DATA_SET_DESCRIPTION |
Data Set Overview : This data set contains Calibrated data taken by New Horizons Multispectral Visible Imaging Camera instrument during the PLUTOCRUISE mission phase. MVIC is a visible and near-infrared imager. MVIC comprises seven separate CCD two-dimensional arrays; all rows are 5024 pixels across with twelve pixels at either end of each row optically inactive. The single Pan Frame array is a panchromatic frame-transfer imager, 5024x128 pixels, that typically takes multiple frames in each observation. The common Pan Frame data product is an image cube in three dimensions: spatial; spatial; image frame, equivalent to time. Of the remaining six arrays, 5024x32 pixels each, two are panchromatic (unfiltered), and the remaining four are under filters and called the color arrays: Near-InfraRed (NIR); methane (CH4); Red; Blue. All six are operated in Time-Delay Integration (TDI) mode; the TDI arrays are in some ways similar to line cameras. In TDI mode, the spacecraft and MVIC boresight are scanned across the target at a rate that matches the charge transfer clock rate across the rows of the CCDs. Ideally the rates are matched, so as the charges are read by the analog-to-digital converter off the last line of the array, each pixel reading is near-proportional to the brightness of the same piece of the target as its image moved across the array, accumulating charge on each row. In TDI mode it is the product of the per-row charge clock rate and the duration of the observation that determines the number of rows each the image, and the image can be arbitrarily long; the number of rows (32) in each array is not relevant in determining the size of the image. The common data product for each of the TDI arrays is a 2-D image, of arbitrary length as noted earlier. RALPH data taken during Annual CheckOuts 1 through 8 (ACO1-8): : Summary (Note 1): : - Science observations - Uranus with MVIC at a phase angle not available from Earth (44 degrees) - Neptune with MVIC at a phase angle not available from Earth (34 degrees) - Calibrations and other tests with possible science targets - Neptune as a navigation test target - Sun in Solar Illumination Assembly (SIA) - M6 and M7 (clusters) - Pluto encounter rehearsals - Functional tests Details: : Primary RALPH Calibrations and other major observations (Notes 1 and 2): ------------------------------------------------------------------------ During ACO1, ACO2 and ACO4, RALPH took LEISA calibration data using the star Vega as a source; During ACO-2 and ACO-4, RALPH took MVIC calibration data using the clusters M7 and M6. During ACO1 and ACO2, the RALPH instrument observed flat field data for both MVIC and LEISA using the SIA. However these data were not useful for flat fielding because there was varying structure in the images i.e. the light was not evenly illuminating the field of view, and details of the flat are dependent on the position of the Sun in the SIA. In ACO1, RALPH observations for calibration, characterization and interference goals included a stray light test with the sun at an angle of 20-90 degrees from the FOV, to characterize the light leak of LEISA on the incoming and outgoing encounter asymptote, and an interference test between the LEISA and ALICE instruments. During ACO2, RALPH observed Neptune in pan frame mode as an optical navigation test. In ACO2, another stray light test was performed. The geometries simulated observations from the outgoing encounter asymptote with an elongation angle of 13 degrees (sun-spacecraft-target). During ACO3 and ACO5, RALPH had no 3-axis (spacecraft not in spinning mode) observations, only the functional test as described below. In ACO4, RALPH performed a dark current test, taking data while the focal plane cooled down, from 2 to 20h after the decontamination heaters were turned off. RALPH also performed an interference test, simultaneously operating LEISA, LORRI and ALICE. MVIC took color observations of Uranus and Neptune at phase angles not accessible from Earth (44 degrees and 34 degrees, respectively) and optical navigation images of Neptune using the pan frame array. MVIC performed a stray light test as a ride-along to the LORRI