements. Such data elements may be proposed by the data supplier and reviewed by the PDS.

The following are examples of native time formats.

1. Spacecraft Clock Count (sclk)- Spacecraft clock count (sclk) provides a more precise tim~
representation than event time for instrument-generated data sets, and so may be desirable as an
additional time field. In a typical instance, a range of spacecraft-clock-count values (i.e., a start­
and a stop-value) will be called for.

I

Spacecraft clock count shall be represented as a right-justified character string field with a I
maximum length of twenty. This format will accommodate the extra decimal point appearing in i
this data for certain spacecraft and other special formats, while also supporting the need for simple1

comparison (e.g., ">" or "<") between clock count values.

2. Longitude of Sun- Longitude of Sun ("L sub S") is a derived data value which can be
computed, for a given target, from UTC.

Chapter 7. DateJT'ml.e Format 7-3

3. Ephemeris Time- Ephemeris time (ET). is calculated as "T AI+ 32.184 sec. +periodic terms".

The NAIF S and P kernels have data that is in ET, but the user (via NAIF ephemeris readers which
perform data conversion) can obtain the UTC values.

4. Relative Time- In addition to event times, certain "relative time" fields will be needed to
represent data times or elapsed times. Time-from-closest-approach is an example of such a data
element. These times shall be presented in a (D,H,M,S) format as a floating point number, and
should include fractional seconds when necessary. The inclusion of "day" in relative times is
motivated by the possible multi-day length of some delta times, as could occur, for example, in the
case of the several-month Galileo Jupiter orbit

5. Local TIDies- For a given celestial body. LOCAL_ TILv.IE is the hour relative to midnight in units
of l/24th the length of the solar day for the body.

6. Alternate Time Zones (Relative to UTC)- When times must be expressed according to an
alternate time zone, they shall consist of hours, minutes, seconds, and an offset, in the form
HH:MM:SS.sss+n, where n is the number of hours from UTC.

Chapter 8. Directory Types and Naming 8-1

Chapter 8

Directory Types and Naming

The Directory Naming standard defines the convention for naming subdirectories on a data
volume. This standard lists the predetermined, standard directories that have been established by
PDS, plus the rules for forming subdirectory names and abbreviations.

8.1 Standard Directory Names

The following standard directory names must be used on archive volumes.

CATALOG- Template subdirectory containing PDS Catalog templates.

DOCUMENT- Documentation subdirectory containing text descriptions of the instrument and its
operation.

GAZEITER-Gazetteer subdirectory containing tables of information about the geological
features of a target.

INDEX- Data and inventory index subdirectory containing files which allow users to locate data
of interest.

LABEL- Label subdirectory containing include files which describe the data format and ·
organization.

SOFfW ARE- Software subdirectory containing utilities, application programs, or subprograms
used to access or process data flies.

The following standards directory names are recommended for use on archive volumes.

CALJB -Calibration data subdirectory containing calibration files used in original processing of
data, or needed to use the data.

GEOMETRY- Geometry data subdirectory containing relevant files (SEDRs, spice kemels)
needed to describe observation geometry.

Note that some data sets may not contain all the components above and, as a result, do not need all
of the directories listed above. See the Volume Organization and Naming chapter of this document,
which describes all required and optional subdirectories on a volume. For example, many image
data sets do not include geometry files and so do not need a GEOMETRY directory.

8-2

8.2

1.

2.

3.

4.

I

I
Chapter 8. Directory Types and Namitlg

I

Formation of Directory Names l

i
A directory name shall consist of capitalized alphanumeric characters and the underscor~
"_"character only (i.e., A-Z, 0-9, or"_"). No lowercase letters (i.e., a-z) or special !
characters (e.g.,"#","&","*") are allowed.

I
A directory name shall not exceed 8 characters in length. The purpose of this is to comply
with the ISO 9660 level 1 media interchange standard. i

The first letter of a directory name shall be an alphabetic character, unless the directory I
name represents a year (e.g., 1984). 1

If numeric characters are used as part of the name (e.g., FILE I, FILE2, FILE3) they shoJd
be padded with leading zeros up to the maximum size of the numeric part of the name

1

(FILEOOOl, FILE0002, FlLE3267).

5. Directories_ which contain a range of similarly named flies shall be assigned directory
1

names using the portion of the fi.lename which encompasses all the files in the directory, ;
with "X' s" used to indicate the range of values of actual filenames in the directory. !

I

For example, the PDS Uranus Imaging CD-ROM disk contains image flies named using I
SPACECRAFT _CLOCK_ COUNT values. The directory that contains the image files 1

ranging from C2674702.IMG through C2674959.IMG has the directory name C2674XXX/
I
:

6. Directory names shall use full length terms whenever possible (e.g., SATURN, :
MAGELLAN, CRUISE, NORTH, DATA, SOFrW ARE). Otherwise, directory names I

shall be constructed from abbreviations of fu.l.liength names using the underscore character
to separate abbreviated terms, if possible. The meaning of the directory name should be ·1'

clear from the abbreviation and from the directory structure. .

For example, the following directory structure can be found on the Voyager 2 Images of Uranus ·
CD-ROM Volume 1:

Chapter 8. Directory Types and Naming

ROOT--,---- ARIEL

r--- DOCUMENT

~---­

I

L __ _
L __ _
I ___ _

I
I

INDEX

MlRANDA

OBERON

TITANIA

UMBRIEL

UNKNOWN

URANUS --I- - C2674XXX

t-- -C267SXXX
I ...
-- -C2687XXX

U_RINGS --L- -C261SXXX
I •••

In this case. it is clear from the context that the directory U_RINGS is the abbreviated form of
URANUS_RINGS.

7. High level directories that deal with data sets covering a range of planetary science
disciplines shall adhere to the following hierarchy:

A Planelary science directory: PLANET/
Planetary body subdirec:torles: MERCURY/, MOON/, MARS/, VENUS/, COMET/

Discipline subdirectories: ATMOS/, IONOSPHEI, MAGNETOS/, RING/, SURFACE/, and SATElLIT/
(Use satellite name 1f numerous files exist)

8-3

8. The recommended SOFrW ARE subdirectory naming convention is described in the
Volume Organization and Naming chapter of this document. A platform based model or an
application based model can be used in defining software subdirectories. For a
platform-based model. the hardware platform and operating system/environment must be
explicitly stated. If there is more than one operating system/environment supported. then
they must be subdirectories under the hardware directories If there is only one. then the
subdirectory can be promoted to the hardware directory

For example, if software for the PC for botb DOS and Windows were present on the volume. the directories SOFfW A.RFJPCIDOS
and SOFIW ARFJPCIWIN would exist

If only DOS software were present, tbe directory would be SOFIW AREIPCDOS.

Chapter 8. Directory Types and Naming

8.3 Path Formation Standard , I

The PDS standard for path names is based on Level 1 of the ISO 9660 International Standard. A ·
I

pathname may consist of up to 8 directory levels. Each directory name shall be limited to 8 [
characters (A- Z, 0- 9, _(underscore)). PDS has also chosen the UNIXIPOSIX forward slash

1

separator (f) for use in path names. Path names typically appear on PDS volumes as data in index
I

tables for locating specific files on an archive volume. They may also appear as values in a limited
numberofkeywords (e.g. FILE_SPECIFICATION_NAME, PATH_NAME, and
LOGICAL_ VOLUME_PATH_NAME).

The following are examples of valid path names:

TG15NXXX/TG 15Nlxx:rrG15N12X/ - identifies the location of the directory TG 15Nl2X at the third level below the'
top level of an archive volume.

1

DOCUMENT/ - identifies a DOCUMENT directory at the first level below the top level of a !
volume. ~

'

Note: The leading slash is omitted because these are relative paths. The trailing slash is included
so that the concatenation of PA TH_NAME and FlLE_NAME gives the full file specification. ·

I

Previous PDS standards allowed the use of the DEC VMS syntax for path names. While PDS :I

support for this format continues to exist, it is recommended that all future volumes shall use the
UNIX syntax instead. '

8.4 Tape Volumes

When magnetic tape is used as the archive medium, a directory structure cannot be used because j
the medium does not support multi-level directories. In this case, files must be stored in a ,
sequential fashion, as if they were all located ~ the same directory.
A directory structure for the volume shall be designed in any case, so that when the data is
transferred to a medium which supports hierarchical file structures, the data can then be placed into!
a multi-level directory structure. A DIRECfORY object shall be placed on each tape volume
(within the VOLUME object) which is used to describe how the sequential files should be placed
in a hierarchical structure.

8.5 Exceptions to These Standards i

In certain cases, the archive media used to store the data, the hardware used to produce the data set, I
or the software which must operate on the data may impose restrictions on the names of directories I
and their overall organization. In these cases, the alternate directory organization and naming used
on the data volume should be reviewed by PDS personnel during the data set submission process
in order to determine the best compromise between the standard given above and any practical
restrictions on the volume or data set structure.

Chapter 9. Documentation Standard 9-1

Chapter9

Documentation Standard

Documentation to accompany archived data products is defined as flight project documents,
instrument papers, science articles, or any other textual material deemed necessary to understand
and use those data products and any software provided with the data sets.

During the design of each data set or data set collection, the documentation to be archived with the
data will be chosen. The archive format of this documentation will be chosen at this time as well,
taking into consideration the need for accessibility as well as the need for content. PDS requires an
ASCll version of all documents to be present on archive volumes in order to make the document
accessible to all platforms and text processing packages. Since plain ASCll text cannot include
graphics, which may be a critical component to the document's usefulness, an additional version
or versions of the document also may be included. The standards and guidelines for archive formats
are given in this chapter.

During assembly of the data set or data set collection, each document included must be prepared
and saved as files in the chosen format, labeled using PDS labels, and organized into the
DOCUMENT directory of an archive volume (See the Volume Organization and Naming chapter
of this document.).

NOTE: Some documentation may only be available in hardcopy and will need to be converted into
electronic fo~ in which case optical character recognition scanners may be needed.

9.1 Document Labels

All files contained on a PDS data volume must be labeled. For documentation files, the following
rules apply:

1. Files placed on .a volume to describe the contents of the volume or the contents of a
<tirectory, such as AAREADME.TXT, DOCINFO.TXT, VOLINFO.TXT,
SOFI'INFO.TXT, etc., must be in plain, unmarked ASCll text and must be given the

filename extension of .TXT. These files must include an attached or detached label
containing a TEXT object. (See the definition of the TEXT Object in Appendix A.)

NOTE: one or more additional versions of VOLINFO may be present (e.g. Postscript or a
word processor format). The required file VOLINFO.TXT must be labelled with TEXT
object. The additional file(s) would be labelled with the DOCUMENT object, and an
explantatory NOTE would be added to the label to indicate the required ASCII version is
VOLINFO.TXT.

2. Document files in formats other than plain ASCll placed on a volume to support the data

9-2 Chapter 9. Documentation Standatd

I
set or data set collection must be labeled by a detached label containing a DOCUlMENT I
object (otherwise the label might interfere with the document's application software). i
Documents placed on the volume in plain ASCII text may have either an attached or 1

detached label that contain a DOCUMENT object. (See the definition of the DOCUMENT
~ectin~~M j

9.2 Document Formats

One version of the text of all documentation must be in ASCll text that can be typed or displayed
I

on a screen without word or text processing software. Several versions of a document, or parts of
that document, may be included on a volume for various reasons, such as: I

1. MYDOC.ASC - required ASCU vemion
2. MYDOC. WP - WordPerlect S.O vemon to retain all graphics
3. MYDOCOOI.TIF- scanned 'I'IFF version of selected pages for import capability into many packages.
MYDOCOSO.TIF

I
I
I

9.2.1 ASCll Text Formats

The required text version of a document can be one of the following:

1. Plain, unmarked ASCll text. Documentation files containing unmarked ASCll text should
be given the file extension of .ASC. Lines of plain ASCII text should be 78 or fewer !
characters followed by the Carriage Return (Control M, Hex OxOd) and Line Feed (Control
J, Hex OxOa) characters.

2.

The line length limitation is imposed to allow importing of text into environments which •
may reserve several characters for line numbering, or other uses. The use of the Carriage [
Return and Line Feed characters ensures readability in the four environments commonly in
use by planetary researchers. In the Macintosh and UNIX environments simple utilities ~
av~able (Apple File Exchange and Translate, respectively) to add (if submitting data) or 1

eliminate (if using data) the Line Feed or Carriage Return. . .

Paragraphs should be separated by one or more empty lines, containing only the Carriage I
Return/Line Feed sequence. This will facilitate simple conversion of text rlles into word I
processor formats. In order to organize text into pages, the page feed character (Control L,
HEX OxOc) is also allowed in text files. If this feature is used, page length should be kept I
to 60 lines of text and a page feed character should be inserted immediately after the EN.Q
(CRILF) statement of any PDS labels which appear at the beginning of the document.

ASCII text containing a markup language. These ASCII files contain ASCll codes that can
· be interpreted by specific word processing programs, but the flles themselves can be !

viewed on any screen.

~~·

Chapter 9. Documentation Standard 9-3

Flies shall be given the file extension of their format type or their target processing program, such
as:

TeX .TEX
LaTeX .TEX
Interleaf .n.
RiJNOFF .RNO
NROFF!l'ROFF .ROF

Following is a list of document format types fitting this criteria:

a. SG:ML - Standard Generalized Markup Language. SGML provides special codes
(in ASCll) which indicate common document components (title, chapter, etc.) This
standard for document preparation has been adopted by the DOD calls (computer
aided logistics program) and is strongly supported in the printing industry.

Advantages:

Disadvantages:

SGML is a descriptive markup language, describing the
structure of a document independent of any text formatter or
use of the data, and has been designed as a standard for
interchanging text, thereby making user conversion
prog!ams a real possibility (publicly available conversion
programs will surely be available in the near future). SGML
documents can be validated using SGML parsers to ensure
their adherence to the SGML standard. SGML parsers are

. easily accessible and distributable.

SGML-supporting software and expertise is not wide-spread
throughout the PDS community at the present time.

b. TeX- TeX is a computerized typesetting program which accepts documents
consisting of ASCD characters with embedded ASCIT codes which identify special
formatting.

Advantages:

Disadvantages:

TeXis widely used and exists for hundreds of different
computers and operaJ;ing systems. Files can be viewed as
ASCIT text, or processed by TeX and then previewed on the
screen by widely available software such as Preview.
Mathematical formulas can be included using TeX. as well
as external references to Postscript files containing graphics.

The TeX processing $Oftware must be available to format
and print the files. TeX documents are usually preceded by
user-defined macro definitions, requiring that these
definitions be included with the file to assure compatibility
with standard TeX.

I
9-4 Chapter 9. Documentation Standarii

l

3. LaTeX -A popular generic markup language that consists of macros written in TeX.

Advantages:

Disadvantages:

Same as TeX, with the addition that LaTeX is usually
simpler than TeX and its markup is less obtrusive when
viewing the document in ASCIT.

Same as TeX.
I

4. lnterleaf- A mixed text, graphics, and image document editor based on a structuredl
document architecture. FJ.les can be saved in ASCIT with Interleaf markup.

Advantages: Interleaf markup language is composed of semantic
elements in the SGML sense, thereby making conversion
programs possible, and is easily viewed as ASCIT text.

1

Interleaf is widely used OJ} workstation environments such as
Sun and Apollo. '

Disadvantages: Interleaf software is required to format and print the
document.

5. RUNOFF- The DIGITAL Standard Runoff (DSR) text formatting facility which
processes ASCIT files containing text, and DSR commands and flags.

Advantages:

Disadvantages:

RUNOFF is a standard utility in the widely used VMS
environment. DSR input files are easily viewed as ASCIT
text.

RUNOFF is required to format and print the document

6. NROFFJTROFF - Both n.r0ff and troff are text processing utilities for the Sun system, 1
nroff for typewriter-like terminals or printers, and troff for typeset formatting. Both nroft
and troff accept ASCIT files containing text interspersed with lines of format control !

information.
I
I

Advantages: Both nroff and troff are standard utilities in the widely used
Sun OS environment Input files can be viewed as ASCIT il

text.

Disadvantages: Either nroff or troff is required to format and print the
document Input fJ.les could be less "pleasant" to view as
ASCIT text due to the cryptic nature of its format control
commands.

7. Miscellaneous Notes - Although FrameMaker Interchange Flies (MIF) are ASCIT files
containing markup, this is not a recommended format for fulfi1ling this requirement. The
markup is very extensive and inhibits the ASCIT viewing of the text.

I

Chapter 9. Documentation Standard

9.2.2 Non-ASCII Formats

Documents can be supplied on archive volumes in formats in addition to the required ASCll
version. Document files provided on archive volumes shall be given the file extension of their
format type or their application program, such as:

WordPerfectS.O .WP
FrameMaker .MIF
11FF .TIF
Postscript .PS
Encapsulated Postscnpt .EPS

The recommended non-ASCTI document formats include:

1. WordPerfect 5.0- WordPerfect 5.0 word processing package.

9-5

Advantages: WordPerfect 5.0 is widely used within the PDS comln.unity
and can contain graphics and complicated text. Hardcopy
documentation can easily be scanned into WordPerfect 5.0
format.

Disadvantages: WordPerfect format can only be read by WordPerfect
software.

2. FrameMaker - FrameMaker word processing package.

Advantages: Fram.eMaker is available on many platforms and can contain
graphics and complicated text. Hardcopy documentation can
easily be scanned into Maker Interchange Format (M1F)
files.

Disadvantages:Fram.eMak.er format can only be read by Fram.eMak.er
software, unless a conversion program is written or obWJ:ied
for MIF ftles.

3. TIFF - Tagged Image FJ.le Format for storing scanned documents, images, or graphics.

Advantages: The exact representation of the document, including
graphics and typesetting, is captured. Hardcopy documents
can easily be scanned into TIFF files. TIFF is accepted as an
import file type to many word processing packages such as
PC W ord.Perfect, MAC Framemaker, ancl MAC PageMak.er,
as well as other systems such as MAC Photoshop.
Uncom.pressed TIFF files are very large, but CCITT/3
compression reduces the size of these files which can'still be
read quite well. TIFF Group 4 compression reduces the fJ.le
size even more and is a CALS standard. Group 3 compressed
is recommended.

9-6 Chapter 9. Documentation Standald
I
I
'
I

Disadvantages:TIFF stores one page per file and results in very large fileJ
requiring a great deal of storage space. Group 3 and Group~
compression do not store gray-scale images. TIFF requires'
TIFF-accepting software to view and print files. I

4. Postscript - Postscript page description language files are read by an interpreter in a
Postscript printer such as LaserWriter or Imagen.

Advantages: Postscript files are ready to print and can include graphics dr
complicated text. Postscript printers are widely used and '
available throughout the PDS community.

Disadvantages:Postscript flies cannot be imported into text or word
processing packages. They can only be printed.

5. Encapsulated Postscript (EPS) - Used for storing images, figures, graphics. .

Advantages: Encapsulated Postscript files can be imported into a numbe~
of text and word processing packages, such as MAC l
FrameMaker, WORD, and WordPerfect, as well as other :
programs for viewing and printing files such as Ghostscript
and Ghostview. I

Disadvantages:Requires EPS-accepting software to view and print files.

93 Validation

Documentation files prepared to accompany the data set or data set collection must be validated m
that the rues can be copied or transmitted electronically, and can be read or printed by their target
text processing program. Documentation files should be spell-checked prior to archive. i

9.4 Guidelines . .

The basic guideline for the content of documentation is, "Can this information be useful to a datal
user?'' and "Is the material necessary, ail.d is it sufficient?" There are many levels of inquiry 1

possible regarding data sets, from the casual examination to the total reworking of a data set. Wh~
is useful therefore also varies. The intent ofPDS is to err on the side of completeness; it is intended;
that calibration information, for example, be available to those who may want to reprocess data, or

I
who question conclusions based on that calibration. '

Chapter 10. Flle Specification and Naming 10-1

· Chapter 10

File Specification and Naming

The File Specification and Naming Standard defmes the PDS conventions for forming file
specifications and file names. This standard is based on Level I of the international standard ISO
9660, "Information Processing- Volume and File Structure of CD-ROM for Information
Interchange." The PDS has chosen the UNIX/POSIX forward slash operator {/)for use in path
names. Throughout this document notation has been changed from the VMS-style accepted in
previous versions to the UNIX/POSIX style. Directory path name formation is discussed further
in the Directory Types and Naming chapter of this document.

10.1 File Specification Standards

A file specification consists of the following elements:

A complete directory path name

A filename

(as discussed in the Directory Types and Naming
chapter of this document)

A file name consists of a basename and an extension separated by a required FUlL STOP (a.k.a.
period) character(.). The total length of the file name shall not exceed 12 characters. The length of
the base name shall not exceed 8 characters and the extension shall not exceed 3 characters. Both
the base name and extension shall contain only the upper case alphanumeric character set (A- Z.
0-9), and underscore u. These requirements.ate often referred to as the 8.3 (8 dot 3) file naming
convention. These limitations exist primarily to conform to the ISO 9660 CD-ROM standard, and
to accommodate computer systems (e.g. IBM DOS-based PCs) that cannot handle longer flle
names. Since PDS archive volumes are designed to be read on many platforms, including PCs,
these restrictions are necessary.

The following shows an example of a simple file name, which can be used to locate the file
provided you are located in the proper directory already. The file specification identifies the
location of the file relative to the root of a volume, inlcuding the directory path name.

File Name: TGI5N122.IMG

File Specification: TG 15NXXXlfG 15NlxxtrG 15N12X/fG 15Nl22.IMG

Do not use path or file names that correspond to operating system specific names, such as:

AUX CLOCK$ COMl CON LPTl NUL PRN

10-2 Chapter 10. FJle Specification and Namirig
I

10.2 File Naming Standards

The following sections identify the PDS required and reserved file names and file extensions. I
Required and reserved flle names and extensions provide consistency across PDS archive volumd,
which is helpful to users. Also, software tools can make use of this predictability. 1

I

Required means that if a file contains a given type of information, it shall have the given name o~
extension. Reserved means that if a file has a given name or extension, it shall contain that type of
information. For example, the volume object is contained in, and only in, the file named !

VOLDESC.CAT. It is a required file name. A file named TG 15Nl22.IMG contains an image. I

Another image could be in a fJ.le named GCPL1223.653. The extension IMG is a reserved, but no~
required, rue extension for images.

I
' I

File extensions should be used to identify the data type of a file. This is reflected in the required!
and reserved file extensions listed later in this chapter. ·

10.2.1 Required File Names

VOLDESC.CAT -This file name must be used for the file containing the volume object. This
required file is placed in the ROOT directory of a volume.

objectname.CAT- This category of file name must be used for flies containing a catalog object. ;
These files, if present on a volume, must be placed in the CAT ,t\LOG directory of a volume. 1'hd
Software Inventory catalog object may also be placed in the SOFTWARE hierarchy under the !
appropriate DOC directory. '

!
NOTE: PDS requires that either these objectname.CAT files, or the VOLINFO.TXT file describecf
below, be present on the volume. :

.. objectname .. is one of the commonly used catalog objects listed below. The form of the file name
varies if one or more objects are described within the same or separate files. For example. if a !

volume contains a single data set. the data set object shall be contained in the file named \
DATASET.CAT. If the volume contains multiple data sets and the data set objects are contained
in a single file, it shall be named DATASET.CAT. If the volume contains multiple data sets and I
the data set objects are contained in separate files, each file shall be named xxxxxxDS.CAT where
"xxxxxx" is replaced with an acronym of up to six characters for the data set.

I

If a single file is used to contain all catalog objects, it must be named CATALOG.CAT. The
pointer expression becomes:

"CATALOG= "CATALOG.CAT" I

If catalog objects are organized in separate flles or sets of files, pointer expressions shall be I
constructed according to the following table. Under "File Name", the first line shows the file name
to be used if a single catalog flle is present on the volume for the particular type of catalog object
named. The second shows the syntax and fJ.le name convention to be followed if multiple catalog
files are present for the named object. ·

Chapter 10. File Specification and Naming

Catalog Pointer Name FileName

"DATA_SET_CATALOG = "DATASET.CAT"
= ("xxxxxxDS.CAT","yyyyyyDS.CAT'}

"DATA_SET_COILEcnON_CATALOG = "DSCOLL.CAT'
= { "xxxx:x.DSC.CAT'', "yyyyyDSC.CAT"}

"DATA_SET_MAP _PROJECTION_CATALOG = "DSMAP.CAT"
= {"xxxDSMAP.CAT","yyyDSMAP.CAT"}

AJNSTR.UMENT_CATALOG = "INST.CAT"
= {"xxxxiNST.CAT";yyyyiNST.CAT"}

AJNSTRUMENT_HOST_CATALOG = "INS'lliOST.CAT"
= {"xxxxHOST.CAT","yyyyHOST.CAT'}

AMISSION_CATALOG = "MISSION.CAT"
= { "xxxxxMSN.CAT" ,"yyyyyMSN.CAT''}

APERSONNEL_CATALOG = "PERSON.CAT'
= {"xxxxPERS.CAT,"yyyyPERS.CAT''}

AREFERENCE_CATALOG = "REF.CAT"
= {"xxxxxREF.CAT'',"yyyyyREF.CAT"}

ASOFfWARE.JNVENTORY_CATALOG = "SWINV.CAT"
= {"xxxSWINY.CAT', "yyySWINV.CAT''}

10-3

AAREAD.ME.TXT- This file name must be used for the file that contains a terse description of the
volume contents. This required file is placed in the ROOT directory of a volume.

ERRATA. TXT- This file name is used for a file used to provide comments as well as to report
errors. Cumulative comments for a volume set are kept in this file (although cumulative comments
are optional for a volume set). This optional file is placed in the ROOT directory of a volume.

VOLINFO.TXT- This file name must be used for the file containing detailed information
necessary to interpret the data set(s) contained on the volume. When present, this file is placed in
the DOCUMENT directory of a volume. The VOLINFO.TXT file is referenced in the catalog
object as "'DESCRIPTION= "VOLINFO.TXT".

NOTE: PDS requires that either the VOLINFO.TXT file, or the objectname.CAT files described
above. be present on the volume.

The following xxiNFO.TXT files are required to appear in the non-data subdirectories that appear
on the volume:

GEOMINFO.TXT is placed in the GEOMETRY subdirectoiy
CALINFO.TXT is placed in the CALIB subdirectoiy
DOCINFO.TXT is placed in the DOCUMENT subdirectory
GAZINFO.TXT is placed in the GAZE'ITER subdirectory
CATINFO.TXT is placed in the CATALOG subdirectory .
LABINFO.TXT is placed in the LABEL subdirectory
INDXINFO.TXT is placed in the INDEX subdirectory
SOrnNFO.TXT is placed in the SOFIW ARE subdirectory

The following xxiNFO.TXT files are recommended in the appropriate SOFIW ARE subdirectories:
PCINFO.TXTin the SOFIWAREJPC subdirectory

10-4

MACINFO.TXT in the SOFIW AREIMAC subdiiectory
SUNINFO.TXT in the SOFIW ARE/SUN subdiiectory
V AXINFO.TXT in the SOFIW ARE'V AX subdirectory
SGDNFO.TXT in the SOFIW ARE'SGI subdiiectory

The following file names should be used for INDEX files:
For a volume index:
INDEX.TAB or
axxlNDEX.TAB (with "axx" replaced by an appropriate mnemonic)

For a cummulative index:
CUMINDEX. TAB or
axxCMIDX. TAB (with "axx" replaced by an appropriate mnemonic)

10.2.2 Reserved FOe Names

Chapter 10. File Specification and Naming

VOLDESC. SFD - for use with a file containing an SFDU Reference Class object for an archive volume

10.2.3 Required FOe Extensions

CAT - for use with a file containing a caW.og object

.FMT - for use with an include file containing structural information (meta data) describmg a data object

.LBL- for use wtth a file containing a detached PDS label for any class of data object
Note that a file containing a detached label should have the. same base name as its' associated data file, but the
extension .LBL

.TXT- for use with a file described by the TEXT data object

.ASC - for use with a file containing a document in ASCll text format described by a label containing a DOCUMENT object
definition.

10.2.4 Reserved Fne Extensions

.IBG • for use wtth a file containing browse image data

.IMG - for use with a file containing image data

.IMQ - for use with a file containing image data that bas been compressed

.TAB - for use with a file containing table data
(Note: this extension is also used for table data in ASCII form described by a detached PDS label) .

. DAT- for use with binary files (other than images)

.QUB - for use with spectral (or other) image qubes

.TSP ·for use with SPICE Transfer format SPK (ephemeris) files

.BSP- for use with SPICE Binary format SPK (ephemeris) files

.TC- for use with SPICE Transfer format CK (pointing) files

Chapter 10. File Specification and Naming 10-5

.BC - for use with SPICE Binary format CK (pointing) files

.TI - for use with SPICE Text IK (instrument parameterS) files

.TLS- for use with SPICE Leapseconds kernel files

.TPC- for use with SPICE Phystcal and cartographic constants kernel files

. TSC - for use with SPICE Spacecraft clock coefficients kernel files

NOTE: Additional file extensions are reserved for use for document files only and are described in
the Documentation chapter in this document

10.3 File Naming Guidelines

In cases where file names will contain an identification value constructed from the time tag or data
object identifier, the following forms are suggested (but not required):

Pnnnnnnn.EXT

where Pis one of the following:
C -The following value is a clock count value (C3345678.IMG)
T- The following value is a time value (T870315.TAB)
F - The following value is a FrameiD or an lmageiD (F242A03.IMG)
N- The following value is a numeric file identification number (N003.TAB).

Chapter 1 1. Media Formats for Data Submission and Archive 11-1

Chapter 11

Media Formats for Data Submission and Archive

This standard identifies the physical media formats to be used for data submission or delivery to
the PDS or its Science Nodes. It is expected that flight projects will deliver all standard digital
products on magnetic or optical media. Electronic delivery of modest volumes of special science
data products may be negotiated with the Science Nodes.

During archive planning, the data producer and PDS will determine the medium (or media) to use
for data submission and archive. This standard lists the media that are most commonly used.
Delivery of data on media other than those listed here can be negotiated with PDS on a case-by­
case basis.

The use of 12-inch Write Once Read Many (WORM) disk, 8-mm EXABYTE tape or 4-mm OAT
tape is NOT recommended for archival products. WORM disks are not transportable between
various vendor hardware. Helical scan tape (8-mm or 4-mm) is prone to catastrophic read errors.

For archival products only media that conform to International Standards Organization (ISO)
standards for physical and logical recording formats should be used.

1. The preferred data delivery medium is the compact disc, either CD-ROM or CD-WO
(recordable) disc, in IS0-9660 format, using Interchange Levell.

2. Standard computer compatible tape (CCT) on 12-inch reels recorded in ANSI format
(equivalent to VAX 'COPY' format) is acceptable.

3. ISO compatible 5 114-inch WORM or Magneto Optical disk is acceptable.

4. IBM 3480-compatible tape cartridges are acceptable.

11.1 CD-ROM Recommendations

11.1.1 Use of Extended Attribute Records (XARs)

The use of Extended Attribute Records (XARs) on CO-ROMs shall be at the discretion of the data
producer, based on the anticipated use of the CD-ROMs. If the CD-ROMs will be widely used on
VMS platforms with software which expects certain record formats, then XARs should be
provided. If the CD-ROMs will be used on mixed platforms and there is no existing software on
the VMS platform which accesses the data files, XARs need not be included. This issue should be
discussed during the Peer Review or Data Delivery Review for any CD-ROM product. See the
Records Formats chapter of this document for additional reqt$'ements on CD-ROMs that have
XARs.

Chapter 1 L Media Formats for Data Submission and Arcbi~e
I

11-2

'

I
Software developed by PDS for use on VMS platforms should not expect record attributes to be 1

specified on all CD-ROM d::!.ta files, and should allow processing of files which do not have XAR
records. Preferably, they should extract information about the record attributes from the PDS I
labels, not from the operating system.

11.1.2 Premastering Recommendation

PDS recommends that CD-ROMs be premastered using a single-session, single-track format.
Other formats have been found to be incompatible with some readers.

11.1.3 Packaging Software files on a CD-ROM

If the archive is being premastered such that it will be supported on all platforms and it includes
software for the MAC and SUN, then the following applies:

1. MAC Software

If the archive includes software for the MAC, the MAC files must be prepared in a particular
1

format. This is because other platforms can't recognize the resource and data fork files that come!
with MAC applications. This has been done with the NIHIMAGE software on the Magellan GxDR
and the Clementine EDR CD-ROMs. There is a MAC utility, called STUFFIT, that is used to !
prepare the files; i.e. compress and BINHEX the MAC files. The users will also need this utility!
in order to use the software (they will need to unBINHEX and decompress the file). This should

1

be described in a text file included on the CD-ROM (in the appropriate SOFrW AREJDOC '
subdirectory).

Example of text documenting HQX files

Macintosh Software

This d.irectory contains software which can be used to display the GXDR
images on a Macintosh n computet with an 8-bit color display.

NOTE: Because of the way this CD--ROM was produced. it was oot
possible to record this display program as a Macintosh executable
file. Anyone who is unfamiliar with the Macintosh STUFFIT utility
should contact the PDS operator, 818--306-6026. SPAN address
JPLPDS::PDS_OPBRATOR. INTERNET address PDS_OPERATOR@JPLPDS.JPL.NASA.GOV

The file IMAGE.HQX contains the NIH Image program. along with several
ancillary files and documentation in Microsoft WORD fonnat. It was
written by Wayne Rasband of the National Institutes of Health. The
program can be used to display any of the image files on the GXDR
CD--ROM disks.

The Image executable and manual are stored in BINHEX fmmat, and the
utility STUFFlT or UNSTUFFIT must be used to: 1) decode the BINHEX

Chapter 11. Media Formats for Data Submission and Archive

file IMAGE.HQX into IMAGE.SIT, using the 'DECODE BINHEX Fll.E. .. ' option
in the Other menu; and 2) use 'OPEN ARCHIVE' from the File menu to ·
extract Image 1.40 from the STUFFIT archive file. There are also
several other files in the archive file wbicb should be unstuffed and
kept together in the same folder as the Image executable is stored.

The STUFFIT software is distributed as shareware. STUFFIT, Version
1.5.1, is available by contacting:

Raymond Lau MacNET:RayLau Usenet:raylau@dasysl.UUCP
100-04 70 Ave. GEnie:RayLau
Forest Hills, N.Y. 11375-5133 CIS.76174,2617
United States of America. Delpbi:RaymondLau

Alternatively, STUFFIT CLASSIC, Version 1.6, is available by contacting:

Aladdin Systems, Inc.
Deer Paik Center
Suite 23A-171
Aptos, CA 95003
United States of America

2. SUN Software- preserving the SUN filesystem (e.g. filenames)

11-3

The ISO standard is all files and directories are uppercase, so when a disc is premastered as an ISO
CD, this is automatically done by the premastering software. We know from experience that some
CD readers connected to SUNs can show files/directories as uppercase instead of lowercase. This
can cause problems when the user copies the files over and tries to do a build if the software
filename should be lowercase.

There are two options on how to preserve the SUN filesystem (other than not doing anything and
just documenting it). The first option was used for Clementine.

The options are:
a. Build tar/compressed/encoded files for the SUN executables and source files. This is analogous
to what is done for the MAC with the HQX files. This way the actual software filenames will be
retained as they should be for the SUN when the user copies over the fJ.les and decodes/
uncompresses/detars them. This should be documented.

b. YoungMinds provides something to deal with this very problem. A translation table can be
created (called YMTRANS.TBL) to provide a mapping of the filename on the CD to what it should
be on the SUN UNIX. If the premastering is on a PC, this can't be done automatically because the
files have already been moved to a PC. However, it is only an AS~ table with a simple format
so it can be created manually. There would have to be a translation table in every SUN OS
subdirectory (/BIN, /SOURCE, /DOC) and its contents should only be of the files that appear in
the subdirectory in which it exists. Software must be provided on the CD (provided by
YoungMinds) for the user to copy the files. This software uses the translation tables. This would
also have to be documented. As an alternative to the Young Minds solution, one could supply a
custom script with the CD that will perform the proper case translations.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-1

Chapter 12

Object Description Language Specification and Usage

The following provides a complete specification for the Object Description Language (ODL). the
language used to encode data labels for the Planetary Data System (PDS) and other NASA data
systems. This standard contains a formal definition of the grammar of the ODL and describes the
semantics of the language. PDS specific implementation notes and standards are referenced in
separate sections of this chapter. ·

12.1 About the ODL Specification

This standard describes Version 2.1 of the ODL. Version 2.1 ofODL supersedes Versions 0 and 1
of the language which were used previously by the PDS and other groups. For the most part. ODL
Version 2.1 is upwardly compatible with previous versions of ODL. There are, however, some
features found in ODL Versions 0 and 1 that have been removed from or changed within Version
2. The differences between ODL versions are described in Section 12.7. The following is a sample
data label written in ODL that describes a file and its contents:

I* File Format and Length .,
RECORD_TYPE= FIXED_LENGI'H
RECORD _BYTES= 800
FILE_RECORDS= 860

I* pomter to First Record of Major Objects in File •t
"IMAGE ::::40
"IMAGE_IfiSTOGRAM= 840
"ENGINEERlNG_TABLE= 842

I* Image Desaiption •t
SPACECRAFT _NAME= VOYAGER_2
TARGET _NAME= 10
IMAGE_ID= "051412-00"'
IMAGE_TIME= 1979-07-08T05:19:11
INSTRUMENT _NAME= NARROW _ANGLE_CAMERA
EXPOSURE_DURA110N= 1.9200 <SECONDS>
NOTE = "Routine multispectral longitude

coverage.! of7 frames"
I* Desaiption of the Objects Contained in the File */

OBJECT= IMAGE
LINES = 800
LINE_SAMPLES= 800
SAMPLE_TYPE= UNSIGNED _INTEGER
SAMPLE__BITS= 8

END_OBJECT= IMAGE

OBJECT= IMAGE_HISTOGRAM
ITEMS =25
ITEM_TYPE =INTEGER
ITEM_BITS = 32

END_OBJEcr = IMAGE_HISTOGRAM
OBJECT= ANCILLARY_TABLE

I
12-2 Chapter 12. Object Description Language (ODL) Specification and Usage

12.1.1

"STRUCTURE= "TABLE. FMT'
END_OBJECf= ANCILLARY_TABLE
END

Implementing ODL

Notes to implementers of software to read and write ODL-encoded data descriptions appear
throughout the following sections. These notes deal with issues that are beyond language syntax;
and semantics but that are addressed to assure that software for reading and writing ODL will be
uniform. The PDS, which is the major user of ODL-encoded data labels, has levied additional i
implementation requirements for software used within the PDS and these requirements are i
discussed below where appropriate.

12.1.1.1 Language Subsets

Implementers are allowed to develop software to read or write subsets of the ODL. Specifically,!
software developers may: ·

• Eliminate support for the GROUP statement

• Not support pointer statement

• Not support certain types of data values

For every syntactic element supported by an implementation, the corresponding semantics must be
fully supported, as spelled out in this document. Software developers should be careful to assure:
that language features will not be needed for their particular applications before eliminating theml
Documentation on label reading/writing software should clearly indicate whether or not the •
software supports the entire ODLand if the software does n9t support the full ODL specificati.onl
the documentation should clearly spell out the subset that is allowed. [

!

12.1.1.2 Language Supersets j

Software for writing ODL must not provide or all9w lexical or syntactic elements over and above:;
those described below. With the exception of the PVL-specific extensions below, software for ·
reading ODL must not provide or allow any extensions to the language.

12.1.1.3 PDS Implementation of PVL-Specltic Extensions
'

PDS implementation of software for reading ODL may, in some cases, provide handling of lexical
I

elements which are included in the CCSDS specification of the Parameter Value Language (PVL)1
PVL is a superset of ODL. Extensions which may be handled by such software include: I

• BEGIN_OBJECf as a synonym for the reserved word OBJECf.

• BEGIN_ GROUP as a synonym for the reserved word GROUP.

• Use of the semicolon (;) as a statement terminator.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-3

These lexical elements will not be supported by software which writes ODL.Therefore, they must
be removed (in the case of semicolons) or replaced (in the case of the BEGIN_OBJECT and
BEGIN_ GROUP synonyms) upon output.

12.1.2 Notation

The formal description of the ODL grammar is given in a Backus-Naur format (BNF) notation.
Language elements are defmed using rules of the following form:

defmed_element ::=definition

where the definition is composed from the following components:

1. Lower case words, some containing underscores, are used to denote syntactic
categories. For example:

units_expression

Whenever the name of a syntactic category is used outside of the formal BNF
specification, spaces take the place of underscores (for example, units expression).

2. Boldface type is used to denote reserved identifiers. For example:

object

Special characters used as syntactic elements also appear in boldface type.

3. Square brackets enclose optional elements. The elements within the bracket may
occur once at most.

4. Square brackets followed immediately by an asterisk or plus sign specify
repeated elements. If the asterisk follows the brackets, the elements in the brackets
may appear zero, one, or more times. If a plus· sign follows the brackets, the
elements in the brackets must appear at least once. The repetitions occur from left
to right.

5. A vertical bar separates alternative elements.

6. If the name of any syntactic category starts with an italicized part, it is equivalent
to the category name without the italicized part. The italicized part is intended to
convey some semantic information. For example, both object_identifier and
units_identifier are equivalent to identifier; object_identifier is used in places where
the name of an object is required and units_identifier is used where the name of
some unit of measurement is expected.

12-4 Chapter 12. Object Description Language (ODL) Specification and Usag~

12.2 Character Set •
. I

The character set of ODL is the International Standards Organization's ISO 646 character set The
U.S. version of the ISO 646 character set is ASCII and the ASCII graphical symbols are used I
throughout this document In other countries certain symbols have a different graphical .
representation. ·
The ODL character set is partitioned into letters, digits, special characters, spacing characters,
format effectors and other characters:

character::= letter I digit I special_character I
spacing_character I format_ effector I
other_character

The letters are the uppercase letters A - Z and the lowercase letters a - z. The ODL is case- I
insensitive, meaning that lower case letters are treated as identical to their upper-case equivalent}
Thus the following identifiers are equivalent:

• IMAGE_NUMBER

• Image_Number

• image_num.ber

An exception to the case rule is when lowercase letters appear as part of text strings. For example,!
the text String "abc" is not the same as the string "ABC". I

The digits are 0, 1,2,3,4, 5, 6,7,8,9.
The following special characters are used in the ODL:

Symbol Name Usage

{}

()

+

<>

Equals

Braces

parentheses

Plus

Minus

Angle brackets

Period

Quotation Marks

Apostrophe

Underscore

Comma

The equals sign equates an attribute or pointer to a value.

Braces enclose an unordered set of values.

parentheses enclose an ordered sequence of values.

The plus sign indicates a positive numeric value.

The minus sign indicates a negative numeric value.

Angle brackets enclose a units expression associated with a numeric value.

The period is the decimal place in real numbers.

Quotation marks denote the beginning and end of a text string value.

Apostrophes mark the beginning and end of a literal value.

The underscore separates words within an identifier.

The comma separates the individual values in a set or sequence.

!

I

*

Slant

Asterisk

The slant character indicates division in units expressions. The sian~ is also

part of the comment delimiter. I

The asterisk indicates multiplication in units expressions. Two asterisks in ~

row indicate exponentiation in units expressions. The asterisk is also part of

I
I
'

Chapter 12. Object Description Language (ODL) Specification and Usages 12-5

the comment delimiter.

Colon The colon separates homs. minutes and seconds within a time value.

Sharp The sharp delimits the digits in an integer number value expressed in based

notation.

&
1\

Ampersand

Circumflex

The ampersand denotes continuation of a statement onto another line.

The circumflex indicates that a value is to be interpreted as a pointer.

Two characters, called the spacing characters, separate lexical elements of the language and can be
used to format characters on a line:

Space
Horizontal Tabulation

The following ISO characters are format effectors, used to separate ODL encoded statements into
lines:

Carriage Return
Line Feed
Form Feed
Vertical Tabulation

The spacing characters and format effectors are discussed further in section 12.4.1 below. There
are other characters in the ISO 646 character set that are not required to write ODL statements and
labels. These characters may, however, appear within text strings and quoted symbolic literals:

$%;?®[]'1-

The category of other characters also includes the ASCll control characters except for horizontal
tabulation, carriage return, line feed, form feed and vertical tabulation (e.g., the control characters
that serve as spacing characters or fonnat effectors). As with the printing characters in this
category, the control characters in this category can appear within a text String or symbolic literal
The handling of control characters within text strings and symbolic literals is discussed in Section
12.3.5 below.

12.3 Lexical Elements

This section describes the lexical elements of the ODL. Lexical elements are the basic building
blocks of the ODL and statements in the language are composed by stringing lexical elements
together according to the grammatic rules presented in Section 12.4. The lexical elements of the
ODLare:

• Numbers

• Dates and Times

I
12-6 Chapter 12. Object Description Language (ODL) Specification and Usage

• Srings

• Identifiers

• Special symbols used for operators, etc. !

Lexical elements are technically only strings of characters and a lexical element has no meaning J.
and of itself: the meaning depends upon the syntactic role played by the element and the
corresponding semantics. Therefore rules for determining the meaning of lexical elements (for
example, the rules that govern the range of numeric values) are found in the sections on language
syntax - sections 12.4 and 12.5 below - rather than in the current section. There is no limit on thJ
length of any lexical element. However, software for reading and writin~ ODL may impose j

limitations on the length of text strings, symbol strings and identifiers. It is recommended that at
least 32 characters be allowed for symbol strings and identifiers and at least 400 characters for text
strings. 1

12.3.1 Numbers

The ODL can represent both integer numbers and real numbers. Integer numbers are usually
represented in decimal notation (like 123), but the ODL also provides for integer values in other :
number systems (for example, 2#1111 011 # is the binary representation of the decimal integer !

number 123). Real numbers can be represented in simple decimal notation (like 123.4) or in a
scientific notation that includes a base 10 exponent (for example, 1 .234E2).

12.3.1.1 Integer Numbers In Decimal Notation

An integer number in decimal notation consists of a string of digits optionally preceded by a
number sign. Unsigned integer numbers are assumed to be positive.

integer :: = [sign] unsigned_integer
unsigned_integer ::=[digit]+
sign::= + 1-

Examples of Decimal Inte~ers

0
123

+440
-150000

~------ ----~ ---------'---------

Chapter 12. Object Description Language (ODL) Specification and Usages

12.3.1.2 Integer Numbers In Based Notation

An integer number in based notation specifies the number base explicitly. The number base must
be in the range 2 to 16, which allows for representations in the most popular number bases,
including binary (base 2), octal (base 8) and hexadecimal (base 16). In geneill.l, for a number base
X the digits 0 to X-1 are used. For example, in octal the digits 0 to 7 are allowed. If X is greater
than 10, then the letters A. B, C, D, E, F (or their lower case counterparts) are used as needed for
the additional digits.
A based integer may optionally include a number sign. An unsigned based integer number is
assumed to be positive.

based_integer :: =radix# [sign] [extended_digit] + #
extended_digit :: = digit I letter
radix :: = unsigned_integer

Examples of Based Integers

2#1001011#
8#113#
10#75#
16#4B#
16#+48#
16#-4B#

All but the last example above are equivalent to the decimal integer number 75. The final example
is the hexadecimal representation of -75 decimal.

12.3.1.3 Real Numbers

Real numbers may be represented in a decimal notation (like 123 .4) or in a scientific notation with
a base 10 exponent specified (like 1 .234E3). A real number may optionally include a number sign.
Unsigned real numbers are assumed to be positive.

real::= [sign] unsc:aled_real. I [sign] scaled_real
unscaled_real. :: = unsignedjnteger. [unsigned_integer] l.unsigned_integer
scal.ed_real :: = unscaled_real exponent
exponent :: = E integer I e integer .

Note that the letter E in the exponent of a real number may appear in either upper or lower case.

Examples of Real Numbers

0.0
123.
+1234.56
-.9981
-l.E-3
31459e1

12-8

I

Chapter 12. Object Description Language (ODL) Specification and Usag~
I

I
U.3.2 Dates and Times · !

Because time is an important data type in science, the ODL has lexical elements to represent dates
I

and times. The formats for dates and times are a subset of the formats defmed by the International
Standards Organization Draft Standard ISO/DIS 8601. I

(For information regarding PDS specific use of dates and times, see the Dateffime chapter in this
document.)

12.3.2.1 Date and Time Values

Date and time scalar values represent a date, or a time, or a combination of date and time:

date_time_ value :: =date I time I date_time

The following rules apply to date values:

• The year can be either Anno Domini (i.e., 1990), or it can be given modulo 100 (i.e., 90).

• The month must be a number between 1 and 12.

• The day of month must be a number in the range 1 to 31, as appropriate for the particular
month and year.

• The day-of-year must be in the range 1 to 365, or 366 in a leap year.

The following rules apply to time values:

• Hours must be in the range 0 to 23.

• Minutes must be in the range 0 to 59.

• Seconds, if specified, must be greater than or equal to 0 and less than 60.

The following rules apply to zone offsets within zoned time values:

• Hours must be in the range -12 to+ 12 (the sign is mandatory).

• Minutes, if specified, must be in the range 0 to 59.

Chapter 12. Object Description Language (ODL) Specification and Usages

12.3.2.2 Implementation of Dates and Times

All ODL reading/writing software shall be able to handle any date within the 20th and 21st
centuries.

12-9

Software for writing ODL shall always output full four-digit year numbers so that the labels will
be valid into the next century.

Times in ODL may be specified with unlimited precision (for example. to nanoseconds). T~e
actual precision with which times can be represented by label reading/writing software is
determined by the software implementers, based upon limitations of the hardware on which the
software is implemented. Developers of label reading/writing software should document the
precision to which times can be represented.

Software for writing ODL shall not output local time values, since a label may be read in a time
zone other than where it was written. Use either the UTC or zoned time fonnat instead.

12.3.2.3 PDS Implementation of Dates and Times

PDS software for reading ODL labels shall interpret local times to be equivalent to UTC times.
Upon output, a Z will be appended to local times.For more information regarding PDS specific
usage of dates and times, see the Date/I'ime chapter in this document

12.3.2.4 Dates

Dates can be represented in two formats: as year and day-of-year; and as year, month and day of
month.

date
year_doy
year_month_day
year
month
day
doy

Examples of Dates

1990-07-04
90-158
2001-001

:: = year_doy I year_month_day
::=year· doy
:: = year - month - day
:: = unsigned_integer
:: = unsigned_integer
:: = unsigned_integer
:: = unsigned_integer

12-10 Chapter 12. Object Description Language (ODL) Specifiattion and Usag~
I
i

12.3.2.5 Times I
I

Times are represented as hours, minutes and optionally seconds using a 24-hour clock. Tilnes may
be specified in Coordinated Universal Time (UTC) by following the time with the letter Z (for I
Zulu, a common designator for Greenwich Mean Time). Alternately, the time can be referenced to
any time zone by following the time with a number that specifies the offset from UTC. Most ~
zones are an integral number of hours from Greenwich, but some are different by some non- ·
integral time, and both can be represented in the ODL. A time that is not followed by either the
Zulu indicator or a time zone offset is assumed to be a local time.

time
local time

:: = local_time I utc_time I zoned_time
:: = hour_min_sec

utc_time :: = hour_min_sec Z
zoned_time :: = hour_min_sec zone_offset
hour_min_sec :: = hour: minute [:second.]
zone_offset ::=sign hour[: minute]
hour :: = unsigned_integer
minute :: = unsigned_integer
second :: = unsigned_integer I unscaled_real

Note that either an integral or a fractional number of seconds can be specified in a time.

Examples of Times

12.3.2.5.1

12:00
15:24:12Z
01:10:39.457591+07

Combining Date and Time
I

A date and time can be specified together using the format below. Either of the two date formats !
can be combined with any time format - UTC, zoned or local. ·

date_time::=da.te T time

The letter T separating the date from the time can be specified in either upper or lower case. Note
that because this is a lexical element that spaces may not appear within a date, within a time or
before or after the letter T.

Examples of Datei11Dles

1990-07-04T12:00
90-15:24: 12Z
2001-0011'01:10:39.457591+7

Chapter 12. Object Description Language (ODL) Specification and Usages 12-11

12.3.3 Strings

There are two kinds of string lexical elements in ODL: text strings and symbol strings.

12.3.4 Text Strings

Text strings are used to hold arbitrary strings of characters.

quoted_text: :="[character]*"

The empty string - a quoted text string with no characters within the delimiters -- is allowed.

A quoted text string may not contain the quotation mark, which is reserved to be the text string
delimiter. A quoted text string may contain format effectors, hence it may span multiple lines in a
label: the lexical element begins with the opening quotation mark and extends to the closing
quotation mar~ even if the closing mark is on a following line. The rules for interpreting the
characters within a text string, including format effectors, are given in the section on string values
in Section 12.5.

12.3.4.1 Symbol Strings

Symbol strings are sequences of characters used to represent symbolic values. For example, an
image ID may be a symbol string like 'J123-U2A', or a camera filter might be a symbol string like
'UVI.'

quoted-symbol ::= '[character]+'

A symbol string may not contain any of the following characters:

• The apostrophe character, which is reserved to be the symbol string delimiter

• Format effectors, wbich means that a symbol string must fit on a single line

• Control characters

12.3.5 Identifiers

Identifiers are used as the names of objects, attributes and units of measurement. They can also
appear as the value of a symbolic literal.

Identifiers are composed of letters, digits, and underscores. Underscores are used to separate
"words" in an identifier. The flr8t character of an identifier must be a letter. The last character
cannot be an underscore.

identifier: : =letter [letter I digit l_letter l_digit]*

12-12 Chapter 12. Object Description Language (ODL) Specification and Usag~
I

i

I
Because ODL is not case sensitive. lower case characters in an identifier can be converted to their
upper case equivalent upon input to simplify comparisons and parsing. i

Examples of Identifiers I
VOYAGER
VOYAGER_2
BLUE_FILTER
USA_NASA_pDS_1_0007
SHOT_l_RANGE_TO_SURFACE

12.3.5.1 Reserved Identifiers

A few identifiers have special significance in ODL statements and they are therefore reserved and
cannot be used for any other purpose (for example. as the name of an object or an attribute): :

12.3.6

end
group

end _group
object

Special Characters

end_ object
begin_ object

I

I
The ODL is a simple language and it is usually clear where one lexical element ends and another1
"begins. Spacing characters of format effectors may appear before a lexical element, between anyi
pair of lexical elements. or after a lexical element without changing the meaning of a statement. i

"

As can be seen in the sections above. many lexical elements incorporate special characters.
Examples are the decimal point in real numbers and the quotation marks that delimit a text string. I

, Some special characters are lexical elements in their own right These so-called delimiters appear I
within the syntax descriptions in the following section. The following single characters are

1 delimiters unless they appear within one of the lexical elements described above or within a text ori
symbol string.

=

*
I

<>

0
{ }

The equals sign is the assignment operator.

The comma separates the elements of an array or a set

The asterisk serves as the multiplication operator in unit expressions.

The slant serves as the division operator within units expressions.

The circumflex denotes a pointer to an object.

The angle brackets enclose units expressions.

The parentheses enclose the elements of a sequence.

The braces enclose the elements of a set

Chapter 12. Object Description Language (ODL) Specification and Usages

The following two-character sequence is a lexical element.

**

12.4

Two adjacent asterisks are the exponentiation sign within units
expressions.

Statements

12-13

An ODL-encoded label is made up of a sequence of zero, one, or more statements followed by the
reserve identifier end.

label ::= [statement]*

end

The body of a label is built from four types of statements:

statement :: = attribute_assignment_statement I
pointer_statement I
object_statement I
group_statement

Each of the four types of statements is discussed below

12.4.1 Lines and Records

Labels are also typically composed of lines, where each line is a string of characters terminated by
a format effector or a string of adjacent format effectors. The following recommendations are
given for how software that writes ODL should format a label into lines:

• There should be at most one statement on a line, although a statement may be more than a
single line in length. As noted in Section 12.3.5 above, format effectors may appear before,
after or between the lexical elements of a statement without changing the meaning of the
statement. For example, the following statements are identical in meaning:

•
Fn.1ERS = {RED, GREEN, BLUE}

Fn.1ERS = {RED,
GREEN
BLUE}

• ' Each line should terminate with a ca.r.riage return character followed immediately by a line
feed character. This sequence is an end-of-line signal for most computer operating systems
and text editors.

I

12-14 Chapter 12. Object Description Language (ODL) Specification and Usage
I

• The character immediately following the end statement must be either an optional spacing
character or format effector, such as a space, line feed, carriage return, etc.

I

A line may include a comment A comment begins with the two characters /* and ends with the
two characters */. A comment may contain any character in the ODL character set except forma~
effectors, which are reserved to mark the end of line (i.e., comments may not be more than one line
long). Comments are ignored when parsing an ODL label. The comment delimiters (/* and *I) may
appear within a text string, but in this case, they do not represent a comment. They are simply part
of the text string. For example, the following is not a correct use of a comment:

NOTE = "All good men come to the /* Example of incorrect comment* I
aid of their party"

Any characters on a line following a comment are ignored.

In some computer systems files are divided into records. Software for writing and reading ODL-!
encoded labels in record-oriented files should adhere to the following rules: I

• A line of an ODL-encoded label should not cross a record boundary. Each line should be
totally contained within a single record. Any space left over at the end of a record after the the
last line in the record should be set to all space characters.

• The remainder of the record that contains the end statement shall be ignored and the data
portion of the file shall be assumed to begin with the next record in sequence.

12.4.2 Attnoute AssiP,Dlent Statement

The attribute assignment statement is the most common type of statement in ODL and is used to 1

specify the value for an attribute of an object The value may be a single scalar value, an ordered
sequence of values, or an unordered set of values.

assignment_statement :: = attribute_identifier =value

The syntax and semantics of values are given in Section 12.5.

Examples of Assignments Statements

RECORD_BYTES
TARGET
FIELD_OF _VIEW
FILTERS

=800
=JUPITER
= (0.25 <DEG>, 3.00 <DEG>)
={RED,

GREEN.
BLUE}

Chapter 12. Object Description Language (ODL) Specification and Usages 12-15

12.4.3 Pointer Statement

The pointer statement indicates the location of an object.

pointer_statement :: ="object_identifier =value

As with the attribute assignment statement, the value may be a scalar value, an ordered sequence
of values, or an unordered set of values.

A coqunon use of pointer statements is to reference a file containing an auxiliary label. For
example:

"S1RUCfURE = "TABLE.FMT'

is a pointer statement that points to a file name T ABLE.FMT that contains a description of the
structure of the ancillary table from our sample label. Another use of the pointer statement is to
indicate the position of an objeet within another object. This is often used to indicate the position
of major objects within a file. The following examples are from our sample label:

"IMAGE =40
"IMAGE_HISTOGRAM = 840
"ENGINEERING_TABLE = 842

The first pointer statement above indicates that the image is located starting at the 40th record from
the beginning of the file. If an integer value is used to indicate the relative position of an object, the
units of measurement of position are determined by the nature of the object. For files, the default
unit of measurement is records. Alternatively, a units expression can be specified for the integer
value to indicate explicitly the units of measurement for the position. For example, the pointer

"IMAGE = 10200 <BYTES>

indicates that the image starts 10,200 bytes from the beginning of the file.

The object pointers above reference locations in the same files as the label. Pointers may also
reference either byte or record locations in dllta files which are detached, or separate, from the label
file:

12.4.4

"IMAGE
"HEADER

= ("IMAGE.DA T", 10)
= ("IMAGE.DAT', 512<BYTES>)

OBJECT Statement

The OBJECI' statement contains the description of an object. The description typically consists of
a set of attribute assignment statements to establish the values of the object's attributes. If an object
is itself composed of other objects, then OBJECT statements for the component objects may be
nested within the object's description. There is no limit to the depth to which OBJECf statements
can be nested.

I

12-16 Chapter 12. Object Description Language (ODL) Specification and Usage
!

The format of the OBJECT statement is:

object_statement :: = object= objectjdentifier
[statement]"'
end_objeet [= object_identifier]

The object identifier gives a name to the particular object being described. For example, in a file,
containing images of several planets, the image object descriptions might be named j

VENUS_IMAGE, JUPITER_IMAGE, etc. The object identifier at the end of the OBJECT '
statement is optional, but if it appears it must match the name given at the beginning of the
OBJECT statement.

12.4.4.1 Implementation of OBJECT Statements
i
I

It is recommended that all software for writing ODL should include the object identifier at the end
as well as the beginning of every OBJECT statement. !

12.4.5 GROUP Statement
' The GROUP statement is used to group together statements which are not components of a larger

object. For example, in a f:ale containing many images, the group BEST_IMAGES might contain
the object descriptions of the three highest quality images. The three image objects in the i
BEST_IMAGES group don't form a larger object: all they have in common is their superior ,
quality.

The GROUP statement is also used to group related attributes of an object. For example, if two 1

attributes of an image obj~ are the time at which the camera shutter opened and closed, then the
1 two attributes might be grouped as follows: ,

GROUP = SHUTIER_TIMES
START = 12:30:42.177
STOP = 14:0li29.26S

END_GROUP = SHUTI'ER_TIMES

The format of the group statement is as follows:

group_statement :: = group =group _identifier
[statement]•
end_group [= group_identifier] I

I
I

The group identifier gives a name to the particular group, as shown in the example for shutter times
1

above. The object identifier at the end of the GROUP statement is optional, but if it appears it mustil
match the name given at the beginning of the GROUP statement. Groups may be nested within
other groups. There is no limit to the depth to which groups can be nested. . !

Chapter 12. Object Description Language (ODL) Specification and Usages 12-17

12.4.5.1 Implementation of GROUP Statements

It is recommended that all software for writing ODL should include the group identifier at the end
as well as the beginning of every GROUP statement.

12.4.5.2 PDS Usage of GROUP

Although the ODL supports the GROUP statement, the PDS does not recommend its use because
of confusion concerning the difference between OBJECT and GROUP.

12.5 Values

ODL provides scalar values, ordered sequences of values, and unordered sets of values.

value :: = scalar_ value I sequence_ value I set_ value

A scalar value consists of a single lexical element:

scalar_ value :: =numeric_ value I
date_time_ value I
text_string_ value I
symbol_ value I

The format and use of each of these scalar values is discussed in the sections below.

12.5.1 Numeric Values

A numeric scalar value is either a decimal or based integer number or a real number. A numeric
scalar value may optionally specify a units expression.

numeric_ value::=

12.5.2 Units Expressions

integer [units_expression] I
based_integer [units_expression] I
real [units_exp~:ession]

Many of the values encountered in scientific data are measurements of something. In most
computer languages, only the magnitude of a measurement is represented, and not the units of
measurement The ODL, however, can represent both the magn!tude and the units of a
measurement A units expression has the following fotmat:

units_ expression
units_factor
mult_op
exp_op

:: = < units_factor [mult_op units_factor]* >
:: = units_identifier [exp_op integer]
:: =*.1/
"-** .. -

12-18 Chapter 12. Object Description Language (ODL) Specification and Usage
!

A units expression is always enclosed within angle brackets. The expression may consist of a singltf
units identifier like KM (for kilometers), or SEC (for seconds). Examples are the distance 1.341E6
<KM> and the time 1.024 <SEC>. More complex units can also be represented; for example, ~
velocity 3.471 <KMISEC> or the acceleration 0.414 < KM/SEC/SEC>. There is often more thad
one way to represent a unit of measure. For example: :

• 0.414 <KM/SEC/SEC>

• 0.414 <KM/SEC**2>

• 0.414 <K.M*SEC**-2>

are all valid representations of the same acceleration. The following rules apply to units
expressions:

!

• The exponentiation operator can specify only a decimal integer exponent The exponent value
may be negative, which signifies the reciprocal of the units. For example, 60.15 < HZ:> and i
60. 15 <SEC**-1> are both ways to specify a frequency. ·

• Individual units may appear in any order. For example, a force might be specified as either 1

1.55 <GM*CM/ SEC**2> or 1.55 <CM*GM/SEC**2>.

12.5.2.1 Implementation of Numeric Values ,

There is no defined maximum or minimum magnitude or precision for numeric values. In general.[
the actual range and precision of numbers that can be represented will be different for each kind o~
computer used to read or write an ODL-encoded label Developers of software for reading/writing:
ODL should document the following: i

• The most positive and most negative integer numbers that can be represented.

• The most positive and most negative real numbers that can be represented.

• The minimum number of significant digits which a real number can be guaranteed to have
without loss of precision. This is to account for the loss of precision that can occur when
representing real numbers in floating point format within a computer. For example, a 32-bit
floating point number with 24-bits for the fraction can guarantee at least 6 significant digits
will be exact (the seventh and subsequent digits may not be exact because of truncation and
round-off errors).

H software for reading ODL encounters a numeric value that is too large to be represented, then
the software shall report an error to the user.

'·, .

Chapter 12. Object Description Language (ODL) Specification and Usages 12-19

12.5.3 Text String Values _

A text string value consists of a text string lexical element:

text_string_ value :: = quoted_text

12.5.3.1 Implementation of String V aloes

A text ~tring read in from a label is reassembled into a string of characters. The way in which the
string is broken into lines in a label doesn't effect the format of the string after it has been
reassembled. The following rules are used when reading text strings:

• If a format effector or a sequence of format effectors is encountered within a text string, then
the effector or sequence o{effectors is replaced by a single space character, uhless the last
character is a hyphen (dash) character. Any spacing characters at the end of the line are
removed and any spacing characters at the beginning of the following line are removed. This
allows a text string in a label to appear with the left and right margins set at arbitrary points
without changing the string value. For example, the two strings

''To be or not to be"

and

''To be or
not to be"

are the same.

