MISSION_OBJECTIVES_SUMMARY |
Volcanic and Tectonic Processes =============================== Magellan images of the Venus surface show widespread evidence for volcanic activity. A major goal of the Magellan mission was to provide a detailed global characterization of volcanic landforms on Venus and an understanding of the mechanics of volcanism in the Venus context. Of particular interest was the role of volcanism in transporting heat through the lithosphere. While this goal will largely be accomplished by a careful analysis of images of volcanic features and of the geological relationships of these features to tectonic and impact structures, an essential aspect of characterization will be an integration of image data with altimetry and other measurements of surface properties. Explosive pyroclastic volcanism should not occur in the present Venus environment, unless the magma contains amounts of volatiles that are large by terrestrial experience. Thus, evidence for extensive pyroclastic deposits would imply the presence of large amounts of volatiles or, if the deposits are old, may suggest historic changes in atmospheric density. Such ideas can be tested using SAR and altimetry data, combined with knowledge of the local geopotential field and may shed light on magma dynamics. Measurements of longitudinal and transverse slope, flow margin relief, and flow surface relief also provide powerful constraints on flow models, as well as on the rheological properties and physical state of the lava. A parallel goal was the global characterization of tectonic features on Venus and an appreciation of the tectonic evolution of the planet. This goal addressed issues on several scales. On the scale of individual tectonic features is the mechanical nature of the faulting process, the documentation of geometry and sense of fault slip, and the relationship between mechanical and thermal properties of the lithosphere. On a somewhat broader scale is linking groups of features to specific processes (e.g., uplift, orogeny, gravity sliding, flexure, compression or extension of the lithosphere) and testing quantitative models for these processes with SAR images and supporting topographic, gravitational, and surface compositional data. On a global scale is the question of whether spatially coherent, large-scale patterns in tectonic behavior are discernible, patterns that might be related to an organized system of plates or to mantle convective flow For more information on volcanic and tectonic investigations see papers by [HEADETAL1992] and [SOLOMONETAL1992], respectively. Impact Processes ================ The final physical form of an impact crater has meaning only when the effects of the cratering event and any subsequent modification of the crater can be distinguished. To this end, a careful search of the SAR images can identify and characterize both relatively pristine and degraded impact craters, together with their ejecta deposits (in each size range) as well as distinguishing impact craters from those of volcanic origin. The topographic measures of depth-to-diameter ratio, ejecta thickness distribution as a function of distance from the crater, and the relief of central peaks contribute to this documentation. It is expected that several time-dependent processes influence the change in appearance of craters with increasing crater age, including continued bombardment of the surface, variations in the mechanical properties of the lithosphere (as a result of cooling or loss of near-surface volatiles), horizontal deformation of the lithosphere, possible variations in the mass of the atmosphere, volcanism, and finally, surface erosion and deposition. Distinguishing and understanding these processes constitute important components of the study of crater morphology. Beyond their intrinsic interest in providing a record of impact and deformational processes, craters provide a tool for the relative dating of surface geological units. Relative ages can be established from a comparison of the variations in the areal density of craters of a given size as well as from a comparison of the maximum extent to which different craters are degraded. Together with superpositional relationships (a lava flow that covers an older fault) and transectional relationships (a graben that cuts through an older volcano), the relative temporal evolution of large areas of the Venus surface can be reconstructed. For more information on investigations of impact processes see [SCHABERETAL1992]. Erosional, Depositional, and Chemical Processes =============================================== The nature of erosional and depositional processes on Venus is poorly known, primarily because the diagnostic landforms typically occur at a scale too small to have been resolved in Earth-based or Venera 15/16 radar images. Magellan images show wind eroded terrains, landforms produced by deposition (dune fields), possible landslides and other down slope movements, as well as aeolian features such as radar bright or dark streaks 'downwind' from prominent topographic anomalies. One measure of weathering, erosion, and deposition is provided by the extent to which soil covers the surface (for Venus, the term soil is used for porous material, as implied by its relatively low value of bulk dielectric constant). The existence of such material, and its dependence on elevation and geologic setting, provide important insights into the interactions that have taken place between the atmosphere and the lithosphere. Because of the inference drawn from the deuterium-to-hydrogen ratio of the present atmosphere for the past existence of substantial amounts of water on Venus, radar images continue to be searched for evidence of past episodes of fluvial activity (drainage systems) and for lake beds and coastal signatures (strandlines). The existence of a thick and cloudy atmosphere precludes infrared, visual, ultraviolet, x-ray, or gamma-ray observation of the Venus surface from orbit. Thus it is impossible to obtain information on a global basis about the surface composition or mineralogy using remote-sensing techniques at these wavelengths. Pioneer Venus and Magellan have disclosed that very often the surfaces of elevated regions possess both anomalously high values of normal-incidence radar reflectivity, occasionally exceeding 0.43, and associated low values of radio emissivity, reaching as low as 0.50. In the absence of liquid water, which is known from a variety of evidence not to be present today on Venus, it is necessary to assume a surface composition that would be unusual in terrestrial experience to explain values of dielectric constant implied by these observations. The most acceptable of the current hypotheses requires a significant number of electrically conducting elements in surface materials. If these are iron sulfides, as some chemical evidence suggests, they may possibly be brought to the surface by volcanic activity. The good spatial resolution of the Magellan instrumentation, both in determining the surface reflectivity from the altimetric observations and in measuring the emissivity from radiometric observations, promises to outline the structure of these regions and may shed light on their origin. Results will be applied to testing hypotheses for regional and global buffering of atmospheric composition by reactions with crustal materials. For more information on erosional, depositional, and chemical processes see papers by [ARVIDSONETAL1992], [GREELEYETAL1992], and [GREELEYETAL1994]. Isostatic and Convective Processes ================================== Topography and gravity are intimately and inextricably related, and must be jointly examined when undertaking geophysical investigations of the interior of a planet, where isostatic and convective processes dominate. Topography provides a surface boundary condition for modeling the interior density of Venus. Modeling of the interior density using gravity data is, of course, nonunique. Meaningful interpretation rests on integrating other data sets and/or incorporating specific mechanical models of the interior. For example, a single density interface underlying the known topography can be found that exactly matches any observed gravity field. The interface can be at any depth; the greater the depth, the larger the density contrast needed. The thickness of the elastic lithosphere of Venus, i.e., the outer region of the planet that behaves elastically over geologically long periods of time, is of special interest. The base of this zone is likely to be defined by a specific isotherm whose location depends on the particular temperature-dependent flow or creep properties of the material underneath. If this isotherm can be mapped in space and time, then models for the thermal evolution of the planet can be developed. The key to determining lithospheric thickness variations in space and time is through flexure studies. If a mass load, e.g., a shield volcano or a mascon, is placed on the planetary surface, then the elastic lithosphere will flex under the load. The controlling parameter is the flexural rigidity, which is dependent on the elastic constants and lithospheric thickness. Crucial to applying estimates of flexural rigidity to the task of unraveling the thermal history is an estimate of when the load was emplaced. Thus age determinations derived by various geologic techniques are essential to this scheme. For more information on topography and gravity see papers by [FORD&PETTENGILL1992], [ICARUSMGN1994], [KONOPLIVETAL1993], and [MCNAMEEETAL1993].
|