observation in ACO4, and LEISA performed a light leak test at an angle of 9 degrees from the sun. RALPH also did an interference test between the MVIC TDI and LORRI modes of operation. In ACO6 through ACO8, RALPH performed rehearsals of the Pluto enounter (ACO6; ACO7), LEISA stellar calibrations (ACO6; ACO8), MVIC stellar calibrations and optical navigation tests (ACO6; ACO7; ACO8), and LEISA test scans for the flat field (ACO8). Functional Test --------------- During all ACOs the RALPH instrument performed one or more functional tests. This test exercised all modes of the instrument at two different rates, and both power sides of RALPH. The test took LEISA raw and subtracted data, and MVIC data using each of the detectors. The integration times included a short and longer time. There was no specific target as often these data were taken when the spacecraft was spinning and the field of view was sweeping across the sky. Note 1 : The items listed above are the major RALPH observations, but in the interest of brevity may not include every RALPH observation; refer to the sequence listing for a complete list of all activities. Every observation provided in this data set was taken as a part of a particular sequence. A list of these sequences has been provided in file DOCUMENT/SEQ_MVIC_PLUTOCRUISE.TAB. N.B. Some sequences provided may have no corresponding observations. For a list of observations, refer to the data set index table. This is typically INDEX.TAB initially in the INDEX/ area of the data set. There is also a file SLIMINDX.TAB in INDEX/ that summarizes key information relevant to each observation, including which sequence was in effect and what target was likely intended for the observation. Version : This is VERSION 1.0 of this data set. Processing : The data in this data set were created by a software data processing pipeline on the Science Operations Center (SOC) at the Southwest Research Institute (SwRI), Department of Space Operations. This SOC pipeline assembled data as FITS files from raw telemetry packets sent down by the spacecraft and populated the data labels with housekeeping and engineering values, and computed geometry parameters using SPICE kernels. The pipeline did not resample the data. Calibration : Detailed information about calibration of MVIC data is available in the SOC Instrument Interface Control Document (ICD) in the DOCUMENT section of this data set. The MVIC calibration will only be briefly summarized here; refer to the ICD for details about what is summarized here. The calibration of MVIC images comprises the following steps: 1) Remove bias and flat-field pattern 1.1) The result is an absolute calibration in raw DATA NUMBER units (DN), with pixel values proportional to the incoming signal 2) Supply target source spectrum-dependent factors to scale from absolute DN to scientific (flux and radiance) units; refer to the DOCUMENT/SOC_INST_ICD*.* for more detail. In addition, the calibration procedure calculates the error and a data quality flag for each pixel and includes those results in the calibrated data product as additional PDS OBJECTs (FITS extensions) appended to the main OBJECT with the data image. The quality flag PDS OBJECT is an image of values of the same size as the main IMAGE product, with each quality flag pixel mapped to the corresponding pixel in the main product. A quality flag value of zero indicates a valid pixel; a non-zero value indicates an invalid pixel (e.g. missing data outside the window(s) of data intended to be downlinked). Note that for windowed products, all pixels in an image are not returned in the downlink telemetry. In the raw data, the pipeline sets such pixels to zero DN (Data Number); the calibration processes those zero-DN pixels as if they were real raw values, but also flags them as missing data in the quality flag PDS OBJECT (FITS extension). Displaying such images using an automatic stretch (contrast enhancement) may result in a confusing result with the majority of the displayed image appearing as an inverse of the calibration (calibration of zero values); therefore the quality flag PDS OBJECT should always be checked when looking at these data. Note also that, at the time