Instrument Host Information
IDENTIFIER urn:nasa:pds:context:instrument_host:spacecraft.a14c::1.1
NAME APOLLO 14 COMMAND AND SERVICE MODULE
TYPE Spacecraft
DESCRIPTION
Instrument Host Overview
  ========================
    The Apollo 14 Command and Service Module (CSM) spacecraft orbited the
    Moon during the Apollo 14  mission.  It was piloted by Stuart A. Roosa.
 
 
    Spacecraft and Subsystems
    -------------------------
      As the name implies, the Command and Service Module (CSM) for the
      Apollo 14 mission was comprised of two distinct units:  the Command
      Module (CM), which housed the crew, spacecraft operations systems,
      and re-entry equipment, and the Service Module (SM) which carried
      most of the consumables (oxygen, water, helium, fuel cells, and
      fuel) and the main propulsion system.  The total length of the two
      modules attached was 11.0 meters with a maximum diameter of 3.9
      meters.  Block II CSM's were used for all the crewed Apollo
      missions.  The launch mass, including propellants and expendables,
      of the Apollo 14 CSM was 29,229 kg kg of which the Command Module
      (CM-110) had a mass of 5758 kg and the Service Module (SM-110)
      23,471 kg.  The Apollo 14 CM was named ''Kitty Hawk''.
 
      Telecommunications included voice, television, data, and tracking
      and ranging subsystems for communications between astronauts, CM,
      LM, and Earth.  Voice contact was provided by an S-band uplink and
      downlink system.  Tracking was done through a unified S-band
      transponder.  A high gain steerable S-band antenna consisting of
      four 79-cm diameter parabolic dishes was mounted on a folding boom
      at the aft end of the SM.  Two VHF scimitar antennas were also
      mounted on the SM.  There was also a VHF recovery beacon mounted in
      the CM.  The CSM environmental control system regulated cabin
      atmosphere, pressure, temperature, carbon dioxide, odors,
      particles, and ventilation and controlled the temperature range of
      the electronic equipment.
 
 
    Command Module
    --------------
      The CM was a conical pressure vessel with a maximum diameter of 3.9 m
      at its base and a height of 3.65 m.  It was made of an aluminum
      honeycomb sandwich bonded between sheet aluminum alloy.  The base of
      the CM consisted of a heat shield made of brazed stainless steel
      honeycomb filled with a phenolic epoxy resin as an ablative material
      and varied in thickness from 1.8 to 6.9 cm.  At the tip of the cone
      was a hatch and docking assembly designed to mate with the lunar
      module.  The CM was divided into three compartments.  The forward
      compartment in the nose of the cone held the three 25.4 m diameter
      main parachutes, two 5 m drogue parachutes, and pilot mortar chutes
      for Earth landing.  The aft compartment was situated around the base
      of the CM and contained propellant tanks, reaction control engines,
      wiring, and plumbing.  The crew compartment comprised most of the
      volume of the CM, approximately 6.17 cubic meters of space.  Three
      astronaut couches were lined up facing forward in the center of the
      compartment.  A large access hatch was situated above the center
      couch.  A short access tunnel led to the docking hatch in the CM
      nose.  The crew compartment held the controls, displays, navigation
      equipment and other systems used by the astronauts.  The CM had five
      windows:  one in the access hatch, one next to each astronaut in the
      two outer seats, and two forward-facing rendezvous windows.  Five
      silver/zinc-oxide batteries provided power after the CM and SM
      detached, three for re-entry and after landing and two for vehicle
      separation and parachute deployment.  The CM had twelve 420 N
      nitrogen tetroxide/hydrazine reaction control thrusters.  The CM
      provided the re-entry capability at the end of the mission after
      separation from the Service Module.
 
 
    Service Module
    --------------
      The SM was a cylinder 3.9 meters in diameter and 7.6 m long which was
      attached to the back of the CM.  The outer skin of the SM was formed
      of 2.5 cm thick aluminum honeycomb panels. The interior was divided
      by milled aluminum radial beams into six sections around a central
      cylinder.  At the back of the SM mounted in the central cylinder was
      a gimbal mounted restartable hypergolic liquid propellant 91,000 N
      engine and cone shaped engine nozzle.  Attitude control was provided
      by four identical banks of four 450 N reaction control thrusters each
      spaced 90 degrees apart around the forward part of the SM.  The six
      sections of the SM held three 31-cell hydrogen oxygen fuel cells
      which provided 28 volts, an auxiliary battery, three cryogenic oxygen
      tanks (the battery and an extra oxygen tank were added after the
      Apollo 13 mishap as backups), two cryogenic hydrogen tanks, four
      tanks for the main propulsion engine, two for fuel and two for
      oxidizer, and the subsystems the main propulsion unit.  Two helium
      tanks were mounted in the central cylinder.  Electrical power system
      radiators were at the top of the cylinder and environmental control
      radiator panels spaced around the bottom.
 
 
    Scientific Experiments
    ----------------------
      The following scientific experiments were performed on board the
      Apollo 14 Command and Service Module:
 
      - Orbital and Surface Photography was designed to to (1) obtain
        photographs of the transposition, docking, lunar module (LM)
        ejection maneuver, and the LM rendezvous sequence from the command
        and lunar modules, (2) obtain mapping type photos of the lunar
        ground track and of potential landing sites from the low point of
        the LM's flight path, (3) record the operational activities of the
        crew, (4) obtain long-distance earth and lunar terrain photographs
        with 70-mm still cameras, and (5) obtain photos of lunar surface
        features and activities after landing.
 
      - Gegenschein Photography imaged the faint light source covering a
        20-deg field of view along the earth-sun line on the opposite side
        of the earth from the sun (anti-solar axis) in total darkness.
 
      - The S-Band Transponder Experiment measured the lunar gravitational
        field by observing the dynamical motion of the spacecraft in free
        fall orbits to provide information about the distribution of lunar
        mass.
 
      - The Down-Link Bistatic Radar Experiment utilized the S-band (13-cm) an
        very high frequency (VHF, 116-cm) transmitters on the CSM.  Radio
        signals reflected from the lunar surface were received at the earth
        to derive quantitative inferences about the Moon.
 
      - The Selenodetic Reference Point Update was a landmark tracking task
        that provided data for precisely determining the location of
        selected lunar reference points.
 
      - The Window Meteoroid Detector Experiment used the CM heat shield
        window surfaces (fused silica) to obtain information about the flux
        of meteoroids with masses of 1 nanogram or less.  About 0.4 square
        meters of the window surfaces were used as meteoroid impact
        detectors.
 
    For more information about the CSM and its experiments, see the Apollo
    14 preliminary science report (1971) [APOLLO14A1971].
 
 
  This instrument host description was provided by the NASA National Space
  Science Data Center (NSSDC).
NAIF INSTRUMENT IDENTIFIER A14C
SERIAL NUMBER
REFERENCES Apollo 14 Preliminary Science Report, NASA SP-272, 302 pages, Washington, D.C., 1971.