C-2

Appendix C. Internal Representation of Data Types Introduction
Appendix C
CC. Internal Representation of Data Types

C-27

Appendix C. XE "binary storage formats" XE "data representation:internal" Internal Representation of Data Types

Appendix D.
Appendix E.

E.1

E.2

E.3

E.4

E.5

E.6

·
·
·
·
·
·
·

·
·
·

·
·
·
·
E.7

This appendix contains the detailed internal representations of the PDS standard data types listed in Table 3.2 of the Data Type Definitions chapter of this document.

Chapter Contents

C-1Appendix C.
Internal Representation of Data Types

C.1
MSB_INTEGER
C-2
C.2
MSB_UNSIGNED_INTEGER
C-4
C.3
LSB_INTEGER
C-6
C.4
LSB_UNSIGNED_INTEGER
C-8
C.5
IEEE_REAL
C-10
C.6
IEEE_COMPLEX
C-13
C.7
PC_REAL
C-14
C.8
PC_COMPLEX
C-17
C.9
VAX_REAL, VAXG_REAL
C-18
C.10
VAX_COMPLEX, VAXG_COMPLEX
C-22
C.11
MSB_BIT_STRING
C-23
C.12
LSB_BIT_STRING
C-25

E.8 XE "MSB_INTEGER:storage format" MSB_INTEGER

Aliases: INTEGER
MAC_INTEGER
SUN_INTEGER

This section describes the signed integers stored in XE "most significant byte first (MSB) storage format" Most Significant Byte first (MSB) order. In this section the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2, and b3)

i-sign
Integer sign bit (bit 7 in the highest-order byte
i0 – i3
Arrangement of bytes in the integer, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = bit 0, highest value = bit 7) in the following way:

4-byte integers:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

In i2, bits 0-7 represent 2**16 through 2**23

In i3, bits 0-6 represent 2**24 through 2**30

2-byte integers:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-6 represent 2**8 through 2**14

1-byte integers:

In i0, bits 0-6 represent 2**0 through 2**6

Negative integers are represented in two’s complement.

E.8.1 MSB 4-byte Integer

[image: image2.wmf]
E.8.2 MSB 2-byte Integer

[image: image4.jpg]i-sign

i1 i0
76543210|76543210
b0 b1

E.8.3 MSB 1-byte Integer

[image: image6.jpg]i-sign

i0

76543210

b0

E.9 XE "MSB_UNSIGNED_INTEGER:storage format" MSB_UNSIGNED_INTEGER

Aliases: UNSIGNED_INTEGER
MAC_UNSIGNED_INTEGER
SUN_UNSIGNED_INTEGER
This section describes unsigned integers stored in XE "most significant byte first (MSB) storage format" Most Significant Byte first (MSB) format. In this section the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2 and b3)

i0 – i3
Arrangement of bytes in the integer, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = bit 0, highest value = bit 7), in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

In i2, bits 0-7 represent 2**16 through 2**23

In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

1-byte:

In i0, bits 0-7 represent 2**0 through 2**7

E.9.1 MSB 4-byte Unsigned Integers

[image: image8.jpg]i3 i2 i1 i0
76543210]|76543210|76543210 76543210
b0 b1 b2 b3

E.9.2 MSB 2-byte Unsigned Integers

[image: image10.jpg]i1

i0

76543210

76543210

b0

b1

E.9.3 MSB 1-byte Unsigned Integers

[image: image12.jpg]i0

76543210

b0

E.10 XE "LSB_INTEGER:storage format" LSB_INTEGER

Aliases: PC_INTEGER
VAX_INTEGER

This section describes signed integers stored in XE "least significant byte first (LSB) storage format" Least Significant Byte first (LSB) order. In this section the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when reading a file (e.g., read byte b0 first, then b1, b2 and b3)

i-sign
Integer sign bit – bit 7 in the highest order byte

i0 – i3
Arrangement of bytes in the integer, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = bit 0, highest value = bit 7), in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

In i2, bits 0-7 represent 2**16 through 2**23

In i3, bits 0-6 represent 2**24 through 2**30

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-6 represent 2**8 through 2**14

1-byte:

In i0, bits 0-6 represent 2**0 through 2**6

All negative values are represented in two’s complement.