these data were created (late 2014), the Science Operations Center (SOC) data processing pipeline did not have the capability to merge multiple windows from a single observation. As a result, in some cases one observation's products in raw and and calibrated data sets may come from different windows. This is normal, but it can have some noticeable side-effects: i) Mismatches in windowing parameters between raw and calibrated products for the same observation. Either the windowing parameters differ, or one may be windowed and the other a non-windoed, full image. ii) START_TIME and STOP_TIME mismatches between versions of the same TDI observations with different windows. The start and stop times of TDI MVIC products are dependent on the start and stop lines of the window: if the first line of the window is not the first line of the observation, the START_TIME of the product will be delayed from the start time of the observation; similarly the last line of a window that is not the last line of the observation results in a STOP_TIME that is earlier than the stop time of the observation. Since there is only one version of each observation in any single MVIC data set, this will not be noticeable within any single data set. However, when comparing versions of the same observation from raw and calibrated data sets, it is possible that the START_TIME and STOP_TIME values for that observation will differ between the data sets. iii) The shift in start and stop times will also affect the calculation of mid-observation times. iv) The mid-observation time is used as the lookup in SPICE calls, so the shift in time will affect calculated geometry values As part of the preparation for the Pluto flyby in Spring, 2015, the SOC pipeline was updated to all it to merge multiple windows and/or full images of the same observation into a single product. so it is expected that future MVIC data sets will have raw and calibrated products with consistent windowing parameters, times and geometries. A PDS OBJECT CALGEOM (FITS extension) with a correction for geometric distortion, present in previous versions of MVIC data sets, has been removed from these and future PDS calibrated data sets. Geometric distorion will be addressed in higher-level products, as it involves resampling the data. Data : The observations in this data set are stored in data files using standard Flexible Image Transport System (FITS) format. Each FITS file has a corresponding detached PDS label file, named according to a common convention. The FITS files may have image and/or table extensions. See the PDS label plus the DOCUMENT files for a description of these extensions and their contents. This Data section comprises the following sub-topics: - Filename/Product IDs - Instrument description - Other sources of information useful in interpreting these Data - Visit Description, Visit Number, and Target in the Data Labels Filename/Product IDs -------------------- The filenames and product IDs of observations adhere to a common convention e.g. MC0_0123456789_0X530_ENG.FIT ^^^ ^^^^^^^^^^ ^^^^^ ^^^\__/ | | | | ^^ | | | | | | | | | +--File type (includes dot) | | | | - .FIT for FITS file | | | | - .LBL for PDS label | | | | - not part of product ID | | | | | | | +--ENG for CODMAC Level 2 data | | | SCI for CODMAC Level 3 data | | | | | +--Application ID (ApID) of the telemetry data | | packet from which the data come | | N.B. ApIDs are case-insensitive | | | +--MET (Mission Event Time) i.e. Spacecraft Clock | +--Instrument designator Note that, depending on the observation, the MET in the data filename and in the Product ID may be similar to the Mission Event Time (MET) of the actual observation acquisition, but should not be used as an analog for the acquisition time. The MET is the time that the data are transferred from the instrument to spacecraft memory and is therefore not a reliable indicator of the actual observation time. The PDS label and the index tables are better sources to use for the actual timing of any observation. The specific keywords and index table column names for which to look are * START_TIME * STOP_TIME * SPACECRAFT_CLOCK_START_COUNT * SPACECRAFT_CLOCK_STOP_COUNT Instrument Instrument designators ApIDs ** : : : MVIC MC0, MC1, MC2, MC3, MP1, MP2, MPF 0X530 - 0X54A * * Not all values in this range are in this data set ** ApIDs are case insensitive There are other ApIDs that contain housekeeping values and other values. See SOC Instrument ICD (/DOCUMENT/SOC_INST_ICD.