• If the last character on a line prior to a format effector is a hyphen (dash) character, then the
hyphen is removed. Any spacing characters at the be~g of the following line are removed.
This follows the standard convention in English of using a hyphen to break a word across lines.
For example, the following two strings

'The planet Jupiter is very big"

and

''The planet Jupi­
ter is very big"

are the same.

• Control codes, other than the horizontal tabulation character and format effectors, appearing
within a text string are removed.

I
12-20 Chapter 12. Object Description Language (ODL) Specification and Usag~

I
!
'

12.5.3.1.1 PDS Text String Formatting Conventions
I

The PDS defines a set of format specifiers that can be used in text strings to indicate the formatting
of the string on output. These specifiers can be used to indicate where explicit line breaks should
be placed, and so on. The format specifiers are: !

I
• \n - Indicates that an end-of":'line sequence should be inserted .

o \t - Indicates that a horizontal tab character should be inserted.

• \f- Indicates that a page break should be inserted.

• \v - Must be used in pairs, begin and end. Interpreted as verbatim.

o \\-Used to place a backslash in a text string.

For example, the string

"'Ibis is the first line \n and this is the second line."

on output will print as:

'Ibis is the first line
and this is the second line.

I
Note that these format specifiers have meaning only when a text string is printed, and not when th~
string is read in or stored. 1

12.5.4 Symbolic Literal V aloes

A symbolic value may be specified as either an ·identifier or a symbol string:

symbolic-value :: = identifier I quoted_symbol

The following statements assign attributes to symbolic values specified by identifiers:

TARGET=IO
SPACECRAFT= VOYAGER_2

The apostrophes must be used if the symbolic value does not have the proper format for a identifier!
or if it contains characters not allowed in an identifier. For example, the value 'FILTER_+ _7' must
be enclosed within apostrophes, since this would not be a legal ODL identifier. Similarly, the
symbolic value 'U13-A4B' must be in apostrophes because it contains a special character (the
dash) not allowed in an identifier. There is no harm in putting a legal identifier within apostrophes; I
for example: !

!

SPACECRAFI' = 'VOYAGER_l'

is equivalent to the last example above.

Chapter 12. Object Description Language (ODL) Specification and Usages

Symbolic values may not contain format effectors. i.e .• may not cross a line boundary.

12.SA.l Implementation of Symbolic Literal Values

Symbolic values will be converted to upper case on input. This means that:

SPACECRAFI' = VOYAGER_2
SPACECRAFI' = 'Voyager..J.'

are equivalent.

12.SA.2 PDS Recommendation on Symbolic Literal Values

12-21

Since the current use of the ODL within the PDS does not require the explicit specification of
symbolic literals or symbol strings, the PDS recommends that double quotation marks (") be used
instead of apostrophes.

12.5.5 Sequences

A sequence represents an ordered set of values. It can be used to represent arrays and other kinds
of ordered data. Only one and two dimensional sequen~s are allowed.

sequence_ value:: = sequence_lD I sequence_2D
sequence_lD ::=(scalar_ value[, scalar_ value]*)
sequence_2D ::=([sequence _lD] +)

A sequence may have any kind of scalar value for its members. It is not required that all the
members of the sequence be of the same kind of scalar value. Thus a sequence may represent a
heterogeneous record. Each member of a two dimensional sequence is a one-dimensional
sequence. This can be used, for example. to represent a table of values. The order in which
members of a sequence appear must be preserved. There is no upper limit on the number of values
in a sequence.

12.5.6 Sets

Sets are used to specify unordered values drawn from some finite set of values.

set_ value::= {[scalar_ value[, scalar_ value]*} I{}

Note that the empty set is allowed: The empty set is denoted by opening and closing brackets with
nothing except optional spacing characters or format effectors between them.

The order in which the members appear in the set is not significant and the order need not be
preserved when a set is read and manipulated. There is no upper limit on the number of values in
a set.

12-22 Chapter 12. Object Description Language (ODL) Specification and Usag~

I
!

12.5.6.1 PDS Implementation of Sets

The PDS allows only symbol values and integer values within sets.

12.6 ODL Summary

Character Set (12.2) .. il

The ODL uses the ISO 646 character set (the American version of the ISO 646 standard is AS CIT).
The ODL character set is partitioned as follows: 1.

letter
digit
special_cbaracter

: :=letter I digtt I special_ character I
spacing_character I format_effector I
other_character
:: =A-ZI a-z
::= 011 1213141516171819
::= -{1}1(1)1+1-1.1"1'1=1
_I, 1/1*1: l#l& IAI<I>

spacing_cbaracter : : = space I horizontal tabulation
format_effector : : = caniage return I line feed I

fonn feed I vertical tabulation
other_character .. - ! I $ I % I ; I ? I @ I[I] I ' I - I

vertical bar I other control characters

Lexical Elements (ll.3)
integer : : = [sign] unsignedjnteger
unsigned_integer ::=[digit]+
sign :·=+I·
based_inreger : : =radix# [sign] [extellded_digit]+ #
extellded_digit : : = digit I letter
radix : : = unsignecljnteger
real ::=[sign] onscaled_reall [sign] scaled_real
unscaled_real : : = unsignecUnteger. [unsigned_inreger] I

scaled _real
exponent
date
year_doy
year_montb_day
year
month
day
doy
time
local_time
utc_time
zoned_ time
bour_min_sec
zone_ offset
bour
minute
second
date_time
quotecUext
quoted_symbol
identifier

• unsigned_integer
: : = unscaled_real exponent
: : =E integer I e integer
: : =year_doy I year_month_day
: : =year - doy
: : =year· month • day
: : =unsignedjnteger
: : =unsigned_inreger
: : =unsigned_integer
: : =unsigned_integer
: : =local_time I utc_time I zoned_time
: : =bour_min_sec
: : =bour_min_sec Z
: : =bour_min_sec zone_offset
: : =bour : minute [: second]
: : =sign bour [: minute]
: : =unsigned_integer
: : =unsigned_integer
: : =unsignedjnteger I unscaled_real
: : =date T time
: : ="[character]•"
: :='[character]+'
: : = letter [letter I digit l_letter !_digit]*

I

Chapter 12. Object Description Language (ODL) Specification and Usages

Statements (12.4)

statement

assignment_stmt
pointer_stmt
object_stmt

group_stmt

Values (12.5)

value
scalar_ value

numeric_ value

units_expression
umtsJactor
mult_op
exp_op
date_time_ value
text_string_ value
symbolic_ value
sequence_ value
sequence_lD
sequence_2D
set_ value

12.7

: : = [statement]•
end

: : = assignment_stmt I pointer_stmt I
object_stmt I group_stmt

: : = attributejdentifier = value
: : = " objectjdentifier = value
: : = object= object_identifier

[statement)•
end_object [= objecr_identifier]

: : = group = group jdentifier
[statement]•

end....group [= groupjdentifier]

::=scalar_ value I sequence_ value I set_ value
: = numeric_ value I date_time_ value

text_string_value I symbolic_ value
: :=integer [units_expression] I

basedjnteger (units_expresston] I
real [units_expression]

: : =<units_factor[mult_op units_factort >
: : = wutsjdentifier [exp_op integer]
: :=*1/
: :=**
: : = date I time I date_time
: : = quoted_text
: · = identifier I quoted_symbol
: : =sequence_ID I sequence_2D
: : =(scalar_ value [,scalar_ value]*)
: : = ([sequenceJD]+)
: : = {scalar_ value [,scalar_ value]*} I {}

Differences Between ODL Versions

12-23

This appendix summarizes the differences between the current Version 2 of ODL and the previous
Versions 0 and 1. Software can be constructed to read all three versions of ODL. However, it is
important that software for writing labels only write labels that conform to ODL Version 2.

12.7.1 Differences from ODL Version 1

Version !labels were used on the Voyager to the Outer Planets CD-ROM disks and many other
data sets. Version 1 did not include the GROUP statement and i~ had a more restrictive definition
for sets (which were limited to integer or symbolic literal values) and for sequences (which were
limited to arrays of homogeneous values). The following sections details non-compatible
differences and how they can be handled by software writers:

12-24 Chapter 12. Object Description Language (ODL) Specification and Usag~
'

12.7.1.1 Ranges

Version 1 of the ODL had a specific notation for integer ranges:

range_ value::= integer..integer

Tbis notation is not allowed in ODL Version 2. A parser may still recognize the 'double-dot' range
notation. On output, a range shall be encoded as a two value sequence, with the low-value ofthe

1

range being the first element of the sequence and the high-value being the second element ofthe 1

sequence. [

12.7.1.1.1 Delimiters In Sequences and Sets

The individual values in sets and sequences could be separated by a comma or by a spacing ,
character. In Version 2, a comma is required. A parser can allow spacing characters between value~
as well as commas. Software that writes ODL should place commas between all values in a ·
sequence or set.

12.7.1.1.2 Exponentiation Operator in Units Expressions

In Version. I of the ODL the circumflex character(") was used as the exponentiation operator in'!
units expressions rather than the two-asterisk sequence (**).Parsers may still allow the circumflex
to appear within units expressions as an exponentiation operator. Software for writing ODL should
use only the** notation. I

I
I

12.7.2 Differences from ODL Version 0
l

Version 0 of ODL was developed for and used on the PDS Space Science Sampler CD-ROM disks. i
The major aspect of Version 0 is that is did not provide the OBJECT statement: all of the attributes i
specified in a label described a single object - namely the file that contained the label (or that was •
referenced by a pointer).

12.7.2.1 Date-Time Format

ODL Version 0 was produced prior to the space community's acceptance of the ISO/DIS 8601
standard for dates and time and it uses a different date and date-time format The format for Version
0 dates and date-times is as follows:

date
date_time
zone

::=year I month/ day_of_month I year I day...;..of_year
:: = date • time zone
::=<identifier>

The definition of time in ODL Version 0 was a subset of ODL Version 2; therefore parsers that
handle Version 2 time formats will also handle Version 0 times. Software for writing ODL must
output dates and date-times in the Version 2 format only.

Chapter 12. Object Description Language (ODL) Specification and Usages 12-25

12.7.3 ODLIPVL Usage

A concept for a Parameter Value Language/Format (PVL) is being formalized by the Consultative
Committee for Space Data Systems (CCSDS). It is intended to provide a human readable data
element/value structure to encode data for interchange. The CCSDS version of the PVL
specification is in preliminary form.

Some organizations which deal with the PDS have accepted PVL as their standard language for
product labels. Largely because PVL is a superset of ODL, some PVL constructs are not supported
by the PDS. In addition, some ODL constructs may be interpreted differently by PVL software.

The ODUPVL usage standard defines restrictions on the use of ODUPVL in archive quality data
sets. These restrictions are intended to ensure the compatibility ofPVL with the Object Description
Language (ODL) and existing software.

1. Labels constructed using PVL may be attached, embedded in the same file as the data
object it describes, or detached, residing in a separate file and pointing to the data file
the label describes.

2. All statements shall be terminated with a <CR> <LF> pair. Semicolons shall not be
used to terminate statements.

3. Only alphanumeric characters and the underscore character shall be used in data ele­
ments and undelimited text values (literals). In addition, data element and undelimit­
ed text values must begin with a letter.

4. Keywords shall be 30 characters or less in length.

5. Keywords and standard values shall be in upper case. Literals and strings may be in
upper case, lower case, or mixed case.

6. Comments shall be contained on a single line, and a comment terminator (*f) shall be
used. Comments shall not be embedded within statements. Comments shall not be
used on the same line as any statement if the comment precedes the statemenL Com­
ments may be on the same line as a statement if the comment follows the statement
and is separated from the statement by at least one white space, but this is not recom­
mended.

7. Text values that cross line boundaries shall be enclosed in double quotation marks
(" ").

8. Values that consist only of letters, numbers, and underscores (and that begin with a
letter) may be used without quotation marks. All other text values must be e!J.closed
in either single (' ') or double (" ") quotation marks.

12-26

I
I

!

Chapter 12. Object Description Language (ODL) Specification and Usage

I

I

9. Sequences (arrays) shall be limited to 2 dimensions. NULL (empty) sequences are nbt
allowed. Sets shall be limited to one dimension. In other words, sets and sequences
shall not be used inside a set I

I
i

10. Only the OBJECT, END_OBJECT, GROUP and END_GROUP aggregation mark-

=~~~ I

11. Units expression shall only be allowed following numeric values (e.g,
"DATA_ELEMENT = 7 <BYTES>" is valid. but "DATA_ELE:.MENT = MANY
<METERS>" is not. !

12. Units expression shall include only alphanumeric characters, the underscore, and the
symbols * ,/,(,), and**. (The last represents exponentiation).

1

I
I

13. Signs shall not be used in non-decimal num~. (e.g., "2#10001#" is valid, but 'i-
2#10001#'' and "2#-10001#'' are not) Only the bases 2,8, and 16 shall be used in non-
decimal numbers. I

I

14. Alternate time zones (e.g., YYYY-MM-DDTHH:MM:SS.SSS + HH::MM) shall not
be used. Only the format YYYY -MM-DDTHH:MM:SS.SSS shall be used. 1

15. Always provide all digit positions in dates and times. Zeros shall be used to replacb
missing digits. !

16. An END statement shall be included at the end of the ODI.JPVL statement list

The following are guidelines for formatting ODI.JPVL expressions.

1. The assignment symbol (=) shall be surrounded by blanks.

2. Assignment symbols (=) should be aligned if possible.

I

3. Keywords placed inside an aggregator (OBJECT or GROUP) shall be indented with
respect to the OBJECT and END_OBJECT or GROUP and END_GROUP statef
ments which enclose them. I

4. PDS label lines shall be 80 characters or less in length, including the end-of-statement
<CR.> <LF> delimiter. While 80 characters can be displayed on most screens, som~
editors and databases will wrap or truncate lines that exceed 72 characters.

5. TABs shall not be used in PDS Labels. Although both ODLand PVL allow the use
of TABs some simple parsers cannot handle them. Use spaces instead. i

I

I

Chapter 13. PDS Objects 13-1

Chapter 13

PDS Objects

The Planetary Data System has designed a set of standard objects to be used for submitting catalog
object templates as well as for labeling data products. These standard objects, along with
definitions of individual keywords comprising those objects, are defined in the Planetary Science
Data Dictionary. In addition, object definitions and examples are also included as Appendix A and
Appendix B of this document.

13.1 Generic and Specific Data Object Definitions

For each type of data object that PDS has defined (i.e., IMAGE, TABLE, etc.), there are two
categories, generic and specific. A generic object is the universal definition of an object, or superset
of keywords that can be used. A specific object is a subset used for a specific data product to allow
effective use of validation tools.

Generic objects are designed and approved by the Planetary Data System. The elements used to
define objects are classified either as Required or Optional. The Required and Optional member
elements are explicitly listed while the Optional member elements may include any element in the
data dictionary. A Specific object is defined for a particular data product and is based in a selected
Generic object. All Required elements and selected Optional elements from the Generic object are
used to define the Specific object.

Using the generic object definition as a guide and consulting with a Central Node Data Engineer,
a user may then customize the object by first using all the required keywords, and then choosing
which optional keywords apply to the data product. In addition, any keywords listed in the
Planetary Science Data Dictionary can be chosen for special purposes. The resulting object will
be a specific object that is subject to approval during a design review.

13-2 Chapter 13. PDS ObjeCts

I
I

The following examples illustrate the migration from the generic IMAGE object to a specific J

IMAGE object and then an instance of that specific IMAGE. Note that when a specific case is useq,
that usage should be consistent for all labels defining a like data product !

OBJECf = GENERIC_OBJECf_DEFINITION
NAME =IMAGE
STATIJS_TYPE =APPROVED
STATIJS_NOIE = "V2.l 1991-01-20 MDM New Data Object Definition" ;
DESCRIPI10N · = "An image object is a regular array of sample values. Image objects
are normally processed with special display tools to produce a visual representation of the sample values. This is done by assignmg
brlgbtness levels or display colors to the various sample values. Images ~ composed of LINES and SAMPLES. They may !
contain multiple bands, in one of several storage orders.

Note: Additional engineering values may be prepended or appended to each LINE of an image. and are stored as concatenated l
TABLE objects. which must be named LINE_PREFIX and LINE_SUFFIX IMAGE objects may be associated with other objectS,
including HISTOGRAMs, PALE'ITEs, HISTORY and TABLEs which contain statistics, display parameters, engineering valu~
or other ancillary data."

SOURCE_NAME
REQUIRED_ELEMENT_SET

OYnONAL_ELEMENT_SET

OBJECT_CLASSIFJCATION_TYPE

OBJECT
NAME
USAGE_NOTE
END_OBIBCT

END_OBJEcr

= "PDS CN/M.Martin"
= {LINE_SAMPLES, LINES, SAMPLE_BITS,

SAMPLE_ TYPE}
= {BAND_SEQUENCE, BAND_STORAGE_TYPE,

BANDS, CHECKSUM, DERIVED _MAXIMUM,
DERIVED _MINIMUM, DESCRIPTION,
ENCODING_ TYPE, FIRST_LINE,
FIRST_LINE_SAMPLE, INVALID,
LINE__pR,EFIX_BYTES, LINE_SUFFIX_BYTES, MISSING,
OFFSET, SAMPLE_BIT_MASK. SAMPLING_FACTOR,
SCALING_FACTOR, SOURCE_FlLE_NAME,
SOURCE_LINES, SOURCE_LINE_SAMPLES.
SOURCE_SAMPLE_BITS. STRETCHED _FLAG,
STRETCH....MAXIMUM. S'tRETCH_MINiMU, PSDD}
REQUIRED_OBJECf_SET = "N/A"
OYnONAL_OBJEcr_8ET = "N/A"

= STR.UcrURE

=ALIAS
= "N/A"
= "N/A"
= ALIAS

= GENERIC_OBJECT_DEFINITION

Chapter 13. PDS Objects

This next example illustrates IMAGE object definition being used for a specific case.

OBJECT
NAME
STATU'S_TYPE
STATUS_NOTE
DESCRIPI'ION

SOURCE_NAME
REQUIRED_ELEMENT_SET

OBJECT_CLASSIFICATION_TYPE

OBJECT
NAME
USAGE_NOTE
END_OB.IECT

END_OBJECT

13.2 Primitive Objects

= SPECIFIC_OB.IECT_DEFINITION
=XYZJMAGE
=APPROVED
= "V211991-02-10 TMA New specific data ObJect definition"
= "The XYZ un8ge is..

= "PDS CNJM.Martin"
= (LINE_SAMPLES, LINES, SAMPLE_BITS.

SAMPLE_TYPE, SAMPUNG_FACfOR.
SOURCE_FILE_NAME.
SOURCE_LINES, SOURCE_LINE_SAMPLES,
SOURCE_SAMPLE_BITS, FIRST_UNE.
FIRST_LINE_SAMPLE}

=STRUCTURE

=AUAS
="N/A"
="N/A"
=AUAS

13-3

Generic objects have a subclass called primitive objects that include ARRAY, COLLECTION,
ELEMENT, and BIT_ELEMENT. A primitive object is primarily used as the foundation for
defining the elementary structure ofPDS objects that have either more abstract or more uncommon
layouts than more common structures like TABLES or IMAGEs. For example, a simple camera
image abstractly described by a PDS IMAGE object, shown in Example 1, could alternately be
described using a 2-dimensional ARRAY object, as shown in Example 2.

Eumple 1

OBJECT =IMAGE
LINES =800
LINE_SAMPLES= 600

END_OBJECT =IMAGE

Example2

OBJECT= ARRAY
AXES=2
AXIS_ITEMS= (800, 600)
AXIS_NAME= (LINES, LINE_SAMPLES)

END_OBJECT= ARRAY

However, given the PDS objective of defining a robust object model for planetary science data, it
is reec>mmended that primitive objects only be used when other PDS objects result in a misleading
or incorrect description of the data being labeled.

13-4 Chapter 13. PDS ObjeCts

i.

I

Chapter 14. Pointer Usage 14-1

Chapter 14

Pointer Usage

Within PDS labels, pointers are used to indicate the locations of objects within the same file or
references to external files. A pointer statement is indicated in a PDS label or catalog object by an
ASCIT caret (J\). '

14.1 Types of Pointers

Pointer statements fall into three main categories: data location pointers, include pointers, and
related information pointers.

14.1.1 Data Location Pointers (Data Object Pointers)

The most common use of pointers occur in PDS labels to link together data object descriptions with
the actual data. The syntax for the values of these pointers depends on whether the label is attached
or detached from the data it describes. Examples of these data location pointer statements are:

(1)
(2)

"IMAGE
"IMAGE

= 12
= 600 <BY1ES>

(3) "INDEX_TABLE ="INDEX.TAB"
(4) "SERIES = ("C100306DAT", 2)
(5) "SERIES = ("C100306.DAT', 700<BY1ES>)

The first and second examples illustrate pointers in attached labels. This type of pointer allows
reading software to scan the label for the appropriate pointer, and then skip right to the data at its
location elsewhere in the file. In the first example, the data begin at record 12 of the labeled file.
In the second example, the data begin at byte 600 of the labeled file.

In examples 3 through 5, external data flies are referenced. As these pointers occur in detached
labels, they must identify a file name, and if the data do not begin at record I of the data file, a
location as well. In example 3, the data begin at record 1 of the data file "INDEX. TAB". In
example 4, the data begin at record 2 of the data file, "C100306.DAT". In example 5, the data
begin at byte 700 of the data file.

14-2 Chapter 14. Pointer Usage

i

I
14.1.2 Include Pointers (Structure, Catalog, and Map Projection Point-

1

ers) I
I

Another common use of pointers occurs in PDS labels or completed catalog templates that !
reference external files to be included directly at the location of the pointer statement. These are:
classified as 'include' type pointers since they act like #INCLUDE statements in C program so~
files.Pointers with the class names of STRUCTURE, CATALOG, and MAP _PROJECTION fall
into this category. As is illustrated below, include files contain only PDS data object definitions o~
completed catalog object templates. !

i

Examples of include pointer statements are:

(1) "STRUC'IURE = "ENGTAB.FMT"
(2) "' S1RUC'IURE = "IMAGE.FMT"
(3) "'CATALOG= "CATALOG.CAT"
(4) "'DATA_SET_MA.P_PROJEC'IlON = "DSMAPDIM.CAT"

In the first example, an external structure file is referenced from a TABLE object. The file
ENGT AB.FM.T contains the column object definitions needed to complete the TABLE object. ID.
cases such as this, column objects would be stored in a separate file if the table is especially large

I

(with many columns), making its label unwieldy, or if the file containing column objects can be !
referenced by more than one label through the use of the pointer. !

'

In the second example, the structure of an image (i.e., all statements beginning with the
OBJECT= IMAGE statement and ending with the END_ OBJECT= IMAGE statement) is defined
in an external file called IM.AGE.FMT.

In the third example, the external file, CATALOG.CAT, is pointed to from the VOLUME object:
in order to provide a full set of catalog information associated with the volume. !

In the fourth example, the external file, DSMAPDIM.CAT, is referenced in the
1

IMAGE_MAP _PROJECTION object to complete the map projection information associated with
the image.

14.1.3 Related Information Pointers (Description Pointers)

The last type of use of pointer statements occurs in PDS labels that reference external files that i

provide additional documentation that may be of special use to a human reader of the label. These
1

files are indicated by the DESCRIPTION or DESC class words, and reference text files that are not
written in ODL. This pointer is not meant to refer to software tools. I

An example of a description pointer statement is:

""DESCRIPTION = ''TRK_2_25.ASC"

In this example, the pointer references a PDS-labeled external ASCII document file,
TRK_2~25.ASC, that provides a detailed description of the data.

i

.,

Chapter 14. Pointer Usage 14-3

14.2 Rules for Resolving Pointers

The following set of rules exist for resolving pointer statements that reference external files:

For any pointer statement in Fll..E_A,

(1) look in the same directory as FILE_A

(2a) for a single physical volume (no logical volumes), look in the following top l~vel directory:

"STRUCTURE- LABEU directory
"CATALOG-· CATALOG/ directory
"DATA_SET_MAP _PROJECTION- CATALOG/* directory
"DESCRIPTION - DOCUMENT/ directory

(2b) within a logical volume, look in the following top level subdirectory:

"STRUCTURE -LOGICAL_ VOLUME_PATH_NAMEILABEUdirectory
"CATALOG . -LOGICAL_ VOLUME_PATH_NAME/CATALOG/directory
"DATA_SET_MAP _PROJECTION- LOGICAL_ VOLUME_PATH_NAME/

CATALOG/* directory
"DESCRIPTION -LOGICAL_ VOLUME_PATH_NAMEIDOCUMENT/directory

* for volumes using PDS Version 1 or 2 standards, the MAP _PROJECTION files may be located
in the LABEL directory

All pointers to data objects should be resolved in step (1), since these files are always required to
be located in the same directory as the label file.

Chapter 15. Record Formats lS.l

Chapter 15

Record Formats

The choice of the proper record format is determined by the applications which the data will
support. In general, fixed length records are well-suited to the storage of binary data files, such as
images, binary tables or qubes. These files are expected to be transported and used in structured
environments. They shall also be used for ASCII tables to promote transportability. Input/output
operations with FIXED_LENGTH files will use read and write statements which read
RECORD_BYTES number of bytes with each operation.

Variable length files are less transportable and require special software to read. Their use is
discouraged except in instances where they may optimize storage efficiency or access. An example
of such an application is the compressed image format being used for CD-ROM storage.

For CD-ROMs that are meant to be V AX/VMS-compatible (ie., for CDs with XARs), it is
recommended that all records in fixed length or variable length files contain an even number of
bytes. Thus records which contain an odd number of bytes would be padded by one byte to give
them an even length.

Stream records should be used for text files for ease of transportation to different computer
systems. Input/output operations with stream files will generally use string-oriented access,
retrieving a record from the file each time.

Table 15.1: Recommended Record Formats

RECORQ TYPE:;

DATA FORMAT
ENVIRONMENT
DATA VOLUME
INPUT/OUI'PUT

BINARY. ASCU
STRUCTURED
LARGE
READ/WRITE

VARIABLE

BINARY
VE({Y STRUCTURED
VERY LARGE
CUSTOM, SPICE

15.1 Fixed Length Record Formats

STREAM

ASCU
AD HOC
SMAIL, MEDIUM
STRING YO

Fixed ~ength record formats normally use a physical record length (RECORD _BYTES) which
corresponds directly to the logical length of the data objects (that is, one physical record for each
image line, or one physical record for each row of a table). In some cases, logical records are
blocked into larger physical records to provide more efficient storage and access to the data. This
blocking is still an important consideration when storing data on magnetic tape, (which requires a
gap on the tape between records), but is not generally a consideration in data sets stored on
magnetic or CD-ROM disks. In other cases, the physical record length is arbitrary, and only
specifies a unit of data for input/output operations, as in FITS format files or USGS PICS images.

15-2
I

Chapter 15. Record FormatS

I

I
I
I

The use of a record length which matches the size of the primary data object in a file is I
recommended. to provide fairly simple file access with a variety of applications. In this approach.
objects within a file are all stored in physical records of RECORD _BYTES length. Figure 15.1 I
illustrates the physical and logical structure used to build a standard PDS FIXED _LENGTH file~

Physical struc;turc

Label Reand 1
Label Record 2
Histogram Rec
E~ TabiEJ Rec
Line Hdr Rec 1
Line Hdr Rec2

Line Hdr Rec 55
Line Rec 1
Line Rec2

Line Rec 1056

Lqgjca! Structure
..,..----Record Bytes= 121M _____,..

15.1 Physical and Logical Structure for Fixed Length Files

I

15.2 Variable Record Formats

A second category of record type is variable length. The use of variable length records is
discouraged. since they are operating-system dependent. They should only be used in the following
circumstances:

•

•

Software that can operate on a variety of hosts is provided along with the data. For example.'
the Voyager CD-ROM disks contain variable length compressed images, along with a I
decompression program for VAX. PC, Macintosh and UNIX systems. These programs will

1

reformat the da~ to a variety of user-selectable formats. i
I

The files are only intended for use on one computer system. For example. the Viking IRTM I
CD-ROM utilizes V AXNMS variable length formats for software and command files
because the software cannot be used unless it is in this format.

PDS data files using variable length records shall follow the VAX/VMS conventions where the
records are preceded by a 2-byte (LSB first or swapped) integer which defines the length of the
record with no caniage control. The reason for this choice is that V AXNMS supports variable
length records and numerous planetary science data files are stored in this format.

Chapter 15. Record Formats 15-3

15.3 Stream Record Formats

Stream records consist of ASCTI text delimited with a carriage retun:l (CR) and/or line feed (LF)
sequence. Different computers interpret these codes differently. For example, IBM PC's use the
two-byte CR/LF sequence to terminate a line of text. UNIX systems use only a line feed. The
Macintosh uses only a carriage return. VAX computers support these various formats as stream
files, but prefer to store text files internally as variable length records.

Despite the confusion, stream files can easily be transmitted via text-oriented communications
facilities like TELEMAll.., NASAMAll.., or V AXMAIL. In addition, most file transfer protocols
(KERMIT, FTP) will automatically make the needed conversions when stream files are transported
between different computers.

PDS has adopted the CR/LF as the standard. line delimiter for archival products. Note, in particular,
that CR/LF is the required line terminator for all PDS labels and catalog files. This is the only end­
of-line sequence that insures that text file will be viewable on all computer systems. System
utilities are available on the various computer types to convert this format to the internal format if
necessary.

Macintosh - Apple File Exchange, MS-DOS to Mac option.
Unix.., Translate utility (tr-d'\15' <input_file>output_file)

The V AX-stream format is recommended for the transfer and archive of text and for files
containing detached labels. While stream format can be used for ASCll tables, it is recommended
that the FIXED_LENGTH format be used when storing these tables on archival or distributable
media (CD-ROM).

15.4 Undefined Record Formats

Undefined record formats are those which have no implied record structure. For files with attached
labels, the label portion should be written using undefmed record format and should use record
terminators as in the stream case. When data are written using undefined format, no record
terminators or specific record length is implied; it is assumed to be a stream of bytes. It is
recommended that fixed length records rather than undefined record format be used whenever
possible.

15.5 Detached Label Files

Detached label files should be in stream record format The data elements in a detached label
ALWAYS REFER TO THE DATA FILE, not to the detached label file. Thus a RECORD_TYPE
= FIXED_LENGTH data element in a label file refers to the record type of the data file, not the
label file itself. Detached label files shall carry the file extension ".LBL" so that they can be easily
identified by users.

Chapter 16. SFDUUsage 16-1

Chapter 16

SFDUUsage

The SFDU Usage Standard defines restrictions on the use of Standard Formatted Data Units
(SFDUs) in archive quality data sets. PDS does not require that data products are packaged as
SFDUs. However, if data products are packaged as SFDUs, the following standards are in
effect.

A recommendation for the standardization of the structure and construction rules of SFDUs for the
interchange of digital space-related data has been prepared by the Consultative Committee for
Space Data Systems (CCSDS). An SFDU is a type-length-value object More simply stated, each
SFDU consists of a type identifier which indicates the type of data within the SFDU, a le:Qgth field
which either states the length of the data or indicates how the data are delimited, and a value field,
which is the data itself. Both the type and the length fields are included in a 20 byte label which
will be called an SFDU label in this document. The value field, immediately follows the 20 byte
SFDU Label. For PDS data products, the value field contains the PDS label including one or more
data object definitions (such as an image).

There are three versions of SFDUs. In Version 1, the length of an SFDU was represented in binary.
In Version 2, the length could also be represented in ASCIT. In Version 3, the length can be
represented in binary, AScn, or using one of several delineation techniques. Unless previously
negotiated, all PDS data products packaged as SFDUs shall be constructed using Version 3 SFDU
Labels.

A Version 3 SFDU label consists of the following parts:

1) Control Authority ID 4 Bytes

2)

3)

4)

5)

6)

7)

VersioniD

ClassiD

Delimiter Type

Spare

Description Data Unit ID

Length

1 Byte

1 Byte

1 Byte

1 Byte

4Bytes

8 Bytes

The Control Authority ID and the Des~ption Data Unit ID together form an ide:Qtifier called an
Authority and Description Identifier which points to a semantic (Planetary Science Data
Dictionary) and syntactic (Object Definition Language, 2.0) description of the value field.

Version 3 allows delimitation of SFDUs by end-of-file or by start markers and end markers rather
than by explicit byte counts. Further details of the SFDU architecture will not be discussed here.
Other sources of information can be found in the SFDU References listed in the Introduction to this
document

I

I
16-2 Chapter 16. SFDU Usage

I
I
I

Since archive quality data sets are internally defmed, only a limited set of SFDU labels are used t~
identify the files on a data volume. The full suite of available SFDU classes is not used in the !
packagip.g of PDS data products. The PDS has adopted this philosophy in order to simplify not only
the archive products themselves, but also the software processing of those products. PDS labels are
included in the (data products), and the information in these PDS Labels is considered more thai!
adequate for data identification and scientific analysis. i

I

The standard usage of SFDUs by PDS in current missions and data restoration is different than th~
I

usage of SFDUs in data products from upcoming missions fully supported by the JPL Advanced
Multi-Mission Operations System (AMMOS). The following sections define the standard usage of
SFDUs for each source of data I

Two SFDU organizations are allowed in PDS data products. The first organization (the ZI I

Structure) has been used historically in PDS data products from restoration and past missions. Th~
second organization (the ZKI organization) is required for data products which pass through the I
JPL Advanced Multi-Mission Operations System (AMMOS) Project Database. 1

I

16.1 The ZI SFDU Organization

Any PDS data products that are packaged as SFDUs and are not required to pass through the
AMMOS Project Database as part of an active mission may use the following SFDU organization.

I

Each instance of a data product (file) in a data set shall include two (and only two) SFDU labels.!
These are a Z Class SFDU label and an I Class SFDU label. The two SFDU labels are concatenated
(i.e. Z, then I) and left justified in the first line or record of the PDS label for each data product. !
(See Figure 16.1.) In the case of data products with detached PDS labels, the two SFDU labels shall
appear in the first record of the PDS label files and no SFDU labels appear in the data object filesJ
(See Figure 16.2.) ·

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Class indicates that the valu~
I

field (everything after the first 20 bytes) is an aggregation. In this case, the aggregation consists of
only the I Class SFDU. This label also indicates that the delimiter type is End-of-File and that this:
SFDU (data product) is terminated by a single End-of-File. It shall be formed as follows:

1) Control Authority ID CCSD

2) Version ID 3

3) Class ID

4) Delimiter Type

5) Spare

6) Description Data Unit ID

7) Length Field

Example: CCSD3ZF0000100000001

z
F

0

0001

00000001

Chapter 16. SFDU Usage

PDSLABEL

ffiE{
DATAOBJECf

I EOF

Figure 16.1: Attached PDS Label Example for non-AMMOS compatible
products

ffiE{
z I I I

PDSLABEL

0 I EOF ttl
(ll
(j
:a:~
9
ttl

ffiE{
(ll

DATAOBJECf

I EOF

Figure 16.2: Detached PDS Label Example for non-AMMOS compatible products

16-3

16-4 Chapter 16. SFDU Usa~e

The second SFDU label shall be an I Class Version 3 SFDU label. Class I indicates that the value
field (everything after the second 20 bytes) is application da~ the PDS label and the data object(s).
The Data Description Unit ID ofPDSX indicates that the data product uses the Object Description
Language (ODL) syntax and the Planetary Science Data Dictionary semantics to present data
descriptive information. This SFDU label also indicates that the SFDU (data products) will be
terminated by a single End-of-File. It shall be formed as follows:

1) Control Authority ID NJPL

2)

3)

4)

5)

6)

7)

VersioniD

ClassiD

Delimiter Type

Spare

Description Data Unit ID

Length Field

3

I

F

0

PDSX

00000001

Example: NJPL3IFOPDSX00000001

CCSD3ZF00001 00000001NJPL3IFOPDSX00000001 <.CR.> <LF>
PDS_ VERSION_ID = PDS3 <CR> <LF>
RECORD_TYPE=STREAM <CR><LF>
RECORDS=lOO <CR> <LF>

.
END <CR> <LF>

DATA OBJECT

Figure 16.3: SFDU Example

IEOF !

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS
label. Note that there are no characters between the two SFDU labels. See Figure 16.3.

For RECORD_TYPE =STREAM or FIXED_LENGTH or UNDEFINED, the concatenated
SFDU labels shall be followed immediately by <CR><l.F>. For data products that have
RECORD_TYPE =V ARIABLE_LENGTH, the two SFDU labels shall not be followed by
<CR><LF'>.

STREAM example CCSD3ZF0000100000001NJPL3IFOPDSX00000001 <CR><LF>

FIXED_LENGTII Example CCSD3ZF0000100000001NJPL3IFOPDSXOOOOOOOI<CR>d..F>

V ARIABLE_LENGTII Example CCSD3ZFOOOOIOOOOOOOINJPL3IFOPDSXOOOOOOOI

UNDEFINED Example CCSD3ZF0000100000001NJPL3IFOPDSXOOOOOOOI<CR>d..F>

Chapter 16. SFDU Usage l()..S

The remainder of the PDS label begins on the next line or record. The last line of the PDS label
contains the END statement. Then, if the PDS Label is attached, the data object begins on the next
record. If the PDS label is detached, the END statement is the last line of the f.tle.

16.2 The ZKI SFDU Organization

Any PDS data products that are packaged as SFDUs and are required to pass through the AMMOS
Project Database as part of an active mission must use the following SFDU organization. All data
products of this type are assumed to have attached PDS labels.

Each instance of a data product (f.tle) in a data set shall include four (and only four) SFDU labels.
These are the Z Class SFDU label, the K Class SFDU label, the End-Marker label for the K Class
SFDU, and the I Class SFDU label The Z and K Oass SFDU labels are (i.e. Z, then I) are
concatenated and left justified in the first line or record of the PDS label for each data product. The
End-Ma:rlcer for the K Oass SFDU label and the I Oass SFDU label are right justified on the last
record of the PDS label (following the END statement). See Figure 16.4.

zl K## I

FilE{
PDSLABEL

END I EOKI I

DATA OBJECT

I EOF

Figure 16.4: PDS Label Example for AMMOS compatible products

The first SFDU label shall be a Z Class Version 3 SFDU label. The Z Oass indicates that the value
field (everything after the fJrSt 20 bytes) is an aggregation. In this case, the aggregation consists of
a K Oass (PDS label) and an I Oass (data object) SFDU. This label also indicates that the
delimitation type is End-of-File and that this SFDU (data product) is terminated by a single End­
of-File. It shall be formed as follows:

1) Control Authority CCSD

2) Version ID 3

3) ClassiD z
4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID 0001

7) Length Field 00000001

Example: CCSD3ZF0000100000001

16-6 Chapter 16. SFDU Usage
I

I
I

. The second SFDU label shall be an K Class Version 3 SFDU label. Qass K indicates that tbe vaml
field (everything after the second 20 bytes) is catalog and directory information, i.e., the PDS label
(sometimes) referred to as the K Header). The Data Description Unit ID ofPDSX indicates that~
PDS label uses the Object Description Language (ODL) syntax and the Planetary Science Data i
Dictionary semantics to present data descriptive information. The SFDU label also indicates that
the SFDU is delimited by a Start-Marker/End-Marker pair. It shall be formed as follows: !

I
1) Control Authority ID NJPL 1

2) VersioniD 3

3) Class ID K

4) Delimiter Type s
S) Spare 0

6) Description Data Unit ID PDSX

7) Length Field ##mark:fl:t#

The marker pattern (##mark## in the example) can be set to any String which is unlilcely to be
repeated elsewhere in the data product.

EXAMPLE: NJPL3KSOPDSX##mark##
i

The two SFDU labels shall be concatenated, left justified, in the first line or record of the PDS !
label. Note that there are no characters between the two SFDU labels. For data products that have
RECORD_TYPE equal to V ARIABLE_LENGTH the two concatenated SFDU labels shall not be:
followed by <CR><LF'>. '

EXAMPLE: CCSD3ZF000010000000INJPL3KSOPDSX##mark##

The remainder of the PDS label begins on the next line. The last line of the PDS label contains the;
END statement Then, in the same line or record, right justified, is the End-Mar.ker for the K Classi
SFDU and the I Class SFDU label. The ~d-Marker pattern shall appear as: ·

EXAMPLE:· CCSD$$MARKER##mark##

Note that the start marker and the end marker fields must be identical within the SFDU (in the
example, ##mark##). Next shall be an I Class Version 3 SFDU label. Class I indicates that the

1

value field (everything after the SFDU label) is application data, the data object The Data I
Description Unit ID varies by data product type, is supplied by the JPL Control Authority, and is
usually documented in the science data product Software Interface Specifications (SIS). The SFDUI
label also indicates that the SFDU will be terminated by a single End-of-File. It shall be formed as.
~~: .

Chapter 16. SFDU Usage 16-7

1) Control Authority ID NJPL

2) VersioniD 3

3) ClassiD I

4) Delimiter Type F

5) Spare 0

6) Description Data Unit ID xxxx
7) Length Field 00000001

EXAMPLE: NJPL3IF001060000000l

where XXXX has been replaced by 0106.

The two SFDU labels shall be concatenated, right justified, and appear in the last line or record of
the PDS label following the END statement. (If it happens that there is not 40 bytes left in the last
record of the PDS label, add an additional record and right justify the two SFDU labels.) Note that
there are no characters between the two SFDU labels, and that the marker pattern and I Oass SFDU
4J>els are transparent to the PDS label processing software (the PDS Toolbox).

Example: END CCSD$$MARKER##mark##NJPL3IF0010600000001

The data object begins on the next physical record.

• Example for STREAM record type

End Statement blank(s) End marker I Class SFDU End of record

END CCSD$$MARKER##mark##NJPL3IF0010600000001 <CR><LF>

• Example for FIXED _LENGTH record type:

End Statement Terminator Record Boundary +
END <CR.x.LF> bbbbb CCSD$$MAR.KER##MAR.K##NJPL3IF0010600000001

• Example for UNDEFINED record type:

Statement terminator

End Statement !
END<CR.><LF> CCSD$$MARKER##MARK.##NJPL3IF0010600000001

• Example for V ARIABLE_LENGTH RECORD_TYPE:

1~8

Record Length END end of statement

END CCSD$$MA.RKER.##MARK##NJPL3IF0010600000001

16.3 Exceptions to this Standard

I

Chapter 16. SFDU Usage
1

I
I
I
!

I
Software files and document files should not be packaged as SFDUs. Previous versions of the PD~
standards expressed the ZI SFDU labels as an ODL statement. The ZI SFDU labels were followed
by"= SFDU_LABEL". I

EXAMPLE: CCSD3ZFOOOOIOOOOOOOINJPL3IFOPDSXOOOOOOOI = SFDU_LABEL I

Chapter 17. Usage ofN/A. UNK. and NULL 17-1

Chapter 17

Usage ofN/A, UNK and NULL

17.1 Interpretation of N/A, UNK, AND NULL

During the completion of data product labels or catalog templates, it often occurs that a value is not
available for a required data element. The symbolic literals "N/ A", "UNK", and "NULL" are used
in such cases to represent the fact that no value is available and also to suggest the reason why the
value is not available. This chapter provides both descriptive and technical definitions for these
symbolic literals.

The symbolic literals ""N/A ", "UNK", and "NULL" are allowed for use in all domains of all data
elements. In the descriptions, the actual use of a data element is referred to as an "instance" of the
data element.

17.1.1 N/A

When it appears as a value, "N/ A" (shorthand for "Not Applicable") indicates that the values within
the domain of this data element are not applicable in this instance.

INS1RUMENT_ID= ''N/A"

For example, in the Data Set catalog object, the instrument identification associated
with NAIF SPK kernels is "N/ A" since these data sets have no associated
instruments.

17.1.2 UNK

When it appears as a value, "UNK" (shorthand for "Unknown") indicates that the value for this data
element in this instance is permanently not known. A value is applicable but none is forthcoming.

Fll..TER_NAME = "UNK"

In this example for a value with a character data type, the filter used for a Viking Image is not
known and no archive exists that supplies this information.

TWIST _ANGLE= "UNK"

"UNK" can also be used for values that have numeric data types, as shown in this example. Here
it indicates that the twist angle that applies to an image is not known and no archive exists that
supplies this information

17-2 Chapter 17. Usage of N/ A. UNK and NULL

I
I

i
I

I 17.1.3 NULL
l

When it appears as a value, "NULL" indicates that the value for this data element in this instance
is temporarily unknown. A value is applicable and is forthcoming. I

DATA_SET_RELEASE_DATE ="NULL"

This example shows that a data set could be loaded into the catalog before being officially
released. During the interim, the release date is not known.

i

i
17.2 Implementation recommendations for NIA, and UNK, and NUL~

I
Within information processing systems such as the PDS catalogs, ~e above definitions imply~
three distinct values will be stored for the "figurative constants" N/A, UNK., and NULL. The PDS
recommendations are as follows. I

1) For character fields: The strings "N/A'\ "UNK", and "NULL" (see 3) can be stored as values ni
data elements with character data types. This includes DA TEfi'Il.\.fE data types where UTC or othet

I

character formats are specified. I

2) For numeric fields: See Table 17.1 for the values stored for data elements with numeric data I

types. l
i

3) Exception: Files such as volume INDEX files that are included in archive volumes in ASCTI •
format may use of the figurative constants "N/A", "UNK", and "NULL" for both numeric and I
character data types. Alternatively, numeric constants representing N/ A, UNK., and NULL may be
defined for each column in an INDEX table, using the keywords I
NOT_APPUCABLE_CONSTANT, UNKNOWN_ CONSTANT, and NULL_ CONSTANT in the
appropriate COLUMN objects.

Table 17.1: Numeric values for N/A, UNK, NULL

Signed lnte- Signed lnte- Unsigned Unsigned In- Tiny Integer
ger ger Integer teger (1 byte- un- Real Binary Time

(4 byte) (2 byte) (4 byte) (2 byte) signed)

N/A -2147483648 -32768 4294967293 65533 locally de- -l.E32
Jan. 1, 1753

'- fined **

UNK 2147483647 32767 4294967294 65534 locally de- +l.E32
[Dec. 31, 9999

fined **

NULL null* null* null* null* null* null* null*
---- ---~ ---~----- ---~

* The availablility of NULL as a universal value across data types in some data management systems simplifies the implementation of
the figurative constant "NULL". However, if a system 11null" is not available, then either a) an arbitrary value can' be chosen, or b) the
meanings of UNK and NULL can be combined and the token or numeric representation of UNK used.

** Sybase limits.

f
:-J

i n
a.
~
jJ>

~
8.

~

....
Z!

Chapter 18. Units of Measurement 18-1

Chapter 18

Units of Measurement

The uniform usage of units is essential in a broadly-based catalog system, for obvious reasons. One
cannot search for all the instruments covering 400 to 700 ~wavelength if some of the entries are
in Angstroms and some in microns. The PDS standard shall be Systeme Intemationale d'Unites
(SI) where applicable. For example, micrometers should be used rather than microns.

The units for the data elements used in PDS data product labels and templates have been
determined by the discipline scientists on a data element by data element basis. The Planetary
Science Data Dictionary defines the desired units for each database element used in the system. In
addition, there is a table in the PSDD that gives unit definitions.

In cases where more than one type of unit is possible for a given data element, an additional data
element shall be used to identify the applicable unit. For example, the value of the element
SAMPLING_PARAMETER_RESOLUTION may be given in different units, depending on the
situation. Therefore, an additional element, SAMPLING_PARAMETER_UNIT, accompanies it,
in order to specify the applicable unit of measure. The PDS allows exceptions to SI units when
needed for consistency with previous community usage (e.g. an angle measurement in degrees
instead of radians).

Both the name of the unit and the symbol are allowed as well as singular or plural form. In
addition, the double asterisk(**) is used, rather than the caret(") to indicate exponentiation, in
order to comply with the preferences of the European science community.

SI Units

The following summary of SI unit information is extracted from The International System of Units.

Base units - As the system is currently used, there are seven fundamental SI units, termed "base
units":

OIJANTITY fi&ME QE UNIT SYMBQL

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amountofsub~ce mole mol

luminous intensity candela cd

18-2 Chapter 18. Units of Measurement.

SI units are all written in lowercase style; symbols are also lowercase except for those derived from
proper names. No periods are used with any of the symbols in the international system. I

Derived units- In addition to the base units of the system, a host of derived units, which stem
from the base units, are also employed. One class of these is formed by adding a prefix,
representing a power of ten, to the base unit. For example, a kilometer is equal to 1,000 meters, and
a millisecond is .001 (that is, 111,000) second. The prefixes in current use are as follows: I

SIPREFIXES
Factor Prefix Symbol Factor Prefix Symbol

10**18 exa E 10**-1 deci d

10**1.5 peta p 10**-2 centi c

10••12 tera T 10**-3 milli m

10**9 giga G 10**-6 micro

1o**6 mega M 10**-9 nano n

10**3 kilo k to**-12 pi co p

10**2 hecto h to**-1.5 femto f

10**1 deka da to**-18 alto a

Although, for historical reasons, the kilogram rather than the gram was chosen as the base unit,
prefixes are applied to the term gram instead of the official base unit: megagram (Mg). milligram

I

(mg), nanogram (ng), etc. i

Another class of derived units consists of powers of base units and of base units in algebraic
relationships. Some of the more familiar of these are the following:

QUANTITY ~AME Q.I UNIT SYMBOL
area square meter m**2

volume cubic meter m**3

density kilogram per cubic metez kglm**3

velocity meter per second mls

angular velocity radian per second rad/s

acceleration meter per second squared mls**2

angular acceleration radian per second squared rad/s**2

kinematic viscosity square meter per second m**2/s

dynamic viscosity newton-second per square meter N * slm**2

luminance candela per square meter cd/m**2

wavenumber lpermeter m**-1

activity (of a radioactive source) 1 per second s**-1

Chapter 18. Units of Measurement.

Many derived SI units have names of their own:

OUANJITY NAME OF UNIT

frequency hertz

angular acceleration hertz

force newton

pressure (mechanical stress) pascal

work, energy ,quantity of heat joule

power watt

quantity of electricitypotential difference coulomb

electromotive force volt

electrical resistance ohm

capacitance farad

magnetic flux weber

inductance henry

magnetic flux density tesla

magnetomotive force ampere

iuminous flux lumen

illuminance lux

Supplementary units are as follows:

QUANTITY

plane angle
solid angle

NAMEOFUNIT

radian
steradian

SYMBOL

Hz

N

Pa

I

w
c
v

F

Wb

H

T

A

1m

lx

SXMBOL

rad
sr

18-3

EQUIVALENT

s **-1

s**-1

kg*m/s**2

N/m**2

N*m

J/s

A* s

W/A

VIA

A*s/V

V*s

V*s/A

Wblm**2

cd * sr

lmlm**2si

Use of figures with SI units - In the international system it is considered preferable to use only
numbers between 0.1 and 1,000 in expressing the quantity of any SI unit Thus the quantity 12,000
meters is expressed 12 km., not 12,000 m. So too, 0.003 cubic centimeters is preferably written 3
mm3, not 0.003 cm3.

18-4 Chapter 18. Units of Measurement.

Chapter 19. Volume Organization and Naming 19-1

Chapter 19

Volume Organization and Naming

The Volume Organization and Naming Standard defines the standard way of organizing data sets
onto physical media and the conventions for forming volume names and identifiers. A volume is
one unit of physical media such as a CD-ROM, a CD-WO, an 8mm magnetic tape, or a 9-track
magnetic tape. Data sets may reside on one or more volumes and multiple data sets may also be
stored on a single volume. Volumes are grouped into Volume Sets.

Each volume has a directory structure which contains subdirectories and files. Both random access
(CD-ROM) and sequential access (magnetic tape) media are supported. A PDS volume on
sequential access media has a ''virtual" directory structure defined in the volume object included
on the volume in the file VOLDESC.CAT. The virtual directory structure may be used to recreate
the volume directory structure when the files are moved to random access media.

PDS recommends that archive volumes be based on a single version of the PDS Standards.
Software tools that work with one version of the standard may not work with all versions.

19.1 Volume Set Types

Data may be organized into one of four types of archive volumes. The distinguishing
characteristics between the volumes types are the number of data sets on each volume and the
number of volumes required to capture all the data. The directory organization of the volumes and
the required files varies slightly depending on the volume type. Figures 19.1 through 19.5 depict
the various volume directory structure options. The four volume types are described below.

(1) One data set on one volume- this is the basic volume organization consisting of the required
ROOT directory, INDEX, and data subdirectories and the seven optional subdirectories:
DOCUMENT, CATALOG, LABEL, GAZE I IER (not shown in the figures), SOFIW ARE,
CALIB. and GEOMETRY. See Figure 19.1.
Note that CALIB and GEOMETRY are only recommended directory names, other
appropriate names may be substituted.

(2) One data set on many volumes - this type includes both an index for the volume and a
cumulative index for the volume set (up the given volume number, not the entire set) in the
INDEX subdirectory. See Figure 19.2.

(3a) Many data sets on one volume (one logical volume)- this type of volume requires additional
file naming conventions to distinguish similar files for different data sets. In addition, the
DATA subdirectories are organized by data set (or equivalent, e.g. instrument) at the first
level below the ROOT directory. See Figure 19.3.

19-2

I

Chapter 19. Volume Organization and NaminJ
I

I

(3b) Many data sets on one volume (many logical volumes)- this volume organization is design~d
to accommodate many small data sets that have distinct documentation, ~dexing and oth~r
ancillary information that are more logically packaged together below the root directory 6f

I

the volume. See Figure 19.4. Directories common to all logical volumes (e.g. SOFTWARE)
may also be supplied, provided there are no pointer references to any files within a commdn
dire

I
ctory. ~

(4) Many data sets on many volumes - this type requires additional file naming conventionl,
cumulative indices, and a frrst level subdirectory organization by data set. See Figure 19.5J.

i
l

NOTE: It is permissible to have one or more data volumes with an ancillary volume containing the
I

DOCUMENT, CATALOG, GAZETIER, SOFTWARE, CALIB, and GEOMETRY directories. If
this is done, PDS requires that all include files be present on each data disk. PDS prefers that :
ancillary files be archived on the same volumes as the data wherever possible. This makes data
easier to access for the science users. The contents and organization of the directories of all the
volume types are described in this chapter.

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, ONE VOLUME

DOCUMENT CATALOG LABEL

I I I
DOCINFO.TXT CATINFO.TXT LABINFO.TXT

VOLINFO.TXT1 CATALOG.CAT1 INCLUDE FILE1

I I INCLUDE RLE2

I

SOFTWARE

I
SOFTINFO.TXT

I

ROOT

CALIS

I

AAREADME.TXT

ERRATA. TXT*

VOLDESC.CAT

VOLDESC.SFD*

I

GEOMETRY -

I
CALINFO.TXT GEOMINFO.TXT

I I

xxxxiNFO. TXT Required for each non-data subdirectory If present

*Optional

1 One of VOLINFO.TXT and CATALOG.CAT required

FIGURE 19.1

I

INDEX

I
INDXINFO.TXT
INDEX.LBL
INDEX. TAB

I I

DATA1 DATA2

I I LABEL FILE1

DATAFJLE1 '

LABELFILE2

DATAFILE2

LABELED DATA FILE1

LABELED DATA FIL~

LABELED DATA FIL~

INCLUDE FILE1 *

INCLUDE FILE2 *

I

••

1 -~
~
[
n

~

I:
g

8.
z
~·

00

-~

VOLUME SET ORGANIZATION STANDARD
ONE DATA SET, MANY VOLUMES

ROOT

AAREADME.TXT

ERRATA. TXT"

VOLDESC.CAT

VOLDESC.SFD"

~ .. ~ ~
DOCUMENT CATALOG LABEL SOFTWARE CALIB GEOMETRY

I I I I I I
DOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT CALINFO.TXT GEOMINFO.TXT

VOLINFO.TXT 1 CATALOG.CAT1 INCLUDE FILE1 I I I I I INCLUDE FILE2

I

xxxxiNFO.TXT Required for each non-data subdirectory If present

*Optional

1 One of VOLINFO.TXT and CATALOG.CAT required

INDEX

I
INDXINFO.TXT

INDEX.LBL

INDEX. TAB

CUMINDEX.LBL

CUMINDEX.TAB

DATA1
I

LABEL FILE1

DATAFILE1

LABELFILE2

DATAFILE2

DATA2

I

LABELED DATA FILE1

LABELED DATA FILE2

LABELED DATA FILE3

INCLUDE FILE1 *

INCLUDE FILE2 *

I

-t

i ... -~
f
2
I:
g
[
z
~· . FIGURE 19.2 --- ______ oq ______ _

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE VOLUME

I I
DOCUMENT CATALOG

I I

I
LABEL

I
llOCINFO.TXT CATINFO.TXT LABINFO.TXT
VOLINFO.TXT 1 CATALOG.CAT1 axxTABLE.FMT

I
axxDS.CAT bxxTABLE.FMT

bxxDS.CAT I
I

I
SOFTWARE

I
SOFTINFO.TXT

I

ROOT
I

AAREADME.TXT

ERRATA.TXT"

VOLDESC.CAT

VOLDESC.SFD*

I I I
CALIB GEOMETRY INDEX

I I I
CAUNFO.TXT GEOMINFO.TXT INDXINFO.TXT
axxCAUB.TAB I bxxCALIB.TAB axxiNDEX.LBL

I
axxiNDEX.TAB
bxxiNDEX.LBL
bxxiNDEX.TAB

I I ••
DATASET1 DATASET2

I '

DATA11 DATA12

•••
DATA21

xxxxiNFO.TXT Required for each non-data subdirectory If present
* Optional
1 One of VOLINFO.TXT and CATALOG.CAT required

FIGURE 19.3

I I LABELFILE1
DATAFILE1
LABELFILE2
DATAALE2
LABELED DATA FILE1
LABELED DATA FILE2
LABELED DATA FILE3
INCLUDE FILE 1
INCLUDE FILE2

I

f
~

~

f
~

I: g

i
z
~·

(IQ

....
~

DATASET1**
I

AAREADME.TXT
VOLDESCCAT
ERAA TA.TXT*
VOLDESC.SFD*

I

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, ONE PHYSICAl VOLUME,

MANY LOGICAL VOLUMES

•••

ROOT
~- AAREADME.TXT

VOI..DESC.CAT
ERRATA. TXT"
VOI..DESC.SFD*

DATASETn**
I

AAREADME.TXT
VOLDESC.CAT
ERRATA. TXT"
VOLDESC.SFD*

DOC~MENT CAT:oo L~EL son:vARE I GEO~ETRV I DA;A1a I
CAUB INDEX DATA1b

I
DOCUMENT

I
LABEL

I
CALIB

I I I
INDEX . DATAna

CATALOG SOFlWARE GEOMETRY DATAnb

• Optbnal
•• Logical volume; dhactory structure Identical to Figure 19.1, ONE DATA SET, ONE VOLUME.
••• Common to all logical vdumes

FIGURE 19.4
---·······~-----

SOFTWARE***
I

SOFTINFO.TXT
ETC.

....
:t:

f
~

*§

r
a
I:
g
[
z
g.

- _(Jq ·--

VOLUME SET ORGANIZATION STANDARD
MANY DATA SETS, MANY VOLUMES

ROOT

I

AAREADME.TXT

ERRATA. TXT*

VOLDESC.CAT

VOLDESC.SFD*

I I I I I I I I I ••
DOCUMENT CATALOG LABEL SOFTWARE CALIS GEOMETRY INDEX DATASET1 DATASET2

I I I I I I I I I
OOCINFO.TXT CATINFO.TXT LABINFO.TXT SOFTINFO.TXT
VOLINFO.TXT 1 CATALOG.CAT1 axxiNCLUDE FILE1

I axxxxxDS.CAT bxxiN,UDE FILE1
bxxxxxDS.CAT . I

CALINFO.TXT GEOMINFO.TXT INDXINFO.TXT
axxCALIB.TAB I axxiNDEX.LBL
bxxCALIB.TAB axxiNDEX.TAB

I axxCMIDX.LBL

I

xxxxiNFO.TXT Required for each non-data subdirectory If present
*Optional·
1 One of VOLINFO.TXT and CATALOG.CAT required

FIGURE 19.5

axxCMIDX.TAB
bxxiNDEX.LBL
bxxiNDEX.TAB
bxxCMIDX.LBL
bxxCMIDX.TAB 1 • •

DATA11
I

LABELFILE1
DATAFILE1

LABELFILE2
DATAFILE2

DATA12

I

LABELED DATA FILE1

LABELED DATA FILE2
LABELED DATA FILE3
INCLUDE FILE1

INCLUDE FILE2

•••
DAT~1

I

f -~
·~
[
(11

i g
[
z
~·

OQ

-!!

I
19-8 Chapter 19. Volume Organization and Naming

19.2 Volume Organization Guidelines

PDS recommends that directory structures be simple, path names short, and directory and file
names be constructed in a logical manner. It is recommendt:?d that the number of files per
subdirectory should ideally be a screenful, allowing users to browse through file names using the
directory command. Some externally developed software cannot handle subdirectories with morb
than 255 fJ.les, so it is recommended that this number not be exceeded. PDS also recommends that
there be no empty subdirectories (as a convenience to users).

19.3 Description of Directory Contents and Organization

ROOT Directory -- Required 1

I

Top level directory of a physical or logical volume. The ROOT directory (of a physical or logical
volume) contains the followinli required and optional files and subdirectories. I

AAREADME.TXT - Required I

Contains an overview of the contents of the volume (physical or logical volume) and its
organization, general instructions for using the volume and its contents, and provides contact
information. Its name has been chosen so that it will be listed first in an alphabetical directorjr
listing. See Appendix D for an outline and example of an AAREADME.TXT fJ.le. I

ERRATA. TXT-- Optional I

Contains textual information describing errors and/or anomalies found in the current volume
as well as errors and/or anomalies found in previous volumes of a volume set. If known erroti

I

exist on a volume they shall be documented in this file.

VOLDESC.CAT --Required I

Contains the VOLUME Object which gives a high-level description of the contents of th~
volume. ~

I

VOLDESC.SFD - Optional I

Contains the SFDU Reference Object structure which aggregates the separate file contents of
' I

the volume into a SFDU. The Reference Object is expressed in PVL. This file should only be
considered for use if the data products are packaged as SFDUs. Note: the ".SFD" file
extension is a reserved file extension in the CCSDS SFDU standard indicating the fil~
contains a valid SFDU. I

DOCUMENT Subdirectory -Optional
Contains all the textual material that describes the mission, spacecraft, instrument, and data set.
This can include references to science papers, or the actual papers.

DOCINFO.TXT -Required
Contains a textual description of the contents of the DOCUMENT subdirectory.

VOLINFO.TXT- Optional
Contains a textual description of the contents of the volume. It is an optional file, however,'

I

Chapter 19. Volume Organization and Naming 19-9

either one or both of the VOLINFO.TXT or the data set catalog objects in the CATALOG
subdirectory shall be included on the volume (see the CATALOG subdirectory).

CATALOG Subdirectory -- Optional
Contains all the completed catalog objects for the mission, spacecraft, instruments, data set
descriptions associated with the data set(s) on the volume. This is an optional directory, however,
either one or both of the data set catalog objects or the VOLINFO.TXT file shall be included on
the volume.
Note that for logical volumes, these must be below the logical volume root, if present.

CATINFO.TXT- Required
Contains a textual description of the contents of the CATALOG subdirectory.

CATALOG.CAT --Required
Contains the entire set of high-level descriptive information about a data set (this includes
mission description, instrument host description, instrument description, and data set),
expressed in PDS objects which makes the file suitable for loading into a catalog. Individual
catalog objects may also be packaged into separate files. For example, in the figures the files
axxxxxDS.CAT and bxxxxxDS.CAT represent two separate files each containing data set
objects (descriptive information about the data set) for data sets a and b respectively. See the
File Specification and Naming chapter in this document for the file naming rules. See also
Appendix A for the required contents of the catalog object.

Note that the axx- and bxx- prefiXes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data set,
instrument, or other criterion). The data producer should replace the generic prefixes shown
here by a suitable mnemonic acronym.

LABEL Subdirectory- Optional
Contains additional PDS labels and/or include files (meta data or descriptive information) which
were not packaged with the data products or in the data subdirectories.
Note that if a logical volume organiz.ation is used, the LABEL subdireCtory, if present, must reside
below the logical volume ROOT, since pointer references to flies within a common directory are
not allowed.

LABINFO.TXT- Required
Contains a textual description of the contents of the LABEL subdirectory.

Include Files - Required
Files pointed to in a PDS label that contain additional meta data or descriptive information.
Only files of type LBL, TXT, or FMT shall be included in the LABEL subdirectory. In the
figures, the files axxlNCLUDE FILEt, bxxiNCLUDE FILEt and INCLUDE FILEt
represent sample files of the above types. The axx and bxx prefixes indicate that the ~elude
files for different data sets (a and b) may be combined in the same LABEL subdirectory.