E.10.1 LSB 4-byte Integers

[image: image14.jpg]i-sign

i0 i1 i2 i3
76543210|765432101|76543210 76543210
b0 b1 b2 b3

E.10.2 LSB 2-byte Integers

[image: image16.jpg]i-sign

i0 ¢ i1

76543210|76543210

b0 b1

E.10.3 LSB 1-byte Integers

[image: image18.jpg]i-sign

i0

76543210

b0

E.11 XE "LSB_UNSIGNED_INTEGER:storage format" LSB_UNSIGNED_INTEGER

Aliases: PC_UNSIGNED_INTEGER
VAX_UNSIGNED_INTEGER
This section describes unsigned integers stored in XE "least significant byte first (LSB) storage format" Least Significant Byte first (LSB) format. In this section the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when reading a file (e.g., read byte b0 first, then b1, b2 and b3)

i0 – i3
Arrangement of bytes in the integer, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = bit 0, highest value = bit 7), in the following way:

4-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

In i2, bits 0-7 represent 2**16 through 2**23

In i3, bits 0-7 represent 2**24 through 2**31

2-bytes:

In i0, bits 0-7 represent 2**0 through 2**7

In i1, bits 0-7 represent 2**8 through 2**15

1-byte:

In i0, bits 0-7 represent 2**0 through 2**7

E.11.1 LSB 4-byte Unsigned Integers

[image: image20.jpg]i0 i1 i2 i3
76543210]|76543210|76543210 76543210
b0 b1 b2 b3

E.11.2 LSB 2-byte Unsigned Integers

[image: image22.jpg]i0

i1

76543210

76543210

b0

b1

E.11.3 LSB 1-byte Unsigned Integers

[image: image24.jpg]i0

76543210

b0

E.12 XE "IEEE_REAL:storage format" IEEE_REAL

Aliases: FLOAT
REAL
MAC_REAL
SUN_REAL

This section describes the internal format of IEEE-format floating-point numbers. In this section the following definitions apply:

b0 – b9
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2, b3, etc.)

m-sign
Mantissa sign bit

int-bit
In 10-byte real format only, the integer part of the mantissa, assumed to be “1” in other formats, is explicitly indicated by this bit

e0 – e1
Arrangement of the portions of the bytes that make up the exponent, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = rightmost bit in the exponent part of the byte, highest value = leftmost bit in the exponent part of the byte) in the following way:

10-bytes (temporary):

In e0, bits 0-7 represent 2**0 through 2**7

In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16383

8-bytes (double precision):

In e0, bits 4-7 represent 2**0 through 2**3

In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

4-bytes (single precision):

In e0, bit 7 represent 2**0

In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

m0 – m7
Arrangement of the portions of the bytes that make up the mantissa, from highest order fractions to the lowest order fraction. The order of the bits within each byte progresses from left to right, with each bit representing a fractional power of two, in the following way:

10-bytes (temporary):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

In m3, bits 7-0 represent 1/2**24 through 1/2**31

In m4, bits 7-0 represent 1/2**32 through 1/2**39

In m5, bits 7-0 represent 1/2**40 through 1/2**47

In m6, bits 7-0 represent 1/2**48 through 1/2**55

In m7, bits 7-0 represent 1/2**56 through 1/2**63

8-bytes (double precision):

In m0, bits 3-0 represent 1/2**1 through 1/2**4

In m1, bits 7-0 represent 1/2**5 through 1/2**12

In m2, bits 7-0 represent 1/2**13 through 1/2**20

In m3, bits 7-0 represent 1/2**21 through 1/2**28

In m4, bits 7-0 represent 1/2**29 through 1/2**36

In m5, bits 7-0 represent 1/2**37 through 1/2**44

In m6, bits 7-0 represent 1/2**45 through 1/2**52

4-bytes (single precision):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

The following representations all follow this format:

1.mantissa (2**(exponent – bias)
Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that is, the stored exponent value – bias value = true exponent).
E.12.1 IEEE 10-byte (Temporary) Real Numbers

[image: image26.jpg]m-sign int-bit (always 1)
i el el mO m1 m2
76543210|76543210(76543210|76543210(76543210
b0 b1 b2 b3 b4
m3 m4 mS m6 m7
76543210|76543210|76543210|76543210|76543210
b5 b6 b7 b8 b9

E.12.2 IEEE 8-byte (Double Precision) Real Numbers

[image: image28.jpg]m-sign

el e0 moO m1 m2 m3 m4 m5 mo6
76543210|76543210|76543210(76543210|76543210|76543210[76543210|76543210
b0 b1 b2 b3 b4 b5 b6 b7