*) for more details. Here is a summary of the meanings of each instrument designator: Instr Dsgn. Description : : MC0 MVIC, Color TDI, Red filter MC1 MVIC, Color TDI, Blue filter MC2 MVIC, Color TDI, Near-InfraRed (NIR) filter MC3 MVIC, Color TDI, Methane (CH4) filter MP1 MVIC, Panchromatic TDI CCD 1 MP2 MVIC, Panchromatic TDI CCD 2 MPF MVIC, Panchromatic frame (5024 pixels) See SOC Instrument ICD (/DOCUMENT/SOC_INST_ICD.*) for details Here is a summary of the types of files generated by each ApID (N.B. ApIDs are case-insensitive) along with the instrument designator that go with each ApID: ApIDs Data product description/Prefix(es) : : 0x530 - MVIC Panchromatic TDI Lossless (CDH 1)/MP1,MP2 0x53f - MVIC Panchromatic TDI Lossless (CDH 2)/MP1,MP2 0x531 - MVIC Panchromatic TDI Packetized (CDH 1)/MP1,MP2 0x540 - MVIC Panchromatic TDI Packetized (CDH 2)/MP1,MP2 0x532 - MVIC Panchromatic TDI Lossy (CDH 1)/MP1,MP2 0x541 - MVIC Panchromatic TDI Lossy (CDH 2)/MP1,MP2 0x533 - MVIC Panchromatic TDI 3x3 Binned Lossless (CDH 1)/MP1,MP2 * 0x542 - MVIC Panchromatic TDI 3x3 Binned Lossless (CDH 2)/MP1,MP2 * 0x534 - MVIC Panchromatic TDI 3x3 Binned Packetized (CDH 1)/MP1,MP2 * 0x543 - MVIC Panchromatic TDI 3x3 Binned Packetized (CDH 2)/MP1,MP2 * 0x535 - MVIC Panchromatic TDI 3x3 Binned Lossy (CDH 1)/MP1,MP2 * 0x544 - MVIC Panchromatic TDI 3x3 Binned Lossy (CDH 2)/MP1,MP2 * 0x536 - MVIC Color TDI Lossless (CDH 1)/MC0,MC1,MC2,MC3 0x545 - MVIC Color TDI Lossless (CDH 2)/MC0,MC1,MC2,MC3 0x537 - MVIC Color TDI Packetized (CDH 1)/MC0,MC1,MC2,MC3 0x546 - MVIC Color TDI Packetized (CDH 2)/MC0,MC1,MC2,MC3 0x538 - MVIC Color TDI Lossy (CDH 1)/MC0,MC1,MC2,MC3 0x547 - MVIC Color TDI Lossy (CDH 2)/MC0,MC1,MC2,MC3 0x539 - MVIC Panchromatic Frame Transfer Lossless (CDH 1)/MPF 0x548 - MVIC Panchromatic Frame Transfer Lossless (CDH 2)/MPF 0x53a - MVIC Panchromatic Frame Transfer Packetized (CDH 1)/MPF 0x549 - MVIC Panchromatic Frame Transfer Packetized (CDH 2)/MPF 0x53b - MVIC Panchromatic Frame Transfer Lossy (CDH 1)/MPF 0x54a - MVIC Panchromatic Frame Transfer Lossy (CDH 2)/MPF * as of October, 2014, 3x3 modes have not been used Instrument description ---------------------- Refer to the following files for a description of this instrument. CATALOG MVIC.CAT DOCUMENTS RALPH_SSR.* SOC_INST_ICD.* NH_RALPH_V###_TI.TXT (### is a version number) Other sources of information useful in interpreting these Data -------------------------------------------------------------- Refer to the following files for more information about these data NH Trajectory tables: /DOCUMENT/NH_MISSION_TRAJECTORY.* - Heliocentric RALPH Field Of View definitions: /DOCUMENT/NH_FOV.* /DOCUMENT/NH_RALPH_V###_TI.TXT Visit Description, Visit Number, and Target in the Data Labels --------------------------------------------------------------- The observation sequences were defined in Science Activity Planning (SAP) documents, and grouped by Visit Description and Visit Number. The SAPs are spreadsheets with one Visit Description & Number per row. A nominal target is also included on each row and included in the data labels, but does not always match with the TARGET_NAME field's value in the data labels. In some cases, the target was designated as RA,DEC pointing values in the form ``RADEC:123.45,-12.34'' indicating Right Ascension and Declination, in degrees, of the target from the spacecraft in the Earth Equatorial J2000 inertial reference frame. This indicates either that the target was either a star, or that the target's ephemeris was not loaded into the spacecraft's attitude and control system which in turn meant the spacecraft could not be pointed at the target by a body identifier and an inertial pointing value had to be specified as Right Ascension and Declination values. PDS-SBN practices do not allow putting a value like RADEC:... in the PDS TARGET_NAME keyword's value. In those cases the PDS TARGET_NAME value is set