19-10 Chapter 19. Volume Organization and Naming

Note that the axx- and bx.x- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data ~t,
instrument, or other criterion). The data producer should replace the generic prefixes sho~n
here by a suitable mnemonic acronym. I

I
GAZETTER Subdirectory- Optional

1

1

Contains detailed information about all the named features on a target body associated with the
data sets on the volumes. The features are those the International Astronomical Union (IAU) haS
named and approved.

GAZINFO.TXT- Required
Contains a textual description of the contents of the GAZEITER subdirectory.

GAZETTER. TXT- Required
Contains a textual description of the structure and contents of the gazetteer table.

!

GAZETTER.LBL -Required I
Contains the PDS label identifying and giving a formal description of the structure of th~
gazetteer table.

GAZETTER.TAB- Required
Contains the gazetteer table.

SOFTWARE Subdirectory- Optional
Contains the software libraries, utilities, or application programs to access/process the data objects!
It may also include algorithms. Currently only public domain software can be included on PDS :
archive volumes.

I

The following SOFIW ARE subdirectory structure is the recommended platform-based model. Ail
alternative model for the SOFIW ARE subdirectory structure is application-based (e.g. directory I
names are based on the application such as DISPLAY). See Appendix D SOFfiNFO.TXT i
example for the subdirectory structure used for Clementine. See Appendix E for the subdirectory.
structure of the NAIF Toolkit for a single platform. 1

SOFTINFO.TXT- Required
Contains a textual description of the contents of the SOFIW ARE subdirectory.
For an outline and example, see Appendix D.

SRC Subdirectory - Optional i
There can be a global SRC directory under the SOFIW ARE directory if there is source code
applicable to all platforms. For example, application programming languages such as IDL ~
relatively platform independent and would be placed in a gobal SRC directory. Note iri
example below, there is both a global source directory as well as source directories at th~
lower levels. I

Chapter 19. Volume Organization and Naming 19-11

DOC Subdirectory -- Optional
A global DOC directory under the SOFfW ARE directory would contain documentation for
the source code in the global SRC directory.

Lm Subdirectory - Optional
A global LIB directory under the SOFTWARE directory would contain libraries applicable
to all platforms.

Hardware Platform and Operating System/Environment Subdirectories- Optional (not
present if only global source code provided)

1. The hardware platform and the operating system/environment must be explicitly stated. If
there is more than one operating system/environment (os/env) supported then they must be
subdirectories under the hardware directories. If there is only one, then that subdirectory can
be promoted to the hardware directory level (via naming conventions). In the example
below, since only one os/env is supported on hardware 2, the name of the hardware
subdirectory also contains the os/env name.

SOFTWARE

I
softinfo.txt

I I
<HWl> <HWl> <SRC> <SRC>* <DOC>*

I I I I I I I I
<osl> <os2> <os3> BIN SRC DOC LIB OBJ

I

I I

I I I I
BIN SRC DOC LIB OBJ

2. The next level of directories are BIN, SRC, DOC, LIB and OBJ. If any are not applicable,
they should be left off (i.e. no empty directories).

*info.txt files under SOFTWARE subdirectories are optional (e.g. PCINFO.TXT,
MACINFO.TXT, V AXINFO.TXT, SUNINFO.TXT, etc.).

3. Examples of subdirectory names for the two cases where there are single or multiple
operating system/environments are listed below. This list is not meant to be a complete list,
it will be updated on an as-needed basis.

19-12 Chapter 19. Volume Organization and Naming

Multiple Single

PC

DOS PCDOS
WIN PCWIN
WINNT PCWINNT
OS2 PCOS2

MAC
SYS7 MACSYS7
AUX MACAUX

SUN
SUN OS SUN OS
SOLAR SUN SOLAR

VAX
VMS VAXVMS
ULTRX VAXULTRX

SGI
IRX4 SGIIRX4
IRXS SGIIRXS

CALmration Subdirectory -- Optional
Contains the calibration files used in the processing of the raw data or needed to use the data
products on the volume. .
Note that CALIB is only a recommended directory name, another appropriate name may be use<lf

I
I

CALINFO.TXT- Required
Contains a textual description of the contents of the CALIB su~ory. 'i

I

Calibration Fdes - Required
In the figures, the files axxCALIB.T AB and bxxCALIB. TAB represent sample files. The axx
and bxx prefixes indicate that the calibration files for different data sets (a and b) may ~
combined in the same CALIB subdirectory.

Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data setJ
instnlment, or other criterion). The data producer should replace the generic prefixes showrl

I

here by a suitable mnemonic acronym.

Chapter 19. Volume Organization and Naming

GEOMETRY Subdirectory- Optional
Contains the relevant files (e.g., SEDRs, SPICE kernels) needed to describe the observation
geometry.

19-13

Note that GEOMETRY is only a recommended directory name, another appropriate name may be
used.

GEOMJNFO.TXT- Required
Contains a textual description of the contents of the GEOMETRY subdirectory.

INDEX Subdirectory- Required (exception noted below)
Contains the indices for the data products in the data set(s) on the volume.

Exception note: If the logical volume organiz.ation is used, there will generally be no INDEX
subdirectory at the ROOT of the physical volume. Instead there will be individual INDEX
subdirectories at the ROOT of each logical volume.

INDXINFO.TXT- Required
Contains a textual description of the contents of the INDEX subdirectory. This description
should include at least:

1) a description of the structure and contents of each index table in this subdirectory.
2) usage notes

For an example, see Appendix D.

CUMINDEXJ.BL - Recommended fo:r multi-volume sets
For multi-volume sets, this fJ.le contains the PDS label for the cumulative volume set index
(CUMINDEX.TAB). The INDEX_TABLE specific object should be used to identify and
describe the structure (columns) of the cumulative volume set index table. See Appendix A.
Although CUMINDEX.LBL is the preferred name for this file, the name axx.CMIDX.LBL
may also be used (with axx replaced by an appropriate mnemonic).
PDS recommends the use of detached labels for index tables. If an attached label is used, this
file is not needed.

CUMINDEX.TAB -Recommended for multi-volume sets
For multi-volume sets, this file contains the cumulative volume set index in a tabular format.
Normally only data files are included in a cumulative index table. In some cases, however,
ancillary files may be included.
Although CUMINDEX.TAB is the preferred name for this file, the name axx.CMIDX.TAB
may also be used (with axx replaced by an appropriate mnemonic).

INDEX.LBL - Required (exception noted below)
For all volumes, this file contains the PDS label for the volume index (INDEX. TAB). The
INDEX_TABLE specific object should be used to identify and describe the structure
(columns) of the index table. See Appendix A.
Although INDEX.LBL is the preferred name for this f11e, the name axxiNDEX.LBL may also
be used (with axx replaced by an appropriate mnemonic).

19-14 Chapter 19. Volume Organization and N~

Exception note: PDS recommends the use of detached labels for index tables. If an attach~d
label is used, this flle is not needed. i

INDEX. TAB-- Required I

For all volumes, this file contains the volume index in tabular format. Normally only dab.
files are included in an index table. In some cases, however, ancillary flies may be included.
Although INDEX.TAB is the preferred name for this file, the name axxiNDEX.TAB may
also be used (with axx replaced by an appropriate mnemonic). I

!
Note that the axx- and bxx- prefixes in the sample names are neither required nor
recommended. Data producers may use them to distinguish two or more files (by data sel
instrument, or other criterion). The data producer should replace the generic prefixes shoJn
here by a suitable mnemonic acronym. i

Data Subdirectories --Required (exception noted below)
Contain the data product files. These subdirectories are organized and named according to the ~
Directory Types and Naming chapter in this document. Subdirectories may be nested up to eight'
levels deep on a physical volume. Data products may be packaged with their PDS labels attache~
where the label and the data object(s) are contained in a LABELED DATA FILE, or with PDS
labels detached, where the PDS label is contained in a LABEL Fll..E and the data object(s) in a I
DATAFILE. '

Data File - Contains a data object which is a grouping of data resulting from a scientifib
observation such as an image or table, representing the measured instrument parameters. The
associated PDS label is contained in a LABEL Fll..E. . !

!
I

Label Flle -- Contains a detached PDS label expressed in the Object Definition Language tha:t
identifies, describes, and defmes the structure of the data objects. The associated data objectS
are contained in a DATA FILE. The LABEL FILE shall have the same basename as thb
associated DATA Fll..E and the extension of".LBL".

Labeled Data File- Contains data object(s) and associated PDS label.

I
Exception note: Data subdirectories are not present at the ROOT level of a physical vol~
when logical volumes are used. Instead, they are nested below the ROOT of the logical
volume. !

19.4 Volume Naming

The Volume name provides the name of a data volume. Volume names shall be at most 60
characters in length and are in upper case. They should describe the contents of the volume in terms

1

that a human user can understand. Most computer systems and software use the volume ID, not the:
volume set name or volume name, when processing media volumes. The volume set name or ·
volume name are therefore more important to a human user than to a machine.

Chapter 19. Volume Organization and Naming

In most cases the volume name is more specific than the volume set name. For example, the
volume name for the frrst volume in the VOYAGER IMAGES OF URANUS volume set Is:

"VOLUME 1: COMPRESSED IMAGES 24476.54- 26439.58"

19.4.1 VolumeiD

19-15

Many types of media and the machines that read media volumes place a limit on the length of the
volume ID. Therefore, although the complete volume set ID should be placed on the outside label
of the volume, a shorter version is actually used when the volume is recorded. PDS has adopted a
limit of 9 characters for these terse volume identifiers. This terse identifier shall consist of the last
two components of the volume set ID, with the "X" wildcard values replaced by the sequence
ninnber associated with the particular volume (see the Volume Set ID Standard below). This ID
must always be unique for PDS data volumes. Note that the ID must be in upper case.

EXAMPLES:

VG_0002 (for volume 2 of the Voyager set)
MG_OOOI (for the first volume of the Magellan set)
VGRS_OOOI (for a potenbal Voyager Radio Science collection)

If a volume is redone because of errors in the initial production the volume id should remain the
same, and the VOLUME_ VERSION_ID should be incremented. This parameter is contained in
the VOLDESC.CAT file on the volume, and the version ID should also be placed on the external
vollime label as "Version n" where n indicates the revision number. This indicates that the original
volume should be replaced with the new version. If a volume is redone because the data has been
enhanced it should be given a new volume id, not a new version number.

19.5 Volume Set Naming

The Volume Set Name provides the full, formal name of a group of data volumes containing a data
set or a collection of related data sets. Volume set names shall be at most 60 characters in length
and must be in upper case. Volume sets are normally considered as a single orderable entity.
For example, the volume series MISSION TO VENUS consists of the following volume sets:

MAGELLAN: TilE MOSAIC IMAGE DATA RECORD

MAGELLAN: TilE ALTIMETRY AND RADIOMETRY DATA RECORD

MAGELLAN: TilE GLOBAL ALTIMETRY AND RADIOMETERY DATA RECORD

PRE-MAGELLAN RADAR AND GRAVITY DATA SET COILECUON

In certain cases, the volume set name can be the same as the volume name, such as when the
volume set consists of only one volume.
Note that in VAX computer usage a volume set has very special attributes, and that all volumes of
a volume set must be on line for proper access. There are no plans within PDS to produce volume
sets following the VAX definition. Instead the VOLUME SET NAME and VOLUME SET ID are
used to group related data and to provide additional specificity in a volume.name in case volumes
produced by different organizations have the same volume IDs.

19-16 Chapter 19. Volume Organization and Naming1

19.5.1 Volume Set ID
I

The volume set ID identifies a data volume or a set of volumes. Volume. sets are normally [
considered as a single orderable entity. 1

Volume set IDs shall be at most 60 characters in length, must be in upper case, and are formed of
the following fields, separated by underscores:The country (abbreviated) of origin. ·

1. The government branch.
2. The discipline within the branch that is producing the volumes.

1

3. A campaign, mission or $pacecraft identifier (2 characters) followed by an optional f
character instrument or product identifier.

4. A 4 digit sequence identifier. The first digit or digits may be used to represent the vol~
ume set and the trailing "X''s are wildcards that represent the range of volumes in th~
set Up to 4 "X"s are allowed

~u 1

USA_NASA_PDS_GO_lOXX could be the Volume set ID for the Galileo EDR volume set.smce there are less than 100 volwnj
(since the XX placeholder accommodates the range 01 - 99 only). Note that the volume IDs for volumes in the set would then be
00_1001, 00_1002, etc. '

NOTE:
Prior to version 3.2, the 4-digit sequence identifier (item 5 above) did not include the "X"s.
currently used as wildcards. Instead, the last digits represented the volume. For example, on 1

Magellan, a volume_set_ID "USA_NASA_JPL_MG_OOOl" was. used ONLY for the volume with[
volume_ID of "MG_OOOl ". Subsequent volumes in the same set had volume_set_IDs that diff~red'
in the final field. !

I

If a set of volumes was to be distributed as one logical unit, the volume set ID included the range 1

of volume IDs.

EXAMPLE

USA_NASA_PDS_ VG_OOOl_TO_ VG_0003 for the tbree volumes that comprise the Voyager Uranus volume set

19.6 Logical Volume Naming
I

Logical volumes will retain the volume and volume set naming used at the physical volume level. I
For further information, see Appendix A, Volume Object.

19.7 Exceptions to This Standard
I

In some rare cases, machine or software restrictions may exist on volume ids. Also, volumes made
in the past may have ids which do not meet this standard and there ·may be compelling reasons for
keeping the same volume id when making a new copy of the data. All new data sets, however,
should use this standard.

,.
-a
-a
m
z c n
m
en

Appendix A PDS Data ObJeCt Defimi:Ions A-1

Appendix A

PDS Data Object Definitions

This section provides an alphabetical reference of PDS data object defimtions, including a
description, a list of reqmred and optional keywords, a list of required and optiOnal sub-objects (or
child objects), and one or more examples.

NOTE: Any keywords in the Planetary Science Data Dictwnary may also be included m the
definition of a specific data object definition.

These definitions and examples are provided here for convemence. Additional examples of Data
Object Definitions can be obtained by contacting your Data Engineer.

The examples provided m this Appendix have been based on both existmg or planned PDS archive
products, modified to reflect the most recent version of the PDS standards. They are not intended
to represent existing data products and data object definittons designed under previous PDS
standards.

The following PDS approved data object defimtions are to be used for labelmg primary and
secondary data objects. For a more detailed discussiOn on primary and secondary data objects, see
the Data Products chapter m this document.

There now exist four new Primitive Data Objects, ARRAY, BIT_ELEMENT (still under review),
COLLECTION and ELEMENT. Although these objects are avrulable, they should only be used
after careful consideration of the current PDS Data Objects. Please see the PDS Objects chapter
in this document for gmdelines on the use of primitive objects.

A-2 Appendix A PDS Data Object DefimtiOns

TABLE OF CONTENTS

A.1 Alias ... A-3

A.2 Array (Prmutlve Data Object) .. A-4

A.3 Bit Column .. A-7

A.4 B1t Element (Pnnutive Data Object) .. A-10

A.5 Catalog ... A -11

A.6 Collection (Pnnutive Data Object) .. A-14

A.7 Column ... A-15

A.8 Contmner .. A-19

A.9 Data Producer .. A-25

A.10 Data Supplier .. A-26

A.11 Directory .. A-27

A.l2 Document ... A-29

A.l3 · Element (Primitive Data Object) .. A-32

A.14 File ... A-33

A.l5 Gazetteer_ Table .. A-37

A.16 Header ... A-45

A.17 Histogrmn .. A-47

A.l8 History .. A -49

A.l9 Image .. , A-52

A.20 Image Map Projection ... A-51

A.21 Index_ Table : .. A-62

A.22 Palette .. A-67

A.23 Qube ... A-70

A.24 Series .. A-78

A.25 Spectrum .. A-82

A.26 SPICE Kernel. .. A-85

A.27 Table .. A-87

A.28 Text .. A-107

A.29 Volume ... A-109

Appendix A PDS Data Object Defimtwns

A.l ALIAS

The ALIAS object is an optiOnal sub-object of the COLUMN object.

Required Keywords

1. ALIAS_NAME
2: USAGE_NOTE

Optional Keywords

None

Required Objects

None

Optional Objects

None

Example

The followmg ts an example of the usage of the ALIAS ObJect as a suboject of COLUMN m a Magellan ARCDR label

OBJECT
NAME
START_BYTE
DATA_ TYPE
BYTES
OBJECT
ALIAS_NAME
USAGE_NOTE
END_OBJEC
END_OBJECT

=COLUMN
= ALT_FOOTPRINT_LONGITUDE"
= 1
=REAL
=10
=ALIAS
=AR_LON
= "MAGELLAN MIT ARCDR SIS"
=ALIAS
=COLUMN

A-3

A-4 Appendix A PDS Data Object Definlt!ons

A.2 ARRAY (Primitive Data Object)

The ARRAY object is provided to describe dimensiOned arrays of homogeneous objects. Note that
an ARRAY can contain only a smgle object, which can itself be another ARRAY or
COLLECTION tf required. A maxtmum of 6 axes is allowed in an ARRAY. The optional _AXIS_
elements can be used to describe the vanat10n between successive objects in the ARRAY.

Values for AXIS_ITEMS and _AXIS_ elements for multidimensional arrays are supplied as
sequences in which the right most Item varies the fastest as the default.

The optional START_BYTE data element provides the starting location relative to an enclosmg
object. If a START_BYTE is not specified, a value of 1 is assumed.

Required Keywords

1. AXES
2. AXIS_ITEMS
3. NAlVIE

Optional Keywords

1. AXIS_INTERVAL
2. AXIS_NAME
3. AXIS_UNIT
4.CHECKSUM
5. DESCRIPTION ·
6. INTERCHANGE_FORMA T
7. START_AXIS
8. STOP _AXIS
9. START_BYTE

Required Objects

None

Optional Objects

1.ARRAY
2. BIT_ELEMENT
3. COLLECTION
4.ELEMENT

Appendix A PDS Data Object Defimuons A-5

Example 1

The followmg IS an example of a two dimensiOnal Spectrum Array m a detached label

PDS_ VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
DATA_SET_ID
OBSERV A TION_ID
T ARGET_NAME
INSTRUMENT_HOST _NAME
INSTRUMENT_NAME
PRODUCT_ID
OBSERV A TION_TIME
START_TIME
STOP_TIME
PRODUCf_CREATION_TIME
"ARRAY
I* Descnptlon of ObJeCt m F1le *I
OBJECf
NAME
INTERCHANGE_FORMAT
AXES
AXIS_ITEMS
AXIS_NAME
AXIS_UNIT
AXIS_INTERV AL
START_AXIS
OBJECf
DATA_ TYPE
BYTES
NAME
DERIVED_MAXIMUM
DERIVED_MINIMUM
OFFSET
SCALING_F ACTOR
NOTE

END_OBJECT
END_OBJECf
END

Example2

=PDS3
= FIXED _LENGTH
= 1600
= 180
= "IHW-C-SPEC-2-EDR-HALLEY-V1 0"
= "704283"
="HALLEY"
= "IHW SPECTROSCOPY AND SPECTROPHOTOMETRY NETWORK"
= "IHW SPECTROSCOPY AND SPECTROPHOTOMETRY"
= "704283"
= 1986-05-09T04 I 0 20 640Z
= 1986-05-09T04 07 50 640Z
=UNK

1993-0 1-0 I TOO 00 00 OOOZ
"SPEC2702 DAT"

=ARRAY
= "2D SPECfRUM"
=BINARY
=2
= (180,800)
= ("RHO" ,"APPROXIMATE WAVELENGTH")
= (ARCSEC.ANGSTROMS)
= (1 5,7 2164)
= (I 0,5034 9)
=ELEMENT
= MSB_INTEGER
=2
=COUNT
= 2 424980E+04
= 0 OOOOOOE+OO
= 0 OOOOOOE+OO
= 1 OOOOOOE+OO
= "Conversion factor I 45 may be applied to data to estimate photonslsq rn/sec/

angstrom at 6800 angstroms "
=ELEMENT
=ARRAY

The followmg 1s an example of ARRAY, COLLECTION and ELEMENT pnrruttve obJects all used together

PDS_ VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

"ARRAY

DATA_SET_ID
TARGET_NAME

=PDS3
= FIXED_LENGTH
= 122
=7387

= "MISCHAOI DAT"

= "VEGA1-C-MISCHA-3-RDR-HALLEY-Vl 0"
=HALLEY

A-6

SPACECRAFT _NAME
INSTRUMENT_NAME
PRODUCT_ID
START_TIME
STOP_TIME
SPACECRAFT _CLOCK_ST ART_COUNT
SPACECRAFT _CLOCK_ STOP _COUNT

NOTE

OBJECT
NAME
INTERCHANGE_FORMAT
AXES
AXIS_ITEMS
DESCRIPTION
OBJECf
NAME
BYTES
DESCRIPTION

OBJECT
NAME
BYTES
DATA_ TYPE
START_BYTE
END_OBJECT

OBJECT
NAME
AXES
AXIS_ITEMS
START_BYTE
AXIS_NAME
AXIS_UNIT
AXIS_INTERVAL

="VEGA 1"
= "MAGNETOMETER"

"XYZ"
"UNK"

="UNK"
="UNK"
="UNK"

="VEGA I MISCHA DATA''

=ARRAY
MISCHA_DATA_FILE

=BINARY
1

=7387

Appendix A PDS Data Object Defimtxons

= "Th1s file contams an array of fixed length Mischa records "
=COLLECTION
= MISCHA_RECORD
= 122
= "Each record m th1s file consists of a ume tag followed by a 20-element array

of magnetic field vectors "

=ELEMENT
= START_TIME
=2
= MSB_INTEGER
=1
=ELEMENT

=ARRAY
MAGNETIC_FIELD_ARRA Y
2

= (3,20)
::::3
= ("XYZ_COMPONENT","TIME")
= ("N/A'' ,"SECOND")
=("NIA" ,02)

DESCRIPTION = "Magnetlc field vectors were recorded at the rate
of 10 per second The START_TIME field gtves thetlme at whtch the first vector m the record was recorded Success1ve vectors
were recorded at 0 2 second mtervals "

OBJECf
NAME
BYTES
DATA_ TYPE
START_BYTE
END_OBJECf
END_OBJECf

END_OBJECT

END_OBJECT
END

=ELEMENT
= MAG_FIELD_COMPONENT _VALUE
:::::2
= MSB_INTEGER
= 1
=ELEMENT
=ARRAY

= COLLECfiON

=ARRAY

Appendix A PDS Data Object Defimuons A-7

A.3 BIT COLUMN

The BIT_COLUMN object Identifies a string ofbtts that do not fall on even byte boundanes and
therefore cannot be described as a d1stmct COLUMN. BIT_COLUMNS defined within columns
are analogous to columns defined within rows.

Note: (1) The Planetary Data System recommends that all fields (w1thin new objects)
should be defined on byte boundaries. This precludes having multiple values strung together in bit
strings, as occurs in the BIT_COLUMN object.

(2) BIT_COLUMN is mtended for use m descnbing ex1stmg bmary data stnngs,
but is not recommended for use in defming new data objects because It will not be recognized by
most general purpose software.

(3) A BIT_COLUMN must not contam embedded objects.

BIT_COLUMNS ofthe same format and size may be specified as a smgle BIT_COLUMN by
using the ITEMS, ITEM_BITS, and ITEM_ OFFSET elements. The ITEMS data element is used
to indicate the number of occurrences of a bit string.

Required Keywords

1. NAME
2. BIT_DATA_TYPE
3. START_BIT
4. BITS (required for BIT_COLUMNs without items)
5. DESCRIPTION

Optional Keywords

1. BIT_MASK
2. BITS (optional for BIT_COLUMNs w1th items)
3.FORMAT
4. INVALID
5.ITEMS
6. ITEM_BITS
7. ITEM_OFFSET
8.MINIMUM
9.MAXIMUM
10. MISSING
11. OFFSET
12. SCALING_FACTOR
13. UNIT

Required Objects

None

A-8 Appendix A. PDS Data Object Definitions

Optional Objects

None

Example

The example below was extracted from a larger example which can be found withm the
CONTAINER object. The BIT_ COLUMN object can be a sub-object of the TABLE or
CONTAINER object.

OBJECT =COLUMN
NAME =PACKET_ID
DATA_TYPE =LSB_BIT_STRING
START_BYTE =1
BYTES =2
VALID _MINIMUM =0
VALID _MAXIMUM =7
DESCRIPTION = "PackeUd consnrutes one of three parts m the pnmary source mformanon
header applied by the Payload Data System (PDS) to the MOLA telemetry packet at the time of creanon of the packet pnor to
transfer frame creation "

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
be set to '000' "
E.ND_OBJECT

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
END_OBJECI'

=BIT_COLUMN
=VERSION_NUMBER
=MSB_UNSIGNED _INTEGER
=1
=3
=0
=7
="These b1ts 1dennfy Vers10n 1 as the Source Packet strucrure· These b1ts shall

=BIT_COLUMN

=BIT_COLUMN
=SPARE
=MSB_UNSIGNED_INTEGER
:::::4
=l
=0
=0
="Reserved spare This b1t shall be set to '0'"
=BIT_COLUMN

OBJECT =BIT_COLUMN
NAME =FLAG
BIT_DATA_TYPE =BOOLEAN
START _BIT =5
BITS =1
MINIMUM =0
MAXIMUM =0
DESCRIPTION ="Th1s flag signals the presence or absence of a Secondary Header data structure
wtthtn the Source Packet This blt shall be set to '0' smce no Secondary Header formattmg standards currently extst for Mars
Observer"
END_OBJECI'

OBJECT
NAME

=BIT_COLUMN

=BIT_COLUMN
=ERROR_STA TUS

Appendix A. PDS Data Object Defimtwns

BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
spacecraft that created the Source Packet data "
END_OBJECT

OBJECT
NAME
BIT _DATA_ TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
spacecraft that creeated the Source Packet data
END_OBJECT
END_OBJECT

=MSB_UNSIGNED _INTEGER
=6 '

=3
=()

=7
="This field Identifies m part the mdiVIdual application process Withm the

= BIT_COLUMN

= BIT_COLUMN
= INSTRUMENT_ID
= MSB_UNSIGNED_INTEGER
=9
=8
= "NIA"
= "NIA"
= "This field Identifies m part the mill vidual applicatiOn process withm the

00100011Is the bit pattern for MOLA "
= BIT_COLUMN
=COLUMN

A-9

A-10 Appendix A PDS Data Object Defimtlons

A.4 BIT ELEMENT (Primitive Data Object)

Under review.

Appendtx A PDS Data Object Defimt10ns A-ll

A.S CATALOG

The CATALOG obJect IS used within a VOLUME object to reference completed PDS high level
catalog templates. These templates provide additional information related to the data sets on the
volume. Please refer to the Fzle Specification and Namzng chapter m this document for more
information.

Required Keywords

None

Optional Keywords

1. DATA_ SET _ID
2. LOGICAL_ VOLUME_PATHNAME
3. LOGICAL_ VOLUMES

Required Objects

1. DATA_SET
2. INSTRUMENT
3. INSTRUMENT_HOST
4. MISSION

Optional Objects

1. DATA_SET_COLLECTION
2. PERSONNEL
3. REFERENCE

Example

The example under the VOLUME object provides an example of a CATALOG object where all
the Catalog Templates are included m a single file, CATALOG.CAT.

The example below demonstrates multiple data sets per volume. In this example, the Catalog
Templates are m separate files and are referenced by the use of pointers. However, the catalog
templates may also be included m-Ime.

CCSD3ZF0000100000001NJPL3IFOPDSX00000001
PDS_ VERSION_ID = PDS3

OBJECT
VOLUME_SERIES_NAME
VOLUME_SET_NAME
VOLUME_SET_ID
VOLUMES

=VOLUME
= "VOYAGERS TO THE OUTER PLANETS"
="VOYAGER NEPTUNE PLANETARY PLASMA INTERACTIONS DATA"
= USA_NASA_pos_ VG_lOOl
= 1

A-12 Appendix A. PDS Data ObJect Defimuons

VOLUME_NAME ="VOYAGER NEPTIJNE PLANETARY PLASMA INTERACTIONS DATA"
VOLUME_ID = VG_IOOI
VOLUME_ VERSION_ID = "VERSION 1"
VOLUME_FORMAT = "IS0-9660"
MEDIUM_ TYPE =''CD-ROM"
PUBLICATION_DATE = 1992-1I-I3
DESCRIPTION = "Th1s volume contams a collectiOn of non-1magmg Planetary Plasma datasets
from the Voyager 2 spacecraft encounter wah Neptune Included are datasets from the Cosm1c Ray System (CRS). Plasma System
(PLS), Plasma Wave System (PWS), Planetary Radio Astronomy (PRA), Magnetometer (MAG), and Low Energy Charged Particle
(LECP) mstruments, as well as spacecraft pos1t1on vectors (POS) m several coordmate systems The volume also contruns
documentation and mdex files to support access and use of the data "

DATA_SET_ID

OBJECT
INSTITUTION_NAME
FACILITY _NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_ TEXT

END_OBJECT

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_ NAME
DISCIPLINE_NAME
ADDRESS_TEXT

TELEPHONE_NUMBER
ELEC1RONIC_MAIL_ TYPE
ELEC1RONIC_MAIL_ID
END_OBJECT

OBJECT

{ "VG2-N-CRS-3-RDR-DI-6SEC-Vl 0",
"VG2-N-CRS-4-SUMM-DI-96SEC-VI 0",
"VG2-N-CRS-4-SUMM-D2-96SEC-Vl 0",
"VG2-N-LECP-4-SUMM-SCAN-24SEC-VI 0",
"VG2-N-LECP-4-RDR-STEP-12 8MIN-VI 0",
"VG2-N-MAG-4-RDR-HG-COORDS-I 92SEC-Vl 0",
"VG2-N-MAG-4-SUMM-HG-COORDS-48SEC-VI 0",
"VG2-N-MAG-4-RDR-HG-COORDS-9 6SEC-VI 0",
"VG2-N-MAG-4-SUMM-NLSCOORDS-I2SEC-V 1 0",
"VG2-N-PLS-5-RDR-2PROMAGSPH-48SEC-VI 0",
"VG2-N-PLS-5-RDR-ELEMAGSPHERE-96SEC-VI 0",
"VG2-N-PLS-5-RDR-IONMAGSPHERE-48SEC-V 1 0",
"VG2-N-PLS-5-RDR-IONLMODE-48SEC-VI 0",
"VG2-N-PLS-5-RDR-IONMMODE-12MIN-VI 0",
"VG2-N-PLS-5-RDR-ION-INBNDWIND-48SEC-VI 0",
"VG2-N-POS-5-RDR-HGHGCOORDS-48SEC-Vl 0",
"VG2-N -POS-5-SUMM-NLSCOORDS-I2-48SEC-VI 0",
"VG2-N-PRA-4-SUMM-BROWS&SEC-Vl 0",
"VG2-N-PRA-2-RDR-HIGHRA TE-60MS-V 1 0",
"VG2-N-PWS-2-RDR-SA-4SEC-VI 0",
"VG2-N-PWS-4-SUMM-SA-48SEC-VI 0",
"VG2-N-PWS-I-EDR-WFRM-60MS-Vl 0"}

= DATA_PRODUCER
"UNIVERSITY OF CALIFORNIA, LOS ANGELES"
"PDS PLANETARY PLASMA INTERACTIONS NODE"
"Dr Raymond Walker"

= "PLASMA INTERACTIONS"
="UCLA
IGPP
LOS ANGELES. CA 90024 USA"

DATA_PRODUCER

DA T A_SUPPLIER
"NATIONAL SPACE SCIENCE DATA CENTER"

=''NATIONAL SPACE SCIENCE DATA CENTER"
="NATIONAL SPACE SCIENCE DATA CENTER"
="NATIONAL SPACE SCIENCE DATA CENTER"
="Code 633
Goddard Space Fhght Center
Greenbelt, Maryland, 2077I, USA"
= "30I2866695"
= "NSI/DECNET"
= "NSSDCA REQUEST"
= DATA_SUPPLIER

=CATALOG

Appendtx A PDS Data ObJeCt DefinitiOns

"INSTRUMENT _HOST_ CATALOG
"MISSION_CAT ALOG
"INSTRUMENT_ CATALOG

"DATA_SET_CATALOG

END_OBJECT

END_OBJECT
END

= "INSTHOST CAT"
="MISSION CAT" · ,,
= {"CRS_INSTCAT",
"LECPINST CAT",
"MAG_INSTCAT",
"PLS_INST CAT",
"PRA_INST CAT",
"PWS_INST CAT"}
= {"CRS_DS CAT",
"LECP _DS CAT",
"MAG_DS CAT",
"PLS_DS CAT",
"POS_DS CAT",
"PRA_DS CAT",
"PWS_DS CAT"}
=CATALOG

=VOLUME

A-13

A-14 Appendix A PDS Data Object Defimuons

A.6 COLLECTION (Primitive Data Object)

The COLLECTION obJect allows the ordered grouping of heterogeneous objects into a named
collection. The COLLECTION object may contam a mixture of different object types including
other COLLECTIONS. The optional START_BYTE data element provides the startmg location
relative to an enclosmg obj~Ct. If a START_BYTE IS not specified, a value of 1 is assumed.

Required Keywords

1. BYTES
2. NAME

Optional Keywords

1. DESCRIPTION
2. CHECKSUM
3. INTERCHANGE_FORMAT
4. START_BYTE

Required Objects

None

Optional Objects

1. ELEMENT
2. BIT _ELEMENT
3. ARRAY
4. COLLECTION

Example

Please refer to the example in the ARRAY Primitive object for an example of an implementation
of the COLLECTION object.

Appendix A PDS Data Object Defimt10ns A-15

A.7 COLUMN

The COLUMN object Identifies a single column in a data object.

Note:(l) Current PDS-described data objects that include COLUMN objects are the TABLE,
SPECTRUM and SERIES objects.
(2) COLUMNs must not contam embedded COLUMN objects.
(3) COLUMNs of the same format and SIZe may be specified as a smgle COLUMN by usmg
the ITEMS, ITEM_BYTES, and ITEM_OFFSET elements. The ITEMS data element
indicates the number of occurrences of the field.
(4) BYTES and ITEM_BYTES counts do not include leading or trailing delimiters or lme

·terminators.
(5) For a COLUMN With Items, the value of BYTES should represent the size of the column
including delim1ters between the items. See examples 1 and 2 below.

Required Keywords

1. NAME
2. DATA_TYPE
3. START_BYTE
4. BYTES (required for COLUMNs without items)

Optional Keywords

1. BIT_MASK
2. BYTES (optional for COLUMNs with items)
3. DERIVED_MAXIMUM
4. DERIVED_MlNIMUM
5. DESC~PTION

6. FORMAT
7. INVALID
8. ITEM_BYTES
9. ITEM_OFFSET
10. ITEMS
11.MAXIMUM
12. MAXIMUM_SAMPLING_PARAMETER
13.MINIMUM
14. MINIMUM_SAMPLING_PARAMETER
15. MISSING
16. OFFSET
17. SAMPLING_PARAMETER_INTERVAL
18.SAMPLING_PARAMETER_NAME
19. SAMPLING_PARAMETER_UNIT
20. SCALING_F ACTOR
21. UNIT
22. VALID_MAXIMUM
23. V ALID_MINIMUM

A-16 Appendix A PDS Data Object Definitions

Required Objects

None

Optional Objects

1. BIT_COLUMN
2. ALIAS

Example 1

The example below shows the use of a COLUMN With items. In this example, the data descnbed
IS a column With three Items.
xx,yy, zz

The ITEM_ OFFSET is the number of bytes from the begmning of one item to the begmning of the
next.
Note that the value of BYTES includes the comma delimiters between Items.

OBJECf
NAME
DATA_ TYPE
START_BYTE
BYTES
ITEMS
ITEM_BYTES
ITEM_ OFFSET
END_OBJECf

Example 2

=COLUMN
=COLUMNXYZ
= ASCIUNTEGER
= 1
= 8 l*mcludes deluruters*l
=3
=2

3
=COLUMN

The example below again shows the use of a COLUMN wtth Items. In this example, the data
described is a column with three Items.
"xx","yy" ,"zz"

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES

ITEMS
ITEM_BYTES

ITEM_ OFFSET
END_OBJECT

=COLUMN
= COLUMNXYZ
=CHARACTER
= 2
= 12

= 3
2

= 5
=COLUMN

I* value does not mclude leadmg quote *I
I* value does not mclude leading and trmhng
quotes *I

I* value does not mclude leadmg and trmhng
quotes *I
I* value does not mclude leadmg quote */

AppendiX A. PDS Da~ ObjeCt Defimuons A-17

Example 3

The example below was extracted from a larger example wlnch can be found under the
CONTAINER object. The COLUMN object is a sub-object of the TABLE, SERIES, SPECTRUM,
and CONTAINER objects.

OBJECT = COLUMN
NAME = PACKET_ID
DATA_TYPE = LSB_BIT_STRING
START _BYTE = 1
BYTES =2
V ALID_MINIMUM 0
V ALID_MAXIMUM = 7
DESCRIPTION = "Packet_ld constitutes one of three parts m the pnmary source mformat10n
header apphed by the Payload Data System (PDS) to the MOLA telemetry packet at the ume of creauon of the packet pnor to
transfer frame creation "

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
shall be set to '000' "

END_OBJECT

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
END_OBJECT

= BIT_COLUMN
= VERSION_NUMBER
= MSB_UNSIGNED_INTEGER
=1
=3
=0
=7
= "These b1ts identify VersiOn 1 as the Source Packet structure These bits

= BIT_COLUMN

= BIT_COLUMN
=SPARE

MSB_UNSIGNED_INTEGER
=4
=1
=0
=0
= "Reserved spare Thls b1t shall be set to '0"'
= BIT_COLUMN

OBJECT = BIT_COLUMN
NAME =FLAG
BIT_DATA_TYPE =BOOLEAN
START _BIT = 5
BITS = 1
MINIMUM =0
MAXIMUM =0
DESCRIPTION = "Th1s flag s1gnals the presence or absence of a Secondary Header data structure
w1thm the Source Packet Th1s bit shall be set to '0' since no Secondary Header formarung standards currently exist for Mars
Observer"
END_OBJECT = BIT_COLUMN

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM

= BIT_COLUMN
= ERROR_STATUS
= MSB_UNSIGNED_INTEGER
=6
=3
=0

A-18 Appendix A PDS Data Object Defimuons

=7 MAXIMUM
DESCRIPTION = "This field Identifies in part the mdiVIdual apphcatlon process w1thm the
spacecraft that created the Source Packet data "
END_OBJECT

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
spacecraft that creeated the Source Packet data
END_OBJECT
END_OBJECT

OBJECT

= BIT_COLUMN

= BIT_COLUMN
= INSTRUMENT_ID
= MSB_UNSIGNED_INTEGER
=9
=8
="N/A"
= "N/A"
= "Th1s field 1dent1fies m part the mdiVIdual apphcauon process w1thm the

001000111s the bit pattern for MOLA"
= BIT_COLUMN
=COLUMN

=COLUMN
NAME = CH_ 4_2ND_HALF _FRAME_BKGRND_CN
DATA_ TYPE = UNSIGNED_INTEGER
START_BYTE = 134
BYTES = 1
MINIMUM =0
MAXIMUM = 255
DESCRIPTION = "The background energy or nOise count levels m channels 1, 2, 3, and 4
respectively by half-frame Pseudo log value of NOISE(!, 2, 3, 4) at the end of a half-frame of current frame, 5 3 b1t format Plog
base 2 of background count sum "
END_OBJECT =COLUMN

Appendix A PDS Data Object Defimtlons A-19

A.8 CONTAINER

The CONTAINER object is used to group a set of sub-objects (such as COLUMNS) that repeat
within a data object (such as aT ABLE). Use of the CONTAINER object allows repeating groups
to be defined w1tlun a data structure.

Required Keywords

1. NAME
2. START_BYTE
3.BYTES
4. REPETITIONS
5. DESCRIPTION

Optional Keywords

None

Required Objects

None

Optional Objects

I. COLUMN
2. CONTAINER

Example

The followmg diagram shows a data product layout m winch the CONTAINER object IS used The diagram depicts the modelled
data product as a TABLE With one row (or one record of data) Each record Withtn the diagram begms With 48 columns (143 bytes)
of engineering data The data product acquires SCience data from seven different frames Smce the data from each frame IS formatted
identically, one CONTAINER descnpuon can suffice for all seven frames

In tins example there are two CONTAINER obJects The first CONTAINER obJect descnbes the repeating frame mfonnatton
W1thtn tins container there IS a second CONTAINER object m winch a 4-byte set of three COLUMN ObJects repeats 20 Urnes The
use of the second CONTAINER obJeCt perrruts the data suppher to descnbe the three COLUMNS (4 bytes) once, mstead of
spectfymg sixty column defimt.Ions

In the first CONTAINER, the keyword REPETITIONS 1s equal to 7 In the second CONTAINER, REPETITIONS equals 20 Both
CON:f AINER obJects contam a collection of COLUMN obJects In most cases It IS preferable to save space m the product label by
placmg COLUMN objects m a separate file and pomung to that file from wtthm the CONTAINER object

A-20 Append1x A PDS Data Object Definitions

48 Columns of
Eng /Hskeepmg Data Fr 1 Fr2 Fr 3 Fr4 Fr5 Fr6 Fr7

1

/'~)n"(' 545 679 813 947 1 080

1: ~~
46 Columns t1mes 7 frames (Fr 1-Fr7) ontainer # 1 1 12 c

r

1~
134

Co ntamer # 2 3 Columns I t1mes 20 shots (S1-S20}

1 4

Tlns attached label example describes the above TABLE structure usmg CONTAINER obJects.

CCSD3ZFOOOOIOOOOOOOINJPL3KSOPDSXAAAAAAAA
PDS_ VERSION_ID
RECORD_TYPE
FILE_RECORDS
RECORD_BYTES
LABEL_RECORDS
FILE_NAME

=PDS3
= FIXED_LENGTH
=467
= 1080

4
= "AEDR 001"

"MOLA_SCIENCE_MODE_T ABLE = 5
DATA_SET_ID = "MO-M-MOLA-1-AEDR-LO-Vl 0"
PRODUCT_ID = "MOLA-AEDR -10010-0001"
SPACECRAFT _NAME MARS_OBSERVER
INSTRUMENT_ID MOLA
INSTRUMENT_NAME = MARS_OBSERVER_LASER_ALTIMETER
TARGET_NAME MARS
SOFIW ARE_NAME = "Browser 17 1"
UPLOAD_ID = "53"
PRODUCT_RELEASE_DATE = 1994-12-29T02 10 09 321
START_TIME 1994-09-29T04 12 43 983
STOP_ TIME = I994-09-29T06 09 54 221
SPACECRAFT_CLOCK_START_COUNT "12345"
SPACECRAFT_CLOCK_STOP_COUNT = "12447''
PRODUCT_CREATION_TIME = 1995-0l-29T07 30 333
MISSION_PHASE_NAME = MAPPING
ORBIT_NUMBER = 0001
PRODUCER_ID = MO_MOLA_TEAM
PRODUCER_FULL_NAME = "DAVID E SMITH"
PRODUCER_INSTITUTION_NAME "GODDARD SPACE FLIGHT CENTER"
DESCRIPTION = "Thts data product contruns the aggregatton of MOLA telemetry packets by
Orbit All Expenment Data Record Packets retneved from the PDB are collected m tlus data product The AEDR data product IS

put together wtth the ProJect-provtded software tool Browser"

Appendix A. PDS Data Object Defimtions A-21

OBJECT = MOLA_SCIENCE_MODE_TABLE
INTERCHANGE_FORMAT = BINARY
ROWS = 463
COLUMNS = 97
ROW_BYTES 1080
)\STRUCTURE "MOLASCI FMT"
DESCRIPTION = "Thts table IS one of two that descnbe the arrangement of mformatton on the
Mars Observer Laser Altimeter (MOLA) Aggregated Engmeenng Data Record (AEDR)

END_OBJECT = MOLA_SCIENCE_MODE_ TABLE

END
CCSD$$MARK$$AAAAAAAANJPL3IFONNNNOOOOOOO l

Contents of the MOLASCI FMT file

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
VALID_MINIMUM
V ALID_MAXIMUM

=
=
=
=
=
=
=

COLUMN
PACKET_ID
LSB_BIT _STRING
1
2
0
7

DESCRIPTION = "Packet_Id constitutes one of three parts m the pnmary source mformat10n
header apphed by the Payload Data System (PDS) to the MOLA telemetry packet at the ume of creauon of the packet pnor to
transfer frame creation "

OBJECT = BIT_COLUMN
NAME VERSION_NUMBER
BIT_DATA_TYPE UNSIGNED _INTEGER
START_BIT = l

BITS = 3
MINIMUM = 0
MAXIMUM 7
DESCRIPTION = "These btts 1denttfy VefSlon 1 as the Source Packet structure These bits shall
be set to ·ooo·."
END_OBJECT = BIT_COLUMN

OBJECT BIT_COLUMN
NAME = SPARE
BIT_DATA_TYPE UNSIGNED _INTEGER
START_BIT 4
BITS = 1
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION "Reserved spare Th1s bit shall be set to '0"'
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = SECONDARY _HEADER_FLAG
BIT_DA TA_ TYPE = BOOLEAN
START_BIT = 5
BITS = I
MINIMUM 0
MAXIMUM 0
DESCRIPTION = "Thts flag stgnals the presence or absence of a Secondary Header data

A-22 Appendix A. PDS Data ObJeCt Defimtions

structure wtthm the Source Packet Thts btt shall be set to '0' smce no Secondary Header formattmg standards currently exist for
Mars Observer "
END_OBJECT = BIT_COLUMN

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
spacecraft that created the Source Packet data "
END_OBJECT

OBJECT
NAME
BIT_DATA_TYPE
START_BIT
BITS
MINIMUM
MAXIMUM
DESCRIPTION
spacecraft that created the Source Packet data
END_OBJECT
END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYrE
BYTES
ITEMS
ITEM_BYrES
MINIMUM

= BIT_COLUMN
ERROR_STA TUS

= UNSIGNED_INTEGER
6

= 3
= 0

7
= "Tlus field Identifies m part the mdtv1dual application process wtthm the

= BIT_COLUMN

= BIT_COLUMN

= INSTRUMENT_ID

= UNSIGNED _INTEGER

= 9
= 8
= 2#0100011#

= 2#0100011#
= "Th1s field Identifies m part the mdtvtdual application process w1thm the

00100011 IS the b1t pattern for MOLA "
BIT_COLUMN

= COLUMN

=COLUMN
= COMMAND_ECHO

INTEGER
125

= 16
= 8
= 2

0
MAXIMUM 65535
DESCRIPTION = "Ftrst 8 command words received dunng current packet. only complete
commands are stored, MOLA spectfic commands only The software attempts to echo all vahd commands If the command will fit
m the room remammg m the "
END_OBJECT = COLUMN

OBJECT COLUMN
NAME = PACKET_VALIDITY_CHECKSUM
DATA TYPE INTEGER
START_BYrE = 141
BYrES = 2
MINIMUM 0
MAXIMUM = 65535
DESCRIPTION = "Stmple 16 b1t add1t1on of enure packet contents upon completion Thts
local!on ts zeroed for addmon Thts word IS zeroed, then words 0-539 are added wtthout carry to a vanable that IS mmally zero The
resultmg lower 16 btts ar "
END_OBJECT = COLUMN

OBJECT
NAME

- ASTRUCTURE
/*that make up the frame descnptors */

= CONTAINER
FRAME_STRUCTURE

= "MOLASCFR FMT" /*pomts to the columns *I

Appendrx A PDS Data Object Defimtions A-23

START_BYTE = I43
BYTES 134
REPETITIONS = 7
DESCRIPTION "The frame_structure contamer represents the format of seven repeallng
groups of attnbutes m th1s data product The data product reflects sc1ence data acqmsitmn from seven different frames Smce the
data from each frame 1s "
END_OBJECT = CONTAINER

CONTENTS OF THE MOLASCFR FMT FILE

OBJECT
NAME
START_BYTE
BYTES
REPETITIONS
"STRUCTURE

=
=
=
=

=

CONTAINER
C..OUNTS
I
4
20
"MOLASCCT FMT"

DESCRIPTION = "Th1s contamer has three sub-elements (range to surface counts, lst channel
received pulse energy, and 2nd channel received pulse energy) The three sub-elements repeat for each of 20 shots"
END_OBJECT = CONTAINER

OBJECT = COLUMN
NAME SHOT_2_LASER_ TRANSMITTER_POWR
DATA_ TYPE = UNSIGNED _INTEGER
START_BYTE = 81
BYTES = 1
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION =
END_OBJECT COLUMN

OBJECT = COLUMN
NAME = SHOT_l_LASER_TRANSMITTER_POWR
DATA_TYPE UNSIGNED_INTEGER
START_BYTE = 82
BYTES = I
MINIMUM = 0
MAXIMUM 65535
DESCRIPTION
END_OBJECT COLUMN

OBJECT COLUMN
NAME = SHOT_4_LASER_TRANSMITTER_POWR
DATA_ TYPE UNSIGNED_INTEGER
START_BYTE 83
BYTES I
MINIMUM 0
MAXIMUM = 65535
DESCRIPTION =
END_OBJECT COLUMN

OBJECT = COLUMN
NAME = CH_3_2ND_HALF_FRAME_BKGRND_CN
DATA_ TYPE = UNSIGNED_INTEGER
START_BYTE = 133
BYTES =
MINIMUM = 0

A-24 Appendix A PDS Data Object Defimuons

MAXIMUM = 255
DESCRIPTION = "The background energy or notse count levels m channels I, 2, 3, and 4
respectively by half-frame Pseudo log value of NOISE(1, 2, 3, 4) at the end of a half-frame of current frame, 5 3 btt format Plog
base 2 of background count sum ''
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME CH_ 4_2ND_HALF _FRAME_BKGRND_CN
DATA_TYPE = UNSIGNED_INTEGER
START _BYTE = 134
BYTES = I
MINIMUM 0
MAXIMUM = 255
DESCRIPTION "The background energy or n01se count levels m channels l, 2, 3, and 4
respectively by half-frame Pseudo log value of NOISE(I, 2, 3, 4) at the end of a half-frame of current frame, 5 3 bit format Plog
base 2 of background count sum "
END_OBJECT = COLUMN

CONTENTS OF THE MOLASCCT FMT FILE

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES

COLUMN
= RANGE_TO_SURFACE_TIU_CNTS
= MSB_INTEGER
= I

2
DESCRIPTION = "The possible 20 vahd frame laser shots surface rangmg measurements m
Taming Interval Urut (TIU) counts The least s1gruficant 16 bits of TIU (SL TIU), stored for every shot B[O] = B1ts 15-8 of TIU
readmg,B[l]=Blts7-0of "
END_OBJECT = COLUMN

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES

COLUMN
FIRST _CH_RCVD_PULSE_ENRGY
UNSIGNED_INTEGER
3

DESCRIPTION "The level of return, reflected energy as received by the first channel and
matched filter to tngger Thts ts a set ov values for all posstble 20 shots W!thtn the frame Lowest numbered non-zero energy
readtng for each shot "
END_OBJECT

OBJECT
NAME
DATA_TYPE
START_BYTE
BYTES

COLUMN

COLUMN
SECOND_CH_RCVD_PULSE_ENRGY

= UNSIGNED_INTEGER
4

DESCRIPTION "The level of return. reflected energy as received by the second channel and
matched filter to tngger Thls IS a set of values for all possible 20 shots Withm the frame 2nd lowest numbered non-zero energy
readtng for each shot "
END_OBJECT = COLUMN

'-

Appendtx A PDS Data Object Defimtions A-25

A.9 DATA PRODUCER

The DAT A_PRODUCER object is used wtthm a PDS obJect, such as VOLUME. The
DATA_PRODUCER, as opposed to the DATA_SUPPLIER, is an individual or organization
responsible for collecting, assembling, and/or engmeenng the raw data into one or more data sets.

Required Keywords

1. INSTITUTION_NAME
2. FACILITY_NAME
3. FULL_NAME
4. ADDRESS_TEXT

Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME
3. TELEPHONE_NUMBER
4. ELECTRONIC_MAIL_TYPE
5. ELECTRONIC_MAIL_ID

Required Objects

None

Optional Objects

None

Example

The example below was extracted from a larger example which can be found within the VOLUME
obJect. The DATA_PRODUCER object is a required object of the VOLUME.

OBJECT
INSTITUTION_NAME
FACILITY_NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

END_OBJECT

= DATA_PRODUCER
= "U S G S FLAGSTAFF"
= "BRANCH OF ASTROGEOLOGY"
= "Enc M Eliason"
= "IMAGE PROCESSING"
= " Branch of Astrogeology
Uruted States Geological Survey
2255 North Gemtm Dnve
Flagstaff, Anzona 86001 USA"
= DATA_pRODUCER

A-26 Appendix A PDS Data ObJect Definitions

A.lO DATA SUPPLIER

The DATA_ SUPPLIER object is used within a PDS object, such as VOLUME. The
DATA_SUPPLIER, as opposed to the DATA_PRODUCER, 1s an mdtvtdual or organization
responsible for d1stributmg the data sets and associated data to the sctence community.

Required Keywords

1. INSTITUTION_NAME
2. FACILITY_NAME
3. FULL_NAME
4. ADDRESS_TEXT
5. TELEPHONE_NUMBER
6. ELECTRONIC_MAIL_TYPE
7. ELECTRONIC_MAIL_ID

Optional Keywords

1. DISCIPLINE_NAME
2. NODE_NAME

Required Objects

None

Optional Objects

None

Example

The example below was extracted from a larger example which can be found within the VOLUME
object. The DATA_SUPPLIER object is an optional obJect of the VOLUME.

OBJECT
INSTITUTION_NAME
FACILITY _NAME
FULL_NAME
DISCIPLINE_NAME
ADDRESS_TEXT

TELEPHONE_~BER
ELECTRONIC_MAIL_TYPE
ELEClRONIC_MAIL_ID
END_OBJECT

= DATA_SUPPLIER
= "NatiOnal Space Science Data Center"
= "Natmnal Space Science Data Center"

"Natlonal Space Science Data Center"
= "Natlonal Space Science Data Center"
="Code 633
Goddard Space Flight Center
Greenbelt, Maryland, 20771, USA"
:: "3012866695"
= "NSIIDECNET"
= "NSSDCA REQUEST"
= DATA_SUPPLIER

Appendtx A PDS Data Object DefimtJons A-27

A.ll DIRECTORY

The DIRECTORY obJect is used to define a hierarchical file organization on a lmear (sequential)
media, such as tape. The DIRECTORY object identifies all directones and subdirectones below
the root level, and is a required sub-object of the VOLUME object for tape media.

Note: The root directory or a volume does not need to be explicitly defined with the DIRECTORY
object.

Subdirectories are Identified by embedding DIRECTORY objects. Files within the directones and
subdirectories are sequentially identified by usmg FILE objects with a sequence_number value
corresponding to their position on the media. A sequence_number value will be umque for each
file on the media. This format is strongly recommended when transferring or archiving volumes of
data on media which do not support hierarchical directory structures (i.e., submitting a tape volume
of data for pre-mastering or prepanng an archive tape).

Although the DIRECTORY object IS optiOnal in the VOLUME object, It is a required object for
tape media.

Required Keywords

LNAME

Optional Keywords

1. RECORD _TYPE
2. SEQUENCE_NUMBER

Required Objects

1. FILE

Optional Objects

1. DIRECTORY

A-28 Appendix A PDS Data Object Definitions

Example

The example below was extracted from a larger example which can be found within the VOLUME
object.

OBJECT
NAME

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
SEQUENCE_NUMBER
END_OBJECT

OBJECT
FILE_NAME
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
SEQUENCE_NUMBER
END_OBJECT
END_OBJECT

=DIRECTORY
=INDEX

=FILE
= "INDXINFO TXT"
=STREAM
=5
=FILE

=FILE
= "INDEX LBL"
=STREAM
=6
=FILE

=FILE
="INDEX TAB"
= FIXED_LENGTH
=512
=6822
=7
=FILE
=DIRECTORY

Appendix A. PDS Data Object Definitions A-29

A.12 DOCUMENT

The DOCUMENT object IS used to label a particular document that IS provided on a volume to
support an archived data product. A document can be made up of one or more files m a single
format. For instance, a document may be comprised of as many TIFF files as there are pages m the
document.

Multiple versions of a document can be supplied on a volume With separate formats, requinng a
DOCUMENT obJect for each document version (t.e., OBJECT = TEX_DOCUMENT and
OBJECT= PS_DOCUMENT when mcluding both the TEX and Postscnpt verswns of the same
document).

PDS requires that at least one version of any document be plam ASCII text m order to allow users
the capability to read, browse, or search the text without requmng software or text processmg
packages. This version can be plain, unmarked text, or ASCII text contammg a markup language.
(See the Documentation chapter of this document for more details) This means that for every
document provided on a volume, there will be a file (or files) w1th the extensiOn .ASC and a
DOCUMENT l~bel with the keywords indicating that the file's mterchange format IS ASCII, and
its document format is TEXT. (See example below.)

The DOCUMENT object contains keywords that identify and descnbe the document, provide the
date of publication of the document, mdiCate the number of files comprismg the document, provide
the format of the document files, and identify the software used to compress or encode the
document, as applicable.

DOCUMENT labels must be detached files unless the files are plain, unmarked text that will not
be read by text or word processing packages. A DOCUMENT object for each format type of a
document can be included m the same label file with pointers, such as A TIFF _DOCUMENT for a
TIFF formatted document. (See example below.)

Required Keywords

1. DOCUMENT _NAME
2.,DOCUMENT _ TOPIC_TYPE
3. INTERCHANGE_FORMAT
4. DOCUMENT_FORMAT
5. PUBLICATION_DA TE

Optional Keywords

1. ABSTRACT_TEXT
2. DESCRIPTION
3. ENCODING_TYPE
4.FILES

A-30 Appendix A PDS Data Object DefimtiOns

Required Objects

None

Optional Objects

None

Example

The followmg example detached label, PDSUG .LBL, IS for a Document provided in three formats:
ASCII text, TIFF, and TEX.

CCSD3ZF0000100000001NJPL3IFOPDSX00000001
PDS_ VERSION_ID
RECORD_TYPE
AASCII_DOCUMENT
ATIFF _DOCUMENT

ATEX_DOCUMENT
OBJECT
DOCUMENT_NAME
PUBLICA TION_DA TE
DOCUMENT_TOPIC_ TYPE
INTERCHANGE_FORMAT
DOCUMENT_FORMAT

=PDS3
=UNDEFINED
::: "PDSUG ASC"
= ("PDSUG001 TIF", "PDSUG002 TIF",
"PDSUG003 TIF", "PDSUG004 TIF")
= "PDSUG TEX"
= ASCII_DOCUMENT
= "Planetary Data System Data Set Catalog User's Gmde"
= 1992-04-13
= "USER'S GUIDE"
=ASCII
=TEXT

DESCRIPTION "The Planetary Data System Data Set Catalog User's Guide descnbes the
fundamentals of accessmg. searchmg, browsmg, and ordenng data from the PDS Data Set Catalog at the Central Node The text
for th1s 4-page document 1s provided here m this plam, ASCII text file "
ABSTRACT_TEXT ="The PDS Data Set Catalog 1S Similar In functiOn and purpose to a card catalog
m a hbrary Use a Search screen to find data Items, a L1st/Order screen to order data 1tems, and the More menu option to see more
mformation "
END_OBJECT = ASCII_DOCUMENT

OBJECT

DOCUMENT_NAME
DOCUMENT_TOPIC_TYPE
INTERCHANGE_FORMAT
DOCUMENT _FORMAT
PUBLICA TION_DA TE
FILES
ENCODING_TYPE
DESCRIPTION

=TIFF _DOCUMENT

= "Planetary Data System Data Set Catalog User's Gu1de"
= "USER'S GUIDE"
=BINARY
=TIFF
:::: 1992-04-13
=4
= "CCTIT/3"

The Planetary Data System Data Set Catalog User's Gmde descnbes the fundamentals of accessmg, searching, browsmg, and
ordenng data from the PDS Data Set Catalog at the Central Node
The 4-page document IS provided here m 4 consecutive files, one file per page, m Tagged Image File Format (TIFF) using Group
3 compressiOn It has been tested to successfully 1mport mto WordPerfect 5 0, FrameMaker, and Photoshop."
ABSTRACT_TEXT " '
The PDS Data Set Catalog 1s stmilar m functlon and purpose to a card catalog m a library Use a Search screen to find data Items,
a List/Order screen to order data 1tems, and the More menu option to see more mformation "
END_OBJECT =TIFF _DOCUMENT
OBJECT = TEX_DOCUMENT

Appendix A. PDS Data Object Definitions A-31

DOCUMENT_NAME
Planetary Data System Data Set Catalog User's Gmde"
DOCUMENT_TOPIC_TYPE =''USER'S GUIDE"
INTERCHANGE_FORMAT = ASCII
DOCUMENT_FORMAT TEX
PUBLICATION_DATE = 1992-04-13
DESCRIPTION
The Planetary Data System Data Set Catalog User's Gmde descnbes the fundamentals of accessmg, searchmg, browsmg, and
ordenng data from the PDS Data Set Catalog at the Central Node
The 4-page document ts provtded here m TeX format w1th all necessary macros mcluded "
~smAcr_TEXT =
The PDS Data Set Catalog 1s smular m function and purpose to a card catalog m a hbrary Use a Search screen to find data 1tems,
a List/Order screen to order data Items, and the More menu option to see more mformauon "
END_OBJEcr = TEX_DOCUMENT

END

A-32 Appendix A PDS Data Object DefimtiOns

A.13 ELEMENT (Primitive Data Object)

The ELEMENT object provides a means of defirung a lowest level component of a data object that
is stored in an integral multiple of 8-bit bytes. Element objects may be embedded in
COLLECTION and ARRAY data objects. The optional START _BYTE element Identifies a
location relative to the enclosing object. If not explicitly included, a START _BYTE = l1s assumed
for the ELEMENT.

Required Keywords

1. BYTES
2. DATA_TYPE
3.NAME

Optional Keywords

1. START_BYTE
2.BIT_MASK
3. DERIVED_MAXIMUM
4. DERIVED_MINIMUM
5. DESCRIPTION
6.FORMAT
7. INVALID
8.MINIMUM
9.MAXIMUM
10. MISSING
11. OFFSET
12. SCALING_FACTOR
13. UNIT
14. VALID_MINIMUM
15. V ALID_MAXIMUM

Required Objects

None

Optional Objects

None

Example

Please refer to the example in the ARRAY Pnm1tive object for an example of the implementation
of the ELEMENT object.

Appendix A. PDS Data Object DefimtJons A-33

A.14 FILE

The FILE object IS used m attached or detached labels to define the attnbutes or characteristics of
a data file. In attached labels, the file object is also used to mdicate boundaries between label
records and data records in data files which have attached labels. The FILE object may be used m
three ways:

(1) As an Implicit object m attached or detached labels. As depicted in the followmg example, all
detached label files and attached labels contain an Implicit FILE object which starts at the top of
the label and ends where the label ends. In these cases, the PDS recommends agamst using the
NAME keyword to reference the file name.

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

= FIXED _LENGTH
=80
=522
=10

(remamder of the label)

For data products labelled using the implicit file object (e.g. for mmimallabels)
DATA_OBJECT_TYPE =FILE should be used m the Data Set Catalog Template.

(2) As an explicit object which IS used when a file reference is needed m a combined detached or
minimal label. In this case, the optional FILE_NAME element is 'used to identify the file being
referenced.
-------------2---

OBJECT
FILE_NAME
RECORD_TYPE
FILE_RECORDS

=FILE
= "IM10347.DAT"
=STREAM
= 1024.

(other optional keywords describing the file)
END_OBJECT =FILE

For data products labelled using the explicit file object (e.g. for mmimallabels)
DATA_OBJECT_TYPE =FILE should be used m the Data Set Catalog Template.

(3) As an explicit object to identify specific files as sub-objects of the DIRECTORY in VOLUME
objects. In this case, the optional FILE_NAME element is used to identify the file being referenced
on a tape archive volume. ~

OBJECT =FILE
FILE_NAME = "VOLDESC.CAT"
RECORD_TYPE =STREAM
SEQUENCE_NUMBER = 1
END_ OBJECT = FILE

A-34 Appendix A PDS Data Object Definitwns

The keywords in the FILE object always descnbe the file bemg referenced, and not the file in
which the keywords are contained (i.e., if the FILE object is used in a detached label file, the FILE
object keywords descnbe the detached data file, not the label file which contams the keywords).
For example, if a detached label for a data file IS bemg created and the label wtll be m STREAM
format, but the data will be stored in a file having FIXED_LENGrH records, then the
RECORD_TYPE keyword m the label file must be given the value FIXED_LENGTH.

The following table Identifies data elements that are reqmred (Reg), optional (Opt), and not
applicable (-) for various types of files

Att Det Att Det Att Det Att Det Labeling Method

RECORD_TYPE

RECORD_BYTES

Fll..E_RECORDS

LABEL_RECORDS

FIXED_LENGTH VARIABLE_LENGTH STREAM 'UNDEFINED

Required Keywords.