E.12.3 IEEE 4-byte (Single Precision) Real Numbers

[image: image30.jpg]m-sign

el

el * mO m1 m2
76543210(76543210|76543210|76543210
b0 b1 b2 b3

E.13 XE "IEEE_COMPLEX:storage format" IEEE_COMPLEX

Aliases: COMPLEX
MAC_COMPLEX
SUN_COMPLEX

IEEE complex numbers consist of two IEEE_REAL format numbers of the same precision, contiguous in memory. The first number represents the real part and the second the imaginary part of the complex value.
For more information on using IEEE_REAL formats, see Section C.5.
E.14 XE "PC_REAL:storage format" PC_REAL

Aliases: None
This section describes the internal storage format corresponding to the PC_REAL data type. In this section the following definitions apply:

b0 – b9
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2 and b3)

m-sign
Mantissa sign bit

int-bit
In 10-byte real format only, the integer part of the mantissa, assumed to be “1” in other formats, is explicitly indicated by this bit.
e0 – e1
Arrangement of the portions of the bytes that make up the exponent, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = rightmost bit in the exponent part of the byte, highest value = leftmost bit in the exponent part of the byte) in the following way:

10-bytes (temporary):

In e0, bits 0-7 represent 2**0 through 2**7

In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16383

8-bytes (double precision):

In e0, bits 4-7 represent 2**0 through 2**3

In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1023

4-bytes (single precision):

In e0, bit 7 represent 2**0

In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 127

m0 – m7
Arrangement of the portions of the bytes that make up the mantissa, from highest order fractions to the lowest order fraction. The order of the bits within each byte progresses from left to right, with each bit representing a fractional power of two, in the following way:

10-bytes (temporary):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

In m3, bits 7-0 represent 1/2**24 through 1/2**31

In m4, bits 7-0 represent 1/2**32 through 1/2**39

In m5, bits 7-0 represent 1/2**40 through 1/2**47

In m6, bits 7-0 represent 1/2**48 through 1/2**55

In m7, bits 7-0 represent 1/2**56 through 1/2**63

8-bytes (double precision):

In m0, bits 3-0 represent 1/2**1 through 1/2**4

In m1, bits 7-0 represent 1/2**5 through 1/2**12

In m2, bits 7-0 represent 1/2**13 through 1/2**20

In m3, bits 7-0 represent 1/2**21 through 1/2**28

In m4, bits 7-0 represent 1/2**29 through 1/2**36

In m5, bits 7-0 represent 1/2**37 through 1/2**44

In m6, bits 7-0 represent 1/2**45 through 1/2**52

4-bytes (single precision):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

The following representations all follow this format:

1.mantissa (2**(exponent – bias)
Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that is, the stored exponent value – bias value = true exponent).

E.14.1 PC 10-byte (Temporary) Real Numbers

[image: image32.jpg]m7 m6 m5 m4 m3
76543210|76543210(76543210|76543210| 76543210

b0 b1 b2 b3 b4

int-bit m-sign

m2 m1 i mO e0 i el
76543210|76543210(76543210|76543210|76543210

b5 b6 b7 b8 b9

E.14.2 PC 8-byte (Double Precision) Real Numbers

[image: image34.jpg]m-sign

m1 e0 moi el

m6 m5 m4 m3 m2
76543210(76543210[76543210|76543210|76543210|76543210|76543210|76543210
b0 b1 b2 b3 b4 b5 b6 b7

E.14.3 PC 4-byte (Single Precision) Real Numbers

[image: image36.jpg]e0-bit m-sign

m2 m1 l mO el
76543210|76543210|76543210|76543210

b0 b1 b2 b3

E.15 XE "PC_COMPLEX:storage format" PC_COMPLEX

Aliases: None

PC complex numbers consist of two PC_REAL format numbers of the same precision, contiguous in memory. The first number represents the real part and the second the imaginary part of the complex value.
For more information on using PC_REAL formats, see Section C.7.