to CALIBRATION. TARGET_NAME may be N/A (Not Available or Not Applicable) for a few observations in this data set; typically that means the observation is a functional test so N/A is an appropriate entry for those targets, but the PDS user should also check the NEWHORIZONS:OBSERVATION_DESC and NEWHORIZONS:SEQUENCE_ID keywords in the PDS label, plus the provided sequence list (see Ancillary Data below) to assess the possibility that there was an intended target. Ancillary Data : The geometry items included in the data labels were computed using the SPICE kernels archived in the New Horizons SPICE data set, NH-X-SPICE-6-PLUTOCRUISE-V1.0. Every observation provided in this data set was taken as a part of a particular sequence. A list of these sequences has been provided in file DOCUMENT/SEQ_MVIC_PLUTOCRUISE.TAB. In addition, the sequence identifier (ID) and description are included in the PDS label for every observation. N.B. While every observation has an associated sequence, every sequence may not have associated observations. Some sequences may have failed to execute due to spacecraft events (e.g. safing). No attempt has been made during the preparation of this data set to identify such empty sequences, so it is up to the user to compare the times of the sequences to the times of the available observations from INDEX/INDEX.TAB to identify such sequences. Time : There are several time systems, or units, in use in this dataset: New Horizons spacecraft MET (Mission Event Time or Mission Elapsed Time), UTC (Coordinated Universal Time), and TDB Barycentric Dynamical Time. This section will give a summary description of the relationship between these time systems. For a complete explanation of these time systems the reader is referred to the documentation distributed with the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit from the PDS NAIF node, (see http://naif.jpl.nasa.gov/). The most common time unit associated with the data is the spacecraft MET. MET is a 32-bit counter on the New Horizons spacecraft that runs at a rate of about one increment per second starting from a value of zero at 19.January, 2006 18:08:02 UTC or JD2453755.256337 TDB. The leapsecond adjustment (DELTA_ET : ET - UTC) was 65.184s at NH launch, and the first three additional leapseconds occured in at the ends of December, 2009, June, 2012 and June, 2015. Refer to the NH SPICE data set, NH-J/P/SS-SPICE-6-V1.0, and the SPICE toolkit docmentation, for more details about leapseconds. The data labels for any given product in this dataset usually contain at least one pair of common UTC and MET representations of the time at the middle of the observation. Other portions of the products, for example tables of data taken over periods of up to a day or more, will only have the MET time associated with a given row of the table. For the data user's use in interpreting these times, a reasonable approximation (+/- 1s) of the conversion between Julian Day (TDB) and MET is as follows: JD TDB : 2453755.256337 + ( MET / 86399.9998693 ) For more accurate calculations the reader is referred to the NAIF/SPICE documentation as mentioned above. Reference Frame : Geometric Parameter Reference Frame ----------------------------------- Earth Mean Equator and Vernal Equinox of J2000 (EMEJ2000) is the inertial reference frame used to specify observational geometry items provided in the data labels. Geometric parameters are based on best available SPICE data at time of data creation. Epoch of Geometric Parameters ----------------------------- All geometric parameters provided in the data labels were computed at the epoch midway between the START_TIME and STOP_TIME label fields. Software : The observations in this data set are in standard FITS format with PDS labels, and can be viewed by a number of PDS-provided and commercial programs. For this reason no special software is provided with this data set. Contact Information : For any questions regarding the data format of the archive, contact New Horizons RALPH Principal Investigator: Alan Stern, Southwest Research Institute S. Alan Stern Southwest Research Institute Department of Space Studies 1050 Walnut Street, Suite 400 Boulder, CO 80302 USA
|