1. RECORD _TYPE

Req

Req

Req

Req

Req

Rmax

Req

Req

Rmax

Req

Om ax

Opt

Opt

Opt

2. FILE_NAME (required only in mmimal detached labels and tape archives)

(See above table for the coridttions of use of additional required keywords)

Optional Keywords

1. FILE_NAME (required only m mmimal detached labels and tape archives)
2. LABEL_RECORDS
3. RECORD_BYTES
4. SEQUENCE_NU:MBER

Required Objects

None

Optional Objects

None

Appendix A PDS Data Object Defimuons A-35

Example

Below is an example of a set of explicit file objects in a combined detached labeL An additional
example of the use of explicit FILE object can be found in the VOLUME object.

CCSD3ZF00001 0000000 1NJPL3IFOPDSX00000001
PDS_ VERSION_ID
HARDWARE_MODEL_ID
OPERA TING_SYSTEM_ID
SPACECRAFI'_NAME
INSTRUMENT_NAME
MISSION_PHASE_NAME
TARGET_NAME
DATA_SET_ID
PRODUCT_ID

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
"TIME_SERIES

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS
"STRUCTURE
SAMPLING_PARAMETER_NAME
SAMPLING_P ARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT
END_OBJECT

OBJECT
FILE_NAME
FILE_RECORDS
RECORD_TYPE
RECORD_BYTES
START_TIME
STOP_TIME
"TIME_ SERIES

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS
"STRUCTURE
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT
END_OBJECT

=PDS3
="SUN SPARC STATION"

"SUN OS 41 1"
= "VOYAGER 2"
= "PLASMA WAVE RECEIVER"
="URANUS ENCOUNTER"
=URANUS
= "VG2-U-PWS-4-RDR-SA-48 OSEC-V1 0"
= "T860123-T860125"

==FILE
= "T860123 OAT"
= 1800
= FIXED_LENGTH
= 105
= 1986-0 1-23TOO 00 00 OOOZ
= 1986-01-24TOO 00 00 OOOZ
= "T860123 DAT"

= TIME_SERIES
=BINARY
= 1800
= 105
= 19
= "PWS_DATA FMT"
=TIME
=SECOND
=48 0
= TIME_ SERIES
=FILE

=FILE
= "T860124 OAT'
= 1800
= FIXED_LENGTH

105
= 1986-01-24TOO 00 00 OOOZ
= 1986-0 l-25TOO 00 00 OOOZ
= "T860124DAT"

= TIME_SERIES
=BINARY
= 1800
= 105
= 19
= "PWS_DATA FMT"
=TIME
=SECOND
=480
';: TIME_SERIES
=FILE

A-36

OBJECI'
FILE_NAME
FILE_RECORDS
RECORD_ TYPE
RECORD_BYTES
START_TIME
STOP_TIME
ATJME_SERIES

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS
ASTRUCTURE
SAMPLING_PARAMETER_NAME
SAMPLING_PARAMETER_UNIT
SAMPLING_PARAMETER_INTERVAL
END_OBJECT
END_OBJECT

END

=FILE
"T860125 DAT"

= 1799
= FIXED_LENGTH
= 105
= 1986-01-30TOO 00 00 OOOZ
= 1986-01-30T23 59 12 OOOZ
= "T860l25 DAT"

= TIME_ SERIES
BINARY

= 1799
= 105
=19
= "PWS_DAT A FMT"
=TIME
=SECOND
=48 0
= TIME_SERIES
=FILE

Appendix A PDS Data Object Defimtlons

Appendix A PDS Data ObJect Defimuons A-37

A.15 GAZETTEER_TABLE

The GAZETTEER_ TABLE object ts a specific type of aT ABLE object that provides information
about the geographical features of a planet or satellite. It contains informatiOn about a named
feature such as location, size, origm of feature name, etc. The GAZETTEER_ TABLE con tams one
row for each feature named on the target body. The table is formatted so that it may be read directly
by many data management systems on various host computers. All fields (columns) are separated
by commas, and character fields are enclosed by double quotation marks. Each record consist of
480 bytes, with a carriage return/line feed sequence m bytes 479 and 480. This allows the table to
be treated as a fixed length record file on hosts that support this file type and as a normal text file
on other hosts.

Currently the PDS Imagmg Node at the USGS is the data producer for all GAZETTEER tables.

Required Keywords

1. NAME
2. INTERCHANGE_FORMAT
3.ROWS
4.COLUMNS
5. ROW _BYTES
6. DESCRIPTION

Required Objects

I. COLUMN

Required COLUMN Objects (NAME=)

TARGET_NAME
SEARCH_FEATURE_NAME
DIACRITIC_FEATURE_NAME
MINIMUM_LATITUDE
MAXIMUM_LATITUDE
CENTER_LATITUDE
MINIMUM_LONGITUDE
MAXIMUM_LONGITUDE
CENTER_LONGITUDE
LABEL_POSITION_ID
FEATURE_LENGTH
PRIMARY _PARENT AGE_ID
SECONDARY_PARENTAGE_ID
MAP _SERIAL_ID
FEATURE_STATUS_TYPE
APPROV AL_DA TE

A-38

FEATURE_ TYPE
REFERENCE_NUMBER
MAP_CHART_ID
FEA TURE_DESCRIPTION

Required Keywords (for Required COLUMN Objects)

Example

NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION

CCSD3ZFOOOO I 0000000 INJPL3IFOPDSXOOOOOOO l
PDS_ VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
PRODUCT_ID
TARGET_NAME
~AZETTEER_TABLE

=PDS3
= FIXED_LENGTH
=480
= 1181
=XYZ
=MARS
= "GAZETTERTAB"

OBJECT = GAZETTEER_T ABLE

Appendix A PDS Data Object Defimtions

NAME ="PLANETARY NOMENCLATURE GAZETTEER"
INTERCHANGE_FORMAT =ASCII
ROWS = 1181
COLUMNS =20
ROW_BYTES =480
DESCRIPTION ="The gazetteer (file GAZETTER TAB) IS a table of geograplncal features for
a planet or satellite. It contams informatiOn about a named feature such as location, s1ze, ongm of feature name, etc The Gazetteer
Table contams one row for each feature named on the target body The table IS formatted so that 1t may be read duectly mto many
data management systems on vanous host computers All fields (columns) are separated by commas, and character fields are
preceded by double quotation marks Each record cons1st of 480 bytes, With a carnage retum/l.me feed sequence m bytes 479 and
480 Th1s allows the table to be treated as a fixed length record file on hosts that support th1s file type and as a normal text file on
other hosts "

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
END_OBJECT

OBJECT
NAME

=COLUMN
=TARGET_NAME
=CHARACTER
=2
=20
="A20"
="NIA"
= 'The planet or satellite on wh1ch the feature JS located "
=COLUMN

=COLUMN
=SEARCH_FEATURE_NAME

Appendix A PDS Data Object Definitions A-39

DATA_ TYPE =CHARACTER
START_BYTE 25
BYTES =50
FORMAT = "ASO"
UNIT "N/A"
DESCRIPTION = "The geographical feature name w1th all diacntical marks stnpped off This
name IS stored m upper case only so that It can be used for sorting and search purposes Th1s field should not be used to designate
the name of the feature because 1t does not contam the diacnt1cal marks Feature names not contammg dtacnucal marks can often
take on a completely dtfferent meanmg and m some cases the mearung can be deeply offensive"
END_OBJECT =COLUMN

OBJECT =COLUMN
NAME = DIACRITIC_FEA TURE_NAME
DATA_TYPE =CHARACTER
START_BYTE = 78
BYTES = 100
FORMAT = "AIOO"
UNIT ="N/A"
DESCRIPTION ='The geographical feature name contammg standard diacritical mformation A
detruled descnpt:10n of the dtacnucal mark formats are descnbed m the gazetteer documentauon

DIACRITICALS USED IN THE TABLE

The word dtacnuc comes from a Greek word mearung to separate It refers to the accent marks employed to separate, or
distinguish, one form of pronunciation of a vowel or consonant from another

ThiS note IS mcluded to fam1hanze the user w1th the codes used to represent dtacnucals found m the table, and the values
usually associated with them In the table, the code for a diacnhcaiis preceded by a backslash and IS followed, without a space, by
the letter It IS modtfymg

This note IS organized as follows the code IS hsted first, followed by the name of the accent mark, If apphcable, a bnef
descnptlon of the appearance of the dJacntical and a short narrative on Its usage

acute accent, a strrught dtagonallme extendtng from upper nght to lower left The acute accent IS used m most languages to
lengthen a vowel. m some, such as Oscan, to denote an open vowel The acute IS also often used to mdicate the stressed syllable,
m some transcnptlons It md1cates a palatalized consonant

dtaeresis or umlaut, two dots surmountmg the letter In Romance languages and Enghsh, the dtaeresis ts used to md1cate that
consecutive vowels do not form a dipthong (see below), m modern German and Scandinavian languages, It denotes palatahzation
of vowels.

circumflex, a chevron or mverted 'v' shape, With the apex at the top Used most often m modern languages to mdtcate
lengtherung of a vowel

tilde, a curvmg or wavmg hne above the letter. The tilde IS a form of circumflex The tilde 1s used most often m Sparush to
form a palatabzed n as m the word 'ano', pronounced 'anyo' It IS also used occaswnally to mdtcate nasaliZed vowels

macron; a strrught lme above the letter The macron IS used almost uruversally to lengthen a vowel

breve, a concave semiCircle or 'u' shape surmounung the letter Ongmally used m Greek, the breve mdicates a short vowel

a small cucle or 'o' above the letter Frequently used m Scandinavian languages to mdtcate a broad 'o'

e dtpthong or hgature, transcnbed as two letters m contact with each other The dtpthong IS a combmauon of vowels that are
pronounced together

cedilla, a curved lme surmounted by a vemcallme, placed at the bottom of the letter The cedilla IS used m Span1sh and French
to denote a dental, or soft, 'c' In the new Turkish transcnpt10n, 'c' cedilla has the value ofEnghsh 'ch' In Serrutlc languages, the
cedilla under a consonant mdtcates that It ts emphatic

A-40 Appendix A PDS Data ObJect Defimuons

check or mverted Circumflex. a 'v' shape above the letter Th1s accent IS used widely m Slavic languages to md1cate a palatal
articulatiOn, like the consonant sounds m the Enghsh words chapter and shoe and the 'zh' sound m pleasure

a smgle dot above the letter Th1s diacntical denotes vanous thmgs. m Lithuanian, It md!cates a close long vowel In Sansknt,
when used w1th 'n', It IS a velar sound, as m the Enghsh 'smk', m Insh orthography, It md1cates a fncat1ve consonant (see below)

accent grave; a d!agonalllne (above the letter) extendmg from upper left to lower nght The grave accent IS used m French,
Sparush and Italian to denote open vowels

fncauve, a honzontallme through a consonant A fncauve consonant IS charactenzed by a fnctwnal rusthng of thebrealh as
It IS enutted " '-

END_OBJECT

OBJECf
NAME
DATA_ TYPE
START_BYTE
BYTES

=COLUMN

=COLUMN
= MINIMUM_LA TITUDE
=REAL
= 180
=7

FORMAT = "F7 2"
UNIT = DEGREE
DESCRIPTION ="The nummum_lat1tude element specifies the southernmost latitude of a spaual
area, such as a map, mosruc, bm, feature, or region "
END_OBJECf =COLUMN

OBJECf
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT

=COLUMN
= MAXIMUM_LA TITUDE
=REAL
= 188
=7
= "F7 2"
=DEGREE

DESCRIPTION = "The maxtmum_latitude element specifies the northernmost latitude of a
spatial area. such as a map, mosruc, bm, feature, or reg~on "
END_OBJECf =COLUMN

OBJECf
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
END_OBJECf

=COLUMN
= CENTER_LATITUDE
=REAL
= 196
=7
= "F72':
=DEGREE
= "The center latitude of the feature "
=COLUMN

OBJECf =COLUMN
NAME = MINIMUM_LONGITUDE
DATA_ TYPE =REAL
START_BYTE = 204
BYTES =7
FORMAT ="F72"
UNIT = DEGREE
DESCRIPTION = "The nummum_long~tude element specifies lhe easternmost latitude of a
spatial area, such as a map, mosruc, bm, feature, or regwn "
END_OBJECT =COLUMN

OBJECT
NAME

=COLUMN
= MAXIMUM_LONGITUDE

Append1x A. PDS Data Object Defimt1ons

DATA_ TYPE
START_BYTE
BYTES

=REAL
= 212
=7

FORMAT = "F7 2"
UNIT =DEGREE

A-41

DESCRIPTION = "The max1mum_longttude element specifies the westernmost Iongttude of a
spatial area, such as a map. mosaic, bm, feature, or region "
END_OBJECT =COLUMN

OBJECT
NAME
DATA_ TYPE
START _BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
END_OBJECT

=COLUMN
= CENTER_LONGITUDE
=REAL
= 220
=7
= "F7 2"
=DEGREE
= "The center longttude of the feature "
=COLUMN

OBJECT =COLUMN
NAME = LABEL_POSITION_ID
DATA_TYPE =CHARACTER
START_BYTE = 229
BYTES =2
FORMAT = "A2"
UNIT ="N/A"
DESCRIPTION = "The suggested plottmg positiOn of the feature name (UL=Upper left,
UC=Upper center, UR=Uppemght, CL--center left, CR=Center nght, LL=Lower left, LC=Lower center, LR=Lower nght) Th1s
field JS used to mstruct the plotter where to place the typographical label w1th respect to the center of the feature This code IS used
to avmd crowdmg of names m areas where there IS a high density of named features "
END_OBJECT =COLUMN

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
field refers to the length of the named feature "
END_OBJECT

=COLUMN
= FEA TURE_LENGTH
=REAL
= 233
=8
= "F8 2"
=KILOMETER
= "The longer or longest dimensiOn of an object For the Gazetteer usage, this

=COLUMN

OBJECT =COLUMN
NAME =PRIMARY_PARENTAGE_ID
DATA_TYPE :cHARACTER
START_BYTE = 243
BYTES =2
FORMAT ="A2"
UNIT ="N/A"
DESCRIPTION ="This field contains the pnmary ongm of the feature name (1 e where the name
ongmated) It contains a code for the contment or country ongtn of the name Please see Appendix 5 of the gazetteer documentation
(GAZETTER TXT) for a defirution of the codes used to define the continent or country "
END_OBJECT =COLUMN

OBJECT
NAME
DATA_ TYPE
START_BYTE

=COLUMN
=SECONDARY _PARENTAGE_ID
=CHARACTER
=248

A-42 Appendix A PDS Data Object Definitions

BYTES = 2
FORMAT = "A2"
UNIT = "N/A"
DESCRIPTION ="This field contains the secondary ongm of the feature name It con tams a code
for a country, state, temtory, or ethruc group Please see Appendix 5 of the gazetteer documentatiOn (GAZETTER TXn for a
defintwn of the codes m this field "

END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES

=COLUMN

=COLUMN
= MAP _SERIAL_ID
=CHARACTER
= 253
=6

FORMAT = "A6"
UNIT = "N/A"
DESCRIPTION = "The IdentificatiOn of the map that contains the named feature This field
represents the map senal number of the map pubhcatlon used for ordenng maps from the U S Geological Survey. The map
Identified m this field best portrays the named feature."

END_OBJECT =COLUMN

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT

=COLUMN
= FEA TURE_STA TUS_ TYPE
=CHARACTER
= 262
= 12
="Al2"
="N/A"

DESCRIPTION = "The IAU approval status of the named feature Pennated values are
'PROPOSED', 'PROVISIONAL', '!AU-APPROVED', and 'DROPPED' Dropped names have been disallowed by the IAU
However, these features have been mcluded m the gazetteer for h1stoncal purposes Some named features that are disallowed by
the IAU may commonly be used on some maps"
END_OBJECT =COLUMN

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES

=COLUMN
= APPROVAL_DATE
=INTEGER
=276

=4
FORMAT = "14"
UNIT = "N/A"
DESCRIPTION = "Date at which an object has been approved by the officially sanctioned
organization This field contains the year the IAU approved the feature name "
END_OBJECf =COLUMN

OBJECT =COLUMN
NAME = FEATURE_TYPE
DATA_ TYPE =CHARACTER
START_BYTE = 282
BYTES =20
FORMAT = "A20"
UNIT = "N/A"
DESCRIPTION = "The feature type Identifies the type of a particular feature, accordmg to IAU
standards Examples are 'CRATER', TESSERA', 'TERRA', etc See Appendix 7 of the gazetteer documentation
(GAZETTER TXT)
DESCRIPTOR TERMS (FEATURE TYPES)

Appendix A PDS Data Object Defimtions

FEATURE

ALBEDO FEATURE

CATENA

CAVUS

CHAOS

CHASMA

COLLES

CORONA

CRATER

DORSUM

ERUPTIVE CENTER

FACULA

FLEXUS

FLUCTUS

FOSSA

LABES

LABYRINTHUS

LAC US

LARGE RINGED FEATURE

LINEA

MACULA

MARE

MENSA

MONS

OCEANUS

PALUS

PATERA

PLANITIA

PLANUM

PROMONTORIUM

REGIO

RIMA

RUPES

SCOPULUS

SINUS

SULCUS

TERRA

TESS ERA

DESCRIPTION

Albedo feature

Cham of craters

Hollows, rrregular depressions

Distmctive area of broken terrain

Canyon

Small lull or knob

Ovmd-shaped feature

Crater

Ridge

Eruptive center

Bnght spot

Cuspate hnear feature

Flow terrain

Long, narrow, shallow depressiOn

Landslide

Intersecting valley complex

Lake

Large nnged feature

Elongate markmg

Dark spot

Sea

Mesa, flat-topped elevation

Mountain

Ocean

Swamp

Shallow crater, scalloped, complex edge

Low plain

Plateau or lu.gh plain

Cape

Region

Fissure

Scarp

Lobate or megular scarp

Bay

Subparallel furrows and ndges

Extensive land mass

Tile, polygonal ground

A-43

A-44

THOLUS

UNDAE

VALLIS

VASTITAS

VARIABLE FEATURE

END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT

Appendix A PDS Data Object Defimtions

Small domical mountrun or lull

Dunes

Smuous valley

Widespread lowlands

Variable feature

=COLUMN

=COLUMN
= REFERENCE_NUMBER
=INTEGER
=304
=4
= "14"
="N/A" UNIT

DESCRIPTION
name was denved.
END_OBJECT

="Literature reference from which the spelling and descnpuon of the feature
See Appendix 6 of the gazetteer documentatiOn (GAZETTER TXT)··

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
IdentificatiOn (example MC-19, MC-18, etc)"
END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYTE
BYTES
FORMAT
UNIT
DESCRIPTION
END_OBJECT
END_OBJECT

END

=COLUMN

=COLUMN
=MAP _CHART_ID
=CHARACTER
= 310
=6
="A6"
="N/A"
= "This field contams the abbreviation of the map designator or chart

=COLUMN

=COLUMN
= FEA TURE_DESCRIPTION
=CHARACTER
= 319
= 159
= "A159"

= "N/A"
= "Short descnptlon of the feature name "
=COLUMN
=GAZETTEER_ TABLE

Appendix A PDS Data Object Defimtions A-45

A.16 HEADER

The HEADER object is used to Identify and define the attributes of commonly used header data
structures such as VICAR or FITS. These structures are usually system or software specific and
are descnbed in detail m a referenced descnption text file. The use of bytes within the header object
refers to the number of bytes for the enure header, not a single record.

Required Keywords

1. BYTES
2. HEADER_TYPE

Optional Keywords

1. DESCRIPTION
2. INTERCHANGE_FORMAT
3. RECORDS

Required Objects

None

Optional Objects

None

Example

The following example shows the detached label file "TIMTCOZA.LBL". The label describes the
data product file "TIMTCOZA.IMG" which contains a HEADER object followed by an IMAGE
object.

CCSD3ZF0000100000001 NJPL31FOPDSX00000001
PDS_ VERSION_ID = PDS3
I* PDS label for a TIMS 1mage */
RECORD_TYPE
RECORD_BYTES
FILE_ RECORDS
I* Pomters to obJects */
"IMAGE_HEADER
"IMAGE
I* Image descnpt10n *I
DATA_SET_ID
PRODUCf_ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
FEA TURE_NAME
START_TIME

= FIXED_LENGTH
=638
= 39277

= ("TIMTC02A IMG",l)
= ("TIMTC02A IMG",2)

= 'CI30-E-TIMS-2-EDR-IMAGE-VI 0'
= "TIMTC02A"
= "NASA C-130 AIRCRAFf"
="THERMAL INFRARED MULTISPECTRAL SCANNER"
=EARTH

"TRAIL CANYON FAN"
= I989-09-29T21 47 35Z

A-46

STOP_TIME
CENTER_LA TITUDE
CENTER_LONGITUDE
INCIDENCE_ANGLE
EMISSION_ANGLE
I* Descnpt10n of obJects *I
OBJECT
BYTES
RECORDS
HEADER_ TYPE
INTERCHANGE_FORMAT
"DESCRIPTION
END_OBJECT
OBJECT
LINES
LINE_ SAMPLES
SAMPLE_ TYPE
SAMPLE_BITS
SAMPLE_BIT_MASK
BANDS
BAND_STORAGE_TYPE
END_OBJECT
END

= 1989-09-29T21 47 35Z
= 36 38
= 116 96
=00
=00

= IMAGE_HEADER
= 638
= 1
=VICAR2
=BINARY
= "VJCAR2 TXT"
= JMAGE_HEADER
=IMAGE
=6546
=638
= UNSIGNED_INTEGER
=8
= 2#11111111#
=6
= LINE_INTERLEA VED
=IMAGE

Appendix A. PDS Data Object Defimtions

Appendix A PDS Data Object Defimt1ons A-47

A.17 IDSTOGRAM

The HISTOGRAM obJect is a sequence of numenc values that provides the number of occurrences
of a data value or a range of data values m a data object. The number of Items m a histogram will
normally be equal to the number of distinct values allowed in a field of the data object. For
example, an 8 bit integer field can have a maximum of 256 values, and would result in a 256 Item
histogram. Histograms may be used to bm data, in which case an offset and scaling factor indicate
the dynamic range of the data represented.

The following equation allows the calculation of the range of each 'bin' m the histogram.

'bin lower boundary'= 'bin element'* scale_factor +offset

Required Keywords

1. ITEMS
2. DATA_TYPE
3. ITEM_BYTES

Optional Keywords

1. BYTES
2. INTERCHANGE_FORMAT
3. OFFSET
4. SCALING_F ACTOR

Required Objects

None

Optional Objects

None

Example

CCSD3ZF0000100000001NJPL3IFOPDSX00000001
PDS_ VERSION_ID = PDS3
I* FILE FORMAT AND LENGTH */

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

= FIXED_LENGTH
=956
=965
=3

!* POINTERS TO START RECORDS OF OBJECTS IN FILE */

AJMAGE_HISTOGRAM =4

A-48 Appendix A PDS Data Object DefimtiOns

"IMAGE =6

I* IMAGE DESCRIPTION *I

DATA_SET_ID = "VOIN02-M-VIS-5-DIM-Vl 0"
PRODUCT_ID = "MG15N022-GRN-666A"
SPACECRAFf_NAME = VIKING_ORBITER_l
TARGET_NAME =MARS
START_TIME = 1978-0l-14T02 00 00
STOP_TIME = !978-0!-14T02 00 00
SPACECRAFf_CLOCK_START_TIME = UNK
SPACECRAFf_CLOCK_STOP _TIME = UNK
PRODUCT_CREATION_TIME = 1995-01-0ITOO 00 00
ORBIT_NUMBER = 666
FIL TER_NAME =GREEN
IMAGE_ID = "MG15N022-GRN-666A"
INSTRUMENT_NAME = {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B}
NOTE ="MARS MULTI-SPECTRAL MDIM SERIES"
I* SUN RAYS EMISSION, INCIDENCE, AND PHASE ANGLES OF IMAGE CENTER *I
SOURCE_PRODUCT_ID =" 666A36"
EMISSION_ANGLE = 21 794
INCIDENCE_ANGLE _ = 66 443
PHASE_ANGLE = 46 Ill

I* DESCRIPTION OF OBJECTS CONTAINED IN FILE *I

OBJECT
ITEMS
DATA_ TYPE
ITEM_BYTES
END_OBJECT

OBJECT
LINES
LINE_SAMPLES
SAMPLE_ TYPE

= IMAGE_HISTOGRAM
=256
= V AX_INTEGER
=4
= IMAGE_HISTOGRAM

=IMAGE
=960
=956
= UNSIGNED_INTEGER

SAMPLE_BITS = 8
SAMPLE_BIT_MASK = 2#11111111#
CHECKSUM = 65718982
I* IfF= SCALING_FACTOR*DN +OFFSET, CONVERT TO INTENSITY/FLUX *I
SCALING_FACTOR = 0 001000
OFFSET =00
I* OPTIMUM COLOR STRETCH FOR DISPLAY OF COLOR IMAGES *I
STRETCHED_FLAG =FALSE
STRETCH_MINIMUM = (53, 0)
STRETCH_MAXIMUM = (133,255)
END_OBJECT =IMAGE

END

Appendix A PDS Data Object Definitions A-49

A.18 HISTORY

A HISTORY object ts a dynamic description of the htstory of one or more associated data objects
in a file. It supplements the essentially static description contained in the PDS label.

The HISTORY object contains text in a format stmtlar to that of the ODL statements used in the
label. It identifies previous computer manipulation of the principal data obJect(s) m the file. It
includes an identification of the source data, processes performed, processmg parameters, as well
as dates and times of processing. It is mtended that the history be available for dtsplay, be
dynamtcally extended by any process operatmg on the data, and automatically propagated to the
resulting da!a file. Eventually, It might be extracted for loading in detailed level catalogs of data
set contents.

The HISTORY object IS structured as a series of History Entnes, one for each process which has
operated on the data. Each entry contams a standard set of ODL element assignment statements,
delimited by GROUP= program_name and END_GROUP = program_name statements. A
subgroup in each entry, delimited by GROUP= PARAMETERS and END_GROUP =
PARAMETERS, contains statements specifying the values of all parameters of the program.

HISTORY ENTRY ELE:M:ENTS

Attribute

VERSION_DA TE

DATE_ TIME

NODE_NAME

USER_ NAME

SOFfW ARE_DESC

USER_NOTE

Description

Program version date, ISO standard format

Run date and time, ISO standard format

Network name of computer.

Username.

Program-generated (brief) descnption

User-supplied (bnef) descnpuon

Unlike the above elements, the names of the parameters defined in the PARAMETERS subgroup
are uncontrolled, and must only conform to the program.

The last entry in a HISTO~.Y object is followed by an END statement. The HISTORY object, by
convention, follows the PDS label of the file, begmrung on a record boundary, and is located by a
pointer statement in the label. There are no required elements for the PDS label description of the
object; it is represented in the label only by the pointer statement, and OBJECT= HISTORY and
END_OBJECT =HISTORY statements.

The HISTORY capability has been implemented as part of the Integrated Software for Imaging
Spectrometers (ISIS) system (see QUBE object definition). ISIS Qube applicatiOns add their own
entries to the Qube file's cumulative History object. ISIS programs run under NASA's TAE
(Transportable Applications Executive) system, and are able to automatically insert all parameters
of their T AE procedure into the history entry created by the program. Consult the ISIS System
Design document for details and limitations imposed by that system. (See the QUBE obJect
description for further references.)

A-50 Appendix A PDS Data Object Defimtions

Example

The following single-entry HISTORY obJect is from a VIcar-generated PDS-labeled qube file.
(See the Qube object example.) There's only one entry because the qube (or rather its label) was
generated by a single program, VISIS. A qube generated by multiple ISIS programs would have
multiple history entries, represented by multiple GROUPs in the HISTORY obJect.

This dtagram illustrates the placement of the example HISTORY object Within a Qube data product
with an attached PDS label.

c
CCSD .

"HISTORY=

END
GROUP=VISIS

END-GROUP=VISIS
END

}
PDS

LABEL.

}msTORY

GROUP VIS IS

= 1990-11-08
= 1991-07-25T10 12 52

VERSION_DA TE
DATE_ TIME
SOFIW ARE_DESC "ISIS cube file with PDS label has been generated as systematiC product by

MIPL usmg the followmg programs
NIMSMERGE to create EDR's,
NIMSCMM to create the merged mosaJc & geometry cube,
HIST2D to create a two-dimensiOnal histogram,
SPECPLOT to create the spectral plots,
TRAN, F2, and INSERTID to create the SII cube,
VISIS to create the ISIS cube"

USER_NOTE

GROUP
EDR_FILE_NAME
IMAGE_ID
SPICE_FILE_NAME
SPIKE_FILE_NAME
DARK_ V ALUE_FILE_NAME
CALIBRA TION_FILE_NAME

= "VPDINI/ Footpnnt, Limbfit, Height=50"

= PARAMETERS
= /*EDR accessed through MIPL Catalog*/
=NULL
=
= "rrupl [rrupl gll]boom_obscuratiOn rum"

=
= "ndat:rumsgs2 cal"

Appendix A PDS Data Object Definitions

MERGED_MOSAIC_FILE_NAME
DARK_INTERPOLA TION_ TYPE
PHOTOMETRIC_ CORRECTION_ TYPE
CUBE_NIMSEL_ TYPE
BINNING_ TYPE
FILL_BOX_SIZE
FILL_MIN_ VALID_PIXELS
SUMMARY _IMAGE_RED_ID
SUMMARY _IMAGE_GREEN_ID
SUMMARY _IMAGE_BLUE_ID
ADAPT _STRETCH_SAT _FRAC
ADAPT_STRETCH_SAMP _FRAC
RED_STRETCH_RANGE
GREEN_STRETCH_RANGE
BLUE_STRETCH_RANGE

END_GROUP
END_GROUP
END

·~" ... ,,

= "ndat vpdml_dn_fp_lf_h50 CUB"
=NOUPDAT
=NONE
=NOCAL
=FOOTPRNT
=0
=0
=0
=0
=0
= 0000000
= 0 000000
= (0, 0)
= (0, 0)
= (0, 0)
=PARAMETERS
= VISIS

A-51

A-52 Appendix A PDS Data Object Defimtions

A.19 IMAGE

An IMAGE obJeCt is an array of sample values. Image objects are normally processed with special
display tools to produce a visual representation of the sample values. This is done by assigning
brightness levels or display colors to the variOus sample values. Images are composed of LINES
and SAMPLES. They may contain multiple bands, m one of several storage orders.

Simple IMAGE objects are defined as having LINES as the number of horizontal lines, with each
lme having LINE_SAMPLES as the number of sample values defined. The default sample values
are 8-bit unsigned bmary integer. The sample size can be over- ridden using the SAMPLE_BITS
keyword (e.g. SAMPLE_BITS = 32) The SAMPLE_ TYPE keyword can be used to override the
default SAMPLE_ TYPE (e.g. SAMPLE_ TYPE= V AX_REAL).

Each line of an IMAGE object may also be organized with a set of PREFIX or SUFFIX bytes,
which provide engmeering parameters related to each line. The PREFIX or SUFFIX area IS treated
as aT ABLE object which has been concatenated with the IMAGE object. Each physical record in
the file contains a row of the PREFIX or SUFFIX table and a line of the IMAGE. While this is a
commonly used format for IMAGE storage, it can cause difficulties if used with general purpose
display and processing software. In particular, most programs will consider the PREFIX and
SUFFIX as part of the image, meanmg that statistics generated for the image (mean, standard
deviation, etc.) will be in error. It IS recommended that PREFIX or SUFFIX mformation be stored
as a separate TABLE data object in separate records Withm the file and not concatenated with the
Image data. (See Figure A. I.)

Most images are composed of LINES containing a horizontal array of SAMPLES. However some
Imaging sensors may scan in a vertical directiOn, creating an array of vertical lines, as in the case of
the Viking Lander camera system.

More complex IMAGE formats mclude multi-band images, where SAMPLES or LINES of the
same scene from several spectral bands are combined in one object, by sample
(SAMPLE_INTERLEA VED), or by line (LINE_INTERLEA VED). Another IMAGE format is
TILED, where a large IMAGE IS divided into smaller pieces (TILES) to provide efficient access.

Figure A.2 illustrates the BANDS, BAND _NAME, and BAND __ STORAGE_ TYPE keywords that
can be used to describe multi-band Images.

Note: Additional engineering values may be prepended or appended to each LINE of an image, and
are stored as concatenated TABLE objects, which must be named LINE_PREFIX and
LINE_SUFFIX. IMAGE objects may be associated with other objects, including HISTOGRAMs,
PALETTEs, HISTORY and TABLEs which contain statistics, display parameters, engineering
values or other ancillary data.

Appendix A PDS Data Object Definitions

LINES 10 ...,.._ UNE SAMPLES = 15-JIIo-

p
R
E
F
I
X

...

s
u

m~
I X

I I I

SAMPLE_BITS=B

1
2

10

SAMPLE_ TYPE=UNSI GNED_I NTEGER

Figure A.1: PrefiX and Suffix Bytes attached to an Image

A-53

BANDS=3, BAND_ STORAGE.... TYPE=BAND_SEQUENTIAL BAND_STORAGE_TYPE:!o.INE_INTERLEAVED

UNE 1
IJNE2
UNE3
IJNE 4
UNE5
UNE6
UNE7
UNE8

LINE1

LINE2

UNE3

UNE4

LINES

LINE6

LINE7

LINES

LINE9
ETC

BAND_NAME = (RED, GREEN, BLUE)

BAND _STORAGE_ TYPE=SAMPLE_INTER LEAVED

LINE1

LINE2

LINE3

LINE4

ETC.

Figure A.2: Keywords for a Multi-Band Image

A-54

Required Keywords

1. LINES
2.LINE_SAMPLES
3. SAMPLE_TYPE
4. SAMPLE_BITS

Optional Keywords

1. BAND_SEQUENCE
2. BAND_STORAGE_TYPE
3. BANDS
4. CHECKSUM DERIVED_MAXIMUM
5. DERIVED_MINIMUM
6. DESCRIPTION
7. ENCODING_TYPE
8. FIRST_LINE
9. FIRST_LINE_SAMPLE
10. INVALID
11. LINE_PREFIX_BYTES
12.LINE_SUFFIX_BYTES
13. MISSING
14. OFFSET
15. SAMPLE_BIT _MASK
16. SAMPLING_FACTOR
17. SCALING_FACTOR
18. SOURCE_FILE_NAME
19. SOURCE_LINES
20. SOURCE_LINE_SAMPLES
21. SOURCE_SAMPLE_BITS
22. STRETCHED_FLAG
23. STRETCH_MINIMUM
24. STRETCH_MAXIMUM

Required Objects

None

Optional Objects

None

Appendix A. PDS Data Object Defimtions

Appendix A. PDS Data Object Defimtions A-55

ExampJe

This IS an example of an attached ll\1AGE label for a color digital mosaic image from the Mars
Digital Image Map CD-ROMs. It includes a checksum to support automated volume productiOn
and validation, a scalmg_factor to indicate the relationship between sample values and geophysical
parameters and stretch keywords to indicate optimal values for Image display.

CCSD3ZFOOOO 100000001 NJPL3IFOPDSX00000001
PDS_ VERSION_ID = PDS3

I* FILEFORMAT AND LENGTH*/

RECORD_TYPE
RECORD_BYTES
FILE_RECORDS
LABEL_RECORDS

= FIXED_LENGTH
=956
=965

3

I* POINTERS TO START RECORDS OF OBJECTS IN FILE*/

"IMAGE_HISTOGRAM
"IMAGE

I* IMAGE DESCRIPTION *I

DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
TARGET_NAME
IMAGE_ TIME
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_ST ART_COUNT
SPACECRAFT_CLOCK_STOP _COUNT
PRODUCT_CREA TION_TIME
ORBIT_NUMBER
FIL TER_NAME
IMAGE_ID
INSTR~ENT_N~E

NOTE
SOURCE_PRODUCT_ID
EMISSION_ANGLE
INCIDENCE_ANGLE
PHASE_ANGLE

=4
=6

= "V01N02-M-VIS-5-DIM-Vl 0"
= "MG15N022-GRN-666A"
= VIKING_ORBITER_1
=MARS
= 1978-01-14T02 00 00
=UNK
=UNK
=UNK
=UNK
= 1995-01-01TOO 00 00
=666
=GREEN
= "MG15N022-GRN-666A"
= {VISUAL_IMAGING_SUBSYSTEM_CAMERA_A,
VISUAL_IMAGING_SUBSYSTEM_CAMERA_B)
="MARS MULTI-SPECTRAL MDIM SERIES"
= "666A36"
=21 794
=66443

46111

I* DESCRIPTION OF OBJECTS CONTAINED IN FILE *I

OBJECT
ITEMS
DATA_ TYPE
ITEM_BYTES
END_OBJECT

OBJECT
LINES
LINE_ SAMPLES

= IMAGE_HISTOG~
=256
= V AX_INTEGER
=4
= IMAGE_HISTOGRAM

=IMAGE
=960
=956

A-56

SAMPLE_ TYPE
SAMPLE_BITS
SAMPLE_BIT_MASK
CHECKSUM
SCALING_FACTOR

OFFSET
STRETCHED_FLAG
STRETCH_MINIMUM
STRETCH_MAXIMUM
END_OBJECT

END

= UNSIGNED_INTEGER
=8
= 2#11111111 #
= 65718982

Appendix A PDS Data Object DefimtJons

= 0 001 000 I* IfF = scalmg factor * DN + offset, *I
I* convert to mtens1tylflux *I
=00
=FALSE I* Opumum color stretch for d1splay *I
= (53. 0) I* of color 1mages *I
= (133,255)
=IMAGE

Appendix A PDS Data Object DefinitiOns A-57

A.20 IMAGE MAP PROJECTION

The IMAGE_MAP _PROJECTION object IS one of two distinct objects that define the map
projection used in creating the digital images in a PDS data set. The name of the other associated
object that completes the defimtion is called DATA_SET _MAP _PROJECTION.(see Appendix B)

The map projection information resides in these two objects, essentially to reduce data
reduncdancy and at the same time allow the mclus10n of elements needed to process the data at the
image level. Basically. static information that is applicable to the complete data set reside in the
DATA_SET_MAP _PROJECTION object, while dynamic informatiOn that IS applicable to the
individual images reside m the IMAGE_MAP _PROJECTION object.

The line_first_pixel,line_last_pixel, sample_first_pixel, and sample_last_plxel keywords are used
to indlcat~ which way is up in an lffiage. Sometimes an Image can be shifted or flipped prior to it
being physically recorded. These keywords are used in calculatmg the mapping of pixels between
the onginal image and the stored image.

The following equations give the byte offsets needed to determine the mapping of a pixel (X, Y)
from the original image to a pixel in the stored image:

The sample offset from the first pixel is:

sample_bits * (Y - sample_first_pixel) * line_samples
8 * (sample_last_pixel- sample_first_pixel + 1)

The line offset from the first image line is:

(X- hne_first_pixel) *lines
(lme_last_pixel- line_first__pixel + 1)

Additionally, in any Image, ABS (sample_last_pixel- sample_first_pixel + 1) Is always equal to
line_samples, and ABS (line_last_pixel- line_first_pixel + 1) is always equal to lines.

A-58 Appendix A PDS Data Object Definitions

Example

Take a 1 K by 1 K 8-bit image wluch is rotated about the x -axis 180 degrees pnor to being physically
recorded.

Onginal Image: Positive direction IS to the right and down

f1rst p1xel (sample, hne) = (1 , 1) • +-(1024,1)

(1,1024)--llo
Image P

t
last p1xel (1024, 1024)

Stored Image: Positive direction is to the right and up

f1rst p1xel (sample, hne) = (1, 1024)*

+

(1. 1)" _.. IL----------~ Image P'

..__ (1024,1024)*

t
last p1xel (1024,1)*

These pixel locatiOn values (*) are the positions from the origmal image. For example, the first
pixel in the stored image (normally referred to as (1,1)) came from the position (1,1024) m the
original image. These original values are used for the following IMAGE_MAP _PROJECTION
keywords in the PDS label for the stored image:

sample_frrst_pixel = 1
sample_last_pixel = 1024
line_first_pixel = 1024
lme_last_pixel = 1

Now, given a pixel on the original image, P(X,Y) = (2,2) determine its location (P') in the stored
image.

Appendix A PDS Data Object Defimuons

sample offset= (8 * (2- 1) * 1024) I (8 * (1024- 1 + 1)) = 1
lme offset= ((2- 1024) * 1024) I (1- 1024 + 1) = (-1022)

A-59

Therefore, P' is located at 1 byte from the first sample, and 1022 bytes (in the negative direction)
from the first line m the stored Image. See diagram above.

Required Keywords

1. MAP_PROJECTION_TYPE
2. A_AXIS_RADIUS
3 B_AXIS_RADIUS
4. C_AXIS_RADIUS
5. FIRST_STANDARD_PAJU\LLEL
6. SECOND_STANDARD_PARALLEL
7. POSITIVE_LONGITUDE_DIRECTION
8. CENTER_LATITUDE
9. CENTER_LONGITUDE
10. REFERENCE_LA TITUDE
11. REFERENCE_LONGITUDE
12.LINE_FIRST_PU(EL
13. LINE_LAST_PU(EL
14.SAMPLE_FIRST_PUCEL
15.SAMPLE_LAST_PrxEL
16. MAP_PROJECTION_ROTATION
17. MAP _RESOLUTION
18. MAP_SCALE
19. MAXIMUM_LATITUDE
20. MINIMUM_LATITUDE
21. EASTERNMOST_LONGITUDE
22. WESTERNMOST_LONGITUDE
23. LINE_PROJECTION_ OFFSET
24. SAMPLE_PROJECTION_ OFFSET
25. COORDINATE_SYSTEM_TYPE
26. COORDINATE_SYSTEM_NAME

Optional Keywords

1. DATA_SET_ID
2.IMAGE_ID
3. HORIZONTAL_FRAMELET_OFFSET
4. VERTICAL_FRAMELET_OFFSET

Required Objects

1. DATA_SET _MAP _PROJECTION

A-60

Optional Objects

None

Example

PDS_ VERSION_ID

I* File charactenstiCS *I
RECORD_TYPE

Appendix A PDS Data Object Definitions

=PDS3

=STREAM

I* IdentificatiOn data elements *I
DATA_SET_ID
DATA_SET_NAME

= "MGN-V-RDRS-5-GVDR-Vl 0"

VI 0"
PRODUCT_ID

MISSION_NAME
SPACECRAFT_NAME
INSTRUMENT_NAME
TARGET_NAME

ORBIT _START_NUMBER
ORBIT _STOP _NUMBER
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_START _COUNT
SPACECRAFT_CLOCK_STOP _COUNT

PRODUCT_CREA TION_TIME
PRODUCT_RELEASE_DATE
PRODUCT_SEQUENCE_NUMBER
PRODUCT_ VERSION_ TYPE

= "MAGELLAN VENUS RADAR SYSTEM GLOBAL DATA RECORD

="IMP-NORTH 100"

= "MAGELLAN"
= "MAGELLAN"

"RADAR SYSTEM"
="VENUS"

=376
=4367
="NIA"
="NIA"
="NIA"
="NIA"

= 1994-05-07T22·09 27 000
= 1994-05-13
=00000
="PRELIMINARY"

SOURCE_DATA_SET_ID = {"MGN-V-RDRS-5-SCVDR-Vl 0",
"MGN-V-RDRS-CDR-ALT/RAD-Vl 0"}
SOURCE_PRODUCT_lD = { "SCVDR 00376-00399 l","SCVDR.0040D-00499 1 ",
"SCVDR 01100-01199 1 ","SCVDR 01200-01299 l","SCVDR 01300-01399 1 ",
"SCVDR 01400·01499 l","SCVDR 01500-01599 l","SCVDR 01600-01699 1",
"SCVDR 01700-01799.1 ","SCVDR 01800-01899 1 ","SCVDR 01900-01999 1",
"ARCDRCD 001,2" ,"ARCDRCD 002.1 ". "ARCDRCD 003,1 ","ARCDRCD 004,1 ",
"ARCDRCD 005,1 ","ARCDRCD 006,l","ARCDRCD 007,1 ","ARCDRCD 008,1 ",
"ARCDRCD 017,1 ","ARCDRCD 018,l","ARCDRCD 019,1")

SOFIW ARE_FLAG

PRODUCER_FULL_NAME = "M1chael J Maurer"
PRODUCER_INSTITUTION_NAME ="Stanford Center for Radar Astronomy"
PRODUCER_ID ' = "SCRA"
DESCRIPTION = "This file contaJ.ns a smgle

IMAGE_MAP _PROJECTION data object with an attached PDS label "

I* Data object defimuons *I
OBJECT

ADAT A_ SET _MAP _PROJECTION
COORDINA TE_SYSTEM_TYPE
COORDINA TE_SYSTEM_NAME

= IMAGE_MAP _PROJECTION
"DSMAPCAT"

="BODY-FIXED ROTATING"
= "PLANETOCENTRIC"

Appendix A PDS Data Object Defimtlons

MAP _PROJECTION_ TYPE
A_AX1S_RADIUS
B_AXIS_RADIUS
C_AXIS_RADIUS
FIRST _STANDARD_PARALLEL
SECOND_STANDARD_PARALLEL
POSITIVE_LONGITUDE_DIRECTION
CENTER_LA TITUDE
CENTER_LONGITUDE
REFERENCE_LA TITUDE ,
REFERENCE_LONGITUDE,
LINE_FTRST_PIXEL
LINE_LAST _PIXEL
SAMPLE_FTRST _PIXEL
SAMPLE_LAST _PIXEL
MAP _PROJECTION_ROTA TION
MAP _RESOLUTION
MAP_SCALE
MAXlMUM_LA TITUDE
MINIMUM_LA TITUDE
EASTERNMOST_LONGITUDE
WESTERNMOST _LONGITUDE
LINE_PROJECTION_OFFSET
SAMPLE_PROJECTION_OFFSET

END_OBJECT
END

= "STEREOGRAPHIC"
=6051 O<KM>
=6051 O<KM>
=6051 O<KM>
="NIA"
="NIA"
="EAST"
=90
=0
="N/A"
="N/A"
=1
=357
= 1
=357
=0
= 5 79478 <PIXEL/DEGREE>
= 18 225 <KMIPIXEL>
::9000
=6000
= 36000
=000
= 178
= 178

IMAGE_MAP _PROJECTION

A-61

A-62 Appendtx A PDS Data Object Defimtions

A.21 INDEX_TABLE

The INDEX_ TABLE object is a specific type of aT ABLE object that provides information about
the data stored on an archive volume. The INDEX_T ABLE contruns one row for each data file (or
data product label file, in the case where detached labels are used) on the volume. The table is
formatted so that it may be read directly by many data management systems on various host
computers. All fields (columns) are separated by commas, and character fields are enclosed by
double quotation marks. Each record ends in a carriage ret~rn/1ine feed sequence. This allows the
table to be treated as a fixed length record file on hosts that support this file type and as a normal
text file on other hosts.

There are two categories of columns for an Index table, identification and search. PDS data element
names should be used as column names wherever appropnate.

The required columns are used for Identification. The optional columns are data dependent and are
used for search. For example, the following may be useful for searching:

Location (e.g. LATITUDE, LONGITUDE, ORBIT_NUMBER)
Time (e.g. START_TIME, SPACECRAFT_CLOCK_START_COUNT)
Feature (e.g. FEATURE_TYPE)
Observational characteristics (e.g. INCIDENCE_ANGLE)
Instrument characteristics (e.g. FIL TER_N AME)

For archive volumes created before version 3.2 of the PDS standards, 1fthe keyword
INDEX_ TYPE is not present, the value is defaulted to SINGLE, unless the Index's filename is
given as CUMINDEX.T AB or axxCMIDX.T AB (with axx representing up to three alphanumeric
characters).

If the keyword INDEXED _FILE_N AME is not present for a SINGLE index, the value is defaulted
to "*. *" if attached labels are used, or"* .LBL'' if detached labels are used. This indicates that the
mdex encompasses all data product files on the volume.

If the keyword INDEXED_FILE_NAME is not present for a cumultative index, the default value
is "*.TAB" for files in the INDEX subdirectory.
See section 17.2 for information about the use of Nl A, UNK and NULL in an INDEX table.

Required Keywords

1. INTERCHANGE_FORMAT
2.ROWS
3.COLUMNS
4. ROW _BYTES
5. INDEX_TYPE

Appendix A. PDS Data ObJect Defimttons

Optional Keywords

1. NAME
2. DESCRIPTION
3. INDEXED_FILE_NAME
4. UNKNOWN_CONSTANT
5. NOT_APPLICABLE_CONSTANT
6. NULL_CONST ANT

Required Objects

I. COLUMN

Required COLUMN Objects (NAME=)

FILE_SPECIFICATION_NAME or PATH_NAME and FILE_NAME
PRODUCT_ID (**)
VOLUME_ID (*)
DATA_SET_ID (*)
PRODUCT_CREATION_TIME (*)
LOGICAL_ VOLU:ME_PATH_NAME (must be used with PATH_NAME
· and FILE_NAME for a logical volume)'(*)

A-63

(*)If the value is constant across the data in the mdex table, this keyword can appear in the index
table • s labeL
If the value is not constant, then a column of the given name must be used.

(**) PRODUCT_ID is not required if it has the same value as FILE_NAME
or FILE_SPECIFICATION_NAME.

Required Keywords (for Required COLUMN Objects)

NAME
DATA_ TYPE
START_BYTE
BYTES
DESCRIPTION

A-64

Optional COLUMN Objects (NAME=)

MISSION_NAME
INSTRUMENT_NAME (or ID)
INSTRUMENT_HOST_NAME (or ID)

(or SPACECRAFf_NAME or ID)
TARGET_NAME
PRODUCT_TYPE
MISSION_PHASE_NAME
VOLUME_SET_ID
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP _COUNT
any other search columns

Appendxx A PDS Data Object Definitions

Appendix A PDS Data Object Defimuons

Example

CCSD3ZF0000100000001NJPL3IFOPDSXOOOOOOOI
PDS_ VERSION_ID = PDS3

RECORD_TYPE
RECORD_BYlES
FILE_RECORDS
DESCRIPTION
AJNDEX_TABLE

OBJECT
INTERCHANGE_FORMAT
ROW_BY1ES
ROWS
COLUMNS
INDEX_ TYPE
INDEXED_FILE_NAME

OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYlE
BYlES

END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_ TYPE
START_BY1E
BYlES

END_OBJECT

OBJECT
NAME
DESCRIPTION

= FIXED_LENGTH
= 180
=220
= "INDEX TAB hsts all data files on thls volume"
="INDEX TAB"

= INDEX_TABLE
=ASCII
= 180

220
=9
=SINGLE
= {"* AMD","* ION","* TIM","* TRO",
"* WEA","* LIT","* MIF","* MPD",
"* ODF","* ODR","* ODS","* SFO",
"* SOE","* TDF"}

=COLUMN
=VOLUME_ID
= "Ident1fies the volume contammg the named file"
=CHARACTER
=2
=9

COLUMN

=COLUMN
= DA T A_SET_ID
= "The data set 1dent1fier Acceptable values mclude
'MO-M-RSS-1-0IDR-Vl 0"

=CHARACTER
=14
=25
=COLUMN

=COLUMN
=PATH_NAME

= "Path to directory contammg file
Acceptable values mclude
'AMD'.
'ION',
TIM',
TRO',
'WEA',
'LIT',
'MIF',
'MPD',
'ODF',

'ODR',
'ODS',
'SFO',
'SOE', and
'TDF'"

A-65

A-66

DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION

DATA_ TYPE
START_BYTE
BYTES

END_OBJECT

OBJECT
NAME
DESCRIPTION
DATA_TYPE
START_BYTE
BYTES

END_OBJECT

END_OBJECT
END

=CHARACTER
=42

9
=COLUMN

=COLUMN
=ALE_NAME
= "Name of file m archtve"
=CHARACTER
==54
= 12
=COLUMN

COLUMN
= PRODUCT_ID

Appendix A PDS Data Object Defimtions

= "Ongmal file name on MO PDB or SOPC"
=CHARAC1ER
=69
=33
=COLUMN

=COLUMN
=START_ TIME
= "Time at wtuch data m the file begm given m the format
'YYYY-MM-DDThh mm ss'"
=CHARACTER
= 105
= 19
=COLUMN

=COLUMN
=STOP_TIME
= "Ttme at whtch data m the file end giVen m the format
'YYYY -MM-DDThh mm.ss' "

==CHARACTER
= 127
= 19
=COLUMN

=COLUMN
= PRODUCT_CREATION_TIME

"Date and orne that file was created "
=CHARACTER
= 149
= 19
=COLUMN

=COLUMN
=ALE_SIZE
="Number of bytes m file, not mcludmg label"
= "ASCll INTEGER"
= 170
=9
=COLUMN

= INDEX_T ABLE

AppendiX A. PDS Data ObJect DefimtJ.ons

A.22 PALETTE

The PALETTE obJect, a sub-class of the table object, contams entries which represent color
assignments for SAMPLE values contained in an IMAGE.

A-67

If the palette is stored in an external file from the data file, then the palette should be stored in
ASCII format as 256 ROWS, each composed of 4 COLUMNS The frrst column contains the
SAMPLE value (0 to 255 for an 8-bit SAMPLE), and the remaming 3 COLUMNS contains the
relative amount (a value from 0 to 255) of each primary color to be assigned for that SAMPLE
value.

If the palette is stored in the data file, then it should be stored in BINARY format as 256
consecutive 8-b1t values for each primary color (RED, GREEN, BLUE) resultmg m a 768 byte
record.

Required Keywords

1. INTERCHANGE_FORMAT
2.ROWS
3. ROW _BYTES
4.COLUMNS

Optional Keywords

1. DESCRIPTION
2.NAME

Required Objects

1. COLUMN

Optional Objects

None

Example

The examples below depict the differences between the two types of PALETTE objects. The first
is an example of an ASCII PALETTE object, and the second is an example of the BINARY
PALETTE object. -

CCSD3ZFOOOOI 0000000 I NJPL31FOPDSXOOOOOOOI
PDS_ VERSION_ID
RECORD_TYPE
RECORD_BYTES
FILE_RECORDS

=PDS3
= FIXED_LENGTH
=80
=256

A-68

APALETIE
I* Image Palette descnptmn *I
SPACECRAFf_NAME
MISSION_pHASE_NAME
T ARGET_NAME
PRODUCT_ID
IMAGE_ID
INSTRUMENT_NAME
PRODUCT_CREA TION_TIME
NOTE

I* Descnpt10n of an ASCII PALETTE object *I

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS
OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES
END_OBJECT
OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES
END_OBJECT
OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES
END_OBJECT
OBJECT
NAME
DESCRIPTION
DATA_ TYPE
START_BYTE
BYTES
END_OBJECT
END_OBJECT
END

I* Descnpuon of a BINARY PALETIE object *I

OBJECT
INTERCHANGE_FORMAT
ROWS
ROW_BYTES
COLUMNS

= "PALETIE TAB"

·=MAGELLAN
= PRIMARY _MISSION
=VENUS
="GEDR-MERC 1 ,2"
="GEDR-MERC 1,2"
="RADAR SYSTEM"
= 1995-01-0lTOO 00 00
="Palette for browse 1mage"

=PALETIE
=ASCII
=256
=80
=4
=COLUMN
=SAMPLE

Appendtx A. PDS Data Object Defimtions

="DN value for red, green, blue mtens!IJes"
=INTEGER
=1
=3

=COLUMN
=RED
= "Red mtens1ty (0 - 255)"
=INTEGER
=6
=3

=COLUMN
=GREEN
= "Green mtenslty (0 - 255)"
=INTEGER
=11

3

=COLUMN
=BLUE

"Blue mtens1ty (0 - 255)"
=INTEGER
=16
=3

=PALETIE
=BINARY
=1

768
=3

Appendix A PDS Data ObJect Defimttons

OBJECT
NAME
DATA_TYPE
START _BYTE
ITEMS
ITEM_BYTES
END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYTE
ITEMS
ITEM_BYTES
END_OBJECT

OBJECT
NAME
DATA_ TYPE
START_BYTE
ITEMS
ITEM_BYTES
END_OBJECT
END_OBJECT
END

=COLUMN
=RED
== UNSIGNED_INTEGER
= 1
=256
=1
=COLUMN

=COLUMN
=GREEN
= UNSIGNED_INTEGER

257
=256
=1
=COLUMN

=COLUMN
=BLUE
= UNSIGNED_INTEGER
= 513
=256
=1
=COLUMN
=PALETTE

A-69

Appendix A. PDS Data Object Definitions

A.23 QUBE

A generalized QUBE object is a multidunensional array (called the core) of sample values in
multlple dimensions. The core is homogeneous, and consists of unsigned byte, signed halfword or
floating point fullword elements. QUBEs of one to three dimensiOns may have optional suffix
areas in each axis. The suffix areas may be heterogeneous, with elements of different types, but
each suffix pixel is always allocated a full word. Special values may be defined for the core and the
suffix areas to designate missing values and several lands of invalid values, such as instrument and
representation saturatiOn.

The QUBE is the pnncipal data structure of the ISIS (Integrated Software for Imaging
Spectrometers) system. A frequently used specialization of the QUBE object IS the ISIS Standard
Qube, which is a three-dtmensional QUBE with two spatial dimensions and one spectral
dimension. Its axes have the interpretations 'sample', 'line' and 'band'. Three physical storage orders
are allowed: band-sequential, line_interleaved (band-interleaved-by-line) and sample_interleaved
(band-interleaved-by-pixel).

An example of a Standard ISIS Qube is a spectral image qube contairung data from an imaging
spectrometer. Such a qube is simultaneously a set of images (at different wavelengths) of the same
target area, and a set of spectra at each point of the target area. Typically, suffix areas in such a
qube are confined to 'backplanes' containing geometnc or quality informatiOn about individual
spectra, I.e. about the set of corresponding values at the same pixel location m each band.

The following diagram Illustrates the general structure of a Standard ISIS Qube. Note that this is a
conceptual or "logical" view of the qube.