E.16 XE "VAX_REAL:storage format"

 XE "VAXG_REAL:storage format" VAX_REAL, VAXG_REAL

Aliases: VAX_DOUBLE for VAX_REAL only.
No aliases for VAXG_REAL

This section describes the internal format corresponding to the VAX_REAL and VAXG_REAL data types. In this section the following definitions apply:
b0 – b15
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2 and b3)

m-sign
Mantissa sign bit

e0 – e1
Arrangement of the portions of the bytes that make up the exponent, from lowest order to highest order. The bits within each byte are interpreted from right to left (e.g., lowest value = rightmost bit in the exponent part of the byte, highest value = leftmost bit in the exponent part of the byte) in the following way:

16-bytes (H-type, quad precision):

In e0, bits 0-7 represent 2**0 through 2**7

In e1, bits 0-6 represent 2**8 through 2**14

Exponent bias = 16385

8-bytes (G-type, double precision):

In e0, bits 4-7 represent 2**0 through 2**3

In e1, bits 0-6 represent 2**4 through 2**10

Exponent bias = 1025

8-bytes (D-type, double precision):

In e0, bit 7 represents 2**0

In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129

4-bytes (F-type, single precision):

In e0, bit 7 represent 2**0

In e1, bits 0-6 represent 2**1 through 2**7

Exponent bias = 129
m0 – m13
Arrangement of the portions of the bytes that make up the mantissa, from highest order fractions to the lowest order fraction. The order of the bits within each byte progresses from left to right, with each bit representing a fractional power of two, in the following way:

16-bytes (H-type, quad precision):

In m0, bits 7-0 represent 1/2**1 through 1/2**8

In m1, bits 7-0 represent 1/2**9 through 1/2**16

In m2, bits 7-0 represent 1/2**17 through 1/2**24

In m3, bits 7-0 represent 1/2**25 through 1/2**32

In m4, bits 7-0 represent 1/2**33 through 1/2**40

In m5, bits 7-0 represent 1/2**41 through 1/2**48

In m6, bits 7-0 represent 1/2**49 through 1/2**56

In m7, bits 7-0 represent 1/2**57 through 1/2**64

In m8, bits 7-0 represent 1/2**65 through 1/2**72

In m9, bits 7-0 represent 1/2**73 through 1/2**80

In m10, bits 7-0 represent 1/2**81 through 1/2**88

In m11, bits 7-0 represent 1/2**89 through 1/2**96

In m12, bits 7-0 represent 1/2**97 through 1/2**104

In m13, bits 7-0 represent 1/2**105 through 1/2**112

8-bytes (G-type, double precision):

In m0, bits 3-0 represent 1/2**1 through 1/2**4

In m1, bits 7-0 represent 1/2**5 through 1/2**12

In m2, bits 7-0 represent 1/2**13 through 1/2**20

In m3, bits 7-0 represent 1/2**21 through 1/2**28

In m4, bits 7-0 represent 1/2**29 through 1/2**36

In m5, bits 7-0 represent 1/2**37 through 1/2**44

In m6, bits 7-0 represent 1/2**45 through 1/2**52

8-bytes (D-type, double precision):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

In m3, bits 7-0 represent 1/2**24 through 1/2**31

In m4, bits 7-0 represent 1/2**32 through 1/2**39

In m5, bits 7-0 represent 1/2**40 through 1/2**47

In m6, bits 7-0 represent 1/2**48 through 1/2**55

4-bytes (F-type, single precision):

In m0, bits 6-0 represent 1/2**1 through 1/2**7

In m1, bits 7-0 represent 1/2**8 through 1/2**15

In m2, bits 7-0 represent 1/2**16 through 1/2**23

The following representations all follow this format:

1.mantissa (2**(exponent – bias)
Note that the integer part (“1.”) is implicit in all formats except the 10-byte (temporary) real format, as described above. In all cases the exponent is stored as an unsigned, biased integer (that is, the stored exponent value – bias value = true exponent).

E.16.1 VAX 16-byte H-type (Quad Precision) Real Numbers

[image: image38.jpg]m-sign

! o

el m1 mO m3 m2 m5 m4
76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210
b0 b1 b2 b3 b4 b5 b6 b7
m7 m6 m9 m8 mif m10 m13 mi2
76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210 | 76543210
b8 b9 b10 b11 b12 b13 b14 b15

E.16.2 VAX 8-byte G-type (Double Precision) Real Numbers

[image: image40.jpg]m-sign

el MmOV el m2 m1 m4 m3 mo6 m5
76543210[76543210|76543210[|76543210(76543210|76543210|76543210|76543210
b0 b1 b2 b3 b4 b5 b6 b7

E.16.3 VAX 8-byte D-type (Double Precision) Real Numbers

[image: image42.jpg]e0-bit m-sign

oo

el m2 m1 m4 m3 mo6 m5
76543210|76543210|76543210|76543210|76543210|76543210[{76543210|76543210
b0 b1 b2 b3 b4 b5 b6 b7