EXPLODED VIEW of a
QUBE OBJECT

BACKPLANE

CORE

BOTTOMPLAN E

CORE STRUCTURE

SPE~CTL (Sii.NDS

SPAllAL
(LNES)

}
..,....,..,.,...,..,.,...,,~

"-./ /'/'//'/ ~

/77/ ,, ~~~~~

SPATIAL
(SAMPLES)

::::: ~ ;...- / ~
/~~~~
:::::~~ ~~
~~:::~~
~~~~~ 
"/~~~~ .,.,. :;..o~ 

~~~~ 
~~~ 
~ 

F1gure A.3: Exploded View of a Qube Object 



Appendix A PDS Data Object Defimnons A-71 

Some special requirements are imposed by the ISIS system. A QUBE obJect must be associated 
With a HISTORY object. (Other objects, such as HISTOGRAMs, IMAGEs, PALETTEs and 
TABLEs which contam statistics, display parameters, engineenng values or other ancillary data, 
are optiOnal.) A special element, FILE_STATE, is required in the implicit FILE object. Some label 
information is organized into GROUPs, such as BAND_BIN and IMAGE_MAP _PROJECTION. 
The BAND _BIN group contains essential wavelength mformation, and is reqmred for Standard 
ISIS Qubes. . 

The ISIS system includes routines for reading and writing files containmg QUBE objects. Both 
'logical' access, independent of actual storage order, and drrect 'physical' access are provided for 
Standard ISIS Qubes. Only physical access is provided for generalized QUBEs. Most ISIS 
application programs operate on Standard ISIS Qubes. Arbitrary subqubes ('virtual' qubes) of 
existing qubes may be specified for most of these programs. In addition, ISIS includes software for 
handling Tables (an ISIS variant of the,PDS Table object) and Instrument Spectral Libraries. 

For a complete description, refer to the most recent versiOn of 'lSD: ISIS System Design, Build 2', 
obtainable from the PDS Operator. 

NOTE: The following required and optional elements of the QUBE object are ISIS-specific. Since 
the ISIS system was designed before the current version of the Planetary Science Data Dictionary, 
some of the element names conf11ct with current PDS nomenclature standards. 

Required Keywords (Generalized Qube and Standard ISIS Qube) 

AXES 

AXIS_NAME 

CORE_ITEMS 

CORE_ITEM_BYTES 

CORE_ITEM_TYPE 

CORE_BASE 

CORE_MUL TIPLIER 

SUFFIX_BYTES 

SUFFIX_ITEMS 

CORE_ V ALID_MINIMUM 

Number of axes or d1mensions of qube [mteger] 

Names of axes [sequence of 1-6 literals] 
(BAND, LINE, SAMPLE) for Standard Qube 

Core dimensiOns of axes [seq of 1-6 integers] 

Core element size [mteger bytes. { 1, 2, 4}] 

Core element type 
[literal· {UNSIGNED_INTERGER, INTERGER, REAL}] 

Base value of core item scaling [real] 

Multiplier for core Item scalmg (real] 
'true' value = base + multiplier * 'stored' value 
(base = 0.0 and multiplier= 1 0 for REALs) 

Storage allocation of suffix elements [integer: always 4] 

Suffix dxmensmns of axes [seq of 1-6 mtegers] 

Minimum vahd core value -- values below this value are 
reserved for 'special' values, of which 5 are currently assigned 
[mteger or non-decimal mteger· these values are fixed by ISIS 
convention for each allowable Item type and size-- see ISD for 



A-72 

CORE_NULL 

CORE_LOW _INSTR_SATURA TION 

CORE_IDGH_INSTR_SATURA TION 

CORE_LOW _REPR_SATURA TION 

CORE_IDGH_REPR_SATURATION 

Appendtx A PDS Data ObJect Defimtions 

details] Special value mdicatmg'mvalid' data 
Spectal value mdicatmg 'mvahd' data 

Special value mdtcating instrument saturation at the low end 

Spectal value mdtcatmg instrument saturation at the h1gh end 

Spectal value mdtcating representauon saturauon at the low end 

Spec1al value mdtcaung representation saturatiOn at the htgh 
end 

Required Keywords (Standard ISIS Qube) and Optional Keywords (Generalized Qube) 

CORE_NAME 

CORE_UNIT 

BAND_BIN_CENTER 

BAND_BIN_UNIT 

BAND_BIN_ORIGINAL_BAND 

Name of value stored m core of qube [literal, e g. 
SPECTRAL_RADIANCE] 

Umt of value stored m core of qube [hteral] 

Wavelengths of bands m a Standard Qube [sequence of reals] 

Umt of wavelength [hteral, e g MICROMETER] 

Origmal band numbers, referring to a Qube of which the current 
qube IS a subqube In the origmal qube, these are sequenual 
mtegers [sequence of mtegers] 

Optional Keywords (Generalized Qube and Standard ISIS Qube) 
BAND_BIN_ WIDTH Width (at half hetght) of spectral response of bands [sequence 

of reals] 

BAND_BIN_ST ANDARD_DEVIA TION 

BAND_BIN_DETECTOR 

BAND_BIN_GRATING_FOSITION 

Standard devlation·of spectrometer values at each band 
[sequence of reals] 

Instrument detector number of band, where relevant [sequence 
of integers] 

Instrument grating pos1Uon of band, where relevant [sequence 
ofmtegers] 

Required Keywords (for each suffix present in a 1-3 dimensional qube). 
Note: These must be prefixed by the specific AXIS_NAME. These are SAMPLE, LINE and 
BAND for Standard ISIS Qubes. Only the commonly used BAND variants are shown: 

BAND_Sumx_NAME 

BAND_Sumx_UNIT 

BAND_Sumx_ITEM_BYTES 

BAND_Sumx_ITEM_TYPE 

Names of suffix 1tems [sequence of literals] 

Units of suffix Items [sequence of hterals] 

Suffix 1tem sizes [sequence of mteger bytes { 1, 2, 4}] 

Suffix 1tem types [sequence of hterals: 
{UNSIGNED_INTEGER, INTEGER, REAL, . }] 



Appendix A PDS Data Object DefinitiOns 

B~_S~X_BASE 

B~_S~X_MULTIPLIER 

B~_S~X_ V ALID_MINIMUM 

B~_S~_NULL 

B~_S~_LOW _INSTR_SAT 

B~_S~_HIGH_INSTR_SAT 

B~_S~_LOW_REPR_SAT 

B~_S~_HIGH_REPR_SAT 

Example 

Base values of suffix Item scalmg [sequence of reals] (see 
correspondmg core element) 

Multipliers for suffix Item scaling [sequence of reals] (see 
correspondmg core element) 

Minimum valid suffix values 

.. and assigned special values 

[sequences of mtegers or reals] 

(see corresponding core 

element definitiOns for 

details) 

The following label describes ISIS qube data from the Galilee NIMS experiment. The qube 
contains 17 bands of NIMS fixed-map mode raw data numbers and 9 backplanes of ancillary 
information. In other modes, NIMS can produce data qubes of 34, 102, 204 and 408 bands. 

512 
CCSD 

AHISTORY = 

"'UBE 

END 

CCSD3ZF0000100000001NJPL31FOPDSXOOOOOOOI 
PDS_ VERSION_ID = PDS3 
/* File Structure */ 

LABEL 

HISTORY 

QUBE 

Record 

1 

24 
25 

47 
48 

9362 

A-73 



RECORD_ TYPE 
RECORD_BYTES 
FILE_RECORDS 
LABEL_RECORDS 
FILE_STATE 

"HISTORY 
OBJECT 
END_OBJECT 

"QUBE 
'OBJECT 

= FIXED_LENGTH 
= 512 
= 9362 
= 24 
=CLEAN 

= 25 
=HISTORY 
=HISTORY 

= 48 
=QUBE 

I* Qube structure Standard ISIS Cube of NIMS Data *I 

AXES 
AXIS_NAME 

I* Core descnpuon *I 

CORE_ITEMS 
CORE_ITEM_BYTES 
CORE_ITEM_TYPE 
CORE_BASE 
CORE_MULTIPLIER 
CORE_ V AUD_MINIMUM 
CORE_NULL 
CORE_LOW _REPR_SATURA TION 
CORE_LOW _INSTR_SATURA TION 
CORE_HIGH_INSTR_SATURA TION 
CORE_HIGH_REPR_SA TURA TION 
CORE_NAME 
CORE_ UNIT 

PHOTOMETRIC_ CORRECTION_ TYPE 

I* Suffix descnpuon */ 

SUFFIX_BYTES 
SUFFIX_ITEMS 

=3 
= (SAMPLE,LINE,BAND) 

= (229,291,17) 
=2 
= V AX_INTEGER 
=00 
=10 
= -32752 
= -32768 
= -32767 
= -32766 
= -32765 

-32764 
=RAW _DATA_NUMBER 
= DIMENSIONLESS 

=NONE 

=4 
= (0,0,9) 

Appendix A. PDS Data Object Definitions 

BAND_SUFFIX_NAME = (LA TITUDE,LONGITUDE,INCIDENCE_ANGLE, 
EMISSION_ANGLE,PHASE_ANGLE,SLANT_DISTANCE,INTERCEPT _ALTITUDE, 
PHASE_ANGLE_STD_DEV,RAW_DATA_NUMBER_STD_DEV) 

BAND_SUFFIX_UNIT = (DEGREE,DEGREE,DEGREE,DEGREE,DEGREE,KILOMETER, 
KILOMETER,DEGREE,DIMENSIONLESS) 
BAND_SUFFIX_ITEM_B~S = (4,4,4,4,4,4,4,4,4) 
BAND_SUFFIX_ITEM_TYPE = (V AX_REAL,VAX_REAL,VAX_REAL,VAX_REAL,VAX_REAL, 

V AX_REAL,V AX_REAL,V AX_REAL,V AX_REAL) 
BAND _SUFFIX_BASE = (0 000000,0 000000,0 000000,0 000000,0 000000, 

0 000000,0 000000,0 000000.0 000000) 
BAND_SUFFIX_MULTIPLIER = (1 000000,1 000000,1 000000,1 000000,1 000000, 

1 000000, 1 000000,1 000000,1 000000) 
BAND_SUFFIX_VALID_MINIMUM (16#FFEFFFFF#,l6#FFEFFFFF#,16#FFEFFFFF#, 

16#FFEFFFFF#,J6#FFEFFFFF#,l6#FFEFFFFF#,l6#FFEFFFFF#,16#FFEFFFFF#, 
16#FFEFFFFF#) 

BAND_SUFFIX_NULL = (16#FFFFFFFF#,l6#FFFFFFFF#,16#FFFFFFFF#,16#FFFFFFFF#, 
16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#, 16#FFFFFFFF#) 

BAND_SUFFIX_LOW _REPR_SAT = (16#FFFEFFFF#.16#FFFEFFFF#, 16#FFFEFFFF#. 



) 

Appendix A. PDS Data Object Defimtions 

16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#, 16#FFFEFFFF#, 
16#FFFEFFFF#) 

BAND_SUFFIX_LOW _INSTR_SAT = (16#FFFDFFFF#, 16#FFFDFFFF#, 16#FFFDFFFF#, 
16#FFFDFFFF#,l6#FFFDFFFF#,l6#FFFDFFFF#.l6#FFFDFFFF#,l6#FFFDFFFF#, 
16#FFFDFFFF#) 

BAND _SUFFIX_HIGH_INSTR_SA T = (16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 
16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 16#FFFCFFFF#, 
16#FFFCFFFF#) 

BAND_SUFFIX_HIGH_REPR_SAT = (16#FFFBFFFF#, 16#FFFBFFFF#, 16#FFFBFFFF#, 
16#FFFBFFFF#, 16#FFFBFFFF#.l6#FFFBFFFF#, 16#FFf13FFFF#,l6#FFFBFFFF#, 
16#FFFBFFFF#) 

BAND_SUFFIX_NOTE = 

A-75 

The backplanes contain 7 geometnc parameters, the standard deviation of one of them, the standard deviation of a selected data 
band, and 0 to 10 'spectral mdex' bands, each a user-specified function of the data bands (See the BAND_SUFFIX_NAME 
values) 

Longitude ranges from 0 to 360 degrees, with positive duection specified by POSITIVE_LONGITUDE_DIRECTION m the 
IMAGE_MAP _PROJECTION group 

INTERCEPT _ALTITUDE contains values for the DIFFERENCE between the length of the normal from the center of the target 
body to the lme of sight AND the radius of the target body On-target pomts have zero values Pomts beyond the maximum 
expanded radius have null values This plane thus also serves as a set of 'off-limb' flags It IS mearungful only for the 
ORTHOGRAPHIC and POINT_PERSPECTIVE proJections, otherwise all values are zero The geometnc standard devtation 
backplane contains the standard deviation of the geometry backplane md!cated m Its NAME, except that the special value 
16#FFF9FFFF# replaces the standard deviatiOn where the correspondmg core pixels have been 'filled' 

The data band standard deviation plane is computed for the NIMS data band specified by 
STD_DEV _SELECTED_BAND_NUMBER This may be either a raw data number, or spectral radiance, whichever IS md1cated 
by CORE_NAME 

The (optional) spectral mdex bands were generated by the VIcar F2 program The correspondmg BAND_SUFFIX_NAME IS an 
abbreviated formula for the function used, where Bn should be read 'NIMS data band n' For example B4/B8 represents the ratio 
of bands 4 and 8" 

STD_DEV _SELECTED_BAND_NUMBER = 9 

I* Data descnptiOn general */ 

DATA_SET_ID 
PRODUCf_ID 
SPACECRAFT_NAME 
MISSION_PHASE_NAME 
INSTRUMENT_NAME 
lNSTRUMENT_ID 
"INSTRUMENT_DESCRIPTION 

TARGET_NAME 
START_TIME 
STOP_TIME 
NA TIVE_ST ART_ TIME 
NATIVE_STOP _TIME 
OBSERVA TION_NAME 
OBSERVATION_NOTE 

INCIDENCE_ANGLE 
EMISSION_ANGLE 
PHASE_ANGLE 
UB_SOLAR_AZIMUTH 
SUB_SPACECRAFT_AZIMUTH 

= "GO-V-NIMS-4-MOSAIC-Vl 0" 
="XYZ" 
= GALILEO_ORBITER 
= VENUS_ENCOUNTER 
= NEAR_INFRARED_MAPPING_SPECfROMETER 
=NIMS 
= "NIMSINST TXT" 

=VENUS 
= 1990-02-lOTOl 49 58Z 
= l990-02-10T02 31 52Z 
= 180425 85 
= 180467 34 
='VPDINl' 
= "VPDINl/ Footpnnt, Limbfit, Height=50" 

= 16048 
= 1401 
= 147 39 
= -174 74 
= -080 



A-76 

MINIMUM_SLANT_DIST ANCE 
MAXIMUM_SLANT_DISTANCE 
MIN_SPACECRAFf_SOLAR_DISTANCE 
MAX_SPACECRAFf_SOLAR_DISTANCE 

I* Data descnption mstrument status */ 

INSTRUMENT_MODE_ID 
GAIN_MODE_ID 
CHOPPER_MODE_ID 
START_GRATING_POSmON 
OFPSET_GRATING_POSmON 

MEAN_FOCAL_PLANE_TEMPERATURE 
MEAN_RAD_SHIELD_TEMPERA TURE 
MEAN_ TELESCOPE_ TEMPERATURE 
MEAN_GRATING_TEMPERATURE 
MEAN_ CHOPPER_ TEMPERATURE 
MEAN_ELECTRONICS_TEMPERA TURE 

GROUP 

I* Spectral ax.ts descnpuon *I 

= 8568410 
= 103175 00 
=I 076102e+08 

1 076250e+08 

=FIXED_MAP 
=2 
=REFERENCE 
= 16 
=04 

= 85 569702 
= 123 636002 
= 139 604996 
= 142 580002 
= 142449997 
=287 049988 

BAND_BIN 

Appendix A PDS Data ObJect DefimtJOns 

BAND_BIN_CENTER = (0 798777,0 937873,1 179840.1 458040,1 736630, 
2 017250,2 298800,2 579060,2 864540,3 144230,3 427810,3 710640, 
3 993880,4 277290,4 561400,4 843560,5 126080) 

BAND_BIN_UNIT =MICROMETER 
BAND_BIN_ORIGINAL_BAND = (1,2,3,4.5,6,7,8,9,10,11,12,13,14,15,16, 
17) 
BAND_BIN_GRATING_POSmON 
16,16,16,16,16) 
BAND_BIN_DETECTOR 
END_GROUP 

GROUP 
I* Projection descnptlon *I 
MAP _PROJECTION_ TYPE 
MAP_SCALE 
MAP _RESOLUTION 
CENTER_LATITUDE 
CENTER_LONGITUDE 
LINE_PROJECTION_OFPSET 
SAMPLE_pROJECTION_OFPSET 
MINIMUM_LA TITUDE 
MAXIMUM_LATITUDE 
MINIMUM_LONGITUDE 
MAXIMUM_LONGITUDE 
POSITIVE_LONGITUDE_DIRECTION 
A_AXIS_RADIUS 
B_AXIS_RADIUS 
C_AXIS_RADIUS 
REFERENCE_LATITUDE 
REFERENCE_LONGITUDE 
MAP _PROJECTION_ROTA TION 
LINE_FIRST_PIXEL 
LINE_LAST _PIXEL 
SAMPLE_FIRST_PIXEL 
SAMPLE_LAST _PIXEL 

= (16,16,16,16, 16,16, 16,16,16,16,16,16, 

= (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) 
=BAND_BIN 

= IMAGE_MAP _PROJECTION 

= OBLIQUE_ORTHOGRAPillC 
=45 000 
= 2 366 
= 1200 
=35000 
= 149 10 
= 85 10 
= 11 71 
= 13 62 
=349 62 
= 351 72 
=EAST 
= 6101 000000 
= 61 01 000000 
= 6101 000000 
=0000000 
=0000000 
=000 
=1 
=229 
=1 
=291 



Appendix A. PDS Data Object Defimtions A-77 

END _GROUP = IMAGE_MAP _pROJECTION 

END_OBJECT = QUBE 
END 



A-78 Appendix A. PDS Data Object Defimtions 

A.24 SERIES 

The SERIES object is a sub-class of the TABLE obJect. It is used for storing a sequence of 
measurements organized in a specific way (e.g. ascending time, rad1al distances). The current 
version uses the same physical format specificatiOn as the TABLE obJeCt, but includes sampling 
parameter mformation that describes the variatlon between elements in the senes. 

The sampling parameter keywords are required for the SERIES object and may be optlonal for one 
or more COLUMN sub-objects, depending on the data organizatton. 

The sampling parameter keywords in the SERIES object represent the variatiOn between the 
ROWS of data. For data that vanes regularly between each row, the 
SAMPLING_PARAMETER_INTERV AL keyword defines this regularity. For data m which 
rows are Irregularly spaced, the SAMPLING_PARAMETER_INTERV AL keyword 1s "N/A", and 
the actual sampling parameter values are included m the data itself and identified as a column in 
the series. An example of this is a ftle of time series data with rows ordered by a time column (or 
set of columns). 

For data that varies regularly between items of a single column, samplmg parameter keywords 
appear as part of the COLUMN sub-object. Data sampled at irregular intervals described as 
separate columns may also provide sampling parameter informatiOn specific to each column. 

Optional MINIMUM_SAMPLING_PARAMETER and 
MAXIMUM_SAMPLING_PARAMETER keywords should be added whenever possible to 
indicate the range in which the data was sampled. For data sampled at a single point rather than 
over a range, both the MINIMUM_SAMPLING_P ARAMETER and 
MAXIMUM_SAMPLING_PARAMETER are set to the specific value. For TIME_SERIES data, 
where the sampling parameter specified is tlme, these keywords are not used. 

Required Keywords 

1. INTERCHANGE_FORMAT 
2.ROWS 
3.COLUMNS 
4.ROW BYTES - . 
S.SAMPLING_PARAMETER_NAME 
6. SAMPLING_PARAMETER_UNIT 
7. SAMPLING_P ARAMETER_INTERV AL 

Optional Keywords 

l.NAME 
2. ROW _PREFIX_BYTES 
3. ROW _SUFFIX_BYTES 
4. MINIMUM_SAMPLING_P ARAMETER 
5. MAXIMUM_SAMPLING_PARAMETER 



Appendix A. PDS Data Object Defimuons A-79 

6. DERIVED_MINIMUM 
7. DERIVED_MAXIMUM 
8. DESCRIPTION 

Required Objects 

1. COLUMN 

Optional Objects 

1. CONTAINER 

Example 

This example illustrates the use of the SERIES object for data that vanes regularly m two ways. 
Rows of data in the SERIES occur at 60 millisecond intervals while the COLUMN occurs at 
.03472222 millisecond intervals. 

ENGINEERING_ TABLE 

Rec / \ 

1 

2 

801 

243-byte Eng rec 

... 

bytes 1-220 

\ I 
ROW_PREFIX 

_TABLE 

I Spare 

1600 8-b1t waveform samples 

I I ... ..._, 
.03472222 ms between samples 

. .. 

bytes 221-1820 

\ I 
TIME_SERIES 

} 
60ms 

between 
rows 



A-80 

CCSD3ZFOOOO 10000000 1NJPL3IFOPDSXOOOOOOO 1 
PDS_ VERSION_ID 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
"ENGINEERING_ TABLE 
"ROW _PREFIX_ TABLE 
"TIME_ SERIES 

=PDS3 
= FIXED_LENGTH 
= 1820 
=801 
= ("C0900313 DAT", 1) 
= ("C0900313 DAT", 2) 
= ("C0900313 DAT", 2) 

Appendix A PDS Data Object Defimtlons 

I* Observation descnptton *I 
DATA_SET_ID 
PRODUCT_ID 

= "VG2-N-PWS-2-EDR-WFRM-60MS-Vl 0" 
= "C09003t3 DAT" 

PRODUCT_CREA TION_TIME 
SPACECRAFT_NAME 
SPACECRAFT_CLOCK_ST ART_COUNT 
SPACECRAFT_CLOCK_STOP_COUNT 
EARTH_RECEIVED_ TIME 
START_TIME 
STOP_TIME 
MISSION_PHASE_NAME 
TARGET_NAME 
I* Instrument descnptton *I 
INSTRUMENT_NAME 
INSTRUMENT_ID 
SECTION_ID 
I* Object descnpt1ons *I 

='fUNK'' 
=VOYAGER_2 

"09003 13 002" 
= "09003 13 002" 
= 1989-159Tl3 35 00 121Z 
= 1989-l57T14 16 56 979Z 
="NIA" 
= NEPTUNE_ENCOUNTER 
=NEPTUNE 

=PLASMA_ W A VE_RECEIVER 
=PWS 
=WFRM 

OBJECT =ENGINEERING_ TABLE 
INTERCHANGE_FORMAT =BINARY 
ROWS = 1 
COLUMNS = I 06 
ROW _BYTES = 243 
ROW_SUFFIX_BYTES =1577 
DESCRIPTION = "This table descnbes the format of the eng:meenng record wh1ch 1s mcluded as 
the the first record m each PWS h1gh rate waveform file This record contains the first 242 bytes of data extracted from the MISSIOn 
and Test Imagmg System (MTIS) header record on each file of an Imagmg EDR tape A 243rd byte contatrung some flag fields 
has been added to the table for all data collected dunng the Neptune encounter " 
"STRUCTURE = "ENGT AB FMT" 

END_OBJECT =ENGINEERING_ TABLE 

OBJECT = ROW_PREFIX_TABLE 
INTERCHANGE_FORMAT =BINARY 
ROWS =800 
COLUMNS =47 
ROW_BYTES = 220 
ROW_SUFFIX_BYTES = 1600 
DESCRIPTION = "Th1s table descnbes the format of the engmeenng data assOCiated With the 
collection of each row of waveform data (1600 waveform samples)." 
"STRUCTURE = "ROWPRX FMT'' 
END_OBJECT =ROW_PREFIX_TABLE 

OBJECT 
NAME 
INTERCHANGE_FORMAT 
ROWS 
COLUMNS 
ROW_BYTES 
ROW _PREFIX_BYTES 
SAMPLING_PARAMETER_NAME 

= TIME_SERIES 
= WA VEFORM_FRAME 

BINARY 
=799 
=l 
= 1600 
=220 
=TIME 



Appendix A PDS Data Object Definit.J.ons A-81 

SAMPLING_PARAMETER_UNIT =SECOND 
SAMPLING_PARAMETER_INTERVAL = 06 I* 60 MS between rows*/ 
DESCRIPTION = "Th1s tlme_senes consists of up to 800 records (or rows, lmes) of PWS 
waveform sample data Each record 2-801 of the file (or frame) contains 1600 waveform samples, prefaced by 220 bytes of MTIS 
mformatlon The 1600 samples are collected m 55 56 msec followed by a 4 44 msec gap Each 60 msec mterval constitutes a lme 
of waveform samples Each file contains up to 800 hnes of waveform samples for a 48 sec frame " 

OBJECT 
NAME 
DATA_ TYPE 
START_BYTE 
BYTES 
ITEMS 

=COLUMN 
= WA VEFORM_SAMPLES 
= MSB_UNSIGNED_INTEGER 
= 221 
= I600 
= 1600 
=I 
=TIME 
=SECOND 

ITEM_BYTES 
SAMPLING_PARAMETER_NAME 
SAMPLING_PARAMETER_UNIT 
SAMPLING_PARAMETER_INTERVAL = 0 00003472222 /* time between samples */ 

OFFSET =-7 5 
VALID _MINIMUM = 0 
V ALID_MAXIMUM = I5 
DESCRIPTION ="The I byte waveform samples constitute an array of waveform measurements 
which are encoded mto bmary values from 0 to I5 and may be re-mapped to reduce the artificial zero-frequency component For 
example, stored values can be mapped to the followmg floating pomt values The ongmal 4-bJt data samples have been repackaged 
mto 8-b1t (1 byte) Items without modificatiOn for archival purposes \n 

0=-7 5 I = -6.5 2 = -5.5 3 = -4.5 

4 = -3.5 5 = -2.5 6 = -1 5 7 =-05 

8 =05 9 =I 5 10=2.5 I I =3 5 

12=4 5 13 =55 14 =6 5 15 =7.5 

END_OBJECT =COLUMN 
END_OBJECT = TIME_SERIES 

END 



A-82 Appendix A PDS Data Object Definitions 

A.25 SPECTRUM 

The SPECTRUM object IS a form ofT ABLE used for storing spectral measurements. The 
SPECTRUM object IS assumed to have a number of measurements of the observauon target taken 
in different SPECTRAL bands. The SPECTRUM object uses the same physical format 
specification as the TABLE object, but includes a SAMPLING PARAMETER defimt10n which 
mdicates the spectral region measured m successive COLUMNs or ROWs The common sampling 
parameters for SPECTRUM objects are wavelength, frequency, or velocity 

A regularly sampled SPECTRUM can be stored either honzontally as a 1 row table with 1 column 
contruning n samples (expressed as ITEMS=n), or vertically as a 1 column table with n rows where 
each ROW contains a sample of the spectrum. The vertical format allows additional columns to be 
defined for related parameters for each sample value (e.g. ERROR factors) These related columns 
can be described in a separate PREFIX or SUFFIX table. 

An irregularly sampled SPECTRUM must be stored horizontally, With each specific spectral range 
identified as a separate column, and defined by a specific set of samphng parameter keywords for 
each column. 

In the horizontal format, the sampling parameter specificauons are mcluded m the COLUMN 
definition. For a vertically defined SPECTRUM, the sampling parameter mformation IS provided 
in the SPECTRUM object, since it is descnbing the spectral var~auon between the ROWs of the 
data. 

Required Keywords 

1. INTERCHANGE_FORMAT 
2.ROWS 
3.COLUMNS 
4. ROW_BYTES 

Optional Keywords 

I. NAME 
2.SAMPLING_PARAMETER_NAME 
3. SAMPLING_PARAMETER_UNIT 
4. SAMPLING_P ARAMETER_INTERV AL 
5. ROW _PREFIX_BYTES 
6. ROW_SUFFIX_BYTES 
7. MINIMUM_SAMPLING_PARAMETER 
8. MAXIMUM_SAMPLING_PARAMETER 
9. DERIVED_MINIMUM 
10. DERIVED_MAXIMUM 
11. DESCRlPTION r 



Appendix A PDS Data Object Definitions A-83 

Required Objects 

!.COLUMN 

Optional Objects 

1. CONTAINER 

Example 
This example illustrates a SPECTRUM data object stored in a vertical format. The data is regularly 
sampled at intervals of 99.09618 meters/second and data samples are stored in successive ROWS. 

row +---- 2 bytes--+ 

1 -258111.21 M/S 

2 -254599.47 M/S 

256 

CCSD3ZFOOOOIOOOOOOOINJPL3IFOPDSX00000001 
PDS_ VERSION_ID 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
PRODUCT_ID 
DATA_SET_ID 
TARGET_NAME 
INSTRUMENT _HOST _NAME 
INSTRUMENT _NAME 
OBSERV A TION_ID 
START_TIME 
STOP_TIME 

, PRODUCT_CREATION_TIME 
I* Record Pomter to Major Object */ 
"TOTAL_INTENSITY _SPECTRUM 
I* Object Descnptton */ 

OBJECT 
INTERCHANGE_FORMAT 
ROWS 
ROW_BYTES 
COLUMNS 
SAMPLING_P ARAMETER_NAME 
MINIMUM_SAMPLING_PARAMETER 

=PDS3 
= FIXED_LENGTH 
=2 
=256 
= "RSSL007 DAT" 
= "IHW-C-RSSL-3-EDR-HALLEY-Vl 0" 
=''HALLEY" 
= "IHW RADIO STUDIES NETWORK" 
="RADIO SPECTRAL LINE DATA" 
= "621270" 
= 1985-11-IOTOO 43 12 000 
= 1985-11-10TOO 43 12 000 
="UNK" 

= "R~SL0007 DAT" 

=SPECTRUM 
=BINARY 
= 256 
=2 
= 1 
= "VELO_COM" 
= -I 268431 E+04 



A-84 Appendix A PDS Data Object Defimtions 

SAMPLING_?ARAMETER_INTERVAL = 9 909618E+01 
SAMPLING_PARAMETER_UNIT ="METERS/SECOND" 
DESCRIPTION = "Racho Studies, Spectral Lme mtens1ty spectrum Spectrum Is organized as I 
column with 256 rows Each row contams a spectral value for the velocity derived from the sampling parameter mformauon 
associated With each row " 

OBJECT 
NAME 
DATA_ TYPE 
START_BYTE 
BYTES 
SCALING_FACTOR 
OFFSET 
DERIVED_MINIMUM 
DERIVED_MAXIMUM 
END_OBJECT 
END_OBJECT 

END 

=COLUMN 
= FLUX_DENSITY 
= MSB_INTEGER 
= 1 
=2 
= 7 251200E-04 
= 0 OOOOOOE+O 1 
= 2 380000E+01 
= 2 380000E+01 
=COLUMN 
=SPECTRUM 



Appendix A. PDS Data Object Definitions A-85 

A.26 SPICE KERNEL 

The SPICE_KERNEL object defines a smgle kernel (file) from a collection of SPICE Kernels. 
SPICE kernels provide ancillary data needed to support the planning and subsequent analysts of 
space science observations. 

. 
The SPICE system mcludes the software and documentatiOn required to read the SPICE Kernels 
and use the data contained therein to help plan observatiOns or mterpret space science data. Thts 
software and associated documentation are collectively called the NAIF Toolkit. 

Kernel files are the major components of the SPICE system. The EPHEMERIS KERNEL_ TYPE 
(SPK) contains spacecraft and planet, satellite or other target body ephemens data that provides 
posiuon and velocity of a spacecraft as a function of time. The TARGET_CONSTANTS 
KERNEL_ TYPE (PCK) contains planet, satellite, comet, or asteroid cartographic constants for 
that object. The INSTRUMENT KERNEL_ TYPE (IK) contains a collection of science instrument 
mformauon, including specification of the mounting alignment, mternal timing. and other 
information needed to interpret measurements made wtth the mstrument. The POINTING 
KERNEL_ TYPE (CK) contains pointing data (e.g., the inertially referenced attitude for a 
spacecraft structure upon which mstruments are mounted, given as a funcuon of time). The 
EVENTS KERNEL_ TYPE (EK) contains event mformation (e.g, spacecraft and instrument 
commands, ground data system event logs, and expenmenter's notebook comments). The 
LEAPSECONDS KERNEL_ TYPE (LSK) contains an account of the leapseconds needed to 
correlate ctvil time (UTC or GMT) wtth ephemens time (TDB). This IS the measure of time used 
m the SP kernel files. The spacecraft Clock coefficients kernel (SCLK) contams the data needed 
to correlate a spacecraft clock with ephemeris time. 

Data products referencing a particular SPICE kernel would do so through the 
SOURCE_PRODUCT_ID keyword in their label with the value correspondmg to that of the 
PRODUCT_ID withm the SPICE_KERNEL label. The PRODUCT_ID keyword is unique to a 
data product. 

Required Keywords 

1. DESCRIPTION 
2. INTERCHANGE_FORMAT 
3. KERNEL_ TYPE 

Optional Keywords 

None 

Required Objects 

None 



A-86 Append1x A PDS Data Object Defimuons 

Optional Objects 

None 

Example 

NOTE: The following example of a SPICE CK (Pointing) Kernel attached label may have been 
modified to reflect current PDS standards and IS not intended to contain actual PDS mgested 
values. You will notice that some label information IS actually inside the Kernel file which allows 
NAIF tools to extract mformation to produce the PDS label. 

CCSD 
PDS_ VERSION_ID 
RECORD_ TYPE 
MISSION.!NAME 
SPACECRAFf _NAME 
DATA_SET_ID 
FILE_NAME 
PRODUCT_ID 
PRODUCT _CREA TION_TIME 
PRODUCER_ID 
MISSION_PHASE_ TYPE 
PRODUCT_ VERSION_ TYPE 
START_TIME 
STOP_TIME 
SPACECRAFf_CLOCK_START_COUNT 
SPACECRAFf_CLOCK_STOP_COUNT 
TARGET_NAME 
INSTRUMENT_NAME 
INSTRUMENT_ID 
SOURCE_PRODUCT _ID 

=PDS3 
=STREAM 
=MARS_ OBSERVER 
=MARS_ OBSERVER 
= "MO-M-SPICE-6-CK-Vl 0" 
= "NAFOOOOD TC" 
= "NAFOOOOD-CK" 
= 1992-04-14Tl2 00 00 
="NAIF" 
="ORBIT" 
="TEST" 
= 1994-0l-06TOO 00 00 
= 1994-02-04T23 55()() 
= "3n6681108 213" 
= ''4n9373491 118" 

=MARS 
="MARS OBSERVER SPACECRAFT" 
=MO 

("NAFOOOOC BSP","NAFOOOOC TLS","NAFOOOOC TSC"} 
NOTE = "BASED ON EPHEMERIS IN NAFOOOOC BSP FOR SOFTWARE 
TESTING ONLY" 
OBJECT = SPICE_KERNEL 
INTERCHANGE_FORMAT =ASCII 
KERNEL_ TYPE =POINTING 
DESCRIPTION = "Tins IS a SPICE kernel file, des1gned to be accessed usmg NAIF Toolkit 
software Contact your flight proJect representative or the NAIF node of the Planetary Data System 1f you w1sh to obtam a copy of 
the NAIF Toolkit The Toolkit conststs of portable FORTRAN 77 code and extenstve user documentatiOn " 
END_OBJECT = SPICE_KERNEL 
END 
CCSD 

INTERNAL SPICE LABEL 
SPICE DATA 



Appendix A PDS Data Object Defimuons A-87 

A.27 TABLE 

TABLEs are the natural storage format for collections of data from many mstruments. They are 
also the most effective way of storing much of the meta-data which is used to identify and describe 
instrument observations. 

The TABLE object is a uniform collectiOn of rows containing ASCII or binary values stored m 
columns. The ROWS and COLUMNS of the TABLE object provide a natural correspondence to 
the records and fields often defined in interface specifications for existing data products. The value 
to use for the COLUMNS keyword m aT ABLE object should be the actual number of COLUMN 
objects defined m the label. The INTERCHANGE_FORMA T keyword IS used to distinguish 
between ASCII and binary table values. 

ASCII vs. BINARY formats 

ASCII tables provide the most portable format for access across a wide variety of computer 
platforms. They are also easily Imported into a number of database management systems and 
spreadsheet applications. For these reasons, the PDS recommends the use of ASCII table formats 
whenever possible for archive products. 

ASCII formats are generally less efficient for storing large quantities of data. In addition, raw or 
mimmally processed data products and many pre-existing data products undergomg restoration are 

I 

only available m binary formats. Where conversiOn to an ASCII format is neither cost effective nor 
desirable, BINARY table formats can be used. 

Required Keywords 

1. INTERCHANGE_FORMAT 
2.ROWS 
3.COLUMNS 
4. ROW _BYTES 

Optional Keywords 

I. NAME 
2. DESCRIPTION 
3. ROW _PREFIX_BYTES 
4. ROW _SUFFIX_BYTES 
5. TABLE_STORAGE_TYPE 

Required Objects 

I. COLUMN 



A-88 AppendiX A. PDS Data Object Definitions 

Optional Objects 

1. CONTAINER 

Many variatiOns of the TABLE object are possible wtth the addition of the "optional" keywords 
and/or objects to the baste TABLE definition. While PDS supports these options, they are often not 
the best choices for archival data products. Recommended ASCII and binary table formats are 
provided in the following sections (A.20.1, A.20.2) wtth examples. Section A.20.3 provides 
examples of several TABLE variatiOns and their possible application. Sectlon A.20.4 provides 
specific guidelines for SPARE columns or unused fields within a TABLE. 

A.27.1 Recommended ASCII TABLE Format 

The recommended PDS table format uses ASCII COLUMN values, with a fixed size for each 
COLUMN. Each RECORD within the table is the same length and is termmated with a carriage­
retumlline-feed <CR><LF> prur. COLUMNs are separated by commas and character fields are 
enclosed in QUOTATION MARKS("). The QUOTATION MARKs should surround the 
maxtmum COLUMN width. For example, a twelve character COLUMN called 
SPACECRAFf_NAME would be represented in the table as: 

"VOYAGER 1 ", mstead of "VOYAGER 1" 

Numenc fields are nght-justified in the allotted space and character fields are left-justified and 
blank padded on the right. This table format can be imported into many data management systems 
such as DBASE, FoxBase, Paradox, and Britton-Lee and into EXCEL spreadsheets. 

The following label subset and illustration provide the general characteristics of a PDS 
recommended ASCII table With 1000 byte records: 

RECORD_ TYPE = FIXED_LENGTH 
RECORD_BYTES=l~ 

OBJECT = T {\BLE 
INTERCHANGE_FORMAT =ASCII 
ROW _BYTES= 1000 

END_OBJECT =TABLE 

+--1 ooo---+ 
Row 1 CR LF 
Row2 CR LF 

. 

. 

Rown CR LF 

Record 

1 
2 

n 



Appendix A. PDS Data Object Defimtions A-89 

Example - Recommended ASCII TABLE 

The followmg example is an ASCII index table with fixed length 80 byte records. Note that for 
ASCII tables. the delirmters (I.e., double quotes, commas, and line terrmnators <CR><LF>) are 
included in the byte count for each record (RECORD _BYTES). In this example, the delimiters are 
also included m the byte count for each row (ROW _BYTES). The <CR><LF> characters have 
been placed m columns 70 and 71 

Contents of file "INDEX.T AB" 
------------------------------------------------------------------------------
"F-MIDR ","F-MIDR.40N286;1 u I "C" I 42, 37,289,282,"F40N286/FRAME.LBL "<CR><LF> 
"F-MIDR •,•F-MIDR.20N280;1 U I ucn I 22, 17,283,277,"F20N280/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.20N286;1 ", "C", 22, 17,289,283,"F20N286/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.OON279;1 n ,uRn, 2, -2,281,275,"FOON279/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.05N290;1 n I nell I 7, 2,292,286,"F05N290/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.05S279;1 ", "R", -2, -7,281,275,"F05S279/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.10S284;1 1J I "CII I -7,-12,287,281,"F10S284/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.10S290;1 " I "R" I -7,-12,292,286,"F10S290/FRAME.LBL "<CR><LF> 
"F-MIDR ","F-MIDR.15S283;1 ","R",-12,-17,286,279,"F15S283/FRAME.LBL "<CR><LF> 
"F-MIDR ", "F-MIDR.15S289;1 ","R",-12,-17,291,285,"F15S289/FRAME.LBL "<CR><LF> 

123456789012345678901234567890123456789012345678901234567890123456789 

Contents of file "INDEX LBL" 

CCSD3ZF0000100000001NJPL3IFOPDSX00000001 
PDS_ VERSION_ID 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
"INDEX_ TABLE 

DATA_SET_ID 
VOLUME_ID 
PRODUCT_ID 
SPACECRAFr _NAME 
INSTRUMENT_NAME 
TARGET_NAME 
PRODUCT_CREATION_TIME 
MISSION_PHASE_NAME 
NOTE 

=PDS3 
= FIXED_LENGTH 
= 71 

10 
="INDEX TAB" 

= "MGN-V-RDRS-5-MIDR-FULL-RES-Vl 0" 
=MG_7777 
= "FMIDR XYZ" 
=MAGELLAN 
= "RADAR SYSTEM" 
=VENUS 
="NIA" 
= PRIMARY_MISSION 
= "Th1s table hsts all MIDRs on th1s volume It also mcludes the latitude and 

longitude range for each MIDR and the directory m which 1t IS found " 

OBJECT 
INTERCHANGE_FORMA T 
ROWS 
COLUMNS 
ROW_BYTES 
INDEX_ TYPE 

OBJECT 
NAME 
DESCRIPTION 

=INDEX_TABLE 
=ASCII 
=10 
=8 
=71 
=SINGLE 

=COLUMN 
= PRODUCT_TYPE 
="Magellan DMAT type code Possible values are F-MIDR, Cl-MIDR, C2-



A-90 

DATA_ TYPE 
START_BYTE 
BYTES 
END_OBJECI' 

OBJECT' 
NAME 
DESCRIPTION 

DATA_ TYPE 
START_BYTE 
BYTES 
END_OBJECT 

Appendix A. PDS Data Object Defimtions 

MIDR, C3-MIDR, and P-MIDR " 
=CHARACTER 
==2 
=7 
:::COLUMN 

=COLUMN 
== PRODUCT' _ID 
= "Magellan DMAT name of product 
Example F-MIDR 20N334, 1" 
== CHARACTER 
::: 12 
= 16 
=COLUMN 

OBJECT' ==COLUMN 
NAME = SEAM_CORRECTION_TYPE 
DESCRIPTION = "A value of C mdtcates that cross- track seam correcuon has been applled A 
value of R mdicates that the correctlon has not been applled " 
DATA_TYPE =CHARACTER 
START_BYTE = 31 
BYTES = 1 
END_OBJECI' =COLUMN 

OBJECT 
NAME 
DESCRIPTION 
DATA_ TYPE 
UNIT 
START_BYTE 
BYTES 
END_OBJECI' 

OBJECT' 
NAME 
DESCRIPTION 
DATA_ TYPE 
UNIT 
START_BYTE 
BYTES 
END_OBJECI' 

OBJECT' 
NAME 
DESCRIPTION 
DATA_ TYPE 
UNIT 
START_BYTE 
BYTES 
END_OBJECT 

OBJECT' 
NAME 
DESCRIPTION 
DATA_ TYPE 
UNIT 
START_BYTE 
BYTES 
END_OBJECI' 

=COLUMN 
= MAX1MUM_LA TITUDE 
="Northernmost frame latitude rounded to the nearest degree " 
=INTEGER 
=DEGREE 
=34 
=3 
=COLUMN 

=COLUMN 
= MINIMUM_LATITUDE 
="Southernmost frame latitude rounded to the nearest degree " 
=INTEGER 
=DEGREE 

38 
=3 
=COLUMN 

=COLUMN 
= EASTERNMOST_LONGITUDE 
= "Easternmost frame longitude rounded to the nearest degree " 
=INTEGER 
=DEGREE 
=42 
=3 
=COLUMN 

=COLUMN 
= WESTERNMOST_LONGITUDE 
="Westernmost frame long~ tude rounded to. the nearest degree " 
=INTEGER 
=DEGREE 
=46 
==3 
=COLUMN 



Appendix A PDS Data Object Definitions 

OBJECT 
NAME 
DESCRIPTION 
DATA_ TYPE 
START_BYTE 
BYTES 
END_OBJECT 

END_OBJECT 
END 

=COLUMN 
= ALE_SPECIACA TION_NAME 
="PathandfilenameofframetablerelattvetoCD-ROMrootdJrectory" 
=CHARACTER 
=51 
= 18 
=COLUMN 

=TABLE 

A.27.2 Recommended BINARY TABLE Format 

A-91 

The recommended PDS binary table format uses FIXED_LENGTH records, with each row of the 
table occupying a complete physical record (I.e. RECORD_BYTES =ROW _BYTES). This 
recommended format also discourages the use of BIT_COLUMN objects Within COLUMNS m 
binary tables, primarily for portability reasons. Whenever possible, bit fields should be unpacked 
into more portable byte oriented COLUMNS. Unused bytes embedded Withm the binary table 
should be explicitly Identified With COLUMNs named "SPARE" for completeness and to facilitate 
automated validation of these table structures. 

The following label subset and illustration provide the general charactenstics of a PDS 
recommended binary table with 1000 byte records: 

RECORD_1YPE = AXED_LENGTH 
RECORD_BYTES=lOCO 

OBJECT TABLE 
INTERCHANGE_FORMAT BINARY 
ROW _BYTES= 1000 

END_OBJECT TABLE 

Example - Recommended Binary TABLE 

,..._. 1000-+ 

Row 1 
Row2 . 
. 
. 

Rown 

Record 

1 

2 

n 

The followmg is an example of a binary table consisting of 3 columns of data. The first two 
columns provide TIME mformat10n in both the PDS standard UTC format and an alternate format. 
The third column provides uncalibrated instrument measurements for the given times. This table 
could also be represented as a TIME_SERIES by the addition of sampling parameter keywords to 
describe the variatiOn between each row of the table. The following tllustranon shows the layout 
and contents of the binary table in file "T890825.DAT'. The detached label file, "T890825.LBL" 
provid~s the complete description. 



A-92 Appendix A PDS Data Object Definitions 

Contents of file "T890825 DAT" 

byte 1 89 32 33 36 Record 

Row 1 

CTIME PDSTIME D1 
RATE . . 

. . 

. . 
Row350 

Contents of file "T890825 LBL" 

CCSD3ZF0000100000001NJPL3IFOPDSX00000001 
PDS_ VERSION_ID = PDS3 

I* File Characteristic Keywords *I 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
HARDW ARE_MODEL_ID 
OPERA TING_SYSTEM_ID 

I* Data Object Pointers *I 
"TABLE 

I* Identification Keywords *I 
DATA_SET_ID 
SPACECRAFf_NAME 
INSTRUMENT_NAME 
TARGET_NAME 
START_TIME 
STOP_TIME 
MISSION_PHASE_NAME 
PRODUCT_ID 
PRODUCT_CREA TION_TIME 
SPACECRAFf_CLOCK_START_COUNT 
SPACECRAFf_CLOCK_STOP _COUNT 

I* Data Object Descnptlons */ 
OBJECT 
INTERCHANGE_FORMAT 
ROWS 
COLUMNS 
ROW_BYTES 
"STRUCTURE 
END_OBJECT 
END 

= FIXED_LENGTH 
=36 
=350 
="SUN SPARC STATION" 
="SUNOS411" 

= "T890825 DAT" 

= "VG2-N-CRS-4-SUMM-Dl-96SEC-VI 0" 
= "VOYAGER 2" 

"COSMIC RAY SYSTEM" 
=NEPTUNE 
= I989-08-25TOO 00 00 OOOZ 
= 1989-08-25T09 58 02 OOOZ 
="NEPTUNE ENCOUNTER" 
= "T890825 DA T" 
="UNK" 
="UNK .. 
=''UNK'• 

=TABLE 
=BINARY 
=350 
=3 
=36 
= "CRSDATA FMT" 
=TABLE 

1 

350 



Append1x A PDS Data Object Definitmns 

Contents of file "CRSDAT A FMT" 

OBJECT 
NAME 
UNIT 
DATA_ TYPE 
START_BYTE 
BYTES 
MISSING 
DESCRIPTION 

=COLUMN 
="CTIME" 
="SECONDS" 
=REAL 
=1 

8 
= 1 OE+32 
= 

·' • ,-· ~· • •, 1 

A-93 

T1me column This field contains ume m seconds after Jan 01, 1966 but IS displayed m the default time format selected by the user" 
END_OBJECT =COLUMN 

OBJECT 
NAME 
UNIT 
DATA_ TYPE 
START_BYTE 

BYTES 
DESCRIPTION 

=COLUMN 
="PDSTIME" 
="TIME" 
=CHARACTER 
=9 
=24 

= 
Datefflme stnng of the form yyyy-mm-ddThh mm ss sss such that the representatton of the date Jan 01,2000 00 00 00.000 would 
be 2000-0l-01TOO OO.OO.OOOZ (Z indicates Uruversal T1me)" 
END_OBJECT =COLUMN 

OBJECT 
NAME 
UNIT 
DATA_ TYPE 
START_BYTE 
BYTES 
MISSING 
DESCRIPTION 

=COLUMN 
="Dl RATE" 
="COUNTS" 
=''REAL" 
=33 
=4 
= 1 OE+32 
= 

The D 1 rate IS approximately porportJOnal to the omrudJrecuonal flux of electrons with kinetic energy> -1 MeV To obtain greater 
accuracy, the Dl calibration tables (see catalog) should be apphed" 
END_OBJECT =COLUMN 

A.27.3 TABLE Variations 

This section addresses a number of structural vanations of "table based" data objects. As the 
structure of SERIES and SPECTRUM objects are similar and can be identical to the TABLE 
object, all three objects (TABLE, SERIES, and SPECTRUM) can be of the following structure 
types. The structural variations presented here are pnmarily due to the physical placement of the 
data (ROW _BYTES) in relation to the size of the data record (RECORD_BYTES), the type of the 
data (ASCII or BINARY), and the format of the data (FIXED _LENGTH or STREAM). 

This section is not mtended to be a complete reference forT ABLE variations. Within the following 
examples, some illustrate. a recommended data modelling approach, some illustrate alternate 
approaches, and other examples are included solely to document their existence. 

Note: The examples m the followmg sections use OBJECT= TABLE, but OBJECT= SERIES or 
OBJECT = SPECTRUM could be substituted. 



A-94 Appendtx A PDS Data Object Defimtions 

A.27.3.1 Record blocking in Fixed Length TABLES 

The PDS recommended TABLE format requires the ROW _BYTES of the TABLE object to be 
equal to RECORD_BYTES of the file. This is not always the case, particularly when describing 
ex1stmg binary TABLE formats. 

A common use ofblockmg occurs when two or more data objects are packaged mto the same file, 
each requuing a different size record. In additiOn, rows in a TABLE are sometimes blocked into 
larger physical records to mmimize input/output operations. 

Rows in both ASCIT or binary tables can be either larger or smaller than the physical record size 
specified by the RECORD_BYTES keyword. 

Example- Binary Table with ROW _BYTES> RECORD_BYTES 

The followmg label subset and illustration provide the general charactensttcs of a product 
contaming an 800 byte IMAGE object together with aT ABLE with 1200 byte rows: 

RECORD_TYPE = FIXED_LENGTH 
RECORD_BYTES 800 
"TABLE ' =("IMAGE IMG,l) Record 
"IMAGE =("IMAGE IMG,7) +--- 800--+ 

Row 1 1 
OBJECT TABLE 

{ 
r--- 2 

INTERCHANGE_FORMAT =BINARY .!J2 ----
ROW_BYTES = 1200 .s::l Row2 3 

{!!. r--;----

END_OBJECT =TABLE 

7 
OBJECT =IMAGE IMAGE SAMPLES =800 
SAMPLE_BITS 8 

END_OBJECf =IMAGE 



Appendix A. PDS Data Object Definitions A-95 

Example- ASCII Table wtth ROW _BYTES< RECORD_BYTES 

The followmg label subset and illustratiOn provide the general charactenstics of a product 
contruning a SERIES obJect containmg 800 byte rows together with aT ABLE object With 400 byte 

Example- Binary Table with ROW _BYTES <RECORD _BYTES 

The following label subset and illustration provide the general characteristics of a product 
contruning an HEADER object contaimng one 500 byte row together with a TABLE with 1032 
byte rows. In this case, both the HEADER and TABLE rows are blocked into 32500 byte records. 
Note that the rows cross record boundaries. 

32492 

byte 1 501 ~ 
R 1 

2 

TABLE 

46 

32500 



A-96 

CCSD3ZFOOOO 100000001 NJPL3IFOPDSXOOOOOOO 1 
PDS_ VERSION_ID = PDS3 

I* FILE CHARACTERISTICS *I 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
A HEADER 

= FIXED_LENGTH 
= 32500 
=46 
= ("ADF01141 3",1) 

Appendix A PDS Data Object Defimtions 

AT ABLE = ("ADFOI141 3",50l<BYTES>) 

I* IDENTIFICATION KEYWORDS *I 
DATA_SET_ID = "MGN-V-RDRS-5-CDR-ALT/RAD-Vl 0" 
PRODUCT_ID = "ADF01141 3" 
TARGET_NAME =VENUS 
SPACECRAFT_NAME =MAGELLAN 
INSTRUMENT_NAME ="RADAR SYSTEM" 
MISSION_PHASE_NAME = PRIMARY_MISSION 
PRODUCT_CREATION_TIME = 1991-07-23T06 16 02 OOOZ 
ORBIT_NUMBER = 1141 
START_TIME UNK 
STOP_ TIME = UNK 
SPACECRAFT_CLOCK_START_COUNT = UNK 
SPACECRAFT_CLOCK_STOP _COUNT = UNK 
HARDWARE_ VERSION_ID = 01 
SOFTWARE_ VERSION_ID = 02 
UPLOAD_ID = M0356N 
NAVIGATION_SOLUTION_ID = "ID = M0361-12" 
DESCRIPTION = "Th1s file contams bmary records descnbmg, m orne order, each alumeter 
footpnnt measured during an orbit of the Magellan radar mapper ". 

I* DATA OBJECT DEFINITION DESCRIPTIONS */ 
OBJECT =HEADER 
HEADER_ TYPE = SFDU 
BYTES =500 
END_ OBJECT =HEADER 
OBJECf TABLE 
INTERCHANGE_FORMAT =BINARY 
ROWS 1425 
COLUMNS =40 
ROW_BYTES = 1032 
ASTRUCTURE = "ADFTBL FMT" 
END_OBJEcr =TABLE 
END 

Contents of format file "ADFTBL FMT" 

OBJECf 
NAME 
START_BYTE 
DATA_ TYPE 
BYTES 
UNIT 
DESCRIPTION 

=COLUMN 
=SFDU_LABEL_AND_LENGTH 
= 1 
=CHARACTER 
=20 
="NIA" 
::: ,, 

The SFDU _label_and_length element 1dent1fies the label and length of the Standard Format Data Umt (SFDU) " 
END_OBJECT =COLUMN 

OBJECT 
NAME 
START_BYTE 

COLUM 
= FOOTPRINT_NUMBER 
= 21 



Append1x A. PDS Data Object Defimtions A-97 

DATA_ TYPE = LSB_INTEGER 
BYTES =4 
UNIT ="N/A" 
DESCRIPTION = "The footpnnt_number element provides a stgned mteger value The altJmetry 
and radiOmetry processmg program asstgns footpnnt 0 to that observed at nadtr at penapsis The remammg footpnnts are located 
along the spacecraft nadtr track, wtth a separation that depends on the Doppler resolution of the altJmeter at the epoch at whtch that 
footpnnt IS observed Pre-penapsts footpnnts will be assigned negative numbers, post-penapsts footpnnts wtll be assigned pos1t1ve 
ones A loss of several consecutJve burst records from the ALT-EDR wtll result m mtssmg footpnnt numbers " 

END_OBJECT =COLUMN 

OBJECT =COLUMN 
NAME =DERIVED_ THRESH_DETECTOR_INDEX 
START_BYTE = 1001 
DATA_ TYPE = LSB_UNSIGNED_INTEGER 
BYTES =4 
UNIT ="N/A" 
DESCRIPTION = "The derived_thresh_detector_mdex element prov1des the value of the element 

m range_sharp_echo_profile that satisfies the altJmeter threshold detection algonthm, representJng the dtstance to the nearest object 
m this radar footpnnt m uruts of 33 2 meters, modulus a l 0 02 kilometer altimeter range amb1gutty " 
END_OBJECT =COLUMN 

Example - Alternate format; PDS Recommended 

The following label subset and illustration provide an alternate data orgaruzation for the preceding 
example. In this example, a record size of 1032 is used to match the row size of the TABLE, and 
the 500 byte HEADER uses only a portion of the first record. This organization would conform to 
the PDS recommended TABLE structure. 

RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
"HEADER 
"TABLE 

TABLE 

Row 1425 

= FIXED_LENGTH 
= 1032 
= 1426 
= ("ADF01141 3",1) 
= ("ADF01141 3",2) 

Record 

1 

2 

3 

1426 



A-98 

I* DATA OBJECT DEFINITIONS *I 
OBJECT 
HEADER_ TYPE 
BYTES 

END_OBJECT 
OBJECT 
INTERCHANGE_FORMAT 
ROWS 
COLUMNS 
ROW_BYTES 
"STRUCTURE 

END_OBJECT 
END 

=HEADER 
=SFDU 
=500 

=TABLE 
=BINARY 
= 1425 
=40 
= 1032 
= "ADFTBL FMT" 

Example - Alternate format; Rows on Record Boundaries 

Appendix A PDS Data Object Definitions 

The following label subset and illustration provide a second alternate data organization for the 
preceding example. In this example, a record size of 66048 IS used hold 30 rows of the TABLE. 
Again the 500 byte HEADER uses only a portion of the first record 

RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
"HEADER 
"TABLE 

HDR 

Row 1 

Row 31 

Row 1411 

I* DATA OBJECT DEFINITIONS *I 
OBJECT 
HEADER_ TYPE 
BYTES 
END_OBJECT 

30960 

TABLE 

Row 1425 

= FIXED_LENGTH 
=30960 
=49 
= ("ADF01141 3",1) 
= ("ADF01141 3",2) 

=HEADER 
=SFDU 
=500 

1 

2 

3 

49 



Appendix A. PDS Data ObJect Defimtlons 

OBJECT 
INTERCHANGE_FORMAT 
ROWS 
COLUMNS 
ROW_BYTES 
"STRUCTURE 

END_OBJECT 
END 

=TABLE 
=BINARY 
:::z 1425 
=40 
= 1032 
= "ADFTBL FMT" 

A.27.3.2 Multiple TABLEs with varying ROW _BYTES 

A data product may contain several ASCII or binary tables, each with a different row size. 

Example - Fixed Length Records - Multiple ASCII tables 

A-99 

The following label subset and illustration utilizes fixed length records of the maximum row size. 
The smaller table is padded With spares preceding the <CR><LF>. Note that the ROW _BYTES 
keyword in A_ TABLE could be replaced by ROW _BYTES = 800 and ROW _SUFFIX_BYTES = 
200. See section A.l.20.5 for further information on handling spares. 

RECORD_TYPE 
RECORD_BYTES 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 

END_OBJECT 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 

END_OBJECT 

= FIXED_LENGTH 
= 1000 

=A_TABLE 
=ASCII 
= 1000 

=A_TABLE 

=B_TABLE 
=ASCII 
= 1000 

=B_TABLE 

+- 800_. +-200____. 
I I I 

I I 
A_TABLE Spare cr u. 

I loi..J 

I I 
I I 

B_TABLE 

1000 --.... 



A-100 Appendix A. PDS Data Object DefinitiOns 

Example - Stream Records - Multiple ASCII tables 

The following label subset and illustration utilizes stream records for the same data as the prevwus 
example, placing the <CR><LF> prur at the end of the data m each table. There is no need to pad 
out the smaller table usmg the STREAM format, and the RECORD_BYTES keyword is not 
applicable. 

RECORD_TYPE 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 

END_OBJECT 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 

END_OBJECT = B_TABLE 

=STREAM 

=A_TABLE 
=ASCII 
=802 

=A_TABLE 

=B_TABLE 
=ASCII 
= 1000 

...._ __ 802 ----.. 
I I 
I I 

A_ TABLE I a: I u.... 
1°1....J 
I I 
I I 

I 
I 

B_TABLE I 
13 

LL. 
....1 

I 
I 

1000 



Appendix A PDS Data Object Defimtions A-101 

Example - Fixed Length Records - Multiple Binary tables 

The follow10g label subset and Illustration utilizes fixed length records of the maximum row size. 
The smaller table has a spare set of bytes in each record, explicitly defined in a "spare" COLUMN 
obJect. Note that the ROW-~ YTES keyword 10 A_ TABLE could be replaced by ROW _BYTES 
= 800 and ROW _SUFFIX_BYTES = 200, instead of explicitly defimng the SPARE column. See 
section A.25 for fu~her 10format10n on handl10g spares. 

RECORD_TYPE = FIXED_LENGTH 
RECORD_BYTES = 1000 ... BOO____. +-200___. 
OBJECT =A_TABLE I 
INTE~CHANGE_FORMAT =BINARY I 
ROW_BYTES = 1000 I A_ TABLE I Spare 
OBJECT =COLUMN 
NAME ="SPARE" I 
DATA_ TYPE ="N/A' I 
START_BYTE = 801 
BYTES =200 
END_OBJECT =COLUMN 
END_OBJECT =A_TABLE 

OBJECT =B_TABLE 
B_TABLE 

INTERCHANGE_FORMAT =BINARY 
ROW_BYTES = 1000 

END_OBJECT =B_TABLE 1000 

A.27.3.3 ROW _PREFIX or ROW _SUFFIX use 

There are currently two methods to utilize ROW _PREFIX_BYTES and ROW _SUFFIX_BYTES 
10 TABLE objects. The first application is limited to Binary TABLE objects that are adjacent to 
another object, such that each object shares the same record in a file. The second application is for 
identify10g spare bytes at the beginning or end of a record that are not considered part of the 
TABLE data. 



A-102 Appendix A PDS Data Object Definiuons 

Example- Row Suffix use for compound TABLE and IMAGE 

The followmg label subset and illustration utilizes fixed length records each containing a row of a 
TABLE data object, and a line of an IMAGE object. Thts IS a common format for providmg 
ancillary information applicable to each IMAGE line. 

RECORD_TYPE 
RECORD_BYTES 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 
ROW _SUFAX_BYTES 

END_OBJECT 

OBJECT 
LINE_SAMPLES 
SAMPLE_BITS 
LINE_PREAX_BYTES 

END_OBJECT 

= AXED_LENGTH 
= 1000 

=TABLE 
=BINARY 
=200 
=800 

=TABLE 

=IMAGE 
=800 
=8 
=200 

=IMAGE 

<4--800 __.. ..._200 __.. Record 

Row 1 Line 1 1 

IMAGE 

PREFIX IMAGE 

TABLE 

Row 800 Lme 800 800 

1000 

The following RULES apply to the use of ROW _PREFIX_BYfES and ROW _SUFFIX_BYTES: 

1. For compound "table based" objects (TABLE, SPECTRUM, SERIES) in a data 
product, or for identifying Spare parts of a record: 

RECORD_BYTES =ROW _BYTES+ ROW _PREFIX_BYTES +ROW _SUFFIX_BYTES 

2. For compound "table based" and IMAGE obJects in a data product: 

RECORD_BYTES = (LINE_SAMPLES * SAMPLE_BITS /8) +ROW _PREFIX_BYTES + 
ROW _SUFFIX_BYfES 

A.27.3.4 CONTAINER Object use 

Complicated or lengthy tables that have a set of COLUMNS that repeat are often easier to describe 
with an illustration and the use of the CONTAINER sub-object in a TABLE description. The use 
of the container sub-object eliminates the need for repeating a group of COLUMN objects and 
adjusting the START_BYfE locations and descnptions for each repetition. Section A.7 provides 
an example of a TABLE utilizing the CONTAINER sub-obJect. 



Appendix A PDS Data Object Definitions A-103 

A.27.4 Guidelines for SPARE fields 

There is often a need to reserve SPARE (or pad, filler, etc.). bytes m TABLE, SPECTRUM, and 
SERIES objects. While this is not required, It facilitates validatiOn and ensures that the data 
producer did not inadvertently forget to account for some fields m the data These guidelmes differ 
slightly for BINARY and ASCII tables and FIXED_LENGTH or STREAM record files. 

In all of the following guidelines, "embedded spares" refer to empty or spare bytes that are 
currently unused and are not defined as part of a data COLUMN. 

A.27.4.1 BINARY Tables - Fixed Length Records 

The guidelines for handlmg SPARE fields in Fixed Length Bmary Tables are· 

- Embedded spares are allowed. 
-Embedded spares are explicitly defined (with COLUMN Objects) 
-Multiple Spare columns may all have NAME= SPARE 
- Spares are allowed at the beginmng or end of each row of data. 
-Spares at the beginmng or end of the data can be Identified With 
1) an explicit COLUMN object or 

or 
2) use of ROW _PREFIX_ BYTES or ROW _SUFFIX_B YTES (note that these bytes should not 

be mcluded in the value of ROW _BYTES) 
- DATA_TYPE for Spare COLUMNS in binary table is 'N/A' 

Example - SPARE field embedded in a Binary TABLE 

RECORD_TYPE = FIXED_LENGTH 
Column 1 RECORD_BYTES = 1000 99 

OBJECf =TABLE I I 
INTERCHANGE_FORMAT =BINARY TAB~ IE ROW_BYTES 1000 
COLUMNS =99 I 

I~ I 
OBJECf =COLUMN I o.. I 
NAME =SPARE IV) 
START_BYTE =800 I I 
BYTES =20 I I 
DATA_ TYPE ="N/A" 

I I 
END_OBJECT =COLUMN +--
END_OBJECf =TABLE 



A-104 Appendix A PDS Data Object Definitions 

Example- Spares at end of a Binary TABLE- Explicit 'SPARE' Column 

RECORD_TYPE FIXED_LENGTH Column 1 99 
RECORD_BYTES = 1000 

OBJECT =TABLE • 
INTERCHANGE_FORMAT =BINARY 
ROW_BYTES = 1000 

TABLE 
COLUMNS =99 

OBJECT =COLUMN 
NAME =SPARE 
BYTES ::::20 
DATA_ TYPE ="N/A" 
START_BYTE =980 

END_OBJECT =COLUMN 
END_OBJECT =TABLE • 

20 
._--1000 • 

Example - Spares at end of a Binary TABLE - ROW _SUFFIX use 

RECORD_TYPE 
RECORD_BYTES 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 
ROW _SUFFIX_BYTES 
COLUMNS 

END_OBJECf 

= FIXED_LENGTH 
= 1000 

=TABLE 
=BINARY 
=980 
=20 
::::98 

=TABLE 

Column 1 98 

I 
I 

TABLE . ,x 
LL 

ILL 

I~ 
1$1 
10 ,o: 
I 
I 

20 
+--- 1000 __ .,. 

A.27.4.2 ASCll Tables - Fixed Length Records 

In ASCII tables, field delimiters (") and (,) and the <CR><LF> pair are considered part of the data, 
even though the COLUMN objects attributes do not mclude them. Spares in ASCII tables are 
limited to the "space" character (ASCII 20). The gmdelines for handling SPARE fields in Fixed 
Length ASCII Tables are: 



Appendtx A PDS Data Object Defimuons A-105 

- Embedded spares are not allowed. 
- Spares are ~lowed at the end of each row of data. 
- The <CR><LF> follows the spare data. 
-There are no delimiters (commas or quotes) surroundmg the spares. 
- Spares at the end of the data can be ignored (like field delimiters and CR LF) or they can be 
identified 
1) in the Table Description 
or 
2) by using ROW _SUFFTX_BYTES (note that these bytes should not be included in the value of 
ROW_BYTES) 

Example - SPARE field at end of ASCII TABLE- Table descriptlon note 

RECORD_TYPE 
RECORD_BYTES 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 

=FIXED _LENGTH 
= 1000 

=TABLE 
=ASCII 
=1000 

DECRIPTION ="Thts table conta.ms 
980 bytes of table data followed by 18 bytes of blank spares 
Byte 999 and 1000 contam the <CR> <LF> 
prur" 

+----1000 ___ ...,. 

I 

I 
I 

TABLE 
I 

Spare e:::: ~ I u 

I 
I 
I 



A-106 Append1x A PDS Data Object Definitions 

Example - Spares at end of a ASCII TABLE - ROW _SUFFIX use. 

RECORD_ TYPE 
RECORD_BYTES 

OBJECT 
INTERCHANGE_FORMAT 
ROW_BYTES 
ROW _SUFFIX_BYTES 

END_OBJECT 

= FIXED_LENGTH 
= 1000 

=TABLE 
=ASCII 
=980 
=20 

=TABLE 

A.27.5 ASCII Tables - STREAM Records 

I 
I 
I 
I 

TABLE 
I 
1 Spare 5 ~ 
I 
I 
I 
I 
I 

Spares are not used with ASCII Tables in STREAM record formats. In STREAM files, the last data 
field explicitly defined with a COLUMN object is followed Immediately by the <CR><LF> prur. 
Since there is no use for spares at the end of the data, and embedded spares are not allowed in 
ASCII tables, spares are not applicable here. 



Appendix A PDS Data Object Defimtions A-107 

A.28 TEXT 

The TEXT object conta:ms plam text which begins immediately after the END statement. It is 
recommended that TEXT objects conta:m no special formatting characters, with the exception of 
the carnage retumlline feed sequence and the page break. Tabs are discouraged, since they are 
interpreted differently by different programs. It is Important to mclude BOTH the carriage return 
and line feed characters when preparing files for use on a vanety of host systems. 

Use of the Macmtosh or Unix hne terminators will cause text to be unreadable on other host 
computers. It IS recorrirnended that text hnes be limited to 70 characters maximum, followed by the 
Carriage Return (Control M, HexOxOd) and Lme Feed (Control J, HexOxOa) characters. 

NOTE: The text object IS used in files describing the contents of an archive volume or the contents 
of a drrectory, such as AAREADME.TXT, DOCINFO.TXT, VOLINFO.TXT, SOFTINFO.TXT, 
etc. These files must be in plam unmarked ASCII text and always have the file name extension of 
. TXT. Documents placed on the volume in plain ASCII text, on the other hand, must be described 
using the DOCUMENT object. (See the defimtion ofthe DOCUMENT Object m Appendix A) 

The NOTE field provides a brief introduction to the TEXT. 

Required Keywords 

1. NOTE 
2. PUBLICATION_DATE 

Optional Keywords 

1. INTERCHANGE_FORMAT 



A-108 Appendix A PDS Data Object Defimuons 

Example 

The example below IS a portion of an AAREADME.TXT file. 

CCSD3ZF00001 00000001 NJPL3JFOPDSXOOOOOOO 1 
PDS_ VERSION_ID = PDS3 
RECORD_TYPE =STREAM 

OBJECf 
PUBLICA TJON_DA TE 
NOTE 
END_OBJECT 
END 

=TEXT 
= 1991-05-28 

"Introduction to this CD-ROM volume " 

GEOLOGIC REMOTE SENSING FIELD EXPERIMENT 

This set of compact read-only optical d1sks (CD-R OMs) contams a data collectlon acqmred by ground-based and rurborne 
mstruments dunng the Geologic Remote Sensmg Field Expenment (GRSFE) Extensive documentatiOn IS also mcluded GRSFE 
took place m July, September, and October, 1989, m the southern MoJave Desert, Death Valley, and the Lunar Crater Volcanic 
Field, Nevada The purpose of these CD-ROMs 1s to make avrulable m a compact form through the Planetary Data System (PDS) 
a collection of relevant data to conduct analyses m preparatiOn for the Earth Observmg System (EOS), Mars Observer (MO), and 
other miSSions The generat!On of th1s set of CD-R OMs was sponsored by the NASA Planetary Geology and Geophysics Program, 
the Planetary Data System (PDS) and the Pilot Land Data System (PLDS) 

Tins AAREADME TXT file 1s one of the two nondlrectory files located m the top level dlrectory of each CD-ROM volume m th1s 
collectlon. The other file, VOLDESC CAT, contams an ovemew of the data sets on these CD-ROMs and 1s wntten m a format that 
IS des1gned for access by computers These two files appear on every volume m the collect!On All other files on the CD-ROMs 