E.16.4 VAX 4-byte F-type (Single Precision) Real Numbers

[image: image44.jpg]e0-bit m-sign

mO el m2 m1
76543210(76543210[76543210|76543210
b0 b1 b2 b3

E.17 XE "VAX_COMPLEX:storage format"

 XE "VAXG_COMPLEX:storage format" VAX_COMPLEX, VAXG_COMPLEX

Aliases: None

VAX complex numbers consist of two VAX_REAL (or VAXG_REAL) format numbers of the same precision, contiguous in memory. The first number represents the real part and the second the imaginary part of the complex value.

For more information on using VAX_REAL formats, see Section C.9.

E.18 XE "MSB_BIT_STRING:storage format" MSB_BIT_STRING

Aliases: None

This section describes the storage format for bit strings stored in XE "most significant byte first (MSB) storage format" Most Significant Byte first (MSB) format. In this section the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2 and b3)

The bits within a byte are numbered from left to right, as shown below:
[image: image46.jpg]76543210

b

bit 1 bit 8

Note that in the case of MSB bit strings, no byte-swapping is required. That is, the physical storage order of the bytes is identical to the logical order.
E.18.1 MSB n-byte Bit Strings

[image: image48.jpg]bits
((nx8)-7) - (nx8)

bits bits bits bits
1-8 9-16 17-24 25-32
76543210 | 76543210 | 76543210 | 76543210
b0 b1 b2 b3

b x (n-1)

E.18.2 MSB 2-byte Bit String

[image: image49.jpg]bits bits
1-8 9-16

76543210 | 76543210
b0 b1

E.18.3 MSB 1-byte Bit String

[image: image51.jpg]76543210

b0

E.19 XE "LSB_BIT_STRING:storage format" LSB_BIT_STRING

Aliases: VAX_BIT_STRING

This section describes the structure of bit strings stored in XE "least significant byte first (LSB) storage format" Least Significant Byte first (LSB) order. In this section, the following definitions apply:

b0 – b3
Arrangement of bytes as they appear when read from a file (e.g., read b0 first, then b1, b2 and b3)
The bits within a byte are numbered from left to right, as shown below:

[image: image53.jpg]76543210

b

bit 1 bit 8

Note that for LSB bit strings byte-swapping is required to convert the storage order of bytes to the logical order.

E.19.1 LSB 4-byte Bit String

Physical order (as read from the file):

[image: image55.jpg]bits bits bits bits
25-32 17-24 9-16 1-8

76543210 | 76543210 | 76543210 | 76543210
b0 b1 b2 b3

Logical order (after byte-swapping):

[image: image57.jpg]bits bits bits bits
1-8 9-16 17-24 25-32
76543210 | 76543210 | 76543210 | 76543210
b3 b2 b1 b0

E.19.2 LSB 2-byte Bit String

Physical order (as read from the file):

[image: image59.jpg]bits bits
9-16 1-8
76543210 | 76543210
b0 b1

Logical order (after byte-swapping):

[image: image61.jpg]bits bits
1-8 9-16
76543210 | 76543210
b1 b0

E.19.3 LSB 1-byte Bit String

[image: image63.jpg]76543210

b0

Note that in this degenerate case no byte-swapping is required.

binary storage formats, C-1

, C-1

data representation

internal, C-1

IEEE_COMPLEX

storage format, C-13

IEEE_REAL

storage format, C-10

least significant byte first (LSB) storage format, C-6, C-8, C-25

LSB_BIT_STRING

storage format, C-25

LSB_INTEGER

storage format, C-6

LSB_UNSIGNED_INTEGER

storage format, C-8

most significant byte first (MSB) storage format, C-2, C-4, C-23

MSB_BIT_STRING

storage format, C-23

MSB_INTEGER

storage format, C-2

MSB_UNSIGNED_INTEGER

storage format, C-4

PC_COMPLEX

storage format, C-17

PC_REAL

storage format, C-14

, C-1

, C-1
, C-1
, C-1
, C-1
, C-1
, C-1
VAX_COMPLEX

storage format, C-22

VAX_REAL

storage format, C-18

VAXG_COMPLEX

storage format, C-22

VAXG_REAL

storage format, C-18

_1062563130.doc
[image: image1.png]i-sign

i3 i2 i1 i0
76543210]|76543210|7654321076543210
b0 b1 b2 b3