are located m dlrectones below the top level dlrectory 



Appendix A PDS Data Object Defimt10ns A-109 

A.29 VOLUME 

The VOLUME object describes a physical or logical unit used to store or distribute data products 
(e.g. a magnetic tape, CD-ROM disk, On-Lme Magnetic disk or floppy disk) whlch contain 
directones and files. The directones and files may mclude documentation, software, calibration 
and geometry information as well as the actual science data. 

Required Keywords 

1. DATA_SET_ID 
2. DESCRIPTION 
3. MEDIUM_TYPE 
4. PUBLICATION_DATE 
5. VOLUME_FORMAT 
6. VOLUME_ID 
7. VOLUME_NAME 
8. VOLUME_SERIES_NAME 
9. VOLUME_SET_NAME 
10.VOLUME_SET_ID 
1l.VOLUME_ VERSION_ID 
12.VOLUMES 

Optional Keywords 

1. BLOCK_BYTES 
2. DATA_SET_COLL_ID 
3. Fll...ES 
4. HARDW ARE_MODEL_ID 
5. LOGICAL_ VOLUMES 
6. LOGICAL_ VOLUME_PATH_NAME 
7. MEDIUM_FORMAT 
8. NOTE 
9. OPERATING_SYSTEM_ID 
10. PRODUCT_TYPE 
11. TRANSFER_COMMAND_TEXT 
12. VOLUME_INSERT_TEXT 

Required Objects 

1. CATALOG 
2. DATA_PRODUCER 



A-110 

Optional Objects 

1. DIRECTORY 
2.FILE 
3. DATA_SUPPLIER 

Example 1 (Typical CD-ROM Volume) 

Please see example in A.5 CATALOG. 

Example 2 (Tape Volume) 

Appendix A. PDS Data Object Defimtions 

The following VOLUME object example shows how directories and files are indicated when a 
volume is stored on ANSI tape for transfer. This form should be used when transferring volumes 
of data on media which do not support hierarchical directory structures (for example, submitting a 
volume of data for premastenng). The VOLDESC.CAT file will contain the standard volume 
keywords, but the values ofMEDIUM_TYPE, MEDIUM_FORMAT and VOLUME_FORMAT 
indicate that the volume is stored on tape. 

In this example two files are defined in the root drrectory of the volume, VOLDESC.CAT and 
AAREADME.TXT. The first directory object defines the CATALOG directory which contains 
meta data in the High Level Catalog Templates. Here they all exist in one file, CATALOG.CAT. 
The second directory object defines an INDEX subdirectory, with three files embedded in It 
(INDXINFO.TXT, INDEX.LBL, INDEX.TAB). Following that directory, the first data directory 
is defined. Note that the sequence number field indicates the sequence of the file on the tape 
volume. 

CCSD3ZF0000100000001NJPL3IFOPDSX00000001 
PDS_ VERSION_ID = PDS3 
OBJECT =VOLUME 
VOLUME_SERIES_NAME 
VOLUME_SET_NAME 
VOLUME_SET_ID 
VOLUMES 
VOLUME_NAME 
VOLUME_ID 
VOLUME_ VERSION_ID 
PUBLICA TION_DA TE 
DATA_SET_ID 
MEDIUM_ TYPE 

"MISSION TO MARS" 
="MARS DIGITAL IMAGE MOSAIC AND DIGITAL TERRAIN MODEL'" 
= USA_NASA_pos_ V0_2001_TO_ V0_2007 
=7 
= "MDIM/DTM VOLUME 7 GLOBAL COVERAGE" 
=V0_2007 
= "VERSION 1" 
= 1992-04-01 
= "VOIN02-M-VIS-5-DTM-V1 0" 
= "8-MM HELICAL SCAN TAPE" 

MEDIUM_FORMAT ="2GB" 
VOLUME_FORMAT =ANSI 
HARDW ARE_MODEL_ID = "VAX 111750" 
OPERATING_SYSTEM_ID ="VMS 4 6" 
DESCRIPTION = "Thts volume contatns the Mars Digttal Terratn Model and Mosatcked Digttail 
Image Model covenng the enure planet at resolutiOns of 1/64 and l/16 degree/pixel The volume also contains Polar Stereograpluc 
proJection files of the north and south pole areas from 80 to 90 degrees latitude, Mars Shaded Relief Airbrush Maps at 1116 and 1/ 
4 degreelptxel; a gazetteer of Mars features, and a table of updated vtewmg geometry files of the V tkmg EDR tmages that compnse 
theMDIM" 
MISSION_NAME 
SPACECRAFT_NAME 
SPACECRAFT_ID 

=VIKING 
= {VIKING_ORBITER_1,VIKING_ORBITER_2} 
= {V01,V02} 



Appendix A PDS Data Object Defimt1ons 

OBJECT 
INSTITUTION_NAME 
FACILITY _NAME 
FULL_NAME 
DISCIPLINE_NAME 
ADDRESS_ TEXT 

END _O:SJECT 

OBJECT 
"CATALOG 
END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_TYPE 
SEQUENCE_N~BER 

END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_ TYPE 
SEQUENCE_NUMBER 
END_OBJECT 

OBJECT' 
NAME 

OBJECT 
FILE_NAME 
RECORD_TYPE 
SEQUENCE_NUMBER 
END_OBJECT 
END_OBJECT 

OBJECT 
NAME 

OBJECT 
FILE_NAME 
RECORD_TYPE 
SEQUENCE_NUMBER 
END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_TYPE 
SEQUENCE_~BER 

END_OBJECT 
END_OBJECT 

OBJECT 
NAME 

OBJECT 
FILE_NAME 

= DATA_PRODUCER 
="USGS FLAGSTAFF" 
= "BRANCH OF ASTROGEOLOGY" 
= "Enc M Ehason" 

"IMAGE PROCESSING" 
" Branch of Astrogeology \n 

Umted States Geolog1cal Survey\n 
2255 North Genum Dnve\n 
Flagstaff, Anzona 86001 USA" 

= DATA_PRODUCER 

=CATALOG 
="CATALOG CAT" 
=CATALOG 

=FILE 
== "VOLDESC CAT" 
=STREAM 
= 1 
=FILE 

=FILE 
= "AAREADME TXT" 
=STREAM 
=2 
=FILE 

=DIRECTORY 
=CATALOG 

=FILE 
="CATALOG CAT" 
=STREAM 
=3 
=FILE 
=DIRECTORY 

=DIRECTORY 
=DOCUMENT 

=FILE 
= "VOLINFO TXT" 
=STREAM 
=4 
=FILE 

=FILE 
= "DOCINFO TXT" 
=STREAM 
=5 
=FILE 
==DIRECTORY 

=DIRECTORY 
=INDEX 

=FILE 
== "INDXINFO TXT" 

A-111 



A-112 

RECORD _TYPE 
SEQUENCE_NUMBER 
END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_TYPE 
SEQUENCE_NUMBER 
END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
SEQUENCE_NUMBER. 
END_OBJECT 
END_OBJECT 

OBJECT 
NAME 

OBJECT 
FILE_NAME 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
SEQUENCE_NUMBER 
END_OBJECT 

OBJECT 
FILE_NAME 
RECORD_TYPE 
RECORD_BYTES 
FILE_RECORDS 
SEQUENCE_NUMBER 
END_OBJECT 

END_OBJECT 

END_OBJECT 
END 

=STREAM 
=6 
=FILE 

=FILE 
= "INDEX LBL" 
=STREAM 
=7 
=FILE 

=FILE 
="INDEX TAB" 
= FIXED_LENGTH 
= 512 
= 6822 
=8 
=FILE 
=DIRECTORY 

=DIRECTORY 
=MGOONXXX 

=FILE 
= "MGOON007 IMG" 
= FIXED_LENGTH 
=964 
=965 
=9 
=FILE 

=FILE 
= "MGOON012 IMG" 
= FIXED_LENGTH 
=964 
=965 

10 
=FILE 

DIRECTORY 

=VOLUME 

Appendix A PDS Data Object Defimtions 



Appendix A PDS Data ObJect Defimtwns A-113 

Example 3a (CD-ROM Volume containing logical volumes) 
Examples 3a and 3b Illustrate the use of the VOLUME Object m the t'op level and at the logical 
volume level of an archive volume. Note that the VOLUME Object is reqmred at both levels. 

For examples 3a and 3b, the CD-ROM is structured as three separate logical volumes with root 
directones named PPS/, UVS/ and RSS/. An additional SOFTWARE directory IS supplied at 
volume root for use with all logical volumes. 

Example 3a illustrates the use of the VOLUME Object present at the top level of a CD-ROM 
containing logical volumes. Note usage of the keywords DATA_SET_ID, 
LOGICAL_ VOLUMES, and LOGICAL_ VOLUME_PATH_NAME. 

PDS_ VERSION_ID 
OBJECT= VOLUME 
VOLUME_SERIES_NAME 
VOLUME_SET_NAME 
VOLUME_SET_ID 
VOLUMES 
MEDIUM_ TYPE 
VOLUME_FORMAT 
VOLUME_NAME 
VOLUME_ID 
VOLUME_ VERSION_ID 
PUBLICA TION_DA TE 
DATA_SET_ID 

=PDS3. 

="VOYAGERS TO THE OUTER PLANETS" 
="PLANETARY RING OCCULTATIONS FROM VOYAGER" 
= "USA_NASA_PDS_ VG_3001" 
= 1 
="CD-ROM" 
= "IS0-9660" 
="VOYAGER PPSIUVS/RSS RING OCCULTATIONS" 
= "VG_3001" 
= "VERSION 1" 
= 1994-03-01 
= {"VG2-SRIURINR-PPS-4-0CC-VI 0", 
"VG ING2-SR/UR/NR-UVS-4-0CC-VI 0" ,"VG ING2-SRIUR/NR-RSS-4-
0CC-Vl 0"} 

LOGICAL_ VOLUMES = 3 
LOGICAL_VOLUME_PATH_NAME = {"PPS/", "UVS/", "RSS/"} 
DESCRIPTION = "Th1s volume contams the Voyager 1 and Voyager 2 PPSIUVS/RSS nng 
occultatiOn and ODR data sets Included are data files at a vanety of levels of processmg, plus anc11lary geometry, cahbratiOn and 
traJectory files plus software and documentation 

Th1s CD-ROM 1s structured as three separate log~cal volumes w1th root d1rectones named PPS/, UVS/ and RSS/ An additional 
SOFTWARE duectory IS supphed at volume root for use w1th alllog1cal volumes " 

OBJECT 
INSTITUTION_NAME 
FACILITY _NAME 
FULL_NAME 
DISCIPLINE_NAME 
ADDRESS_TEXT 
NASA Ames Research Center 
Moffett FJeld, CA 94035-1 000" 
END_OBJECT 

OBJECT 
DATA_ SET _ID 
LOGICAL_ VOLUME_PATH_NAME 
"MISSION_ CATALOG 
"INSTRUMENT_HOST_CATALOG 
"INSTRUMENT_CATALOG 
"DATA_SET _COLLECTION_ CATALOG 
"DATA_SET_CATALOG 
"REFERENCE_CATALOG 
"PERSONNEL_ CATALOG 

= DATA_PRODUCER 
= "PDS RINGS NODE" 
="NASA AMES RESEARCH CENTER" 
="DR MARK R SHOWALTER" 
="RINGS" 
="Mall Stop 245-3 

= DATA_PRODUCER 

=CATALOG 
= "VG2-SRIURINR-PPS-4-0CC-Vl 0" 
= "PPS/" 
= "MISSION CAT" 
= "INSTHOSTCAT" 
= "INST.CAT" 
= "DSCOLL CAT" 
="DATASET CAT" 
= "REF.CAT" 
= "PERSON CAT" 



A-114 

END_OBJECT 

OBJECT 
DATA_SET_ID 
LOGICAL_ VOLUME_PATH_NAME 
"MISSION_ CATALOG 
"INSTRUMENT_HOST_CATALOG 
"INSTRUMENT_CAT ALOG 
"DATA_SET_COLLECTION_CATALOG 
"DATA_SET_CATALOG 
"REFERENCE_CATALOG 
"PERSONNEL_CAT ALOG 
END_OBJECT 

OBJECT 
DATA_SET_ID 
LOGICAL_ VOLUME_PATH_NAME 
"MISSION_ CATALOG 
"INSTRUMENT_HOST_CATALOG 
"INSTRUMENT_CAT ALOG 
"DATA_SET_COLLECTION_CATALOG 
"DATA_SET_CATALOG 
"REFERENCE_CATALOG 
"PERSONNEL_ CATALOG 
END_OBJECT 

END_OBJECT 
END 

Appendix A PDS Data Object Defimtions 

=CATALOG 

=CATALOG 
= "VG1NG2-SRIUR/NR-UVS-4-0CC-V1 0" 
="UVS/" 
= "MISSION CAT" 
= "INSTHOST CAT" 
= "INSTCAT" 
="DSCOLLCAT" 
= "DATASET CAT" 
="REFCAT" 
="PERSON CAT" 
::::CATALOG 

::::CATALOG 
= "VG1NG2-SRIUR/NR-RSS-4-0CC-Vl 0" 
= "RSS/" 
= "MISSION CAT" 
= "INSTHOST CAT" 
= ''INSTCAT" 
= "DSCOLL CAT" 
::::"DATASET CAT" 
::::"REFCAT" 
="PERSON CAT" 
=CATALOG 

=VOLUME 

Example 3b (PPSNOLDESC.CAT -- CD-ROM logical volume) 

Example 3b illustrates the use of the Volume obJect which IS requued at the top level of a logical 
volume. Note the difference in values for the keywords DATA_SET_ID and 
LOGICAL_ VOLUME_PATH_NAME from those used at the top level of the CD-ROM (example 
3a). Also note that the keyword LOGICAL_ VOLUMES does not appear here. 

PDS_ VERSION_ID 
OBJECT= VOLUME 
VOLUME_SERIES_NAME 
VOLUME_SET_NAME 

VOLUME_SET _ID 
VOLUMES 
MEDIUM_ TYPE 
VOLUME_FORMAT 
VOLUME_NAME 

=PDS3 

"VOYAGERS TO THE OUTER PLANETS" 
"PLANETARY RING OCCULTATIONS 

FROM VOYAGER" 
= "USA_NASA_PDS_ VG_3001" 
= 1 
="CD-ROM" 
= "IS0-9660" 
= "VOYAGER PPS/UVS/RSS RING 
OCCULTATIONS" 

VOLUME_ID = "VG_300l" 
VOLUME_ VERSION_ID :::: "VERSION 1" 
PUBLICATION_DATE = 1994-03-01 
DATA_SET_ID = "VG2-SRIURINR-PPS-4-0CC-V1 0" 
LOGICAL_ VOLUME_PATH_NAME = "PPS/" 
DESCRIPTION = "Thts logtcal volume contams the Voyager 2 PPS nng occultation data sets 
Included are data files at a vanety of levels of processmg, plus ancillary geometry, caltbratiOn and trajectory files plus software and 
documentation " 

OBJECT = DATA_PRODUCER 



Appendix A PDS Data Object Defimllons 

INSTITUTION_NAME 
FACILITY _NAME 
FULL_NAME 
DISCIPLINE_NAME 
ADDRESS_TEXT 
NASA Ames Research Center 
Moffett FJeld, CA 94035-l 000" 
END_OBJECf 

OBJECf 
DATA_SET_ID 
LOGICAL_ VOLUME_PATH_NAME 
AMISSION_CATALOG 
AJNSTRUMENT_HOST_CATALOG 
AJNSTRUMENT_CATALOG 
ADATA_SET_COLLECTION_CATALOG 
ADATA_SET_CATALOG 
AREFERENCE_CATALOG 
APERSONNEL_CATALOG 
END_OBJECf 

END_OBJECT 
END 

= "PDS RINGS NODE" 
= "NASA AMES RESEARCH CENTER" 
="DR MARKR SHOWALTER" 
="RINGS" 
= "Mall Stop 245-3 

= DATA_FRODUCER 

=CATALOG 
= "VG2-SRIUR/NR-PPS-4-0CC-Vl 0" 
="PPS/" 
= "MISSION CAT" 
= "INSTHOST CAT" 
="INSTCAT" 
= "DSCOLL CAT' 
="DATASET CAT" 
="REFCAT" 
= "PERSON CAT' 
=CATALOG 

=VOLUME 

A-115 



A-116 Appendix A PDS Data Object Defimtmns 



Appendix B Complete PDS Catalog Object Template Set B-1 

Appendix B 

Complete PDS Catalog Object Template Set 

This appendix provides a complete set of the PDS catalog objects m alphabetical order. Each 
section includes a description, a list of sub-objects, guidelines to follow in fillmg them out, and a 
specific example of the object. 

The templates are used to load the PDS Data Set Catalog. (DATA_SET_MAP _PROJECTION and 
SOFTW ARE_INVENTOR Y are exceptions. They are not used currently to load data mto the 
catalog.) 

Templates are also used as documentation on PDS archived data sets. PDS requires that either the 
full set of templates be present in the CATALOG subdirectory or the file VOLINFO.TXT be 
present m the DOCUMENT subdirectory of an archive volume. See the F_ile Specification and 
Naming chapter of this document for pointer and file names use~ with catalog obJect templates. 

Depending on the type of data you are submitting, you may not need to complete every template. 
Your PDS Central Node Data Engineer will supply you with blank catalog templates to be 
completed. 

Definitions and examples are provided here for your convemence. Additional examples may be 
obtained by contacting your Data Engineer. 

The examples reflect the format to ingest metadata into the PDS catalog. Of note IS the underlining 
convention for headmgs and subheadings in longer text fields. Main headings are double­
underlmed through the use of the equal-sign key(=) on the typing keyboard. Subheadings are 
smgle-underlined through the use of the hyphen (-) key. This underlining convention enhances 
legibility, and in the future will facilitate the creation of hypertext lmks. 



B-2 Appendix B.,Complete PDS Catalog Object Template Set 

TABLE OF CONTENTS 

B.1 DATA SET ............................................................................................................... B-3 

B.2 DATA SET COLLECTION .................................................................................. B-11 

B.3 DATA SET MAP PROJECTION ........................................................................... B-14 

B.4 INSTRUMENT ........................................................................................................ B-17 

B.5 INSTRUMENT HOST .......................................................................................... B-23 

B.6 INVENTORY ........................................................................................................... B-25 

B.7 MISSION ................................................................................................................. B-27 

B.8 PERSONNEL ........................................................................................................... B-33 

B.9 REFERENCE ........................................................................................................... B-35 

B.10 SOFTWARE_INVENTORY ..................................................................................... B-36 

B.11 TARGET .................................................................................................................. B-38 



Appendix B Complete PDS Catalog Object Template Set B-3 

B.l DATASET 

The DATA SET catalog obJect is used to subllllt information about a data set to the PDS The 
catalog object includes a free-form textual descriptiOn of the data set and sub-obJects for 
identifying associated targets, hosts, and references. A separate REFERENCE obJect will need to 
be completed for any new references not already part of the PDS catalog. 

(l) The DATA SET INFORMATION catalog obJect includes two free-form textual 
descnptwns, DATA_ SET _DESC and CONFIDENCE_LEVEL_NOTE. 

NOTE: The following paragraph headmgs and subheadings are recommended as the minimum set 
of headings needed to describe a data set adequately. Additional headings and sub-headings may 
be added as desired. Should any of the more common headings not appear within a textual 
description, it will be considered not applicable to the data set. 

Under DA T A_SET _DESC = 

Data Set Overview, 
A high level description of the characteristics and properties of a data set. 

Parameters 
Descnbe the primary parameters (measured or denved quantities) included in the 
data set, also umts and sampling mtervals. 

Processing 

Data 

Describe the overall processing used to produce the data set. Include a descnption 
of the input data (and source), processmg methods or software, and primary 
parameters or assumptions used to produce the data set. 

Describe in detail each data type identified in the Data Set Overview, (e.g., 
Ancillary Data, Image Data, Table Data, etc.). 

Ancillary Data 
Describe ancillary informatiOn needed m interpreting the data set. These may or 
may not be provided along With the data set. Include sources or references for 
locating ancillary data 

Coordinate System 
Describe the coordinate system or frame of reference to be used for proper 
interpretation of the data set. 

Software 
Describe software for use With the data set. This may include software supplied 
with the data set, or software or systems that may be accessed independently to 
assist in visualization or analysis of the data. 



B-4 Appendix B Complete PDS Catalog Object Template Set 

Media/Format 
Describe the media on which the data set is available for distribution. Include 
format information that may limit the use of the data set on specific hardware 
platforms (e.g., bmary/ascii, ffiM EBCDIC format). 

Under CONFIDENCE_LEVEL_NOTE = 

Confidence Level Overview 

Review 

A high level description of the level of confidence (e.g., rehabihty, accuracy, or 
certamty) of the data. 

Briefly describe any review process that took place prior to release of the data set 
to insure the accuracy and completeness of the data and associated documentation. 

Data Coverage and Quahty 
Describe the overall data coverage and quality. Tills should include information 
about gaps in the data (both for times or regions). Include descnphons of how 
missmg or poor data is flagged or filled, if applicable. 

Limitations 
Describe limitations on the use of the data set. For example, discuss other data 
required to properly interpret the data, or special processing systems expected to be 
used to further reduce the data set for analysis. If the data set is calibrated or 
otherwise corrected or derived, describe any known anomalies or uncertamues in 
the results. 

(OTHER- Data Supplier provided): 

Add any other important mformation in additional headings as desired (e.g., Data 
Compression, Time-Tagging, etc.) 

(2) The DATA SET TARGET catalog object is completed for each target associated with the 
data set. If there is more than one target, this object is repeated. 

(3) TheDA TA SET HOST catalog object is completed for each host/instrument pair 
associated with the data set. If there is more than one host/mstrument pair, this object is 
repeated. 

(4) The DATA SET REFERENCE INFORMATION catalog object is completed for each 
reference associated with the data set (e.g., articles, papers, memoranda, published data, 
etc.). If there is more than one reference, this object IS repeated. A separate REFERENCE 
template is completed to provide the proper citatwn for each reference. 

Important references including data set description, calibration procedures, processing 
software documentation, review results, etc. should be included. These can be both 



j. ~I ,~T '' • 

Appendix B Complete PDS Catalog Object Template Set 

published and internal documents or informal memoranda. 

Example: 

I* Template Data Set Template 
I* 
I* Note Complete one for each data set Identify multiple targets associated With 
I* the data set by repeating the 3 hnes for the DAT A_SET _TARGET ObJect 
I* Identify multiple hosts associated with the data set by repeatmg the 4 lmes 
I* for the DA T A_SET _HOST object Identify multiple references associated 
I* with the data set by repeating the 3 hnes of the 
I* DA T A_SET _REFERENCE_INFORMA TION obJect 

I* Hierarchy DAT A_SET 
I* DATA_SET_INFORMATION 
I* DATA_SET_TARGET 
I* DATA_SET_HOST 
I* DATA_SET_REFERENCE_INFORMA TION 

CCSD3ZFOOOOIOOOOOOOINJPL31FOPDSXOOOOOOOI 

PDS_ VERSION_ID =PDS3 

Rev 

OBJECT= DATA_SET 
DATA_SET_ID = "MGN-V-RDRS-5-GVDR-Vl 0" 

OBJECT = DATA_SET_INFORMATION 

1993-09-24 *I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 

DATA_ SET _NAME = "MGN V RDRS DERIVED GLOBAL VECTOR 
DATA RECORD VI 0" 

DATA_SET _COLLECTION_MEMBER_FLG 
DATA_OBJECT_TYPE 
START_TIME 
STOP_TIME 
DATA_SET_RELEASE_DATE 
PRODUCER_FULL_NAME 
DETAILED_CAT ALOG_FLAG 
DATA_SET_DESC 

Data Set Overview 

="N" 
=TABLE 
= 1990-08-0 I TOO 00 00 
= 1993-12-31 T23 59 59 
= 1994-07-01 
="MICHAEL J MAURER" 
="N" 

B-5 

The Global Vector Data Record (GVDR) IS a sorted collection of scattenng and errusswn measurements from the 
Magellan MissiOn The sorting IS mto a gnd of equal area 'pixels' distributed regularly about the planet For data acquired 
from the same p1xel but in different observmg geometries, there IS a second level of sorung to accommodate the different 
geometrical conditions. The 'p1xel' dimensiOn IS 18 225 km. The GVDR IS presented in SinusOidal Equal Area 
(equatonal), Mercator (equatorial), and Polar Stereograph1c (polar) proJections 

The GVDR IS mtended to be the most systematic and comprehensive representation of the electromagnetic properties of 
the Venus surface that can be derived from Magellan data at this resolution It should be useful m charactenzmg and 
companng distinguishable surface uruts 

Parameters 

The Magellan data set compnses three basic data types echoes from the nadJr-vJewmg altimeter (AL T), echoes from the 
oblique backscatter synthetic aperture radar (SAR) 1magmg system, and passive radio thennal erruss10n measurements 
made usmg the SAR eqmpment The obJeCtive m compJ!mg the GVDR IS to obtam an accurate estimate of the surface 
backscattenng functiOn (sometimes called the specific backscatter function or 's1gma-zero') for Venus from these three 



B-6 Appendix B Complete PDS Catalog Object Template Set 

data types and to show Its vanation With mc1dence (polar) angle, aztmuthal angle, and surface location 

The AL T data set has been analyzed to yield profiles of surface elevauon [FORD&PETIENGILL1992J and esumates of 
surface Fresnel reflectiVIty and estimates of meter-scale rms surface tilts by at least two mdependent methods 
[FORD&PETIENGILL1992,TYLER1992] The 'mvers10n' approach of [TYLER1992] prov1des, m additiOn, an 
empmcal esumate of the surface backscatter function at mctdence angles from nadtr to as much as 10 degrees from nadtr 
m steps of 0 5 degrees 
Statistical analysts of SAR Image ptxels for surface regions about 20 km (across track) by 2 km (along track) prov1ded 
estimates of the surface backscatter functiOn over narrow angular ranges ( 1-4 degrees) between 15 and 50 degrees from 
normal mc1dence [TYLER1992] By combmmg results from several orbital passes over the same regxon m different 
observmg geometnes, the backscatter response over the full oblique angular range (15-50) could be complied In fact, the 
number of mdependent observmg geometnes attempted with Magellan was limited, and some of these represented 
changes m aztmuth rather than changes m mc1dence (or polar) angle Nevertheless, data from many regxons were collected 
m more than one SAR observmg geometry. Histograms ofp1xel values and quadrauc fits to the surface backscattenng 
funcuon over narrow ranges of mctdence angle were computed by [TYLER 1992 J 

Pass1ve mtcrowave emisston by the surface of Venus was measured by the Magellan radar receiver between ALT and 
SAR bursts These measurements have been converted to esumates of surface emiSSIVIty [PETIENGILLETAL1992] 
W1th certam assumpttons the emissivity denved from these data should be the complement of the Fresnel reflectiVIty 
denved from the AL T echo strengths In cases where the two quanuues do not add to uruty, the assumptiOns about a s1mple 
dlelectnc (Fresnel) mterface at the surface of Venus must be adJusted 

Processing 

The processmg earned out at the Massachusetts Institute of Technology (MIT) to obtam alttmetry profiles and estimates 
of Fresnel reflectivity and rms surface tilts has been descnbed elsewhere [FORD&PETTENGILL!992] In bnef 1t 
mvolves fittmg pre-computed templates to measured echo profiles, the topographic profiles, Fresnel retlecUvJties, and 
rms surface ttlts are chosen to mirnmize differences between the data and templates m a least-squares sense The estunates 
of emtsstvJty reqmre cahbrat10n of the raw data values and correctiOn for attenuauon and emiSSion by the Venus 
atmosphere [PETIENGILLETAL1992] These data have been collected by orbit number on a set of compact discs 
[FORD 1992] and mto a set of global maps, also d1stnbuted on compact dtsc [FORD 1993] 

At Stanford ALT-EDR tapes were the mput for calculauon ofnear-nad1r empmcal backscattenng functiOns For oblique 
backscatter, C-BIDR tapes from the Magellan ProJect and F-BIDR files obtruned v1a Internet from Washmgton Uruverstty 
were the mput products Output was collected on an orbtt-by-orbtt bas1s mto a product known as the Surface 
Charactensucs Vector Data Record (SCVDR) The SCVDR has been delivered to the Magellan Project for orb1ts through 
2599, processing of data begtnning wtth orbll2600 and contmumg through the end-of-MISSion ts spendmg completion 
of the first vers1on of the GVDR 

Data 

The GVDR data set compnses several 'tables' of results based on analysts of each of the data types descnbed above These 
mclude 

(1) Image Data Table 
(2) RadiOmetry Data Table 
(3) MIT ALT Data Table 
(4) Stanford ALT Data Table 

(1) Image Data Table 
Thts table contains results from analysts of SAR 1mage stnps The results are parametenzed by the azimuth angle, the 
mctdence (polar) angle, and the polanzauon angle Quantlttes mclude the number of Image frame lets used to compute 
the scattenng parameters, the medtan, the mode, and the one-standard-devtauon hmits of the ptxel histogram, and the 
three coefficients and the reference angle of the quadratic approxtmauon to stgma-zero as a function of mcidence angle 



Appendix B Complete PDS Catalog Object Template Set B-7 

(2) Radwmetry Data Table 
ThiS table contains results from MIT analysis of the radwmetry data The results are parametenzed by the azimuth angle, 
the mc1dence angle, and the polanzatwn angle The results mclude the number of radiOmetry footpnnts used to compute 
the estimate of thermal enussivity, the enuss1vity, and Its vanance 

(3) MIT AL T Data Table 
This table conta.ms results denved from the MIT altimetry data analysis The results mclude the number of ARCDR ADF 
footpnnts used m computing the estimates of scattenng properties for the pixel and estimates (and vanances) of radms, 
rms surface tilt, and Fresnel reflectivity from the ARCDR 

(4) Stanford ALT Data Table 
Th1s table con tams results from the Stanford analysis of altimetry data Results mclude the number of SCVDR footpnnts 
used m computmg the estimates of surface properties for this pixel, the centrOid of the Doppler spectrum, the denved 
scattenng function and the angles over which it IS valid, vanance of the mdividual pomts m the denved scattenng 
functwn, and results of fitting analytic functions to the denved scattenng function 

Ancillary Data 

Ancillary data for most processmg at both MIT and Stanford was obta.med from the data tapes and files rece1 ved from the 
Magellan Project These mcluded trajectory and pomting mformation for the spacecraft, clock converswn tables, 
spacecraft engmeenng data, and SAR processmg parameters For calibration of the radar mstrument Itself. Magellan 
ProJeCt reports (mcludmg some received from Hughes Aircraft Co [BARRY1987, CUEVAS1989, SE011]) were used 
Documentation on handling of data at the Jet PropulsiOn Laboratory was also used [BRILL&MEISL 1990, SCIEDR, 
SDPSIOl] 

Coordmate System 

The data are presented m gridded formats, tiled to ensure that closely spaced points on the surface occupy nearby storage 
locations on the data storage medmm Four separate proJections are used smus01dal equal area and Mercator for pomts 
Within 89 degrees of the equator, and polar stereograph1c for pomts near the north and south poles The proJeCtiOns are 
descnbed by [SNYDER1987], IAU conventions descnbed by [DAVIESETAL1989] and Magellan Project assumptions 
[LYONS 1988] have been adopted 

Software 

A special library and several example programs are provided m source code form for readmg the GVDR data files The 
general-purpose example program Will serve the needs of the casual user by accessmg a given GVDR quantity over a 
specified regwn ofGVDR pixels More advanced users may want to wnte their own programs that use the GVDR library 
as a toolk.it The library, wntten m ANSI C, provides concise access methods for readmg every quantity stored m the 
GVDR It convemently handles allgeometnc and tdmg transformations and converts any compressed qual1tites to a 
standard native format The general purpose program mentiOned above provides an example of how to use this library 

Media/Format 

The GVDR will be delivered to the Magellan ProJeCt (or Its successor) usmg compact disc wnte once (CD-WO) media 
Formats will be based on standards for such products established by the Planetary Data System (PDS) [PDSSRI992]" 

CONFIDENCE_LEVEL_NOTE = 

Confidence Level Overview 

The GVDR IS mtended to be the most systematiC and comprehensive representation of the electromagnetic properties of 
the Venus surface that can be denved from Magellan data at this resolution Nevertheless, there are limitations to what 
can be done with the data 



B-8 Appendix B. Complete PDS Catalog Object Template Set 

Rev1ew 

The GVDR w1ll be reviewed mtemally by the Magellan ProJect pnor to release to the planetary commuruty The GVDR 
Will also be reviewed by PDS 

Data Coverage and Quality 

Because the orb1t of Magellan was elhpt!cal dunng most of Its mappmg operations, parts of the orb1tal coverage have 
h1gher resolution and h1gher signal-to-noise than others 

Cycle I Mappmg 
Dunng Mappmg Cycle 1, penaps1s was near I 0 degrees N latttude at altitudes of approximately 300 km over the 
surface The altitude near the poles, on the other hand, was on the order of 3000 km For all data types th1s means 
lower confidence m the results obtruned at the poles than near the equator 

Further, the spacecraft attitude was adJUSted so that the SAR antenna was pomted at about 45 degrees from nadir 
near penaps1s, th1s was reduced to near I 5 degrees at the poles The obJeCtive was to compensate somewhat for the 
changtng elevation and to provide scattenng at higher mc1dence angles when the echo s1gnal was expected to be 
strongest The AL T antenna, at a constant 25 degree offset from the SAR antenna, followed m tandem but at angles 
wh1ch were not optnnized for obtrumng the best altimetry echo 

Dunng Mappmg Cycle I almost half the orbits provided SAR Images of the north pole, because of the orb1t 
mclmauon, ALT data never extended beyond about 85N latitude in the north and 85S in the south No SAR Images 
of the south pole were acquired dunng Mappmg Cycle 1 because the SAR antenna was always pomted to the left of 
the ground track, the Cycle I SAR 1mage strip near the south pole was at a latitude equator ward of 85S 

Cycle 2 Mappmg 
Dunng much of Mappmg Cycle 2, the spacecraft was flown 'backwards' so as to provide SAR Images of the same 
terrain but w1th 'opposite s1de' !llurmnatwn Th1s adJustment also meant that the SAR could 1mage near the Venus 
south pole (but not near the north pole) The ALT data contmued to be hrmted to latitudes equator ward of 85N and 

'85S 

Cycle 3 Mappmg 
Dunng Mappmg Cycle 3 the emphasis was on obtaimng SAR data from the same s1de as m Cycle 1 but at different 
mc1dence angles (for radar stereo) In fact, most data were acqmred at an mc1dence angle of about 25 degrees, wluch 
meant that the AL t antenna was usually rumed duectly at nad1r mstead of dnftlng from s1de to s1de, as had been the 
case m Cycle I These Cycle 3 data, therefore, may be among the best from the altimeter Dynarmc range m SAR 
data was larger than m Cycle 1 because the mc1dence angle was fixed rather than varymg to compensate for the 
changmg spacecraft he1ght 

All Cycles 
It 1s Important to remember that, smce the SAR and AL T antennas were aimed at different parts of the planet dunng 
each orb1t. bmldmg up a collectiOn of composite scattenng data for any smgle surface regwn requires that results 
from several orbits be mtegrated In the case of data from polar reg:tons, where only the SAR was able to probe, there 
w11l be no AL T data When scheduhng or other factors mterrupted the systematic collectiOn of data, there may be 
AL T data for some reg:tons but no comparable SAR or radiometry data (or VIceversa). 

Note that for all Cycles outages played an Important role m deterrrurung coverage For example, although a goal of 
Cycle 3 radar mappmg was radar stereo, early orb1ts were used to collect data at nommal mcidence angles that had 
been rmssed dunng Cycle 1 because of thermal problems w1th the spacecraft A transrmtter failure dunng Cycle 3 
caused a loss of further data It IS not w1tlun the scope of tlus descnptlon to prov1de detruled mforrnatlon on data 
coverage. 

L1rmtat1ons 

Both the template fittmg approach and the mversion approach w1ll have the1r hrmtatlons m esumatmg overall surface 
properties for a reg:ton on Venus The template calculation assumes that scattenng IS well-behaved at all mc1dence angles 
from 0 to 90 degrees and that a template representing that behaviOr can be constructed The Hagfors functiOn 
[HAGFORS l964]used by MIT, however, falls to g1ve a fimte rms surface ult 1f used over th1s range of angles, so 



- f . 4 1'~ 1- •• 

' .. 
Appendix B Complete PDS Catalog Object Template Set B-9 

approximatiOns based on a change m the scattenng mecharusm must be applled[HAGFORS&EV ANS 1968] The 
mvemon method [TYLER 1992] IS susceptible to n01se at the higher mc1dence angles and th1s will corrupt solutions 1f 
not handled properly Users of this data set should be aware that radar echoes are statlstlcally vanable and that each result 
has an uncertamty 

A nommal nadu footpnnt can be assigned to altlmetry results, but thiS footpnnt IS biased near penaps1s because the AL T 
antenna IS rotated about 20 degrees from nadir (dunng Cycle 1) Over polar regions m Cycle 1, the ALT antenna IS rotated 
about 10 degrees to the opposite s1de of nadu A more Important consideratiOn m polar regions Is that the area Jllummated 
by the AL T antenna IS approximately I 00 times as large as near penaps1s because of the higher spacecraft altitude The 
region contnbutmg to echoes m polar regions -- and therefore the region over wh1ch estimates of Fresnel reflectivity and 
rms surface tilts apply -- IS much larger than at penaps1s " 

END_OBJECT 

OBJECT 
TARGET_NAME 
END_OBJECT 

OBJECT 
INSTRUMENT_HOST_ID 
INSTRUMENT_ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

= DATA_SET_INFORMATION 

= DATA_SET_TARGET 
=VENUS 
= DATA_SET_TARGET 

= DATA_SET_HOST 
=MGN 
=RDRS 
= DATA_SET_HOST 

= DATA_SET_REFERENCE_INFORMA TION 
= "BARRYI987" 
"'DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMATION 
= "BRILL&MEISLl990" 
= DATA_SET_REFERENCE_INFORMATION 

= DATA_SET_REFERENCE_INFORMATION 
= "CUEVASI989" 
= DATA_SET _REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMATION 
= "DAVIESETALI989" 
= DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMA TION 
= "FORD1992" 
= DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMA TION 
= "FORD1993" 
= DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMA TION 
= "FORD&PETTENGILL1992" 
= DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMATION 
= "HAGFORS1964" 
= DATA_SET_REFERENCE_INFORMATION 

= DATA_SET_REFERENCE_INFORMATION 
= "HAGFORS&EV ANS 1968" 
= DATA_SET_REFERENCE_INFORMA TION 



B-10 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _lD 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 

END 

=DATA_SET 

Append1x B Complete PDS Catalog Object Template Set 

= DATA_SET _REFERENCE_INFORMA TION 
= "LYONS1988" 
= DATA_SET _REFERENCE_INFORMA TION 

= DATA_SET_REFERENCE_INFORMATION 
= "PDSSRI992" 
= DATA_SET_REFERENCE_INFORMA TION 

= DAT A_SET_REFERENCE_INFORMATION 
= "PETTENGILLET ALI992" 
= DATA_SET _REFERENCE_INFORMA TION 

=DATA_SET_REFERENCE_INFORMATION 
="SCIEDR" 
= DATA_SET_REFERENCEJNFORMA TION 

= DATA_SET_REFERENCE_INFORMA TION 
= "SDPS!Ol" 
= DATA_SET _REFERENCE_INFORMA TION 

= DATA_SET _REFERENCE_INFORMATION 
= "SEOll" 
= DATA_SET_REFERENCE_INFORMA TION 

= DATA_SET _REFERENCE_INFORMATION 
= "SNYDER1987" 
= DATA_SET_REFERENCE_INFORMATION 

= DATA_SET _REFERENCE_INFORMA TION 
= "TYLER 1992'' 
= DATA_SET _REFERENCE_INFORMATION 



Appendix B Complete PDS Catalog ObJect Template Set B-11 

B.2 DATA SET COLLECTION 

The DATA SET COLLECTION catalog obJect is used to link several data sets as a collection to 
be used and distributed together. 

(1) The DATA SET COLLECTION INFO catalog object provides a description and usage, as 
well as other informauon specific to the data set collection. This object mcludes a free-form 
textual descriptiOn, DATA_SET _ COLLECTION_DESC. 

NOTE: The paragraph headmgs and subheadings are recommended as the minimum set of 
headings needed to descnbe a data set collectiOn adequately. Additional headings and sub­
headings may be added as desired. Should any of the more common headings not appear 
within a textual description, It will be considered not applicable to the data set collectiOn. 

Under DATA_SET_COLLECTION_INFO = 

Data Set Collection Overview 

A high-level description of the charactenstics and properties of a data set collection. 

Data Set Collection Usage Overview 

A high-level description of the intended use of a data set collection. 

(2) The DATA SET COLL ASSOC DATA SET catalog obJect is repeated for each data set 
associated with the collection. For example, if there are three distinct data sets which make 
up a collection, this object will be repeated three different times, one object per data set. 

(3) The DATA SET COLL REF INFO catalog object associated a reference with the data set 
collection. It is repeated for each reference to be identified for the collection. A separate 
REFERENCE template is completed to provide the associated reference citation for each 
new reference submitted to PDS. 

Example: 

I* Template Data Set Collection Template 

I* Note Complete one template for each data set collection Identify 
I* mdtvtdual data sets that are mcluded m the collection by 
I* repeating the 3 hnes for the DATA_SET_COLL_ASSOC_DATA_SETS 
I* object Identtfy each data set collection reference by 
I* repeating the 3 hnes for the DATA_SET_COLL_REF _INFO object 
I* Also complete a separate REFERENCE template for each new 
I* reference subrrutted to PDS 

I* Hterarchy DATA_SET_COLLEcnON 
I* DATA_SET_COLLEcnON_INFO 

Rev 1993-09-24 *I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 
*I 



B-12 

I* 
I* 

DATA_SET _COLL_ASSOC_DATA_SETS 
OAT A_ SET _COLLECTION_REF _INFO 

OBJECT 
DATA_SET_COLLECTION_ID 

OBJECT 
DATA_SET _COLLECTION_NAME 
DATA_SETS 
START_TIME 
STOP_TIME 
DATA_SET_COLLECTION_RELEASE_DT 
PRODUCER_FULL_NAME 
PRODUCER_INSTITUTION_NAME 

DATA_SET_COLLECTION_DESC 

Data Set Collection Overview 

Appendix B Complete PDS Catalog ObJect Template Set 

= DATA_SET_COLLECTION 

*I 
*I 

= "PREMGN-EIL/HJMN -415-RADIGRA V-VI 0'' 

= DATA_SET_COLLECTION_INFO 
= "PRE-MGN FJL/HIMN 415 RADARIGRA VITY OAT A VI 0" 
= 15 
= 1968-ll-09TOO 00 00 

'= 1988-07-27TOO 00 00 
1990-06-15 

= "Raymond E Arvidson" 
= "Washmgton Uruvers1ty" 

= 

Tius entity 1s a collection of selected Earth-based radar data of Venus, the Moon, Mercury, and Mars, P10neer Venus radar 
data, aubome radar 1mages of Earth, and hne of s1ght acceleratiOn data derived from trackmg the Pwneer Venus Orbiter 
and Viking Orb1ter 2 Included are 12 6 centimeter wavelength Arec1bo Venus radar 1mages, 12 6 to 12 9cm Goldstone 
Venus radar Images and altimetry data, together w1th alumetry, bnghtness temperature, Fresnel reflectiVIty and rms 
slopes denved from the Pwneer Venus Radar Mapper For the Moon, Haystack 3 8 cenumeter radar 1mages and Arec1bo 
12 6 and70 centimeter radar 1mages are mcluded Mars data mclude Goldstone altimetry data acqu1red between 1971 and 
1982 and araster data set contammg radar uruts that model Goldstone and Arec1bo backscatter observations Mercury data 
cons1st of Goldstone altimetry files The terrestnal data were acqmred over the Pisgah lava flows and the Kelso dune field 
m the MoJave Desert, Caltforrua, and cons 1st of multiple frequency, multiple inc1dence angle vtews of the same regiOns 
Data set documentation ts provided, wtth references that allow the reader to reconstruct processmg h1stones The entire 
data set collection and documentation are avrulable on a CD-ROM entitled Pre-Magellan Radar and Gravtty Data." 

DATA_SET_COLLECTION_USAGE_DESC =" 

Data Set Collection Usage Overview 

The mtent of the data set collection 1s to prov1de the planetary sc1ence commuruty w1th radar and gravtty data s1mdar to 
the lands of data that Magellan will begm collectmg m the summer of 1990 The data set collection will be used for pre­
Magellan analyses of Venus and for compansons to actual Magellan data The enure data set collection and 
documentatiOn are available on a CD-ROM entitled Pre-Magellan Radar and Gravity Data A hst of the hardware and 
software that may be used to read th1s CD-ROM can be obtruned from the PDS Geosciences Dtsc1phne Node " 

END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 

DATA_SET _COLLECTION_INFO 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "NDC8-E-ASAR-4-RADAR-Vl 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "ARCB-L-RTLS-5-12 6CM-Vl 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "ARCB-L-RTLS-4-70CM-Vl 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

=OAT A_SET _COLL_ASSOC_DATA_SETS 



Appendix B. Complete PDS Catalog Object Template Set 

DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
DATA_SET _ID 
END_OBJECT 

OBJECT 
DATA_SET_ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 
END 

= DATA_SET_COLLECTION 

= "ARCB-V-RTLS-4-12 6CM-Vl 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "ARCB-L-R1LS-3-70CM-V1 0" 
= DATA_SET_COLL_ASSOC_DAT A_ SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "GSSR-M-RlLS-5-ALT-Vl 0" 

DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "GSSR-H-RlLS-4-AL T-Y I 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "GSSR-V -RlLS-5-12 6-9CM-Y I 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "HSTK-L-RlLS-4-3 8CM-Y 1 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "ARCB/GSSR-M-RTLS-5-MODEL-VI 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "P12-V-RSS-4-LOS-GRA VITY-Vl 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "P12-V-ORAD-4-ALTIRAD-Vl 0'' 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
"P12-V-ORAD-5-RADAR-IMAGE-Vl 0" 

= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "Pl2-V-ORAD-5-BACKSCATTER-V1 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLL_ASSOC_DATA_SETS 
= "V02-M-RSS-4-LOS-GRA VITY-VI 0" 
= DATA_SET_COLL_ASSOC_DATA_SETS 

= DATA_SET_COLLECTION_REF _INFO 
= ARYIDSONETAL1990A 
= DATA_SET_COLLECTION_REF _INFO 

B-13 



B-14 Append1x B Complete PDS Catalog ObJeCt Template Set 

B.3 DATA SET MAP PROJECTION 

The DATA SET MAP PROJECTION obJect is one of two distinct objects that define the map 
projection used in creatmg the digital Images in a PDS data set. The other associated obJect that 
completes the definition is the IMAGE MAP PROJECTION, which is fully described in Appendix 
A of this document. 

The map proJection mfonnat10n resides m these two objects essentially to reduce data redundancy 
and at the same time allow the inclusion of elements needed to process the data at the image level. 
Static information that IS applicable to the complete data set reside in the 
DATA_SET_MAP _PROJECTION object. While, dynamic information that is applicable to the 
individual images reside in the IMAGE_MAP _PROJECTION object. 

(1) The DATA_SET_MAP _PROJECTION catalog object unambiguously defines map 
projectiOn of an image data set. 

Under MAP _PROJECTION_DESC = 

Map Projection Overview 

A description of the map projection of the data set, indicating mathematical expressions 
used for latitude/longitude or line/sample transformations, hne and sample projection 
offsets, center longitudes, etc., as well as any assumptions made m processing. (These 
categories of descnption may be subheadings mdicated by single-underlining.) 

Under ROT ATIONAL_ELEMENT _DECRIPTION_DESC = 

Rotational Element Overview 

A description of the standard used for the definition of a planet's pole orientation and prime 
meridian, right ascensiOn and declination, spin angle, etc. (Please see the Planetary Science 
Data Dictionary for complete description.). 

NOTE: The value m this field may also be a bibliographic citation to a published work 
containing the rotation element description. In this case there would be no need to have the 
'Overview' heading. Please see the example provided below. 

(2) The REFERENCE object provides citations of papers, articles, and other published and 
unpublished works pertinent to the data set map projection. 



Appendix B. Complete PDS Catalog Object Template Set B-15 

Example 

CCSD3ZFOOOO I 0000000 I NJPL3IFOPDSXOOOOOOO I 

PDS_ VERSION_ID =PDS3 

RECORD_TYPE 
RECORD_BYTES 
SPACECRAFf_NAME 
TARGET_NAME 

= AXED_LENGTH 
=80 
=MAGELLAN 
=VENUS 

OBJECT 
DATA_SET_ID 

= DATA_SET_MAP_PROJECTION 
= "MGN-V-RDRS-5-DIM-VI 0" 

OBJECT 
MAP _PROJECTION_ TYPE 
MAP _PROJECTION_DESC 

= DAT A_SET _MAP _PROJECTION_INFO 
= "SINUSOIDAL" 

= 

Map ProJection Overview 

The FMAP (Magellan Full Resolution Radar Mosruc) IS presented m a Smusmdal Equal-Area map proJection In th1s 
proJection, parallels of latitude are strrught lines, w1th constant distances between equal latitude mtervals Lmes of 
constant longitude on either Side of the prOJection mend1an are curved smce longitude mtervals decrease w1th the cosme 
of latitude to account for their convergence toward the poles Th1s proJeCtion offers a number of advantages for stonng 
and managing global digital data, m particular, 1t IS computationally simple, and data are stored m a compact form 

The Smusmdal Equal-Area prOJectiOn IS charactenzed by a proJection longitude, which IS the center mend1an of the 
proJection, and a scale, which IS given m uruts of pixels/degree The center latitude for all FMAP's IS the equator Each 
FMAP contains Its own central mend1an The tiles that make up an FMAP all have the same central mend1an as the 
FMAP 

Lat/Lon. Lme/Sample TransformatiOns 

The transformation from latitude and longitude to line and sample IS given by the followmg equatiOns 

!me = INT(LINE_PROJECTION_OFFSET- !at* MAP _RESOLUTION+ 1.0) 

sample= INT(SAMPLE_PROJECTION_OFFSET- (Ion -
CENTER_LONGITUDE)*MAP _RESOLUTION*cos(lat) + I 0) 

Note that mtegral values of !me and sample correspond to center of a p1xel Lat and Ion are the latitude and longitude 
of a given spot on the surface 

Lme PrOJection Offset 

LINE_PROJECTION_OFFSET IS the !me number nunus one on which the map proJection ongin occurs The map 
proJectiOn ongin IS the intersection of the equator and the proJeCtiOn longitude The value of 
LINE_PROJECTION_OFFSET IS positive for Images starung north of the equator and IS negative for Images 
starting south of the equator 

Sample ProJection Offset 

SAMPLE_PROJECTION~OFFSET IS the nearest sample number to the left of the proJectiOn longitude The value 
of SAMPLE_PROJECTION_OFFSET IS positive for Images starting to the west of the proJection longitude and IS 
negative for Images startmg to the east of the prOJection longitude 



B-16 Appendix B Complete PDS Catalog Object Template Set 

Center Long1tude 

CENTER_LONGITUDE IS the value of the proJeCtiOn longitude, whtch ts the longttude that passes through the 
center of the proJectiOn · 

The values for FMAP products wtll be 1408, 235, and 35 

There are four PDS parameters that spec1fy the latitude and longitude boundanes of an tmage 
MAXIMUM_LATITUDE and MINIMUM_LATITUDE spec1fy the latitude boundanes of the 1mage.and 
EASTERNMOST_LONGITUDE and WESTERNMOST_LONGITUDE spec1fy the longttudmal boundanes of 
the map 

DefimtJOns of other mappmg parameters can be found m the Planetary Sc1ence Data D1ctmnary " 

ROTA TIONAL_ELEMENT_DESC 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 
END_OBJECT 

END 

="See DAVIESETALJ989 .. 

= DS_MAP _PROJECTION_REF _INFO 
= "DAVIESETALI989" 
= DS_MAP _PROJECTION_REF _INFO 

= DS_MAP _PROJECTION_REF _INFO 
= "BATSON1987" 
= DS_MAP _PROJECTION_REF _INFO 

= DS_MAP _PROJECTION_REF _INFO 
= "EDWARDS1987" 
= DS_MAP _PROJECTION_REF _INFO 

= DS_MAP _PROJECTION_REF _INFO 
= "SNYDER&JOHN1987" 
= DS_MAP _pROJECTION_REF _INFO 

= DATA_SET_MAP _PROJECTION_INFO 
= DATA_SET _MAP _PROJECTION 



Appendix B Complete PDS Catalog Object Template Set B-17 

B.4 INSTRUMENT 

The INSTRUMENT catalog object is used to submit information about an instrument to PDS. 
Instruments are typically associated with a particular spacecraft or earth based host, so the 
INSTRUMENT_HOST_ID keyword may identify either a valid SPACECRAFT_ID or 
EARTH_BASE_ID. The catalog object mcludes a textual description of the instrument and a sub­
ObJeCt for Identifying reference information. A separate REFERENCE object will need to be 
completed for any new references not already part of the PDS catalog. 

( 1) The INSTRUMENT INFORMATION catalog object provides a description of the 
instrument. The following paragraph headmgs and suggested contents are strongly 
recommended as the mimmal set of mformation necessary to adequately describe an 
instrument. Additional headmgs may be appropriate for specific instruments and these also 
may be added here. Should any of the recommended headings not appear within a textual 
description, they will be considered not applicable to the data set. 

Instrument Overview 

A high-level descrption of the charactenstics and properties of an mstrument. 

Scientific Objectives 

The scientific objectives of data obtained from this instrument. . 

Calibration 

Methods/procedures/schedules of mstrument calibration. Calibration stability, 
parameters, etc. 

Operational Considerations 

Special circumstances or events that affect the instrument's ability to acquire high 
quality data (which are reflected in the archive product). Examples might be 
spacecraft charging, thruster firings, contamination from other instruments, air 
quality, temperatures, etc. 

Detectors 

General descriptiOn of deterector(s). Type of detector used. Sensitivity and noise 
levels. Detector fields of view, geometric factors, etc. Instrument/detector 
mounting descriptions (offset angles, pointing positions, etc.) 

Electronics 

Description of the instrument electronics and internal data processing (A-D 
converter). 



B-18 

Filters 

Optics 

Appendix B Complete PDS Catalog Object Template Set 

Description of mstrument filters and filter calibrations (filter type, center 
wavelength, minimax wavelength) if applicable. 

Description of mstrument optics (focal lengths, transmittance, diameter, resolutiOn, 
t_number, etc.) if applicable. 

Location 

Latitude and longitude location, for earth based instruments. 

Operational Modes 

Descrption of instrument configurations for data acquisitions. Descnption of 
"modes" (scan, gain, etc.) of data acquisition and of measured parameter(s) and/or 
data sampling rates or schemes are used m each mode. 

Subsystems 

Logical subsystems of the mstrument. Description of each subsystem, how it's used, 
which "modes" make use of which subsystem, etc. 

Measured Parameters 

Description of what the instrument directly measures (particle counts, mag. field 
components, radiance, current/voltage ratios, etc.) Description and defimtion of 
these measurements (minimax, noise levels, units, time interval between 
measurements, etc.) 

(OTHER- Data Supplier provided): 

Any other important information in additional headings as desired (e.g. Data 
Reduction, Data Compression, Time-Tagging, Diagnostics, etc.) 

(2) The INSTRUMENT REFERENCE INFO catalog object associates a reference with the 
instrument description. It is repeated for each reference identified for the mstrument. A 
separate REFERENCE template is completed to provide the associated reference citation 
for each reference. 

Include any important references such as instrument description and calibration documents. 
These can be both published and internal documents or informal memoranda. 



Appendtx B Complete PDS Catalog Object Template Set 

Example: 

I* Template Instrument Template Rev 1993-09-24 

I* Note Complete one template for each mstrument Identify each 
I* mstrument reference by repeatmg the 3 lmes for the 
I* INSTRUMENT_REFERENCE_INFO object Also complete a separate 
I* REFERENCE template for each new reference submitted to PDS 

I* Hterarchy INSTRUMENT 
I* ' INSTRUMENT_INFORMATION 
I* INSTRUMENT_REFERENCE_INFO 

CCSD3ZF0000100000001NJPL3IFOPDSX00000001 

PDS_ VERSION_ID 

OBJECT INSTRUMENT 
INSTRUMENT_HOST_ID 
INSTRUMENT_ID 

OBJECT 
INSTRUMENT_NAME 
INSTRUMENT_TYPE 
INSTRUMENT_DESC 

Instrument Overvtew 

=PDS3 

="MGN'' 
="RDRS" 

= INSTRUMENT_INFORMATION 
="RADAR SYSTEM" 
="RADAR" 
= 

*I 

*I 
*I 
*I 
*I 

*I 
*I 
*I 

B-19 

The Magellan radar system mcluded a 3 7 m dtameter htgh gam antenna (HGA) for SAR and radiOmetry and a smaller 
fan-beam antenna (ALTA) for altlmetry The system operated at 12 6 em wavelength Common electrorucs were used m 
SAR, altimetry, and radiOmetry modes The SAR operated m a burst mode, altlmetry and radlometry observations were 
mterleaved with the SAR bursts 

Radiometry data were obtamed by spendmg a portton of the ume between SAR bursts and after alumeter operation m a 
passive (recetve-only) mode, wtth the HGA antenna captunng the rrucrowave thermal emisston from the planet N01se 
power wtthm the 10-MHz recetver bandwidth was detected and accumulated for50 ms To reduce the sensttlVIty to 
receiver gam changes m thts mode, the recetver was connected on alternate bursts first to a companson dummy load at a 
known phystcal temperature and then to the HGA The short-term temperature resolutiOn was about 2 K, the long-term 
absolute accuracy after calibration was about 20 K 

The radar was manufactured by Hughes Aircraft Company and the 'build date' ts taken to be 1989-01-01 The radar 
dlmens10ns were 0 304 by 1 35 by 0.902 (height by length by Width m meters) and the mass was 126 I leg 

Instrument Id 
Instrument Host Id 
PI PDS User Id 
Instrument Name 
Instrument Type 
Budd Date 
Instrument Mass 
Instrument Length 
Instrument Width 
Instrument Height 
Instrument Manufacturer Name 

RDRS 
MGN 
GPETTENGILL 
RADAR SYSTEM 
RADAR 
1989-01-01 
126 100000 
I 350000 
0902000 
0304000 
HUGHES AIRCRAFf 



B-20 Appendix B Complete PDS Catalog Object Template Set 

Platform Mounting Descnptlons 

The spacecraft +Z ax1s vector was m the nommal direction of the HGA bores1ght' The +X ax.ts vector was parallel 
to the norrunal rotation ax1s of the solar panels The + Y ax1s vector formed a nght-handed coordmate system and 
was m the norrunal directiOn of the star scanner bores1ght The spacecraft velocity vector was m approximately the 
-Y duectiOn when the spacecraft was onented for Jeft-lookmg SAR operation The norrunal HGA polanzatiOn was 
linear m the y-dJrectiOn 

Cone Offset Angle 
Cross Cone Offset Angle 
Twist Offset Angle 

000 
000 
000 

The altimetry antenna bores1ght was m the x-z plane 25 degrees from the +Z duectlon and 65 degrees from the +X 
duectlon The altimetry antenna was rumed approximately toward nadJr dunng nommal radar operatiOn The 
altimetry antenna polanzatlon was hnear m the y-dJrectJon 

The medmm gain antenna bores1ght was 70 degrees from the +Z dJrectlon and 20 degrees from the -Y dJrectJon 
The low gam antenna was mounted on the back of the HGA feed, It's bores1ght was m the +Z directiOn and It had a 
herrusphencal radiation pattern 

Pnncmal Investigator 

The Pnnc1pal Investigator for the radar mstrument was Gordon H Pettengill 

For more mformatJon on the radar system see the papers by [JOHNSONI990) and [SAUNDERSETAL1990) 

Scientific ObJeCtives 

See MISSION_OBJECTIVES_SUMMARY under MISSION 

OperatiOnal Cons1deratJons 

The Magellan radar system was used to acqutre radar back-scatter(SAR) tmages. altimetry, and rad1ometry when the 
spacecraft was close to the planet Norrunal operation extended from about 20rrunutes before penaps1s untd about 20 
minutes after penapsis In the SAR mode output from the radar receiver was sampled, blocks of samples were quantized 
usmg an adaptive procedure, and the results were stored on tape In the altimetry mode samples were recorded dJrectly, 
without quanuzatton Radwmetry measurements were stored m the radar header records Dunng most of the remamder 
of each orb1t, the HGA was pomted toward Earth and the contents of the tape recorder were transrrutted to a station of the 
DSN at approximately 270 lalobJts/second SAR, altimetry, and radiOmetry data were then processed usmg ground 
software mto Images. altimetry profiles, estimates of backscatter coeffictent, errussivity, and other quantities 

Calibration 

The radar was calibrated before fhght usmg an active electtoruc target simulator [CUEVAS 1989) 

Operational Modes 

The Magellan radar system consisted of the followmg sectiOns, each of wh1ch operated m the fo\lowmg modes 

Sectton Mode 

SAR 
ALT 
RAD 

Synthetic Aperture Radar {SAR) 
Altimetry 
Radwmetry 



Appendix B Complete PDS Catalog Object Template Set B-21 

( l) SAR CharactenstiCS 
In the Synthetic Aperture Radar mode, the radar transmitted bursts of phase-modulated pulses through Its high gam 
antenna Echo Signals were captured by the antenna, Simple dat the receiver output, and stored on tape after bemg 
quantized to reduce data volume Pulse repetition rate and mctdence angle were chosen to meet a m1rumum signal­
to-nOise ratio requirement (8 dB) for Image pixels after ground processmg Multiple looks were used m processmg 
to reduce speckle nOise Incidence angles vaned from about 13 degree sat the pole to about 44 degrees at penaps1s 
dunng normal mappmg operauons (e g, Cycle 1), but other 'look angle profiles' were used dunng the miSSion 

Peak transrrut power 
Transrrutted pulse length 
Pulse repetlt:lon frequency 
Ttme bandwidth product 
Inverse baud width 
Data quantization (I and Q) 
Recorded data rate 
Polanzauon (norrunal) 
HGA half-power full beam w1dth 

one-way gain (from SAR RF port) 
dB1 System temperature (v1ewmg Venus) 
Surface resolution (range) 
(along track) 
Number of looks 
Swath Width 
Antenna look angle 
Incidence angle on surface 

Data Path Type 
PLAYBACK Instrument Power Consumpllon 

(2) ALT Charactensucs 

350 watts 
26 5 rrucrosecs 
4400-5800 per sec 
60 
226MHz 
2 bits each 
750 kllobtts/sec 
linear honzontal 
2.2 deg (azimuth) 
2 5 deg (elev) 
35 7 
1250K 
120-360 m 
120-150 m 
4ormore 
25 km (approx) 
13-47 deg 
18-50 deg 

RECORDED DATA 
UNK 

After SAR bursts (typically several t:lmes a second) groups of alllmeter pulses were transrrutted from a dedtcated 
fan beam altimeter antenna (ALTA) directed toward the spacecraft's nadir Output from the radar receiver was 
sampled, and the samples were stored on tape for transrruss10n to Earth Dunng norrunalleft-lookmg SAR operatiOn 
the ALTA pomted approxunately 20 deg to the left of the spacecraft ground track at penaps1s and about l 0 deg to 
the nght of the ground track near the north and south pole 

Data quanuzauon (I and Q) 
Recorded data rate 
Polanzation 
ALTA half-power full beam w1dth 
(along track) 
(cross track) 
one-way gam referenced to ALT RF port 
dB1 ALTA offset from HGA 
Burst interval 
duratlon 
Dynarruc range 

Data Path Type 
PLAYBACK Instrument Power Consumption 

(3) RAD Charactenst1cs 

4 bits each 
35 kbs 
linear 

11 deg 
31 deg 
18 9 
25 deg 
0 5-l 0 sec 

. l 0 rrulbsec 
30 dB (or more) 

RECORDED DATA 
UNK 

RadiOmetry measurements were made by the radar recexver and HGA m a receive-only mode that was activated after 
the altimetry mode to record the level of rrucrowave radio thermale mission from the planet No1se power Within the 
1 0-MHz rece1ver bandwidth was detected and accumulated for 50 ms To reduce the sensitiVIty to rece1ver gam 
changes m th1s mode, the receiver was connected on alternate bursts first to a companson dummy load at a known 



B-22 Appendix B Complete PDS Catalog Object Template Set 

phys1cal temperature and then to the HGA. The short-term temperature resolutiOn was about 2K, the long-term 
absolute accuracy after cahbrauon was about20 K At several times dunng the rruss1on, radwmetry measurements 
were earned out usmg known cosrruc radio sources 

Receiver Bandwidth 
Integrauon T1me 
Polanzauon (norrunal) 
Data Quanuzatwn 
Data Rate 
HGA half-power full beam Width 
System temperature (VIewmg Venus) 
Antenna look angle 
Inc1dence angle on surface 
Surface resoluuon (along track) 
(cross track) 

Data Path Type 
Instrument Power Consumpuon 

END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 

END 

IOMHz 
50 rrulllsecs 
hnear honzontal 
12 bitS 
1 0-48 b1ts/sec 
22deg 
1250K 
13-47 deg 
18-50 deg 
15-120 km 
20-125 km 

RECORDED DATA PLAYBACK 
UNK" 

= INSTRUMENT_INFORMATION 

= INSTRUMENT_REFERENCE_INFO 
= "CUEVAS 1989" 
=INSTRUMENT _REFERENCE_INFO 

= INSTRUMENT_REFERENCE_INFO 
= "JOHNSON1990" 
= INSTRUMENT_REFERENCE_INFO 

= INSTRUMENT_REFERENCE_INFO 
= "SAUNDERSET AL 1990" 
= INSTRUMENT_REFERENCE_INFO 

=INSTRUMENT 



Appendix B Complete PDS Catalog Objec~ Template Set B-23 

B.S INSTRUlVIENT HOST 

The INSTRUMENT HOST catalog object is used to describe a vanety of mstrument hosts, such 
as a spacecraft or an earth based observatory. 

(1) The INSTRUMENT HOST INFORMATION catalog object provides a textual descnption 
that may be used to describe any Important information about an instrument host. For 
spacecraft, tlus typically mcludes paragraphs on the various subsystems. Earthbased 
instrument host descriptions may focus on geograpluc and facility elements. 

Instrument Host Overview 

A lugh-level description of the characteristics and properties on the mstrument host. 

(2) The INSTRUMENT HOST REFERENCE INFO catalog object is completed for each 
reference associated with the host. If there is more than one reference, this object is 
repeated. A separate REFERENCE template is completed to provide the proper citation for 
each reference. 

Example: 

I* Template Instrument Host Template Rev 1993-09-24 *I 

I* Note Complete one template for each mstrument host Identify each 
I* mstrument host reference by repeatmg the 3 lmes for the 
I* INSTRUMENT_HOST_REFERENCE_INFO object Also complete a separate 
I* REFERENCE template for each new reference submitted to PDS 

I* Hierarchy INSTRUMENT_HOST 
I* INSTRUMENT_HOST_INFORMATION 
I* INSTRUMENT_HOST_REFERENCE_INFO 

CCSD3ZFOOOO 100000001 NJPL3IFOPDSXOOOOOOO 1 

PDS_ VERSION_ID 

OBJECf 
INSTRUMENT_HOST_ID 

OBJECT 
INSTRUMENT_HOST_NAME 
INSTRUMENT_HOST_TYPE 
INSTRUMENT_HOST _DESC 

Instrument Host Overview 

=PDS3 

=INSTRUMENT_HOST 
="MGN" 

= INSTRUMENT_HOST_INFORMATION 
="MAGELLAN'' 
= "SPACECRAFr' 

*I 
*I 
*I 
*I 

*I 
*I 
*I 

The Magellan spacecraft was bm\t by the Martin Mme~a Corporation The spacecraft structure mcluded four maJOr 
sectiOns. H1gh-Gam Antenna (HGA), Forward Eqmpment Module (FEM), Spacecraft Bus (mcluding the solar array), and 
the Orbit Insertion Stage Spacecraft subsystems mcluded those for thermal control, power, attitude control, propulsion, 
command data and data storage, and telecommumcauons 

The Magellan telecommumcatwns subsystem con tamed all the hardware necessary to mamtam commumcauons between 



B-24 Appendix B. Complete PDS Catalog Object Template Set 

Earth and the spacecraft The subsystem contruned the radiO frequency subsystem, the LGA, MGA, and HGA The RFS 
performed the functiOns of earner transpondmg, command detectiOn and decodmg, and telemetry modulatiOn The 
spacecraft was capable of simultaneous X-band and S-band uplink and downlink operations The S-band operated at a 
transmitter power of 5 W, while the X-band operated at a power of 22 W Uplink data rates were 31 25 and 62 5 bps (bits 
per second) with downlink data rates of 40 bps (emergency only), 1200 bps (real-time engmeenng rate), 115 2 kbps 
(kilobits per second) (radar down link backup), and 268 8 kbps (noiTIInal) 

For more mformation on the Magellan spacecraft see the papers by [SAUNDERSETAL1990] and 
[SAUNDERSET AL1992] " 

END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECf 

OBJECf 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECf 

END 

= INSTRUMENT_HOST_INFORMATION 

= INSTRUMENT _HOST _REFERENCE_INFO 
= "SAUNDERSETAL1990" 
= INSTRUMENT_HOST_REFERENCE_INFO 

= INSTRUMENT _HOST _REFERENCE_INFO 
= "SAUNDERSETAL1992" 
= INSTRUMENT _HOST _REFERENCE_INFO 

= INSTRUMENT_HOST 



Appendix B Complete PDS Catalog Object Template Set B-25 

B.6 INVENTORY 

The INVENTORY catalog object shall be completed 'once for each node that 1s responsible for 
·orderable data sets from the PDS catalog. Tills object provides the mventory information necessary 
to facilitate the ordering of these data sets. 

(1) The INVENTORY DATA SET INFO catalog obJect identifies a product through the 
product data set id. This object IS repeated for each orderable and cataloged PDS data set. 

(2) The INVENTORY NODE MEDIA INFO catalog object provides information about data 
set distribution medium. This object 1s repeated for each type of distnbutwn medium. 

Example 

I* Template InventoryTemplate Rev 1990-03-20 *I 

I* Note The INVENTORY template shall be completed once for each node that IS responsible *I 
I* for orderable data sets from the PDS catalog The followmg tuerarchy of templates provide *I 
I* the necessary mventory mformat10n whtch will facilitate the ordenng of these data sets *I 

I* Hierarchy INVENTORY *I 
I* INVENTORY_DATA_SETJNFO *I 
I* INVENTORY_NODE_MEDIA_INFO *I 

OBJECf 
NODE_ID 

OBJECf 
PRODUCf_DATA_SET_ID 

OBJECT 
MEDIUM_ TYPE 
MEDIUM_DESC 
COPIES 
INVENTORY _SPECIAL_ORDER_NOTE 
END_OBJECf 

OBJECf 
MEDIUM_ TYPE 
MEDIUM_DESC 
COPIES 
INVENTORY _SPECIAL_ORDER_NOTE 
END_OBJECT 

END_OBJECT 
END_OBJECT 

OBJECf 
NODE_ID 

OBJECf 

=INVENTORY 
='"IMAGING" 

=INVENTORY _DATA_SET_INFO 
= "VG2-N-ISS-2-EDR-Vl 0" 

= INVENTORY_NODE_MEDIA_INFO 
= "MAGTAPE" 
="INDUSTRY STD l/2IN,1600 OR 6250 BPI" 
=1 
="Not apphcable " 
=INVENTORY _NODE_MEDIA_INFO 

=INVENTORY _NODE_MEDIA_INFO 
="CD-ROM" 
= "Compact Dtsk" 
=1 
="Not appbcable" 
=INVENTORY _NODE_MEDIA_INFO 

=INVENTORY _OAT A_SET_INFO 
=INVENTORY 

=INVENTORY 
= "NSSDC" 

=INVENTORY _DAT;1-_SET_INFO 



B-26 

PRODUCT_DATA_SET_ID 

OBJECT =INVENTORY _NODE_MEDIA_INFO 
MEDIUM_ TYPE 
MEDIUM_DESC 
COPIES 
INVENTORY _SPECIAL_ORDER_NOTE 
END_OBJECT 

END_OBJECT 
END_OBJECT 
END 

Appendix B Complete PDS Catalog ObJect Template Set 

="CD-ROM" 
= "Compact D1sk" 
=1 
= "Not applicable " 

= "VG2-N-ISS-2-EDR-Vl 0" 

=INVENTORY _NODE_MEDIA_INFO 

=INVENTORY _DATA_SET_INFO 
=INVENTORY 



Append1x B Complete PDS Catalog Object Template Set · B-27 

B.7 MISSION 

The MISSION catalog object IS used to submit mformation about a miSSion or camprugn to PDS. 
Sub-objects are mcluded for identifying associated instrument hosts, targets, and references. A 
separate REFERENCE object will need to be completed for any new references not already a part 
of the PDS catalog. 

(1) The MISSION INFORMATION catalog object provides start and stop times and textual 
descnptions, MISSION_DESC and MISSION_OBJECTIVES_SUMMARY. Suggested 
contents include agency mvolvement, spacecraft/observatory utilized, mission scenarto 
mcluding phases, technology and scientific objectives. 

Under MISSION_DESC = 

Mission Overvtew 

A high-level description of a mission. 

MisSIOn Phases 

A description of each phase of a missiOn, starting with the pre-launch phase and continuing 
through end-of-missiOn. This includes start and stop times of each phase, mtended 
operations, targets, and mission phase objectives. 

Under MISS~ON_OBJECTIVES_SUMMARY = 

MISSIOn ObJectives Overview 

A high-level descriptiOn of the objectives of the mission. 

(2) The MISSION HOST catalog object IS completed for each instrument host associated with 
the mission or campaign. If there is more than one instrument host involved in the mission, 
this object is repeated. 

(3) The MISSION TARGET catalog object is completed for each target associated with an 
mstrument host. If there is more than one target for a given host, this obJeCt is repeated. 

(4) The MISSION REFERENCE INFORMATION catalog object is completed for each 
reference associated with t~e mission. If there is more than one reference, this object IS 
repeated. A separate REFERENCE template is completed to provide the proper citation for 
each reference. 



B-28 Appendix B Complete PDS Catalog Object Template Set 

Example: 

I* Template MISSion Template Rev 1993-09-24 

I* Note Complete one template for each ffilSSIOn or campaign Identify 
I* multiple hosts assoctated w1th the ffilSSion by repeaung the 
I* hnes begmrung and ending w1th the MISSION_HOST values For · 
I* each mstrument_host Identtfied, repeat the 3 hnes for the 
I* MISSION_ TARGET object for each target assoc1ated With the host 
I* Also complete a separate REFERENCE template for each new 
I* reference subffiltted to PDS 

I* H1erarchy MISSION 
I* MISSION_INFORMATION 
I* MISSION_HOST 
I* MISSION_TARGET 
I* MISSION_REFERENCE_INFORMA TION 

CCSD3ZFOOOO 100000001 NJPL3IFOPDSX00000001 

PDS_ VERSION_ID 

OBJECT 
MISSION_NAME 

OBJECT 
MISSION_START _DATE 
MISSION_STOP _DATE 
MISSION_ALIAS_NAME 
MISSION_DESC= " 

M1ss1on Overview 

=PDS3 

=MISSION 
= "MAGELLAN" 

= MISSION_INFORMATION 
= 1989-05-04 
=UNK 
="Venus Radar Mapper (VRM)" 

*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 

The Magellan spacecraft was launched from the Kennedy Space Center on 4 May 1989 The spacecraft was deployed 
from the Shuttle cargo bay after the Shuttle achieved parkmg orbtt Magellan, usmg an merual upper stage rocket, was 
then placed into a Type IV transfer orbit to Venus where 1t earned out radar mappmg and gravity studies starting m August 
1990 The Mission has been descnbed m many papers mcludmg two special Issues of the Journal of Geophysical Research 
[VRMPPI983,SAUNDERSETALI990, 1GRMGNI992] The radar system IS also descnbed m (10HNSONI990] 

The aerobrakmg phase of the m1sswn was designed to change the Magellan orbit from eccentric to nearly cucular This 
was accomplished by droppmg penapsts to less than 150 km above the surface and usmg atmosphenc drag to reduce the 
energy m the orbit Aerobrakmg ended on 3 August 1993, and penaps1s was boosted above the atmosphere leavmg the 
spacecraft man orbit that was 540 km above the surface at apoaps1s and 197 km above the surface at pen apsis The orbit 
period was 94 ffilnutes The spacecraft remamed on tts medium-gam antenna m thts orbtt until Cycle 5 began officially 
on 16 August 1993 

Dunng Cycles 5 and 6 the orbit was low and approximately c1rcular The emphas1s was on collecting h1gh-resoluuon 
grav1ty data Two bistatlc surface scattenng expenments were conducted, one on 6 October (orbits 9331, 9335, and 9336) 
and the second on 9 November ( orb1ts 9846-9848) 

MISSion Phases 

MISSion phases were defined for s1gruficant spacecraft activity penods Dunng orbital operations a 'cycle' was 
approximately the ttme reqwred for Venus to rotate once under the spacecraft (about 243 days) But there were orb1t 
adJustments and other activities that made some mappmg cycles not strictly contiguous and shghtly longer or shorter than 
the rotatiOn period 



Appendix B. Complete PDS Catalog Object Template Set B-29 

PRELAUNCH 

The prelaunch phase extended from dehvery of the spacecraft to Kennedy Space Center until the start of the launch 
countdown 

Spacecraft Id 
Target Name 
MJsswn Phase Start T1me 
MISSion Phase Stop T1me 
Spacecraft Operauons Type 

LAUNCH 

MGN 
VENUS 
1988-09-01 
1989-05-04 
ORBITER 

The launch phase extended from the start of launch countdown unul completiOn of the InjeCtiOn mto the Earth­
Venus trajectory 

Spacecraft Id 
Target Name 
MISSIOn Phase Start Time 
MISSion Phase Stop Time 
Spacecraft OperatiOns Type 

CRUISE 

MGN 
VENUS 
1989-05-04 
1989-05-04 
ORBITER 

The cruiSe phase extended from Injection mto the Earth-Venus trajectory until 10 days before Venus orbit msert1on 

Spacecraft Id 
Target Name 
MISSion Phase Start T1me 
MISSIOn Phase Stop T1me 
Spacecraft OperatiOns Type 

ORBIT INSERTION 

MGN 
VENUS 
1989-05-04 
1990-08-01 
ORBITER 

The Venus orbit mseruon phase extended from 10 days before Venus orbit msertion until burnout of the solid rocket 
Injection motor 

Spacecraft Id 
Target Name 
MisSion Phase Start Time 
MISSion Phase Stop T1me 
Spacecraft OperatiOns Type 

ORBIT CHECKOUT 

MGN 
VENUS 
1990-08-01 
1990-08-10 
ORBITER 

The orbit tnm and checkout phase extended from burnout of the solid rocket Injection motor until the begmrung of 
radar mappmg 

Spacecraft Id 
Target Name 
MISSion Phase Start T1me 
MISSion Phase Stop T1me 
Spacecraft Operauons Type 

MGN 
VENUS 
1990-08-10 
1990-09-15 
ORBITER 



B-30 Appendix B. Complete PDS Catalog Object Template Set 

MAPPING CYCLE I 

The first mappmg cycle extended from completiOn of the orbit tnm and checkout phase until completion of one 
cycle of radar mappmg (approXImately 243 days) 

Spacecraft Id 
Target Name 
M1ss1on Phase Start T1me 
MISSIOn Phase Stop T1me 
Spacecraft OperatiOns Type 

MAPPING CYCLE 2 

MGN 
VENUS 
1990-09-15 
1991-05-15 
ORBITER 

The second mappmg cycle extended from completion of the first mappmg cycle through an add1t1onal cycle of 
mappmg Acqu1S1t10n of 'nght-loolang' SAR data was emphas1zed Radio occultation measurements were earned 
out on orbits 3212-3214 A penod of battery recond1uorung followed compleuon of Cycle 2 

Spacecraft Id 
Target Name 
M1ss1on Phase Start Time 
M1ss10n Phase Stop T1me 
Spacecraft Operattons Type 

MAPPING CYCLE 3 

MGN 
VENUS 

. 1991-05-16 
: 1992-01-17 
.ORBITER 

The third mappmg cycle extended from completion of battery recondittomng through an additional cycle of 
mappmg (approximately 243 days) AcqmsttiOn of 'stereo' SAR data was emphasized The last orb1t m the thtrd 
cycle was orblt5747 

Spacecraft Id 
Target Name 
MISSIOn Phase Start Ttme 
Mtss1on Phase Stop T1me 
Spacecraft OperatiOns Type 

MAPPING CYCLE 4 

MGN 
VENUS 
1992-01-24 
1992-09-14 
ORBITER 

The fourth mappmg cycle extended from completion of the third mappmg cycle through an add!tlonal cycle of 
mappmg AcqUISitiOn of radiO traclang data for gravity stud1es was emphasized. Radio occultation measurements 
were earned out on orb1ts 6369. 6370,6471, and 6472 Because of poor observmg geometry for gravity data 
collecuon at the beg:mmng of the cycle. thiS cycle was extended 10 days beyond the nommal 243 days Orbits 
mcluded within the fourth cycle were 5748 through 7626. Penapsis was lowered on orbit 5752to Improve sensitiVIty 
to gravity features m Cycle 4 

Spacecraft ld 
Target Name 
MISSIOn Phase Start T1me 
MISSIOn Phase Stop T1me 
Spacecraft Operatwns Type 

AEROBRAKING 

MGN 
VENUS 
1992-09-14 
1993-05-25 
ORBITER 

The aerobrakmg phase extended from completion of the fourth mappmg cycle through achievement of a near­
Circular orb1t C!rculanzatwn was ach1eved more qutckly than expected, the first gravity data collecnon m the 
c1rcular orb1t was not scheduled unulll days later Orb1ts mcluded wtthm the aerobralang phase were 7627 through 
8392 

Spacecraft Id 
Target Name 

MGN 
VENUS 



Appendix B Complete PDS Catalog ObJect Template Set 

MISSIOn Phase Start T1me 
MISSIOn Phase Stop T1me 
Spacecraft Operations Type 

MAPPING CYCLE 5 

1993-05-26 
1993-08-05 
ORBITER 

B-31 

The fifth mappmg cycle extended from compleuon of the aerobrakmg phase through an additional cycle of mappmg 
(approximately 243 days) AcquiSitiOn of rad1o trackmg data for grav1ty stud1es was emphasized The first orbit m 
the fifth cycle was orb1t 8393 

Spacecraft ld 
Target Name 
MISSIOn Phase Start Time 
MISSIOn Phase Stop T1me 
Spacecraft Operations Type 

MAPPING CYCLE 6 

MGN 
VENUS 
1993-08-16 
1994-04-15 
ORBITER 

The s1xth mappmg cycle extended from completion of the fifth mappmg cycle through an add1UonaJ cycle of 
mappmg (approximately 243 days) Acqms1tion of rad1o trackmg data for grav1ty stud1es was emphas1zed The first 
orbtt m the s1xth cycle was orb1t 12249 

Spacecraft Id 
Target Name 
MJssJon Phase Start T1me 
MISSIOn Phase Stop T1me 
Spacecraft Operations Type 

MISSION_OBJECTIVES_SUMMARY 

MISSIOn ObJectives Overview 

Volcamc and Tectomc Processes 

MGN 
VENUS 
1994-04-16 
TBD 
ORBITER" 

Magellan 1mages of the Venus surface show Widespread ev1dence for volcanic activity A maJor goal of the 
Magellan missiOn was to prov1de a detruled global charactenzation of volcaruc land forms on Venus and an 
understanding of the mecharucs of volcan1sm m the Venus context Of part1cular mterest was the role of volcamsm 
m transportmg heat through the lithosphere While th1s goal Will largely be accomplished by a careful analysis of 
Images of volcan1c features and of the geological relatiOnships of these features to tectoruc and 1mpact structures, 
an essential aspect of charactenzatlon Will be an mtegration of tmage data w1th altimetry and other measurements 
of surface properties . 

For more mformation on volcamc and tectoruc mvestigauons see papers by [HEADETAL1992] and 
[SOLOMONETAL1992], respectively 

Impact Processes 

The finaJ phys1cal form of an 1mpact crater has meanmg only when the effects of the cratenng event and any 
subsequent mod1ficatton of the crater can be distmguished To th1s end, a careful search of the SAR 1mages can 
1dentify and charactenze both relatively pnstme and degraded 1mpact craters, together w1th theu ejecta depos1ts (m 
each s1ze range) as well as dlstlnguishmg 1mpact craters from those of volcamc ong~n The topographic measures of 
depth-to-d1ameter ratio, eJecta thickness distnbutlon as a function of distance from the crater, and the rebef of 
central peaks contnbute to th1s documentation 

For more mformatlon on mvestlgatlons of 1mpact processes see[SCHABERET AL1992] 

ErosiOnal. DepositiOnal. and Chem1cal Processes 



B-32 Appendix B Complete PDS Catalog Object Template Set 

The nature of erosiOnal and depositiOnal processes on Venus IS poorly known, pnmanly because the &agnostic 
landforms typically occur at a scale too small to have been resolved m Earth-based or Venera 15/16 radar 1mages 
Magellan Images show wmd eroded terrruns, landforms produced by deposition (dunefields), possible landslides 
and other down slope movements, as well as aeolian features such as radar bnght or dark streaks 'downwmd' from 
prorrunent topographic anomalies One measure of weathenng, erosiOn, and depositiOn IS provided by the extent to 
which SOil covers the surface (for Venus, the term sOil Is used for porous matenal, as Implied by Its relatively low 
value of bulk d1electnc constant) The existence of such matenal, and Its dependence on elevatiOn and geologic 
settmg, provide Important ms1ghts mto the mteractlons that have taken place between the atmosphere and the 
lithosphere 

For more mformatwn on erosiOnal, depositiOnal, and cherrucal processes see papers by [ARVIDSONET AL1992], 
[GREELEYET AL 1992],and [GREELEYET AL1994] 

Isostatic and Convective Processes 

Topography and gravity are mumately and mextncably related, and must be JOintly exarruned when undertaking 
geophysical mvesugatwns of the mtenor of a planet, where Isostatic and convective processes dorrunate. 
Topography provides a surface boundary conditiOn for modeling the mtenor density of Venus 

For more mformauon on topography and gravity see papers by[FORD&PETTENGILL1992], 
[KONOPLIVET AL1993], and[MCNAMEEETAL1993] " 

END_OBJECT 

OBJECT 
INSTRUMENT _HOST_ID 

OBJECT 
TARGET_NAME 
END_OBJECT 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 

END 

= MISSION_INFORMATION 

= MISSION_HOST 
="MGN" 

= MISSION_ TARGET 
="VENUS" 
= MISSION_ TARGET 
= MISSION_HOST 

= MISSION_REFERENCE_INFORMA TION 
= "ARVIDSON1991" 
= MISSION_REFERENCE_INFORMA TION 

= MISSION_REFERENCE_INFORMA TION 
= "ARVIDSONETAL1992" 
= MISSION_REFERENCE_INFORMA TION 

= MISSION_REFERENCE_INFORMA TION 
= "CAMPBELLETAL1992" 
= MISSION_REFERENCE_INFORMA TION 

= MISSION_REFERENCE_INFORMA TION 
= "TYLER1992" 
= MISSION_REFERENCE_INFORMA TION 

= MISSION_REFERENCE_INFORMA TION 
= "VRMPP1983" 
= MISSION_REFERENCE_INFORMA TION 

=MISSION 



Appendix B Complete PDS Catalog Object Template Set B-33 

B.8 PERSONNEL 

The PERSONNEL catalog object is used to provide new or updated information for personnel 
associated with PDS in some capacity. This includes data suppliers and producers for data sets or 
volumes archived w1th PDS, as well as PDS node personnel and contacts w1thin other agenc1es and 

· institutions. 

(1) The PERSONNEL INFORMATION catalog object provides name, address, 
telephone, and related information. 

(2) The PERSONNEL ELECTRONIC MAIL catalog obJect provides electronic 
mail informatiOn for personnel. This object may be repeated 1f more than one electronic 
mail address 1s applicable. 

Example 

I* Template Personnel Template Rev 1993-09-24 *I 

I* Note Complete one for each new PDS user, data supplier, or data *I 
*I 
*I 

I* producer If more than one electroruc mall address 1s avwlable 
I* repeat the hnes for the PERSONNEL_ELECTRONIC_MAIL obJect 

I* H1erarchy PERSONNEL 
I* PERSONNEL_INFORMATION 
I* PERSONNEL_ELECTRONIC_MAIL 

OBJECT 
PDS_USER_ID 

OBJECT 
FULL_NAME 
LAST_NAME 
TELEPHONE_NUMBER 
ALTERN A TE_TELEPHONE_NUMBER 
FAX_NUMBER 
INSTITUTION_NAME 
NODE_ID 
PDS_AFFILIA TION 
REGISTRA TION_DATE 
ADDRESS_TEXT 

END_OBJECT 

OBJECT 
ELECTRONIC_MAIL_ID 
ELECTRONIC_MAIL_ TYPE 
PREFERENCE_ID 
END_OBJECT 

OBJECT 
ELECTRONIC_MAIL_ID 
ELECTRONIC_MAIL_TYPE 
PREFERENCE_ID 
END_OBJECT 

=PERSONNEL 
=PFORD 

= PERSONNEL_INFORMA TION 
= "PETER G FORD" 
=FORD 
= "6172536485" 
= "6172534287" 
= "6172530861" 

*I 
*I 
*I 

="MASSACHUSETTS INSTITUTE OF TECHNOLOGY" 
= "GEOSCIENCE" 
="NODE OPERATIONS MANAGER" 
= 1990-02-06 
="Massachusetts Institute of Technology 
Center for Space Research Blllldmg 37-601Cambndge, MA 02139" 
= PERSONNEL_INFORMA TION 

= PERSONNEL_ELECTRONIC_MAIL 
= "PGF@SPACE MIT EDU" 
="INTERNET' 
=I 
= PERSONNEL_ELECTRONIC_MAIL 

= PERSONNEL_ELECTRONIC_MAIL 
="PFORD" 
= "NASAMAIL" 
=2 
= PERSONNEL_ELECTRONIC_MAIL 



B-34 

OBJECT 
ELECTRONIC_MAIL_ID 
ELECTRONIC_MAIL_ TYPE 
PREFERENCE_ID 
END_OBJECT 

END_OBJECT 
END 

Appendix B Complete PDS Catalog Object Template Set 

= PERSONNEL_ELECTRONIC_MAIL 
= "JPLPDS PFORD" 
= "NSUDECNET" 
=3 
= PERSONNEL_ELECTRONIC_MAIL 

=PERSONNEL 



Append1x B Complete PDS Catalog Object Template Set B-35 

B.9 REFERENCE 

The REFERENCE catalog object IS completed for each reference assoctated With a missiOn, 
instrument host, mstrument, data set, or data set collection catalog object. Submit any important 
references, including both published and unpublished internal documents or informal memoranda. 
This also may include references to published data, such as PDS archive volumes. A copy of an 
unpublished reference should be forwarded to the PDS node responsible for your data set archive, 
whenever possible. 

(1) The REFERENCE catalog object provides a reference citation and a umque 
identifier for every reference associated with the PDS data archtve. 

Example: 

I* Template Reference Template Rev 1993-09-24 

I* Note Th1s template shall be completed for each reference associated With a miSSion, 
I* mstrument host, mstrument, data set, or data set collecnon template 

OBJECf =REFERENCE 
REFERENCE_KEY _ID = "GURNETTETAL1991" 

*I 

*I 
*I 

REFERENCE_DESC ="Gamet, D A , W S Kurth, A Roux, R Gendnn, C F Kennel, S J 
Bolton, L1ghtrung and Plasma Wave Observations from the Gahleo Flyby of Venus, Science, 253, 1522, 1991 " 
END_OBJECf =REFERENCE 

OBJECf =REFERENCE 
REFERENCE_KEY _ID = ARVIDSONETAL1990A 
REFERENCE_DESC = "Amdson, R E , E A Gumness. S . 
Slavney, D Acevedo, J Hyon, and M Martin, Pre-Magellan radar and gravtty data, Jet Propulsion Laboratory, CDROM 
(USA_NASA_JPL_MG_JOOI)" 
END_OBJECf =REFERENCE 
END 



B-36 Appendix B. Complete PDS Catalog Object Template Set 

B.lO SOFTWARE_INVENTORY 

The SOFTW ARE_INVENTORY catalog object is completed for each software program 
registered in the PDS Software Inventory. This Inventory includes software avrulable within the 
Planetary Science community, mcluding software on PDS ~chive volumes. Of interest are any 
applications, tools, or libraries that have proven useful for the display, analysis, formatting, 
transformation, or preparation of either science data or meta-data for the PDS archives. 

(1) The SOFTW ARE_INVENTORY catalog object provtdes general mformation about the 
software tool mcluding a descnption, availability mformation, and dependencies. 

Example: ) 

I* Template Software Inventory Template Rev 1995-05-01 *I 

I* Note This template should be completed to register software m the *I 
*I I* PDS Software Inventory. 

OBJECT = SOFTW ARE_INVENTORY 

/* Software Inventory General Information 
SOFTW ARE_ID 
SOFTW ARE_NAME 
SOFTWARE_ VERSION_ID 
GRAPHIC_FILE_SPECIFICA TION_NAME 
SOFTW ARE_DESC 

SOFTW ARE_PURPOSE_ID 
DATA_FORMAT 
MISCELLANEOUS_DESC 

*I 
=CLIMDISP 
=="CLEMENTINE IMAGE DISPLAY VI 0" 
= "1 0" 
="NIA" 
= "Image D1splay program for Clementine MJSSJon 
EDR Image Data Products " 
= DISPLAY 
== PDS 
= "CLIMDISP V 1 0 IS based on the IMDISP 

program. vemon 7 9g The modJficauons made are transparent to the user, therefore the IMDISP user's gu1de IS smtable for 
CLIMDISP users There have been no changes to the IMDISP user gu1de, wh1ch IS mcluded on the Clementme EDR Arcluve 
However, the user should be aware of the followmg 

1 Th1s user gmde and the executable and help files have been renamed from IMDISP DOC, IMDISP.EXE, IMDISP HLP to 
CLIMDISP TXT, CLIMDISP EXE, CLIMDISP.HLP respectively Therefore, the program JS mvoked by typmg 'CLIMDISP' 
or 'CLIMDISP <filename>' 

2 There have been no changes to the ex1stmg IMDISP enVJTonment vanables (IMDISP, IMBROWSE, IMPALETTE, 
IMREFRESH, IMHELP), they remam as defined m the user guide CLIMD ISP was created by the Planetary Data System (PDS) to 
specifically prov1de support for the Clementme MISSIOn EDR Image Data Products " 

I* Software Inventory A va!lab1hty InformatiOn 
SOFIW ARE_LICENSE_TYPE 
FTP _SITE_ID 
FILE_SPECIFICA TION_NAME 
FTP _FILE_FORMAT 
COGNIZANT _FULL_NAME 
ELECTRONIC_MAIL_ID 
TELEPHONE_NUMBER 
AFFILIA TION_ID 
SUPPORT_TYPE 
SUPPORT_MA TERIAL_TYPE 

= PUBLIC_DOMAIN 
="N/A" 
="NIA" 
="NIA" 
= "G M WOODWARD" 
= "gwoodward@jplpds Jpl nasa gov" 
= "8183066047" 
=PDS_CN 
=PROTOTYPE 

*I 

= {SOURCE, BINARIES, INSTALLATION, DOCUMENTATION} 



Appendix B Complete PDS Catalog Object Template Set B-37 

I* Sofware Inventory Dependencies Infonnat10n 
PROGRAMMING_LANGUAGE_NAME 

PLATFORM_ TYPE 
SUPPORT_SOFTVVARE_NAME 
REQUIRED_STORAGE_BYTES 

END_OBJECT 
END 

*I 
=("MICROSOFT C V6 O","MICROSOFf MACRO ASSEMLBER 
V5 1"} 
="IBM/DOS" 
="N/A" 
= 433664 <BYTES> 

= SOFIW ARE_ INVENTORY 



B-38 Appendix B Complete PDS Catalog Object Template Set 

B.ll TARGET 

The TARGET catalog object forms part of a standard set for the submission of a target to the PDS. 
The TARGET object contains the followmg sub-objects: TARGET _INFORMATION and 
TARGET_REFERENCE_INFORMATION 

(1) The TARGET INFORMATION catalog object provides target physical and dynamic 
parameters. 

(2) The TARGET REFERENCE INFORMATION catalog object 1s completed for each 
reference associated with the target. If there 1s more than one reference, thls object is 
repeated. A separate REFERENCE template is completed to provide the proper citation for 
each reference. 

Example 

I* Template Target Template 

I* Note The followmg template IS used for the 
I* subffilSSIOn of a target to the PDS 

OBJECT 
TARGET_NAME 

OBJECT 
TARGET_TYPE 
PRIMARY _BODY _NAME 
ORBIT_DIRECTION 
ROTATION_DIRECTION 
TARGET_DESCRIPTION 

A_AXIS_RADIUS 71492 000000 
B_AXIS_RADIUS 71492 000000 
BOND_ALBEDO UNK 
C_AXIS_RADIUS 66854 000000 
FLATTENING 0 006500 

Rev 1995-01-01 

=TARGET 
=JUPITER 

= TARGET_INFORMATION 
=PLANET 
=SUN 
=PROGRADE 
=PROGRADE 
= 

MAGNETIC_MOMENT 155000000000000000000 000000 
MASS 1898799999999999953652202602496 000000 
MASS_DENSITY 1 330000 
MINIMUM_SURFACE_TEMPERA TURE UNK 
MAXIMUM_SURFACE_TEMPERATURE UNK 
MEAN_SURFACE_TEMPERATURE UNK 
EQUATORJAL_RADIUS: 71492000000 
MEAN_RADIUS 69911 000000 
SURFACE_GRA VITY 25 900000\ 
REVOLUTION_PERIOD 4333 000000 
POLE_RJGHT_ASCENSION 268 000000 
POLE_DECLINA TION 64 500000 
SIDEREAL_ROT A TION_PERJOD 0 410000 
MEAN_SOLAR_DAY 0410000 
OBLIQUITY 3 100000 
ORBITAL_ECCENTRICITY 0 048000 
ORBITAL_INCLINATION 1.300000 
ORBIT AL_SEMIMAJOR_AXIS 778376719 000000 
ASCENDING_NODE_LONGITUDE 100 500000 

*I 

*I 
*I 



Append1x B. Complete PDS Catalog Object Template Set 

PERIAPSIS_ARGUMENT_ANGLE 275 200000 

END_OBJECT 

OBJECT 
REFERENCE_KEY _ID 
END_OBJECT 

END_OBJECT 
END 

=TARGET _INFORMATION 

= TARGET_REFERENCE_INFORMATION 
="XYZ95" 
=TARGET _REFERENCE_INFORMATION 

=TARGET 

B-39 



B-40 Appendix B Complete PDS Catalog Object Template Set 



Appendix C Internal Representation of Data Types C-1 

APPENDIXC 

Internal Representation of Data Types 

This appendix contams the detailed internal representatiOns of the PDS standard data types listed 
in Table 3.2 of the Data Type Definitions chapter of th1s document. 

C.l MSB_INTEGER 

Aliases: INTEGER, MAC_INTEGER, SUN_INTEGER 

MSB 4-byte integers: 

i-sign 

t i3 i2 il iO 

76543210 76543210 76543210 176543210 

bO bl b2 

* Bit 7 in i3 is used for the sign bit. 

MSB 2-byte integers: 

i-sign 

! ll iO 

76543210 76543210 

bO bl 

*Bit 7 in il is used for the sign bit. 

MSB 1-byte mtegers: 

i-sign 

! iO 

176543210 1 
bO 

* Bit 7 is used for the sign bit. 

Where: 

b3 



C-2 

bO- b3 = 

1-s1gn = 

Appendix C Internal Representation of Data Types 

Arrangement of bytes as they, appear when read from a file (e.g., read bO 
first, then b1, b2, and b3). 

integer sign bit 

iO - 13 = Arrangement of bytes m the integer, from lowest order to highest order. The 
bits within each byte are intergreted from right to left, (e.g., lowest value =bit 0, highest value= 
bit 7) in the following way: 

4-bytes: 
In iO, btts 0-7 represent 2**0 through 2**7 
In i1, b1ts 0-7 represent 2**8 through 2**15 
In t2, bits 0-7 represent 2**16 through 2**23 
In i3, bits 0-6 represent 2**24 through 2**30 

2-bytes: 

1-byte: 

In 10, bits 0-7 represent 2**0 through 2**7 
In 11, bits 0-6 represent 2**8 through 2**14 

In 10, bits 0-6 represent 2**0 through 2**6 

All negative signed values are assumed to be twos-compliment. 

C.2 MSB_UNSIGNED_INTEGER 

Aliases:MAC_ UNSIGNED_INTEGER, SUN_lTNSIGNED _INTEGER, 
UNSIGNED_INTEGER 

MSB 4 byte unsigned integers: 

i3 i2 i1 iO 

76543210 76543210 76543210 76543210 

bO bl b2 b3 



Appendtx C Internal Representabon of Data Types 

MSB 2-byte unsigned integers: 

il iO 

76543210 76543210 

bO bl 

MSB 1-byte unsigned integers: 

iO 

176543210 1 
bO 

Where: 

C-3 

bO- b3 = Arrangement of bytes as they appear when read from a file (e.g., read bO 
first, then bl, b2, and b3). 

iO- 13 = Arrangementofbytesm the mteger, from lowest ordertohighestorder. The 
bits within each byte are mterpreted from right to left, (e.g., lowest value ;;bit 0, highest value= 
bit 7) in the following way: 

4-bytes: 
In iO, bits 0-7 represent 2**0 through 2**7 
In il, bits 0-7 represent 2**8 through 2**15 
In i2, bits 0-7 represent 2** 16 through 2**23 
In i3, bits 0-7 represent 2**24 through 2**31 

2-bytes: 

1-byte: 

In IO, b1ts 0-7 represent 2**0 through 2**7 
In il, bits 0-7 represent 2**8 through 2**15 

In iO, bits 0-7 represent 2**0 through 2**7 



C-4 

C.3 LSB_INTEGER 

Aliases: PC_INTEGER, V AX_INTEGER 

LSB 4-byte mtegers: 

iO i1 i2 

i-sign 

~ 13 

76543210 76543210 76543210 76543210 

bO bl b2 

* Bit 7 in I3 is used for the sign bit. 

LSB 2-byte mtegers: 

i-sign 

iO ~ il 

76543210 76543210 

bO bl 

* Bit 7 in i 1 is used for the sign bit. 

LSB 1-byte integers: 

i-sign 

~ iO 

76543210 

bO 

*Bit 7 in il is used for the sign bit. 

Where: 

b3 

Appendix C Internal Representauon of Data Types 

bO- b3 = Arrangement of bytes as they appear when read~ from a file (e.g., read bO 
first, then bl, b2, and b3). 

i-sign = 

iO -13 = 

mteger sign bit 

Arrangement of bytes m the integer, from lowest order to highest order. The 
bits within each byte are interpreted from right to left, (e.g., lowest value = 



Appendix C Internal Representation of Data Types 

b1t 0, highest value = bit 7) m the followmg way: 

4-bytes: 
In iO, bits 0-7 represent 2**0 through 2**7 
In i1, bits 0-7 represent 2**8 through 2**15 
In i2, bits 0-7 represent 2**16 through 2**23 
In 13, bits 0-6 represent 2**24 through 2**30 

2-bytes: 
In iO, bits 0-7 represent 2**0 through 2**7 
In i1, bits 0-6 represent 2**8 through 2**14 

1-byte: 
In iO, bits 0-6 represent 2**0 through 2**6 

All negative signed values are assumed to be twos-compliment. 

C.4 LSB_UNSIGNED_INTEGER 

Aliases: PC_ UNSIGNED _IN1EGER, VAX_ UNSIGNED _INTEGER 

LSB 4-byte unsigned integers: 

iO i1 i2 i3 

76543210 76543210 76543210 76543210 

bO b1 b2 

LSB 2-byte unsigned integers: 

10 il 

76543210 76543210 

bO bl 

LSB 1-byte unsigned integers: 

iO 

176543210 1 

bO 

b3 

C-5 



C-6 Appendix C Internal Representation of Data Types 

Where: 

bO - b3 = Arrangement ofbytes as they appear when read from a file (e.g., read bO first, then 
b 1, b2, and b3). 

iO- 13 =Arrangement of bytes in the integer, from lowest order to highest order. The bits 
Within each byte are mterpreted from nght to left, (e.g., lowest value =bit 0, highest value= bit 7) 
in the following way: 

4-bytes: 

In iO, bits 0-7 represent 2**0 through 2**7 
In i1, bits 0-7 represent 2**8 through 2**15 
In i2, bits 0-7 represent 2**16 through 2**23 
In i3, bits 0-7 represent 2**24 through 2 **31 

2-bytes: 

1-byte: 

In iO, bits 0-7 represent 2**0 through 2**7 
In i1, bits 0-7 represent 2**8 through 2** 15 

In iO, bits 0-7 represent 2**0 through 2**7 

C.S IEEE_REAL 

Aliases: FLOAT, MAC_REAL, REAL, SUN_REAL 

IEEE 4-byte real numbers: 
m-sign 

! el 

eO 

~ mO ml rn2 

76543210 76543210 76543210 76543210 

bO bl b2 b3 



Appendix C Internal Representation of Data Types C-7 

IEEE 8-byte (double precision) real numbers: 

eO mO ml m2 m3 m4 m5 m6 

76543210 76543210 76543210 76543210 76543210 76543210 76543210 76543210 

bO bl b2 b3 b4 b5 b6 b7 

*Bit 7 m e1 is used for the mantissa sign bit. 

IEEE 10-byte (temporary) real numbers: 

m-sign int-bit (always 1) 

! e1 eO ! mO ml m2 

76543210 76543210 176543210 76543210 76543210 

bO b1 b2 b3 b4 

m3 m4 m5 m6 m7 

76543210 76543210 76543210 76543210 176543210 

b5 b6 b7 b8 b9 

* Bit 7 in e 1 IS used for the mantissa sign bit. 

Where: 

bO- b9 = 

m-sign = 

int-bit = 

eO- el = 

Arrangement of bytes as they appear when read from a file (e.g., read bO 
first, then b1, b2, b3, etc.). 

Mantissa sign btt 

In 10 byte reals only, the implicit "1" is actually specified by this bit .. 

Arrangement of the portions of the bytes that make up the exponent, from 
lowest order to highest order. The bits within each byte are interpreted from 
right to left, (e.g.,lowest value= rightmost bit in the exponent part of the 
byte, highest value = leftmost bit in the exponent part of the byte) in the 
following way: 

4-bytes (single precision): 
In eO, bit 7 represents 2**0 
In e1, bits 0-6 represent 2**1 through 2**7 

Exponent bias = 127 

8-bytes (double precision): 



C-8 Appendix C Internal Representation of Data Types 

In eO, bits 4-7 represent 2**0 through 2**3 
In el, bits 0-6 represent 2**4 through 2**10 

Exponent bias = 1023 

10-bytes (temporary): 
In eO, bits 0-7 represent 2**0 through 2**7 
In e1, bits 0-6 represent 2**8 through 2**14 

Exponent bias = 16383 

mO- m7 = Arrangement of the portiOns of the bytes that make up the mantissa, from 
highest order fractions to the lowest order fractions. The order of the bits 
within each byte progresses from left to right, with each bit representing a 

,fractional power of two, in the followmg way: 

4 -bytes (smgle precision): 
In mO, bits 6-0 represent 1/2** 1 through 112**7 
In m1, bits 7-0 represent 1/2**8 through 1/2**15 
In m2, bits 7-0 represent 1/2**16 through 112**23 

8-bytes (double precision): 
In mO, bits 3-0 represent 112**1 through 1/2**4 
In m1, bits 7-0 represent 1/2**5 through 112**12 
In m2, bits 7-0 represent 1/2**13 through 112**20 
In m3, bits 7-0 represent 1/2**21 through 112**28 
In m4, bits 7-0 represent 112**29 through 1/2**36 
In m5, bits 7-0 represent 1/2**37 through 112**44 
In m6, bits 7-0 represent 1/2**45 through 112**52 

10-bytes (temporary): . 
In mO, bits 6-0 represent 112**1 through 112**7 
In m1, bits 7-0 represent 1/2**8 through 1/2**15 
In m2, bits 7-0 represent 112** 16 through 112**23 
In m3, bits 7-0 represent 112**24 through 1/2**31 
In m4, bits 7-0 represent 112**32 through 1/2**39 
In m5, bits 7-0 represent 1/2**40 through 1/2**47 
In m6, bits 7-0 represent 1/2**48 through 1/2**55 
In m7, bits 7-0 represent 1/2**56 through 1/2**63 

These representations all follow the format: 

1. (mantissa) x 2** (exponent- bias) 
with the "1." part implicit (except for the 10-byte temp real, in which the "1." part is actually stored 
in the third byte (b2)), 



-·· 1 

Appendix C Internal Representation of Data Types C-9 

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponen -as-stored- bias= 
true exponent value). 

C.6 IEEE_COMPLEX 

Aliases: COMPLEX, MAC_COMPEX, SUN_COMPLEX 

Two contiguous IEEE_REALs in memory, representing the real and tmagmary parts. 

C.7 PC_REAL 

Abases: None 

PC 4-byte real numbers: 

eO-bit m-sign 

m2 m1 l mO l el 

76543210 76543210 76543210 76543210 

bO b1 b2 b3 

* Btt 7 m e 1 is used for the mantissa sign btt. 

PC 8-byte (double precision) real numbers: 

m6 m5 m4 m3 

76543210 76543210 76543210 76543210 

bO bl b2 b3 

*Bit 7 mel is used for the mantissa sign bit. 

m2 ml 

76543210 76543210 

b4 b5 

eO 

m-sign 

mOl el 

76543210 76543210 

b6 b7 



C-10 Appendix C Internal Representation of Data Types 

PC 10-byte (temporary) real numbers: 

m7 m6 m5 m4 m3 

76543210 76543210 76543210 76543210 76543210 

bO bl b2 b3 b4 

m2 

int-bit 

~ mO 

m-sign 

~· e1 m1 eO 

76543210 76543210 76543210 76543210 76543210 

b5 b6 

Where: 

bO- b9 = 

m-stgn = 

int-bit = 

eO- e1 = 

b7 b8 b9 

Arrangement of bytes as they appear when read from a file (e.g., read bO 
first, then b1, b2, b3, etc.). 

Mantissa sign bit 

In 10 byte reals only, the implicit II 1 II is actually specified by this bit. 

Arrangement of the portions of the bytes that make up the exponent, from 
lowest order to highest order. The bits w1thm each byte are interpreted from 
right to left, (e.g., lowest value= rightmost b1t in the exponent part of the 
byte, highest value = leftmost bit in the exponent part of the byte) in the 
following way: 

4-bytes (single precision) : 
In eO, bit 7 represents 2**0 
In e1, bits 0-6 represent 2**1 through 2**7 

Exponent bias = 127 

8-bytes (double precision) : 
In eO, bits 4-7 represent 2**0 through 2**3 
In e1, bits 0-6 represent 2**4 through 2** 10 

Exponent bias = 1023 

10-bytes (temporary): 
In eO, bits 0-7 represent 2**0 through 2**7 
In e1, bits 0-6 represent 2**4 through 2**10 



Appendtx C Internal Representation of Data Types C-11 

Exponent bias = 16383 

m0-m7= Arrangement of the portions of the bytes that make up the mantissa, from 
highest order fractions to lowest order fractions. The order of the bits within 
each byte progresses from left to right, with each bit representing a 
fractional power of two; in the following way: 

4-bytes (single precision): 
In mO, btts 6-0 represent 112**1 through 1/2**7 
In m1, bits 7-0 represent 112**8 through 112**15 
In m2, bits 7-0 represent 1/2**16 through 112**23 

8-bytes (double precision) : 
In mO, bits 3-0 represent 1/2** 1 through 112**4 
In m1, bits 7-0 represent 112**5 through 1/2**12 
In m2, bits 7-0 represent 1/2**13 through 1/2**20 
In m3, bits 7-0 represent 1/2**21 through 112**28 
In m4, bits 7-0 represent 1/2**29 through 1/2**36 
In m5, bits 7-0 represent 112**37 through 112**44 
In m6, bits 7-0 represent 112**45 through 112**52 

10-bytes (temporary): 
In mO, bits 6-0 represent 112** 1 through 1/2**7 
In m1, bits 7-0 represent 112**8 through 112**15 
In m2, bits 7-0 represent 1/2**16 through 1/2**23 
In m3, bits 7-0 represent 1/2**24 through 1/2**31 
In m4, bits 7-0 represent 1/2**32 through 1/2**39 
In m5, bits 7-0 represent 112**40 through 112**47 
In m6, bits 7-0 represent 1/2**48 through 1/2**55 
In m7,'bits 7-0 represent 112**56 through 112**63 

These representations all follow the format: 

1. (mantissa) x 2**(exponent- bias) 

with the" 1." part implicit (except for the 10-byte temp real, in which the "1 ... part is actually stored 
in the third byte (b2)), · 

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored­
bias=true exponent value). 



C-12 Appendix C Internal Representation of Data Types 

C.8 PC_COMPLEX 

Aliases: None 

Two contiguous PC-REALs in memory, representing the real and Imaginary parts. 

C.9 VAX_REAL, VAXG_REAL 

Aliases: V AX_DOUBLE (for VAX-REAL only, none for V AXG_REAL) 

VAX F-type 4-byte real numbers: 

eO 

t 
m-sign 

t el m2 m1 mO 

76543210 76543210 76543210 76543210 

bO b1 b2 b3 

* Bit 7 m e lis used for the mantissa sign bit. 

VAX D-type 8-byte real numbers: 

eO-btt m-stgn 

! mO ! el m2 ml m4 m3 m6 m5 

76543210 76543210 176543210 76543210 76543210 76543210 76543210 76543210 

bO bl b2 b3 b4 b5 b6 b7 

* Bit 7 m e 1 IS used for the mantissa sign bit. 

VAX G-type 8-byte real numbers: 

m-sign 

eO mO l e1 m2 ml m4 m3 m6 m5 

76543210 76543210 76543210 76543210 176543210 176543210 176543210 176543210 

bO bl b2 b3 b4 b5 b6 b7 



Appendix C Internal RepresentatiOn of Data Types C-13 

VAX H-type 16-byte real numbers: 

Where: 

eO ml mO m3 

76543210 176543210 76543210 176543210 

bl b2 b3 b4 

m6 m9 m8 mll 

76543210 176543210 176543210 176543210 

b0-bl5= 

m-sign = 

eO- el = 

b9 b10 bll bl2 

Arrangement of bytes as they appear when read from a file (e.g., read bO 
first, then bl, b2, b3, etc.). 

Mantissa sign bit 

Arrangement of the portions of the bytes that make up the exponent, from 
lowest order to highest order. The bits within each byte are mterpreted from 
right to left, (e.g., lowest value= rightmost bit in the exponent part ofthe 
byte, highest value = leftmost bit in the exponent part of the byte) in the 
following way: 

4-bytes (F-type, single precision) : 
In eO, bit 7 represents 2**0 
In el, bits 0-6 represent 2**1 through 2**7 

Exponent bias= 129 

8-bytes (D-type, double precision) : 
In eO, bit 7 represents 2**0 
In e1, bits 0-6 represent 2**1 through 2**7 

Exponent bias= 129 

· 8-bytes (G-type, double precision) : 
In eO, bits 4-7 represent 2**0 through 2**3 
In el, bits 0-6 represent 2**4 through 2**10 

Exponent bias = 1025 



C-14 Appendix C Internal Representation of Data Types 

16-bytes (H -type) : 

In eO, bits 0-7 represent 2**0 through 2**7 
In e1, bits 0-6 represent 2**8 through 2**14 

Exponent bias = 16385 

mO -m 13 = Arrangement of the portions of the bytes that make up the mantissa, from 
highest order fractions to lowest order fractions. The order of the bits within 
each byte progresses from left to right, with each bit representing a 
fractional power of two, in the followmg way: 

4-bytes (F-type, single precision) : 
In mO, bits 6-0 represent 112**1 through 1/2**7 
In ml, bits 7-0 represent 1/2**8 through 1/2**15 
In m2, bits 7-0 represent 112**16 through 112**23 

8-bytes (D-type, double precision) : 
In mO, bits 6-0 represent 112**1 through 1/2**7 
In m1, bits 7-0 represent 1/2**8 through 1/2**15 
In m2, bits 7-0 represent 1/2**16 through 1/2**23 
In m3, bits 7-0 represent 112**24 through 1/2**31 
In m4, bits 7-0 represent 1/2**32 through 112**39 
In m5, bits 7-0 represent 1/2**40 through 112**47 
In m6, bits 7-0 represent 1/2**48 through 112**55 

8-bytes (G-type, double precision): 
In mO, bits 3-0 represent 1/2**1 through 1/2**4 
In m1, bits 7-0 represent 1/2**5 through 112** 12 
In m2, bits 7-0 represent 1/2**13 through 1/2**20 
In m3, bits 7-0 represent 1/2**21 through 112**28 
In m4, 'bits 7-0 represent 1/2**29 through 1/2**36 
In m5, bits 7-0 represent 112**37 through 112**44 
In m6, bits 7-0 represent 1/2**45 through 1/2**52 

16-bytes (H-type) : 
In mO, bits 7-0 represent 1/2**1 through 1/2**8 
In m1, bits 7-0 represent 1/2**9 through 1/2**16 
In m2, bits 7-0 represent 1/2**17 through 1/2**24 
In m3, bits 7-0 represent 1/2**25 through 1/2**32 
In m4, bits 7-0 represent 1/2**33 through 1/2**40 
In m5, bits 7-0 represent 1/2**41 through 1/2**48 
In m6, bits 7-0 represent 1/2**49 through 112**56 
In m7, bits 7-0 represent 1/2**57 through 112**64 
In m8, bits 7-0 represent 1/2**65 through 1/2**72 
In m9, bits 7-0 represent 1/2**73 through 112**80 



Appendix C: Internal Representation of Data Types 

In mlO, bits 7-0 represent 112**81 through 112**88 
In mil, b1ts 7-0 represent 1/2**89 through 112**96 
In ml2, bits 7-0 represent 112**97 through 112**104 
In m13, bits 7-0 represent 112**105 through 112**112 

These representations all follow the fonnat: 

1. (mantissa) x 2**(exponent- bias) 

with the "1." part implicit 

C-15 

In all cases, the exponent is stored as an unsigned, biased integer (e.g., exponent-as-stored 
-bias= true exponent value). 

C.lO VAX_COMPLEX, VAXG_COMPLEX 

Aliases: None 

Two contiguous V AX_REALs or V AXG_REALs m memory, representing the real and imaginery 
parts. 

C.ll MSB_BIT_STRING 

Aliases: BIT_STRING 

MSB n-byte btt strings: 

As read from a file: 

bits 
1 8 -

76543210 

bO 

bits 
9-16 

76543210 

bl 

bits 
17-24 

76543210 

b2 

No byte swapping is needed. 

bits 
25-32 

76543210 

b3 

Note: for n-byte bitstrings, continue pattern above. 

MSB 2-byte bit strings: 

• • • 

bits 
((nx8)-7)- (nx8) 

Q 



C-16 

As read from file: 

bits bits 
1-8 9-16 

76543210 76543210 

bO bl 

No byte swapping is needed. 

MSB 1-byte bit strings: 

As read from file: 

bits 
1-8 

176543210 1 

bO 

No byte swapping is needed. 

Where: 

Appendix C Internal Representation of Data Types 

bO- b3 =Arrangement of bytes as they appear when read from a file (e.g., read bO first, then 
bl, b2, and b3). 

The bits Within a byte are numbered from left to nght: 

76543210 

t t 
bit 1 bit 8 

C.12 LSB_BIT_STRING 

Aliases: V AX_BIT_STRING 

LSB 4-byte bit strings: 



Appendix C Internal Representation of Data Types 

As read from a file: 

bits 
25-32 

bitS 
17-24 

bits 
9-16 

btts 
1-8 

76543210 76543210 76543210 76543210 

bO b1 b2 

After bytes are swapped: 

bits 
1-8 

bits 
9-16 

bits 
17-24 

b3 

bits 
25-32 

76543210 76543210 76543210 76543210 

b3 b2 bl 

LSB 2-byte bit strings: 

As read from a file: 

bits bits 
9-16 1-R 

76543210 76543210 

bO b1 

After bytes are swapped: 

bits btts 
1-8 9-16 

76543210 76543210 

bl bO 

LSB 1-byte bit strings: 

As read from file: 

bits 
1-8 

176543210 1 
bO 

No byte swapping is needed. 

bO 

C-17 



C-18 Append1x C Internal Representation of Data Types 

Where: 

bO- b3 =Arrangement of bytes as they appear when read from a file (e.g., read bO first, 
then bl, b2, and b3). 

The bits w1thm a byte are numbered from left to right: 

76543210 

t t 
bit 1 bit 8 



Append1x D Examples of Reqmred Files D-1 

APPENDIXD 

Examples of Required Files 

The examples in this Appendix are based on both existmg or planned PDS archive volumes, but 
have been modified to reflect the most recent versiOn of the PDS standards. 

D.l AAREADME.TXT 

Each PDS archive volume shall include an "AAREADME.TXT" file that contams an overview of 
the contents and structure of the volume. An annotated outline is provided here as gmdance for 
compllmg thJ.s file. 

Annotated Outline 

I. PDS TEXT ObJect (must appear man attached or detached label) 

II. Volume Title 

ill. Contents 

1. Introduction 
a. Science data content 
b. Conformance to PDS standards 
c. Document or institutional references for additional sctence information 

2. Volume format 
a. Computer systems that can access the volume 
b. International standards to which the volume conforms 

3. File formats 
a. Data record formats 
b. Specifications for specialized files (e.g., Postscript) 
c. Description of PDS obJects, pointers, etc. 

4. Volume contents 
. a. Directory structure of the volume 

5. Recommended CD-ROM drives (if applicable) 
a. Dnver descriptions and notes for all appropriate computer platforms 



D-2 Appendix D Examples of Requrred Files 

6. Errata (if applicable) 
a. Known errors, cautionary notes, disclaimers, etc. 
b. Reference to the ERRATA TXT file on the volume or onlme 

7. Contacts 
a. Names and addresses of people or organizations to contact for questions 
concerrung science data, technical support, data product generation and labelling, 
etc. 

Example: 

The followmg is an example of an AAREADME.TXT file used on a PDS archive volume that does 
not use the logical volume construct. Note that section 3 in the example would need to be updated 
if logical volumes were present. 

PDS_ VERSION_ID 

RECORD_TYPE 
RECORD_BYTES 
SPACECRAFT_NAME 
TARGET_NAME 
OBJECT 
PUBLICATION_DATE= 1994-06-01 
NOTE 
END_OBJECT 
END 

MAGELLAN LOSAPDR ARCHIVE CD-WO 

1. Introduction 

=PDS3 

= FIXED_LENGTH 
=80 
=MAGELLAN 
=VENUS 
=TEXT 

= "MAGELLAN LOSAPDR ARCHIVE CD-WO" 
=TEXT 

11us CD-WO contams Magellan Cycle 4 LOSAPDR (Lme of Stght Acceleration Profile Data Record) products It also contams 
documentation which descnbe the LOSAPDRs Each LOSAPDR product con tams the results from processmg of radio track:mg data 
of the Magellan spacecraft There are 866 LOSAPDRs on thts volume 

The LOSAPDR products archtved on thts volume are the exact products released by the Magellan ProJect Supportmg 
documentatlon and label files conform to the Planetary Data System (PDS) Standards, VersiOn 3 0, Jet PropulsiOn Laboratory (JPL) 
document JPL D-7669 

Additional mformatton about the Magellan gravtty expenment, mclud!ng the acqulSitton, processmg, and quality of the LOSAPDR 
data, can be found m JPL documents that are available from the PDS Geosciences Node, Washmgton Umverslty, St Louts, MO 

2. Disk Format 

The d1sk has been formatted so that a vanety of computer systems (e g IBM PC, Macmtosh, Sun) may access the data Specifically, 
tt ts formatted according to the ISO 9660 level I Interchange Standard For further mformatton, refer to the ISO 9660 Standard 
Document RF# ISO 9660-1988, 15 Apnll988 

3. File Formats 

Each orbit for whtch gravtty data exists Is represented by one LOSAPDR data file The LOSAPDR ts an ASCII file The data file 
contains 3 tables 1) HEADER_TABLE, 2) TIMES_TABLE, and 3) RESULTS_ TABLE The HEADER_ TABLEts a smgle-row 
multt-column table contaimng mfonnauon on Imttal values, control parameters. and Simple calculations reqmred by the program 



Appendix D Examples of Requtred Files D-3 

that generates the data files The TIMES_ TABLE IS a single column contauung exact times boundmg sphne mtervals to the Doppler 
residuals The number of rows IS vanable The RESULTS_ TABLE contams the results from sphne fits to Doppler residuals Each 
row m the table contams times, Doppler residuals. spacecraft positiOn and velocity mformat10n, and mferred spacecraft acceleration 
The data files are descnbed by PDS labels embedded at the begmmng of the file Further mformatlon on LOSAPDR file formats 
and contents can also be obtamed from the Magellan Software Interface SpecificatiOn (SIS) document NA V -138 A copy of the 
document 1s stored on this d1sk as file LOSAPDR TXT m the DOCUMENT duectory 

All document files and detached label files contam 80-byte fixed-length records, w1th a carnage return character (ASCII 13) m the 
79th byte and a I me feed character (ASCII 1 0) m the 80th byte This allows the files to be read by the MacOS, DOS, Umx, and VMS 
operating systems All tabular files are also descnbed by PDS labels, either embedded at the begmmng of the file or detached If 
detached, the PDS label file has the same name as the data file 1t descnbes, with the extensiOn LBL, for example, the file 
INDEX TAB IS accompanied by the detached label file INDEX LBL m the same &rectory 

Tabular files are formatted so that they may be read directly mto many database management systems on vanous computers All 
fields are separated by commas, and character fields are enclosed m double quotation marks (") Character fields are left JUStified, 
and numenc fields are nght JUStified The "start byte" and "bytes" values hsted m the labels do not mclude the commas between 
fields or the quotation marks surroundmg character fields The records are of fixed length, and the last two bytes of each record 
contam the ASCII carnage return and hne feed characters Tills allows a table to be treated as a fixed length record file on computers 
that support this file type and as a normal text file on other computers · 

A PostScnpt file, REPORT PS, IS mcluded on this volume Th1s PostScnpt document Is a val1datmn report that hsts all LOSAPDRs, 
and g1ves specifiC mformation, comments, and the status of each data file after a quahty check and validatiOn at the PDS Geophysics 
Subnode The document IS descnbed by the detached label file, REPORT LBL The document can also be VIewed by a Display 
PostScnpt program and can be pnnted out from a PostScnpt pnnter The ASCII text versiOn of the PostScnpt file 1s REPORT ASC 

PDS labels are obJect-onented The object to which the label refers (e g , IMAGE, TABLE, etc) 1s denoted by a statement of the 
form 

"object = location 

m wh1ch the carat character(", also called a pomter m th1s context) mdJcates that the object starts at the g~ven location In an attached 
label, the location IS an integer representmg the starting record number of the ObJect (the first record m the file 1S record I) In a 
detached label, the locatiOn denotes the name of the file contammg the Object, along w1th the startmg record· or byte number For 
example 

"TABLE= "INDEX TAB" 

md1cates that the TABLE object pomts to the file INDEX TAB 

Pomters to data obJeCts are always requlfed to be located m the same directory as the label file, so the file INDEX TAB m thts 
example IS located m the same directory as the detached label file 

Other types of pomter statements can also be found on thiS volume To resolve the pomter statement, first look m the same directory 
as the file contammg the pomter statement. If the pomter IS still unresolved, look m the followmg top level dJrectory ' 
" STRUCTURE - LABEL directory 
" CATALOG - CATALOG d1rectory 
"DATA_SET_MAP_PROJECTION- CATALOG duectory 
"DESCRIPTION- DOCUMENT dJrectory 

Below IS a hst of the possible formats for the "ObJeCt keyword 

"obJect= n 
"object= n<BYTES> 
"obJeCt= "filename ext" 
"obJect= ("filename ext",n) 
"object= ("filename ext",n<BYTES>) 



D-4 

where 

n 

<BYTES> 
filename 
ext 

4. CD-ROM Contents 

Appendix D Examples of Reqmred Files 

IS the starting record or byte number of the object, 
countmg from the begmnmg of the file (record 1, 
byte 1) 

mchcates that the number given ISm umts of bytes 
IS the upper-case file name 
IS the upper-case file extensiOn 

The files on this CD-ROM are orgaruzed m one top-level directory with several subd1rectones The followmg table shows the 
structure and content of these d1rectones In the table, directory names are enclosed m square brackets ([]), upper-case letters 
md1cate an actual directory or file name, and lower-case letters md1cate the general form of a set of directory or file names 

FILE 

Top-level directory 

AAREADME TXT 

ERRATA TXT 

VOLDESCCAT 

[CATALOG] 

CATALOG CAT 

CATINFOTXT 

DATASET CAT 

[DATA] 
1- [mmmmnnnn] 
I 

1- LOmmmm 001 

[DOCUMENT] 

I 
1- DOCINFO TXT 

I 
1- LOSAPDR TXT 

1- REPORT ASC 
I 

CONTENTS 

The file you are reading 

Descnpuon of known anomalies and errors 
present on this volume 

A descnpuon of the contents of th1s CD­
ROM volume m a format readable 
by both humans and computers 

A directory contrurung mformauon about the 
LOSAPDR dataset 

PDS catalog objects Mission, spacecraft 
and mstrument descnpuons 

Descn puon of files m the CATALOG 
directory 

PDS dataset catalog ObJeCt A descnptwn 
of the dataset, parameters, processmg, data 
coverage and quality 

A duectory contrurung LOSAPDR data files 
D1rectones contruning LOSAPDR data files 
for orbits between 'mmmrn' and 'nnnn' 

LOSAPDR file for orbit number 'mmmm' 

A directory contrurung document files 
relatmg to this disk 

Descnpuon of files m the DOCUMENT 
directory 

A machme readable version of the LOSAPDR 
SIS document descnbmg the format and 
content of the data files 

ASCII text versiOn of REPORT PS 



Appendix D Examples of Reqmred Files 

I 
I 

1- REPORT LBL 
I 
1-REPORTPS 

1- [INDEX] 
I I 
I I 
I 1- INDEX LBL 
I I 
I 1- INDEX TAB 
I I 
I 1- INDXINFO TXT 

A PDS detached label descnbmg REPORT ASC & REPORT PS 

A PostScnpt document that g1ves spec1fic 
mformat1on about each LOSAPDR after a 
quality check and validation 

A directory contammg mdex files relatmg 
to th1s d1sk 

A PDS detached label descnbmg INDEX TAB 

Tabular summary of data files 

Descnpt10n of files m the INDEX d1rectory 

5. Recommended CD-ROM Drives and Driver Software 

VAX/VMS 
Dnve D1gttal EqUipment Corporation (DEC) RRD40 or RRD50 Dnver DEC VFS CD-ROM dnver V4 7 or V5 2 and up 

Note The dnver software may be obtained from Jason Hyon at 
JPL It 1s necessary to use th1s dnver to access 
Extended Attnbute Records (XARs) on a CD-ROM 

VAX!Ultnx 
Dnve DEC RRD40 or RRD50 Dnver: Supplied w1th Ultnx 3 I 

Note Internet users can obtain a copy of the "cd10" software 
package v1a anonymous ftp from the "space mn edu" 
server m the file named "src/cd10 shar" Contact Dr 
Peter Ford at Massachusetts Institute of Technology 
for details (617-253-6485 or pgf@space rrut edu) 

IBM PC 
Dnve Tostuba, H1tactu, Sony, or compatible Dnver M1crosoft MSCDEX verswn 2 2 

Note The latest vers10n of MSCDEX (released m February 
1990) 1s generally available Contact Jason Hyon for 
assistance m locanng a copy 

Apple Macmtosh 
Dnve Apple CD SC (Sony) or Tosh1ba Dnver Apple CD-ROM dover 

Note The Tosh1ba dnve requ1res a separate dnver, wh1ch may 
be obtained from Tostuba 

Sun M1cro (SunOS 4 0 x and earlier) 
Drive Delta M1crosystems SS-660 (Sony) Dnver Delta M1crosystems dnver or SUN sr o Dnver 

Note For questiOns concerrung th1s dover, contact Dems 
Down at Delta M1crosystems, 415-449-6881 

Sun M1cro (SunOS 4 0 x and later) 
Dnve Sun M1crosystems Dnver SunOS sr o dnver 

Note A patch must be made to SunOS before the Sun dnver can 
access any CD-ROM files contammg Extended Attnbute 
Records A copy of ttus patch IS available to Internet 

D-5 



D-6 

users vta anonymous ftp from the "space mit edu" server 
m the file named "src/SunOS 4 x CD-ROM patch" 

Append1x D Examples of Reqmred F1les 

6. Errata and Disclaimer 

A cumulative list of anomalies and errors IS mamtamed m the file ERRATA TXT at the root dtrectory of thts volume 

Although considerable care has gone mto makmg this volume, errors are both posstble and hkely Users of the data are adv1sed to 
exerctse the same caution as they would when deahng wtth any other unknown data set 

ReportS of errors or difficulties would be appreciated Please contact one of the persons hsted herem 

7. Whom to Contact for Information 

For questions concerrung thts volume set, data products and documentation 

Jim Alexopoulos Washmgton Uruvemty Dept of Earth and Planetary Sctences 1 Brookmgs Dnve Campus Box 1169 
St Louts, MO 63130 314-935-5365 

Electroruc mat! address· Internet Jtm@wuzzy wustl edu 

For questiOns about how to read the CD-ROM 

Jason J Hyon Jet Propulsion Laboratory Caltforrua Institute of Technology 4800 Oak Grove Drive MS 525-3610 
Pasadena, CA 91109 818-306-6054 

Electroruc mail addresses Internet Jhyon@jplpds JP1 nasa gov NASAmru1 JHYON NSI JPLPDS JHYON X 400 
(ID JHYON,PRMD NASAMAIL,ADMD TELEMAIL,C USA) 

For questions concerning the generation of LOSAPDR products 

Wilham L Sjogren Magellan Gravity Pnnc1pal Investigator Jet PropulsiOn Laboratory Caltforrua Institute of Technology 
48000ak Grove Dnve MS 301-150 Pasadena, CA 91109 818-354-4868 

Electrornc mad address Internet wls@nomadjpl nasa gov 

For questwns concerrung LOSAPDR data 

Wil!Jam L Sjogren 
Jet PropulsiOn Laboratory Pasadena, CA 

Dr Roger J Phdllps Washmgton Uruverstty Dept. of Earth and Planetary Sctences 1 Brookmgs Dr Campus Box 1169 
St. Louts, MO 63130 314-935-6356 

Electroruc mad address Internet phtlhps@wusttte wustl edu 

For questions concerrung LOSAPDR labels 

Dr. Rtchard Stmpson Stanford Untverstty Durand Bldg Room,232 Stanford, CA 94305-4055 415-723-3525 

Electroruc mat! address· Internet rstmpson@magellan stanford edu 

Thts dtsk was produced by Jtm Alexopoulos 



Appendix D Examples of Requ1red F1Ies D-7 

D.2 INDXINFO.TXT 

Each PDS archive volume shall include an "INDXINFO.TXT" file in the INDEX subdirectory that 
contains an overview of the contents and structure of the mdex table or tables on the volume as well 
as usage notes. An example is provided here as gmdance for compiling this file. 

Example: 

CCSD3ZFOOOO 1 0000000 1 NJPL3 IFOPDSXOOOOOOO 1 
PDS_ VERSION_ID 

RECORD_TYPE 
OBJECf 
NOTE 
PUBLICA TION_DA TE 
END_OBJECT 
END 

NOTES ON USING THE IMAGE INDEX TABLES 

=PDS3 

=STREAM 
=TEXT 
= "Notes on usmg the 1mage mdex tables " 
= 1990-12-20 
=TEXT 

These notes descnbe the contents and format of the two 1mage mdex tables on th1s CD-ROM, INDEX TAB and CUMINDEX TAB 

The 1mage mdex table (INDEX TAB) contams one record for each 1mage file on th1s Vilang Orb1ter CD-ROM The cumulat1ve 
1mage mdex table (CUMINDEX TAB) con tams one record for each 1mage file on all the V1Iang Orb1ter CO-ROMs published so 
far The followmg descnpuon applies to both of these tables 

The 1mage mdex tables are formatted so that they may be read directly mto many database management systems on vanous 
computers 

All fields are separated by commas, and character fields are enclosed m double quotation marks (") Each record contains 512 bytes 
of ASCII character data (1 character= 1 byte) Bytes 511 and 512 contam the ASCII carnage return and !me feed characters Th1s 
allows the table to be treated as a fixed length record file on computers that support th1s file type and as a normal text file on other 
computers The structure and content of the 1mage mdex tables are descnbed m the file VOLINFO TXT located m the DOCUMENT 
directory The files INQEX LBL and CUMINDEX LBL contam labels for INDEX TAB and CUMINDEX TAB coded m the 
Object Descnptlon Language (ODL), provHimg a formal descnptlon of the mdex table structure 

Users of most commercial database management systems should be able to use the list below to define the names and charactenstics 
of each field and then to load the tables mto the1r systems usmg a delim1ted ASCII text mput format If necessary the spec1fic 
column start pos1tJons and lengths can be used to load the data 

For personal computer users, DBASE III DBF structures are also provided m the files INDEX DBF and CUMINDEX DBF These 
files can be used to load the INDEX TAB or CUMINDEX TAB files mto DBASE Ill or IV w1th the followmg commands 

USE INDEX 
APPEND FROM INDEX TAB DELIMITED 

USE CUMINDEX 
APPEND FROM CUMINDEX TAB DELIMITED 

Once the table 1s loaded mto DBASE III, 1t can generally be automatically loaded mto other data managers or spreadsheets that 
provide search and retneval capabilities 



D-8 Appendtx D Examples of Required Files 

D.3 SOFTINFO.TXT 

Each PDS archive volume that contains software (m the SOFfW ARE subdirectory) shall include 
an "SOFfiNFO.TXT" file. Trus file contams a description of the software and usage information. 
An outline and example are provided here· as guidance for compiling this file. 

Outline 

I. PDS TEXT Object (must appear m an attached or detached label) 

II. Contents 

1. IntroductiOn 

2. Software Description 
A bnef description of software mcluded on the volume. This can be broken down into 
separate sections for each type of software. This should indicate where the software and 
Its documentation reside in the software hierarchy, as well as describe any known 
limitatiOns or problems. 

3. Software Directory Structure (optional) 

4. Software License Information and Disclaimers (if appropriate) 

Example: 

PDS_ VERSION_ID 

RECORD_TYPE 
RECORD_BYTES 
OBJECT 
INTERCHANGE_FORMAT 
PUBLICA TION_DA TE 
NOTE 
set" 
END_OBJECT 
END 

Clementme Software 

1. Introduction 

=PDS3 

= FIXED_LENGTH 
:::80 
=TEXT 
=ASCII 
= 1994-10-01 
= "Descnptwn of software proVIded w1th the Clementine CD-ROM 

=TEXT 

Th1s duectory contains software that provides display and processmg 
capabilltles for the Clementme data archived on this CD-ROM set 



Appendix D Examples of Required Files D-9 

2. Software Description 

2.1. Decompression Software 

The PCDOS, MACSYS7 and SUNOS subd1rectones all contain software which can be used to decompress the Clementme raw 
Images CLEMDCMP will decompress the raw unage and output 1t mto one of four formats 

1) decompressed PDS labeled file which contains PDS labels, the histogram object, and an Image object, either the browse 
Image or the full Image 
2) decompressed Image file, no labels 
3) a decompressed Image m the GIF format 
4) a decompressed Image m the TIFF format 

The source code IS provided m the SRC subdirectory, of each platform subdirectory Instructwns on how to mstall and run the 
software ISm the file CLEMDCMP TXT m the DOC subdirectory, of each platform subdirectory 

Because the Image decompressiOn program, CLEMDCMP, reqmres a Discrete Cosme Transform (DCT) It may take several 
nunutes to decompress an Image on hardware platforms with slow processors For example, m tests on a Macmtosh 
Ilci, the decompress JOn takes apprmumately 4 nunutes CLEMDCMP has been tested on hardware platforms With processors, such 
as an Intel 486DX2166-Mhz, and the decompression takes JUSt several seconds 

2.2. Display Software 

CLIMDISP m the PCDOS/BIN subduectory IS an Image display and processmg program It can be used to display Clementme 
uncompressed Images and histograms See CLIMDISP TXT m the PCDOS/DOC subdirectory for mstructJOns on how to mstall 
and run the program 

Note CLIMDISP currently can not create GIF formatted files for the Clementme Images AdditiOnally, It can not read the versiOn 
of GIF files created by the Clementme DecompressiOn (CLEMDCMP) program which IS also mcluded on the Clementme EDR 
Archive CD-ROMs If you wish to display Clementme Images With CLIMDISP, generate a PDS format Image file when 
decompressmg w1th CLEMDCMP 

A special verswn of NIH Image, found m the MACSYS7/BIN subdirectory, will display PDS decompressed Clementme Images 
This program IS stored m a Stuffit file which ISm BmHex format See IMAGE TXT m the DOC subduectory for mstructlons on 
how to mstall and run the program 

The Clementine EDR Image files use the PDS label constructs RECORD_TYPE = "UNK", and "IMAGE= xxxxx <BYTES> to 
define the structure of the file This form of the labels IS not supported by the current versions of IMDISP and IMAGE4PDS that 
are Widely d1stnbuted by the PDS To read Clementme decompressed formatted files use the verswn of IMAGE 
and CLIMDISP programs that are supplied on this CD-ROM The Clementine verswns CLIMDISP and IMAGE have been tested 
only on the Clementine data products No attempt has been made to deternune 1fthe Clementme program verswns will work on any 
other PDS data product 

XV IS a shareware program for displaymg Images XV was wntten by John Bradley of the Uruvemty of Pennsylvania It Is m a 
compressed tar file m the SUNOS/SRC subdirectory See XV TXT m the SUNOS/DOC subduectory for mstructwns on how to 
decompress and untar this file XV will not display PDS labeled files, but Will display TIF and GIF formatted files 

The XV software, for Image display on a sun/urux environment, IS not able to read the Clementme PDS labeled files If you 
mtend to use XV as the display system for the CLementine data products, output GIF or TIFF Images With the CLEMDCMP 
program 

2.3. SPICE Software 

Included on one of the ancillary disks associated with this volume set IS the Nav1gat10n and Ancillary InformatiOn Fac1hty (NAIF) 
Toollat and some additiOnal NAIF software The maJor component of the NAIF Toolkit IS the SPICE Library (SPICELIB), a 
collection of portable ANSI FORTRAN 77 subroutmes Some of these subroutmes are used to read the SPICE kernel files 
contairung Clementine ancillary data, such as spacecraft positiOn, spacecraft attitude, mstrument onentatwn and target body 
size, shape and onentatwn Other SPICELIB subroutmes may be used to compute typical observatiOn geometry parameters--such 
as range, hghtlng angles, and LA T!LON of camera optic axis mtercept on the target body Several utility programs and SPICELIB 



D-10 Appendtx D Examples of Required Files 

demonstratiOn programs are also mcluded m the Toollat VersiOns ofthts software tested on many popular platforms are provtded, 
as are mstructlons for portmg the code to additiOnal platforms The FORTRAN subroutmes can be called from a user's own 
appbcauon program, whether wntten m FORTRAN or C, or posstbly yet another language Consult your comptler's Reference 
Manual for mstructions One of the NAIF programs mcluded m thts software collecnon IS PICGEO (for Plcture Geometry) It was 
used to compute all of the geometnc parameters appeanng m the tmage labels and mdex tables It 1s mcluded so that users may 
clearly see the algonthms used m computlng these quannttes, and so that recalculatiOn of tmage label geometry parameters usmg 
revtsed algonthms, or addmg additional parameters, can be easily achteved 

2.4. Miscellaneous Image Processing Software 

MSHELL 1s an mteracttve command hne and menu dnven Image and Stgnal processmg language, developed by ACT Corp, which 
runs under the Mtcrosoft Wmdows 3 x or Mtcrosoft NT MSHELL provtdes powerful sc1ent1fic tmage and s1gnal v1sual1zatmn and 
processmg A number of custom features were added to the MSHELL Image/S1gnal Processmg Environment to support the Clem­
entine Program This software IS mcluded on one of the anctllary dtsks assoctated wtth thts volume set, and w11l be under a subdi­
rectory of the PCDOS directory 

3. Software Directory Hierarchy 

The SOFTWARE subduectones are based on hardware platforms Under each platform subdirectory, the executables are m the 
BIN subdtrectory, the source ISm the SRC subdirectory and documentation on each program ISm the DOC subdtrectory Each 
DOC subdlrectory contams a file, SWINV CAT whtch IS part of the PDS Software Inventory descnbmg software available w1thm 
the Planetary Sctence Commumty The contents of the SOFIW ARE dtrectory are shown below 

[SOFTWARE] 
I 
1-SOFTINFO TXT 

[PCDOS] 
I 
1-[BIN] 
I I 
I 1-CLEMDCMP EXE 
I 1-CLIMDISP EXE 
I 1-CLIMDISP HLP 
I 
1-[SRC] 
I I 
I 1-CLEMDCMP C 
I 1-PDS C 
I 1-BITSTRM C 
I 1-DECOMPC 
I I-HUFFMAN C 
I 1-WRITEGIF C 

I I 1-PDS H 
I I 1-JPEG_C H 
I I 1-CLEMDCMP MAK 
I I 
I 1-[DOC] 
I I 
I 1-CLEMDCMP TXT 
I 1-CLIMDISP TXT 
I 1-SWINV CAT 
I 
1-[MACSYS7] 
I I 
I 1-[BIN] 
I I I 
I I 1-CLEMDEXE HQX 
I I I-IMAGE HQX 
I I 



Appendix D Examples of Required Files 

I 1-{SRC] 
I I I 
I I 1-CLEMDSRC HQX 
I I 
I 1-[DOC] 
I I 
I 1-CLEMDCMP TXT 
I I-IMAGE TXT 
I 1-SWlNV CAT 
I 
1-[SUNOS] 

I 
1-{BIN] 
I I 
I 1-CLEMDEXE TZU 
I 
1-[SRC] 
I I 
I 1-CLEMDSRC TZU 
I I-XV3A TZ 
I 
!-[DOC] 

l 
1-CLEMDCMP TXT 
I-XV TXT 
1-SWINV CAT 

D-11 



D-12 Appendix D Examples of Requrred Files 



Appendix E NAIF Toollat Directory Structure E-1 

APPENDIXE 

NAIF TOOLKIT DIRECTORY STRUCTURE 

Tlus appendix contains the software directory structure of the NAIF Toolkit for a SUN. It IS an 
example of a platform-base model for a smgle platform. Note that the directory organization shown 
here does not strictly conform to the recommendations discussed m the Volume Organization and 
Naming chapter of this document. 

NAIF 

The NAIF directory contains one subdirectory, TOOLKIT. The TOOLKIT tree contruns all of the 
files that make up the NAIF Toolkit. 

TOOLKIT 

(directory under which you mstalled the NAIF Toolkit) 

I 
nruf 
I 

toolkit 

The TOOLKIT directory contains the file make_toolkit.csh. This is a C shell script that builds all 
of the object libraries and executables in the TOOLKIT. 

(directory under which you installed the NAIF Toolkit) 

I 
naif 
I 

toolkit 
I 

make_toolki,t.csh 



E-2 Appendix E NAIF Toolkit Directory Structure 

TOOLKIT also contains several subdirectones that will be described in more detail m the 
following sections. 

src 

1. SRC 

I 
lib 

(directory under which you mstalJed the NAIF Toolkit) 

I 
naif 

I 
toolkit 

I 
exe 

I 
doc etc 

I 
example_data 

The subdirectories of this directory contain all of the source for the products m the TOOLKIT. 

2. LIB 
This directory contains all of the TOOLKIT object libraries. 

3. EXE 
This directory contains all of the TOOLKIT executables, and where applicable, scripts to run the 
executables. 

4. DOC 
This directory contains all of the TOOLKIT documentation. This includes User's Guides for the 
programs, Required Reading files for SPICELIB, documents describing the contents of SPICELIB 
such as the Permuted Index and Module Summary, and documents describing the contents and 
installation of the Toolkit. 

5. ETC 
The subdirectories of this directory. contain product-specific files that are neither source, 
documentation, nor data. This mcludes configuration files, set up files, and help files. The 
subdirectory build contains the C shell script that creates the toolkit object libraries and 
executables. 

6. EXAMPLE_DATA 
This directory contains example data for use with the COOKBOOK and SPTEST programs. These 
files are to be used only with these programs. 



Appendix E. NAIF TooHa.t Directory Structure E-3 

SRC 

The SRC directory contains one subduectory fo.r each product in the NAIF Toolkit. Each of these 
product directones contains the source code files and procedures to create the executable or object 
library. 

spicelib 

SPICELffi 

(directory under which rou mstalled the NAIF Toolkit) 

naif 

I 
toolkit 

I 
src 

support spacit commnt cookbook sptest inspekt 

SPICELffi is a Fortran source code library that contains approximately 650 functions, subroutines, 
and entry points. 

This directory contains the SPICELIB source files. 

(directory under whtch rou installed the NAIF Toolkit) 

natf 

I 
toolkit 

I 
src 
I 

sp1celib 

*.f 



E-4 Appendix E NAIF Toolkit Directory Structure 

SUPPORT 

SUPPORT is a Fortran source code library that contains routines that support the Toolkit programs. 
These routmes are not mtended to be used by anyone except NAIF. These routmes are not officially 
supported and may undergo radical changes such as callmg sequence changes. They may even be 
deleted. Do not use them! 

This directory contruns the SUPPORT library source files. 

SPACIT 

(directory under whtch lou installed the NAIF Toolkit) 

naif 

I 
toolkit 

I 
src 

I 
support 

*.f 

SPA CIT is a utility program that performs three functions: it converts transfer format SPK, CK and 
EK files to binary format, It converts binary SPK, CK and EK files to transfer format, and It 
summanzes the contents of bmary SPK, CK and EK files. 

This directory contains the source code for the SP ACIT main program 
and supportmg routmes. 

(directory under which lou installed the NAIF Toolkit) 

naif 

I 
toolkit 

I 
src 

I 
spaclit 

spaclit.main 

*.f 



Appendtx E NAIF Toolktt Drrectory Structure E-5 

COMMNT 

COMMNT is a utility program that is used to add conunents, extract conunents, read comments, 
or delete comments m SPICE SPK, CK and EK files. 

This duectory contains the COMMNT main program source file 

COOKBOOK 

(duectory under which rou mstalled the NAIF Toolktt) 

naif 

I 
toolkit 

I 
src 

I 
commnt 

commnt.main 

The cookbook programs are sample programs that demonstrate how to use SPICELIB routines to 
obtam state vectors, convert between different time representatiOns, mampulate the conunents in 
binary SPK and CK files, and solve simple geometry problems. 

This directory contains the COOKBOOK program source files. 

~directory under which rou installed the NAIF Toolkit) 

naif 

I 
toolkit 

I 
src 

I 
cookbook 

fstspk.main 
Simple. main 
states.main 
subpt.mam 
tlctoc.main 



E-6 Appendix E NAIF Toolkit D1rectory Structure 

INSPEKT 

INSPEKT is a program that allows you to examine the contents of an events component of an E­
kernel. 

This directory contams the source code for the INSPEKT mam program and supportmg routines. 

SPTEST 

(directory under which rou installed the NAIF Toolkit) 

nruf 

I 
toolkit 

I 
src 

I 
inspekt 

inspekt.mam 
*.f 
*.inc 

SPTEST is a utility program that tests the SPK file readers by comparing states read on the NAJF 
VAX with states read on the target machine. 

This directory contains the SPTEST program source file. 

(directory under which rou mstalled the NAIF Toolkit) 

naif 

I 
toolkit 

I 
src 

I 
sptest 

sptest.mrun 



Appendix E NAIF Too11at Directory Structure E-7 

Lffi 

The LIB directory contains spiCelib.a, the object library for SPICELffi. It also contru.ns the object 
library support.a, but this library is for use by the Toolkit programs only. Do not hnk your 
applicatiOns With it! 

EXE 

(directory under which lou installed the NAIF Toollat) 

naif 

I 
toolkit 

I 
lib 

spicehb.a 
support. a 

The EXE directory contains the NAIF Toolkit executables and, where applicable, scnpts to run 
executables. 

(directory under wluch you mstalled the NAIF Toolkit) 

I 
naif 

I 
toolkit 

I 
exe 

comrnnt 
fstspk 
mspekt 
simple 
spacit 
sptest 
states 
subpt 
tictoc 



E-8 Appendix E NAIF Toolkit Directory Structure 

DOC 

The DOC directory contains all of the TOOLKIT documentation that IS avrulable on-hne. This 
includes the user's guides for the programs, all Required Reading files for SPICELIB, all 
documents describing the contents and portmg of SPICELIB, and documents describing the 
installation and contents ofthe Toolkit Please note that the iNSPEKT User's Gmde is not available 
on-line. 

(directory under which Jou mstalled the NAIF Toolkit) 

naif 

I 
toolkit 

I 
doc 

cornrnnt.ug 
fstspk.ug 
simple.ug 
spacit.ug 
sptest.ug 
states.ug 
subpt.ug 
tlctoc.ug 
*.req 
category.txt 
libsum. txt 
perrnuted_mdex. txt 
porting.txt 
toolkit_install. txt 
toolkit_description.txt 



Appendix E NAIF Toollot Drrectory Structure E-9 

ETC 

The ETC directory contains all files for the Toolkit products that are not source, documentation, or 
data such as set up files, configuration files or help files. It also contains the C shell script used to 
build the toolkit object libranes and executables. 

(directory under which you mstalled the NAIF Toolkit) 

I 
naif 

I 
toolkit 

I 
etc 
I 

I I 
sp1celib support spacit commnt cookbook sptest build budd_it.csh 

EXAMPLE_DATA 

The EXAMPLE_DAT A directory contains all of the NAIF Toolkit data. This data is intended only 
to be used with the TOOLKIT programs, and is included only to help you get started using the 
Toolkit. 

(directory under which rou mstalled the NAIF Toolkit) 

nruf 

I 
example_data 

cook_Ol.tc 
cook_Ol.tls 
cook_Ol.tpc 
cook_ 01. tsc 
cook_Ol.tsp 
cook_02.tc 
cook_02.tsp 
sptest.gen 
sptest.rqs 
sptest.tsp 



E-10 Appendix E NAIF Toolkit Drrectory Structure 

Usmg the NAIF Toolkit 

----------------------------------------------------------------------------------------------------------------------------------------
After the installatiOn has been completed successfully, there are a few things that you need to do 
to get started using SPICELIB. We recommend that you pnnt out the source code for the cookbook 
programs (./nalf/toolklt!src/cookbookl*.main) and examine it. Try runmng some of the cookbook 
programs yourself. The cookbook programs demonstrate how to use SPICELIB routmes to obtain 
state vectors, convert between different time representations, manipulate the comments in bmary 
SPK and CK files, and solve simple geometry problems. 

Once you're ready to get your hands dirty, you should read the reqmred readmg files for SPICELIB. 
The reqmred readmg files are located m the directory ./naif/toolkit/doc and have the extension 
".req". They are text files that describe families of subroutines and how they interact With the rest 
of SPICELIB. 

The most Important reqmred readmg files are: TIME, KERNEL, SPK, CK, SCLK, SPC, and 
NAIF _IDS. You should read at least these 

After you've done these thmgs, you're ready to start programming with SPICELIB! 

Appendix-- NAIF's File Naming Conventions 
----------------------------------------------------------------------------------------------------------------------------------------
NAIF follows a set of conventiOns for naming files based on the contents of the files. This allows 
you to find certain types of files m a directory tree quickly. 
1. *.for, * .f 
Fortran-77 source code files. 

2. *.mam 
Source code files for program modules. 

3. *.inc 
Fortran-77 include files. 

4. *.c 
C source code files. 

5. *.o 
Unix object files. 

6. *.obj 
V AX(VMS object files. 

7. *.a 
Unix object library files. 

8. *.olb 



Appendix E. NAIF Toollat Dtrectory Structure E-ll 

V AXJVMS obJect library files. 

9. *.tsp 
Transfer format SPK (ephemeris) files 

10. *.bsp 
Binary format SPK (ephemens) files. 

11. *.tc 
Transfer format CK (pointmg) files. 

12. *.be 
Binary format CK (pointmg) files. 

13. *.tl 

Text IK (mstrument parameters) files. 

14. *.tis 
Leapseconds kernel files. 

15. *.tpc 
Physical and cartographic constants kernel files. 

16. · *.tsc 
Spacecraft clock coefficients kernel files. 

17. *.txt 
Text format documentation files. 

18. *.ug 
Text format User's Gmdes. 

19. *.req 
Text format SPICELIB Requued Reading files. 

20. make_toolkit.csh, build_it.csh 
Unix C shell script files for creating the toolkit object libraries and executables. 

21. make _toolkit.sh, build_it.sh 
Unix Bourne shell script files for creating the toolkit object libraries and executables. 

22. (product name) 
Umx executable files. For example, spacit is the executable file for the product spacit. 

23. make_(product name).com 



E-12 Appendix E NAIF Toollat Drrectory Structure 

V AXNMS command procedures for creating products. For example, make_spicehb.com creates 
the object library spicehb.olb, while make_spacit.com creates the executable spacit.exe. 

24. (product narne).exe . 
V AXNMS executable files. For example, spacit.exe is the executable file for the product spac1t. 

These conventions are preliminary. As coordmation with AMMOS and the Planetary Data System 
(PDS) occurs, these conventions may be revised. 



Appendix F. Acronyms and Abbrevmtwns 

APPENDIXF 

Acronyms and Abbreviations 

The following hst contains the acronyms and abbreviations which shall be used m all PDS 
documentation. 

AMMOS 

CCSDS 

CD-ROM 

CD-WO 

CN 

COD MAC 

DA 

DBA 

DN 

ECR 

GSFC 

IDS 

ISO 

JPL 

NAIF 

NASA 

NBS 

NSIJDECNET 

NSSDC 

ODL 

PC 

PDS 

PSDD 

PI 

Advanced Multi-MissiOn Operations System 

Consultative Committee for Space Data Systems 

Compact Disc - Read Only Memory 

CD Write Once 

Central Nodes 

Committee on Data Management and ComputatiOn 

Data Administrator 

Database Administrator 

Discipline Node 

Engineenng Change Request 

Goddard Space Flight Center 

Inter-Disciplinary Scientist 

International Standards Organization 

Jet Propulsion Laboratory 

Navigation and Ancillary Information Facility 

National Aeronautics and Space Admimstration 

National Bureau of Standards 

DEC Network 

National Space Science Data Center 

Object Description Language 

Personal Computer 

Planetary Data System 

Planetary Science Data Dictionary 

Principle Investigator 

F-1 



F-2 

PVL 

RPIF 

SFDU 

SIS 

SPICE 

SQL 

UTC 

VAX 

WORM 

Appendix F.Acronyms and AbbreviatiOns 

Parameter Value Language 

Regional Planetary Image Facility 

Standard Formatted Data Unit 

System Interface SpecificatiOn 

Spacecraft, Planetary & Probe Ephemens, Instrument, 

C-Matrix, Event File -A system for storing and accessing 

ancillary informatiOn. 

Structured Query Language 

Umversal Time Coordmated (often called GMT) 

VIrtual Address/Access Extension (DEC Computer) 

Wnte Once Read Many 



Index 

INDEX 

A 
AAREADME TXT 10-3, 19-8 

annotated outhne D-1 
example D-2 
TEXT object use A-107 
use as documentatiOn 9-1 

abbrevtatiOns and acronyms hst F-1 
aggregatiOn markers 12-26 
ALIAS obJect 

defirut:10n A-3 
aliases 3-1 
alternate time zones 12-26 

as date/time formats 7-3 
ancillary data products 

rrurumum set of data elements needed to tdentlfy 5-16 
apostrophes 

ODL symboilc values 12-20 
ODL text values 12-25 
See also - quotatiOn marks 

archtve quality data set collect1on See data set collections 
ARRAY obJect 

defirutlon A-4 
use as pnmltlve obJect 13-3 

asc 
as reqmred file extensiOn 10-4 

ASCII data See file formats 
ASCII_ COMPLEX 

data type 3-3 
ASCII_INTEGER 

data type 3-3 
ASCII_REAL 

data type 3-3 
asstgnment symbols(=) 12-26 

B 
B 1950 system 2-1 

as a reference longitude 2-4 
Backus-Naur format (BNF) 12-3 
backward compat1b1hty 3-1 
be 

as reserved file extension 10-5 
bmary data See file formats 
bmary mtegers 

useof3-4 
BIT COLUMN object 

data type elements wttlun 3-2 
defirution A-7 
See also- ITEMS 

BIT ELEMENT obJect 
defirution A-10 
use as pnrruuve ob;ect 13-3 

bit stnng data 
use of 3-5 

BIT_STRING 
data type 3-3 

blockmg 
m fixed length record formats 15-1 
m fixed length tables A-94 

BNF See Backus-Naur format 
BOOLEAN 

data type 3-3 
bsp 

as reserved file extens1on 10-5 
byte counts 

I-1 

exclusiOn of lme temunators and dehrruters m obJects A-

c 

15 
m HEADER obJects A-45 
m pomter statements 14-1 
multiple tables w1th varymg row_bytes A-99 
numbenng convention 3-1 
use of START _BYTE m the ARRAY obJect A-4 
use of START _BYTE m the COLLEen ON object A-14 

CALINFO TXT 10-3, 19-12 
cartographic standards 2-1-2-3 
case sens1t1 v1ty 

cat 

data element 12-25 
stnngs and literals 12-25 

as reqmred file extensiOn 10-4 
CATALOG obJect 

defirut10n A-ll 
use w1th VOLUME object A-ll 

CATALOG CAT 10-2, 19-9 
use w1thm the VOLUME object A-ll 
vs VOLINFOTXTfi1es 10-2,10-3,19-9 

CATINFO TXT 10-4, 19-9 
CCSDS See Consultative Comrruttee for Space Data Systems 

(CCSDS) 
CD-ROM 

recomendatiOns for comptlatlon 11-1-11-3 
CHARACTER 

data type 3-3 
character sets 

allowable m 
data set collecuon narrung 6-5 
data set narrung 6-4 
d1rectory narrung 8-2 
file nammg 10-1 
ODL 12-4 

ISO standard 12-4 
special characters m ODL 12-12 

CODMAC levels 6-8-6-9 
COLLECTION object 

defiruuon A-14 
use as pnrrut1ve object 13-3 

COLUMN obJect 
data type elements withm 3-2 
definition A-15 
See also - ITEMS 



1-2 

comment tenrunators See !me tenrunators and dehrruters 
comments 12-14, 12-25 
COMPLEX 

data type 3-3 
Consultative Comrruttee for Space Data Systems (CCSDS) 16-

1 
PVL VIs-a-vis ODL 12-25 

CONTAINER object 
defimuon A-19 
relationship with TABLE object A-102 

coordmates, reference 
cartographic standards 2-1 

coordmates, nng 
frame standard 2-4 

CUBE object See QUBE object 

D 
dat 

as reserved file extensiOn 10-4 
data elements 

allowable length 12-25 
case sensitivity 12-25 
data type, location. length mformatwn m data objects 3-1, 

3-2 
descnpti ve 5-17 

use of pointers 5-17 
file charactenstic 5-11 
Identification 5-15 

rrurumum sets to Identify data products 5-15-5-16 
required and optiOnal 5-11 

data formats 
FORTRAN spec1ficauons 3-5 

data object pomters See pomters 
data objects See objects, data 
Data Polley 

PDS Data Policy 1-1 
Data Preparauon Workbook 

bibilographic Citation 1-2 
online avrulabihty 1-3 

data processmg level numbers 6-8--6-9 
use in names and IDs 6-4, 6-5, 6-6, 6-10 

DATA PRODUCER object 
defimuon A-25 

data product labels See labels 
data products 

defimuon 4-1, 6-3 
file configurations 4-1 
rrurumum set of data elements needed to Identify 5-15-5-

16 
multiple data objects 

construction of PRODUCT_ID 4-2 
PRODUCT_ID, use of 4-1-4-3 
relationstups to data sets, data set collectiOns 6-1 

data record formats. See record formats· 
DATA SET COLLECTION object 

definition B-11 

data set collectiOns 
contents 6-1-6-12 
defirutwn 6-2 
narrung 6-1-6-12 

allowable character set 6-5 

Index 

components of 
DATA_SET_COLLECTION_NAME and 
_ID 6-5 

descnptwns 6-6 
relationships to data sets, data products 6-1 

DATA SET MAP PROJECTION object 
defirutwn B-14 

DATA SET object 
defirutwn B-3 

data set types 
use m NAMEs and IDs 6-10 

data sets 
contents 6-1-6-12 
defirution 6-3 
narrung 6-1-6-12 

allowable character set 6-4 
components of DATA_ SET _NAME and ID 6-4 

descnptwns 6-6 
PDS catalog object template set B-1-B-39 
relationships to data set collections, data products 6-1 
software, to accompany 6-3, 11-2 

DATA SUPPLIER object 
defirutwn A-26 

data types 
defiruuons 3-1-3-5 
mternal representatiOns 3-5, C-1-C-18 
PDS standard data types 3-3 
use of 

bmary mtegers 3-4 
bit stnng data 3-5 
floating pomt formats 3-5 
Signed versus unsigned 3-4 

valid values 3-1-3-5 
data volumes See volumes, data 
DATASET CAT 10-2 
DATE 

data type 3-3 
date/time formats 7-1, 12-8, 12-26 

alternate ume zones 7-3 
ephemens ume (ET) 7-3 
ISO standards 7-1 
local time 7-3 
longitude of sun (L subS) 7-2 
NATIVE_ TIME, use of7-2-7-3 
relative time 7-3 
spacecraft clock count (sclk) 7-2 
UTC, use of7-2-7-3 

deilrruters See !me termmators and dehrruters 
D1g1tal Image Model (DIM) 2-4 
Digital Terrain Model (DTM) 2-4 



Index 

d1rectones 
ISO standards, use of 8-2 
NAIF Toolkit directory structure E-1 
name formatiOn 8-2 

allowable character set 8-2 
hierarchy for diSCiplines and sub-diSCiplines 8-3 

path name formation 8-4, 10-1 
use of ISO standards 8-4 

standard names on data volumes 8-1 
structures on tape volumes 8-4 
volume and volume set 19-8-19-14 
See also - file specificatiOn and nanung 

DIRECTORY object 
defirutwn A-27 
use m tape volumes 8-4 

DOCINFO TXT 10-3, 19-8 
TEXT object use A-107 
use as documentatiOn 9-1 

DOCUMENT object 
defirutwn A-29 
m document labels 9-2 
use for multiple document formats A-29 
use of .asc for file contammg 10-4 
use of pomters 5-12-5-14 

documentation 

E 

AAREADME TXT 9-1, 10-3, 19-8 
CALINFO TXT 10-3, 19-12 
CA TINFO TXT 10-4, 19-9 
content gu1delines 9-6 
DOCINFO TXT 9-1, 10-3, 19-8 
file formatting 

ASCII, use of9-l, 9-2, A-29 
line length linutations 9-2 
line terminators and delimiters 9-2 

multiple formats on a volume A-29 
pros/cons of vanous document formats 9-2-9-6 

file labellmg 
DOCUMENT object, use of9-2, A-29, A-107 
TEXT object, use of9-l, A-107 

GAZETTER TXT 19-10 
GAZINFO TXT 19-10 
GEOMINFO TXT 10-3, 19-13 
INDXINFO TXT 10-4, 19-13 
LAB INFO TXT 10-4, 19-9 
SOFTINFO TXT 9-1, 10-4, 19-10 
standards for submiSSIOn to arch1ve 9-1-9-6 
validation 9-6 
VOLINFO TXT 9-1, 10-3, 19-8 

earthbased sc1ence data products 
nummum set of data elements needed to 1dentify 5-16 

EBCDIC_CHARACTER 
data type 3-3 

ELEMENT object 
defirutwn A-32 
use as pnm1tive object 13-3 

Encapsulated Postscnpt (EPS) 
documentation file formattmg, use m 9-6 

END statements 5-18,12-13, 12-14, 12-26, 16-5-16-8 

ephemens t1me (ET) 
as date/time format 7-3 

ERRATA TXT 10-3. 19-8 
Extended Attnbute Records (XARs) Il-l 

F 
file extenswns See file spec1ficauon and nammg 
file formats 

ASCII 3-1 
as storage format 3-1 
recommendect'table formats A-88 
use m documentauon 9-1, 9-2, A-29 

hne length hnutauons 9-2 
bmary 3-1 

as storage format 3-1 
recommended table formats A-91 

pros/cons of tabular data formats A-87 
pros/cons of vanous document formats 9-2-9-6 
See also - documentation 

file names See file spec1ficat10n and narrung 
ALE object 

defimuon A-33 
use with vanous record formats A-34 

file spec1ficat10n and nammg 10-1-10-5 
8 3 file name standard 10-1 
allowable character set 10-1 
path name formauon 10-1 
requ1red file examples D-1-D-11 
requ1red file extenswns 10-4 
requ1red file names 10-2-10-4 
reserved file extenswns 10-4 
reserved file names 1 0-4 
terms to a v01d 10-1 
use of ISO standards 10-1 
See also - d1rectones 

files contained on data volumes 
requued and optl0nall9-8-19-14 

ATS 
use of HEADER object A-45 

fixed length records. See record formats 
FLOAT 

data type 3-3 
floating pomt formats 

use of3-5 
fmt 

as reqUired file extensiOn 10-4 
FrameMaker 

documentation file formatting, use m 9-5 
FrameMaker Interchange F1les (MIF) 

documentation file formatting, use m 9-4 

G 
GAZETTEER_ TABLE object 

defirution A-37 
GAZETTER TXT 19-10 
GAZINFOTXT 10-3, 19-10 
GEOMINFO TXT 10-3, 19-13 

1-3 



I-4 

H 
HEADER object 

defimt.10n A-45 
use of pomters 5-12-5-14 

HISTOGRAM object 
data type elements wtthm 3-2 
defimtlon A-47 
use of pomters 5-12-5-14 
See also - ITEMS 

HISTORY object 
defimoon A-49 

I 
tbg 

as reserved file extensiOn 10-4 
IBM_ COMPLEX 

data type 3-3 
IBM_INTEGER 

data type 3-3 
IBM_REAL 

data type 3-3 
IBM_ UNSIGNED_INTEGER 

data type 3-3 
IEEE_ COMPLEX 

data type 3-3 
mtemal representation C-9 

IEEE_ REAL 
data type 3-3 
internal representation C-6 

IMAGE MAP PROJECTION object 
defimuon A-57 

IMAGE object 

tmg 

tmq 

data type elements wtthm 3-2 
defimuon A-52 
useofpomters 5-12-5-14 

as reserved file extensiOn !0-4 

as reserved file extensiOn 10-4 
mdentatJon withm aggregations 12-26 
INDEX_TABLE object 

defirutlon A-62 
INDXINFO TXT l 0-4, 19-13 

example D-7 
mertJal reference frames 2-1 

B 1950 system 2-1, 2-4 
12000 system 2-1 

use m measunng nng longitudes 2-4 
INSTRUMENT HOST objeCt 

defimtlon B-23 
INSTRUMENT Object 

defirutlon B-17 
INTEGER 

data type 3-3 
Inter leaf 

documentation file formattJng, use m 9-4 

Intemattonal Standards Orgaruzat10n (ISO) 
datelttme formats 7-1 
use of standard m 

arcluve medta 11-1 
duectones 8-2 
dtrectory path names 8-4 
file spectficatlons 10-1 
ODL character set 12-4 

INVENTORY object 
defirut!On B-25 

ITEMS 3-2,12-1,13-3 

J 

See also - BIT COLUMN object 
See also - COLUMN object 
See also - HISTOGRAM object 

12000 system 2-1 
use m measunng ring longitudes 2-4 

K 
keywords See data elements 

L 
label format 5-2 

See also - record formats 
labels 

attached 5-1-5-15 
general structure 5-4-5-10 

combmed detached 5-1-5-15 
general structure 5-6-5-10 

detached 5-1-5-15 
general structure 5-4-5-1 0 

END statements 5-18 
mdentatlon w1thm aggregations 12-26 

1me length lurutations 12-26 
muumal 5-8-5-9 

caveats regardmg use 5-8, 5-14, 5-18 
ODUPVL usage 12-25 
tabs m 12-26 

LABINFOTXT 10-4, 19-9 
LaTeX 

documentatJon file formatting, use m 9-4 
lbl 

as requtred file extension I 0-4 
hne length brrutatlons 12-26 

m documentation 9-2 
bne terrrunators and debrruters 

comment terrrunators 12-25 
CRJLF as PDS standard 15-3 
m ASCII documentatJon 9-2 
m ODL 12-13 
m stream record formats 15-3 
m TABLE Objects A-88 
m TEXT objects A-107. 
statement terrrunators 12-25 
vts-a-v1s byte counts in objects A-15 

bterals. See strmgs and bterals 

Index 



Index 

local ume 
as datelt1me format 7-3 

log1cal volumes See volumes, log~cal 
long~ tude of sun (L sub S) 

as datelt1me format 7-2 
LSB_BIT _STRING 

data type 3-3 
mternal representation C-16 

LSB_INTEGER 
data type 3-3 
mternal representation C-4 

LSB_UNSIGNED _INTEGER 
data type 3-3 
mternal representation C-5 

M 
MAC_ COMPLEX 

data type 3-3 
MAC_INTEGER 

data type 3-3 
l\'IAC_REAL 

data type 3-3 
MAC_UNSIGNED_INTEGER 

data type 3-3 
map resolution, cartographic standard 2-4 
mew a formats 

as data volumes 19-1 
for data subrrussion and archive 11-1 
use of ISO standards I 1-1 

MISSION object 
defiruuon B-27 

MSB_BIT_STRING 
data type 3-3 
mternal representatiOn C-15 

MSB_INTEGER 
data type 3-4 
mternal representatiOn C-1 

MSB_UNSIGNED_INTEGER 
data type 3-4 

N 
N/A 

mternal representation C-2 

data type 3-4 
defiru !JOn 17-1 
Implementation recommendatiOns 17-2 

NAIF Toolk1t 
directory structure for the SUN E-1 

NASA processmg levels 
VIS-a-vis CODMAC levels 6-9 
See also - data processmg level numbers 6-9 

NATIVE_ TIME 
datelt1me formats, use m 7-2-7-3 

non-dec1mal numbers 12-26 
NROFF/TROFF 

documentatiOn file fonnattmg, use m 9-4 
NULL 

defini twn I 7-2 
ImplementatiOn recommendations 17-2 

0 
Object Descnptton Language (ODL) 5-l, 6-3 

aggregatJ.on markers 12-26 
allowable character set 12-4, 12-25 
alternate tJ.me zones 12-26 
apostrophes 

use w1th symbolic values 12-20 
assignment symbols (=) 12-26 
attnbute assignment statements 12-14 
Backus-Naur format (BNF), use of 12-3 
case sensitlvity 12-25 
comment tenrunators 12-25 
comments 12-14, 12-25 
dates and Urnes 12-8 

See also - date/t1me formats 
dlfferences between ODL versiOns 12-23 
END statements 12-13, 12-26 
GROUP statements 12-16 
Identifiers 12-11 
mdentation wtthm aggregations 12-26 
keyword length 12-25 
language subsets 12-2 
language supersets 12-2 
!me length hrrutatwns 12-26 
!me tenrunators 12-13 
lmes and records 12-13 
non-decimal numbers 12-26 
numbers 12-6 
numenc values 12-17 
OBJECT statements 12-15 

See also - objects, data 
pomter statements 12-15 

See also - pomters 
PVL-spec1fic extensions, PDS lmplementauon of 12-2 
quotation marks 12-25 

PDS recommendation on use 12-21 
sequences 12-21, 12-26 
sets 12-21 
special characters 12-12 
statement tenrunators 12-25 
statements 12-13 
stnngs 12-11 
summary 12-22 
symbolic literal values 12-20 
tabs 12-26 
text stnng values 12-19 
uruts expressiOns 12-17 
values 12-17 

objects, catalog 
DATASETB-3 
DATA SET COLLECTION B-11 
DATA SET MAP PROJECTION B-14 
INSTRUMENT B-17 
INSTRUMENT HOST B-23 
INVENTORY B-25 
MISSION B-27 
PERSONNEL B-33 
REFERENCE B-35 
SOFIW ARE_INVENTORY B-36 
TARGETB-38 

1-5 



I-6 

objects, data 
ALIASA-3 
ARRAY A-4 

use as pnrrut1ve object 13-3 
BIT COLUMN A-7 

data type data elements, use of 3-2 
BIT ELEMENT A-10 

use as pnrrutt ve object 13-3 
CATALOG A-ll 
COLLECTION A-14 

use as pnrruttve object 13-3 
COLUMN A-15 

data type data elements, use of 3-2 
CONTAINER A-19 

relauonslup w1th TABLE obJect A-102 
DATA PRODUCER A-25 
DATA SUPPLIER A-26 
defirutton of term 5-12 
defiruttons 5-1, 5-17, 13-1 

data type, location, length mformatton data elements 
tn 3-2 

genenc and spec1fic 13-1-13-3 
use of pomters 5-17 

DIRECTORY A-27 
use m tape volumes 8-4 

d1stmctton between pnmary and secondary 4-1 
DOCUMENT A-29 

document labels, use m 9-2 
use for multiple document formats on a volume A-29 
use of asc file extensiOn 10-4 
use of pomters 5-12-5-14 

ELEMENT A-32 
use as pnrrutive obJect 13-3 

FILE A-33 
use w1th vanous record formats A-34 

GAZETTEER_TABLE A-37 
HEADERA-45 

use of pomters 5-12-5-14 
HISTOGRAM A-47 

data type data elements, use of 3-2 
use of pomters 5-12-5-14 

HISTORY A-49 
IMAGE A-52 

data type data elements, use of 3-2 
use of pomters 5-12-5-14 

IMAGE MAP PROJECTION A-57 
INDEX_TABLE A-62 
multiple m one data product 

construction ofPRODUCT_ID 4-2 
ODL spectfications 12-15 
PALETTE A-67 

use of pomters 5-12-5-14 
PDS standard objects 5-17 

requmng pomters 5-12 
QUBEA-70 

useofpointers 5-12-5-14 
SERIES A-78 

relationship to TABLE object A-93 
use of pomters 5-12-5-14 
use of spare fields A-1 03-A-1 06 

objects, data (con't) . 
SPECTRUM A-82 

relattonshtp to TABLE object A-93 
use ofpomters 5-12-5-14 
use of spare fields A-103-A-106 

SPICE KERNEL A-85 
use of pomters 5-12 
use of pomters m attached labels 5- I 2-5-13 

TABLE A-87 
muluple tables With varymg row_bytes A-99 
recommended ASCII table formats A-88 
recommended bmary table formats A-91 

Index 

record blockmg m fixed length tables A-94 
relat!Onshtp to SERIES and SPECTRUM objects A-

93 
relat10nsh1p wtth CONTAINER obJect A-1 02 
use of pomters 5-12-5-14 
use of quotation marks A-88 
use of spare fields A-103-A-106 

TEXT A-107 
document labels. use m 9-1 
use of txt file extens1on 10-4 
use of pomters m attached labels 5-12-5-13 

VOLUME A-109 
use m tape volumes 8-4 
use of CATALOG object A-ll 

objects, pnrruttve 
ARRAY 13-3 
BIT ELEMENT 13-3 
COLLECTION 13-3 
discussiOn of use 13-3 
ELEMENT 13-3 • 

operatmg system/environments 

p 

standards concemmg vanous 3-3-3-4, 11-1-11-3, 15-1, 
15-2,15-3, 19-11, 19-15 

See also- V AXNMS platform support 

paddmg See spare fields 
PALETTE ObJeCt 

defirutJ.on A-67 
useofpomters 5-12-5-14 

Parameter Value Language (PVL) 12-2, 12-25 
path name formatton 8-4, 1 0-1 

See also - duectones 
See also - file spectficauon and narrung 

PC_COMPLEX 
data type 3-4 
mtemal representatton C-12 

PC_INTEGER 
data type 3-4 

PC_REAL 
data type 3-4 
mtemal representation C-9 

PC_UNSIGNED_INTEGER 
data type 3-4 

PDS catalog objeCt template set B-1-B-39 
PDS Data Pohcy 1-1 
PDS standard obJeCts A-1-A-115 



Index 

PDS_ VERSION_ID 
standard for this document set 5-ll 
use with SFDU 5-10 

PERSONNEL ob;ect 
defirutmn B-33 

Planetary Cartography Worklng Group (PCWG) 2-l 
Planetary Science Data D1ct10nary (PSDD) 

bibliographic citation l-2 
online availability l-3 

planetocentnc coordmate system 2-2-2-3 
planetographtc coordmate system 2-2-2-3 
pomters 5-12-5-15, 14-1-14-3 

ODL specificatiOns 12-15 
PDS objects that generally reqmre 5-12 
rules for resolvmg 14-3 
types of pomters 14-l-14-3 

' usem 
data object defirut:Ions 5-17 
labels 5-4-5-15 

use wtth 
descnpt:Ive data elements 5-17 

Postscnpt 
documentauon file formatt:Ing, use m 9-6 

prefix or suffix data 
m IMAGE obJects A-52 
m QUBE object A-70-A-75 
m SPECTRUM object A-82 
m TABLE object A-101-A-102, A-103-A-106 

pnmary data ob;ect 
definitiOn 4-l 

pnme mend tans, cartographic standard 2-1 
PRODUCT_ID 

construct:Ion for products wtth multiple data objects 4-2 
use as a uruque data product Identifier 4-1-4-3 

PVL See Parameter Value Language 

Q 
qub 

as reserved file extensiOn I 0-4 
QUBE obJect . 

definition A-70 
use of pomters 5-12-5-14 

quotatiOn marks 
PDS recommendation on use 12-21 
use m ASCII TABLE objects A-88 
use in GAZETEER_TABLE object A-37 
usemODL 12-4,12-ll, 12-12,12-25 
See also - apostrophes 
See also - character sets 

quotation marks, smgle See apostrophes 

R 
REAL 

data type 3-4 
record formats 5-11, 15-1-15-3 

FILE object 
use wtth A-34 

fixed length 15-1 
phystcal and logical structure 15-2 
record blockmg in tables A-94 
setting record length= RECORD_BYTES 15-2 

recommended 15-1 
SFDU use 16-4, 16-6, 16-7 
stream 15-3 

I-7 

utlht:Ies to convert between operating systems 15-3 
undefined 15-3 
use m detached label files 15-3 
vanable length 15-2 

PDS VAX/VMS conventiOn 15-2 
See also - label format 

reference coordmates, cartographic standard 2-l 
reference documents 

cartographic standards 2-4 
Data Preparation Workbook 

bibliOgraphic citation 1-2 
online availability 1-3 

Intemattonal.Standards Orgaruzatton (ISO) 1-2,7-1,8-2, 
8-4, 10-1,] 1-1, 12-4 

Planetary Sctence Data Dtctlonary (PSDD) 
bibliographic Citation 1-2 
onlme availabthty l-3 

SFDU and PVL 1-2,5-11 
REFERENCE Object 

defimuon B-35 
reference surface, cartographic standard 2-4 
relative time 

as date/time format 7-3 
required data elements 

rmrumum sets to Identify data products 5-15-5-16 
reqmred file names on data volumes 10-2 
required files on data volumes 19-8-19-14 
nngs, coordinate frame standard 2-4 
RUNOFF 

documentat:Ion file fonnattmg, use m 9-4 , 

s 
samphng parameter data 

m SERIES object A-78-A-81 
m SPECTRUM ob;ect A-82 

secondary data object 
defimt:Ion 4-l 

sequences 12-26 
SERIES obJect 

defimt:Ion A-78 
relationship to TABLE object A-93 
use of pomters 5-12-5-14 
use of spare fields A-103-A-106 

SFDU See Standard Formatted Data Urut (SFDU) 
SGML See Standard Generalized Markup Language 
signed/unsigned data types 

use of 3-4 



1-8 

SOFTINFO TXT 10-4, 19-10 
annotated outlme D-8 
example D-8 
TEXT object use A-1 07 
use as documentation 9-1 

software 
to accompany data sets 6-3, 11-2 

SOFIWARE_INVENTORYobject 
defirution B-36 

spacecraft clock count (sdk) 
· as date/time format 7-2 

spacecraft sc1ence data products 
m~rumum set of data elements needed to 1dent1fy 5-16 

spare fields 
use m TABLE, SPECTRUM and SERIES objects A-103-

A-106 
SPECTRUM object 

defimtion A-82 
relationship to TABLE object A-93 
use ofpomters 5-12-5-14 
use of spare fields A-103-A-106 

SPICE KERNEL object 
defimtion A-85 
use of pomters 5-12 

spm axes, cartographic standard 2-1 
Standard Formatted Data Urut (SFDU) 

PDS use of 16-l 
record formats, use With vanous 16-4, 16-6, 16-7 
reference documents 1-2, 5-11 
use m PDS labels 5-10 
use w1th END statements 5-18 
VersiOn 3 components 16-1 
ZI organization 16-2 
ZKl orgamzation 16-5 

Standard Generalized Markup Language (SGML) 
documentatiOn file formattmg. use m 9-3 

standards, compliance 
PDS Data Poi.Jcy 1-1 

statement terrrunators. See line terrrunators and delimiters 
stream records See record formats 
stnngs and literals 

case sensitiVIty 12-25 
suffix data See prefix or suffix data 
SUN...!COMPLEX 

data type 3-4 
SUN_INTEGER 

data type 3-4 
SUN_REAL 

data type 3-4 
SUN_UNSIGNED_INTEGER 

data type 3-4 
Systeme Internat10nale d'Umtes (SI) 18-1 

T 
tab 

as reserved file extensiOn 10-4 
TABLE object 

defirut10n A-87 
multiple tables w1th varymg row_bytes A-99 
recommended ASCII table formats A-88 
recommended bmary table formats A-91 

Index 

record blockmg m fixed length tables A-94 
relatiOnship to SERIES and SPECTRUM objects A-93 
relauonsh1p With CONTAINER object A-102 
useofpomters 5-12-5-14 
use of quotatiOn marks A-88 
use of spare fields A-103-A-106 

tabs 
use m PDS labels 12-26 
use m TEXT objects A-107 

tape volumes See volumes, data 
TARGET object 

defimtion B-38 
targets 

use in NAMEs and IDs 6-6 
tc 

as reserved file extensiOn 10-5 
termmators See line terrrunators and delim~ters 
TeX 

documentatiOn file formatting, use m 9-3 
TEXT obJect 

defirution A-107 
m document labels 9-1 
use of .txt for file contammg l 0-4 

t1 

as reserved file extensiOn 10-5 
TIFF 

documentatiOn file formattmg, use m 9-5 
TIME 

data type 3-4 
t1me formats. See date/time formats 
tJmetags, cartographic standard 2-1 
tls 

as reserved file extenston 10-5 
tpc 

as reserved file extensiOn 10-5 
tsc 

as reserved file extensiOn 10-5 
tsp 

as reserved file extensiOn 10-5 
txt 

as requued file extensiOn l 0-4 

u 
undefined records See record formats 
uruts ex press10ns 12-17, 12-26 
umts of measurement 18-1-18-3 
Umversal Time Coordmated (UTC) 

date/time formats, use m 7-2-7-3 
UNK 

defirution 17-1 
Implementation recommendatiOns 17-2 



Index 

UNSIGNED_INTEGER 
data type 3-4 

v 
vanable length records See record formats 
VAX/VMS platform support 3-4, 11-1, 15-1, 15-2, 15-3. 19-12, 

19-15 
See also - operating system/environments 

standards concerrung vanous 
VAX_BIT_STRING 

data type 3-4 
VAX_ COMPLEX 

data type 3-4 
mternal representation C-15 

VAX_DOUBLE 
data type 3-4 

V AX_INTEGER 
data type 3-4 

VAX_REAL 
internal representation C-12 

VAX_UNSIGNED_INTEGER 
data type 3-4 

V AXG_COMPLEX 
data type 3-4 
mternal representation C-15 

VAXG_REAL 
data type 3-4 
mternal representation C-12 

versiOn numbers 
use m NAMEs and IDs 6-12 

VICAR 
use of HEADER object A-45 

VOLDESC CAT 10-2, 19-8 
VOLDESC SFD 10-4, 19-8 
VOLINFO TXT 10-3, 19-8 

TEXT object use A-107 
use as documentation 9-1 
vs CATALOGCATfiles 10-2,10-3,19-9 

VOLUME objeCt 
defirution A-109 
use m tape volumes 8-4 
use of CATALOG obJeCt WJtlun A-ll 
use of CATALOG CAT file A-ll 

volumes, data 
required and optwnal files 19-8-19-14 
requ1red file names 10-2 
standard directory names 8-1 
tape volume d~rectory structures 8-4 
volume ID formation 19-15 
volume nammg 19-14 
volume organ1zat1ons 19-1-19-14 
volume set ID formation 19-16 
volume set naming 19-15 
volume set organizations 19-1-19-14 
volume types 19-1 

volumes, log!cal14-3, 19-1, 19-8, 19-9, 19-13, 19-14 

I-9 

w 
WordPerfect 5 0 

documentatiOn file formattmg, use m 9-5 

X 
XARs (Extended Attnbute Records) 11-1 



I-8 

SOFTINFO TXT 10-4, 19-10 
annotated outlme D-8 
example D-8 
TEXT object use A-107 
use as documentatiOn 9-1 

software 
to accompany data sets 6-3, 11-2 

SOFfW ARE_INVENTORY object 
defimtlon B-36 

spacecraft clock count (sclk) 
as date/ume format 7-2 

spacecraft science data products 
mtrumum set of data elements needed to tdenttfy 5-16 

spare fields 
use m TABLE, SPECTRUM and SERIES Objects A-103-

A-106 
SPECTRUM Object 

defimt!On A-82 
relationship to TABLE object A-93 
use ofpomters 5-12-5-14 
use of spare fields A-103-A-106 

SPICE KERNEL object 
definttlon A-85 
use of pomters 5-12 

spm axes, cartographic standard 2-1 
Standard Formatted Data Urut (SFDU) 

PDS use of 16-1 
record formats, use wtth vanous 16-4, 16-6, 16-7 
reference documents 1-2, 5-11 
use m PDS labels 5-10 
use With END statements 5-18 
Version 3 components 16-1 
ZI organization 16-2 
ZKI orgaruzatlon 16-5 

Standard Generalized Markup Language (SGML) 
documentatiOn file formatting, use m 9-3 

standards, compliance 
PDS Data Polley 1-1 

statement termtnators See !me terminators and delimiters 
stream records See record formats 
stnngs and hterals 

case sensttJVJty 12-25 
suffix data. See prefix or suffix data 
SUN_COMPLEX 

data type 3-4 
SUN_INTEGER 

data type 3-4 
SUN_REAL 

data type 3-4 
SUN_UNSIGNED_INTEGER 

data type 3-4 
Systeme Intemationale d'Umtes (SI) 18-1 

T 
tab 

as reserved file extensiOn 10-4 
TABLE object 

defirutlon A-87 
multiple tables With varymg row_bytes A-99 
recommended ASCII table formats A-88 
recommended bmary table formats A-91 

Index 

record blockmg m fixed length tables A-94 
relatlonslup to SERIES and SPECTRUM Objects A-93 
relatiOnship w1th CONTAINER object A-102 
use of pomters 5-12-5-14 
use of quotation marks A-88 
use of spare fields A-103-A-106 

tabs 
use m PDS labels 12-26 
use m TEXT Objects A-1 07 

tape volumes See volumes, data 
TARGET object 

defirutlon B-38 
targets 

use m NAMEs and IDs 6-6 
tc 

as reserved file extension 10-5 
termmators See hne termtnators and dehmtters 
TeX 

documentatiOn file formattmg, use m 9-3 
TEXT object 

defirutmn A-107 
m document labels 9-1 
use of txt for file contammg I 0-4 

tl 

as reserved file extensiOn 10-5 
TIFF 

documentation file formatting, use m 9-5 
TIME 

data type 3-4 
time formats See date/time formats 
ttmetags. cartographic standard 2-l 
tls 

as reserved file extension 10-5 
tpc 

as reserved file extensiOn 10-5 
tsc 

as reserved file extensiOn 10-5 
tsp 

as reserved file extensiOn 10-5 
txt 

as required file extenswn 10-4 

u 
undefined records See record formats 
uruts expressiOns 12-17, 12-26 
uruts of measurement 18-1-18-3 
Uruversal Time Coordmated (UTC) 

date/time formats, use m 7-2-7-3 
UNK 

defirution 17-1 
implementation recommendations 17-2 



Index 

UNSIGNED _INTEGER 
data type 3-4 

v 
vanable length records See record formats 
VAXNMS platform support 3-4, Il-l, 15-1, 15-2, 15-3, 19-12, 

19-15 
See also - operatmg system/envJronments 

standards concerning vanous 
VAX_BIT_STRING 

data type 3-4 
VAX_ COMPLEX 

data type 3-4 
mtemal representation C-15 

VAX_DOUBLE 
data type 3-4 

V AX_INTEGER 
data type 3-4 

VAX_REAL 
mtemal representatiOn C-12 

V AX_UNSIGNED_INTEGER 
data type 3-4 

VAXG_COMPLEX 
data type 3-4 
mtemal representation C-15 

VAXG_REAL 
data type 3-4 
mtemal representation C-12 

versiOn numbers 
use m NAMEs and IDs 6-12 

VICAR 
use of HEADER object A-45 

VOLDESC CAT 10-2, 19-8 
VOLDESC SFD 10-4, 19-8 
VOLINFOTXT 10-3, 19-8 

TEXT object use A-107 
use as documentation 9-1 
vs CATALOG CAT files 10-2,10-3, 19-9 

VOLUME object 
defirutiOn A-109 
use m tape volumes 8-4 
use of CATALOG obJect w1tlun A-ll 
use of CATALOG CAT file A-ll 

volumes, data 
required and optional files 19-8-19-14 
requtred file names 10-2 
standard dtrectory names 8-1 
tape volume directory structures 8-4 
volume ID formation 19-15 
volume naffilng 19-14 
volume organizations 19-1-19-14 
volume set ID formatiOn 19-16 
volume set naffilng 19-15 
volume set organizations 19-1-19-14 
volume types 19-1 

volumes, logtcall4-3, 19-1, 19-8, 19-9, 19-13, 19-14 

I-9 

w 
WordPerfect 50 

documentatiOn file formattmg, use m 9-5 

X 
XARs (Extended Attnbute Records) Il-l 


