Data Set Information
DATA_SET_NAME ROSETTA-ORBITER 67P COSIMA 3 V4.0
DATA_SET_ID RO-C-COSIMA-3-V4.0
NSSDC_DATA_SET_ID
DATA_SET_TERSE_DESCRIPTION COSIMA substrate operations and calibrations
DATA_SET_DESCRIPTION
Data Set Overview
  =================

    This dataset contains data from COSIMA instrument in the Rosetta
    spacecraft. The set covers the substrate history from the
    calibration period of the instrument starting 2002-05-29 up to the
    end of the escort phase 3 2015-10-20. See the MISSION.CAT for
    a more detailed operations description.

    During the calibration period the instrument was operated with
    several software versions and for test purposes the operations
    were not always nominal. The substrate histories are anyway
    considered to be complete.

    During the first commissioning period from 2004-03-02 to
    2004-06-06 the substrates from the target holder #D8 covering the
    dust inlet was stored.

    During the second commissioning period from 2004-09-06 to
    2004-10-16 the first ever in space secondary ion mass spectra were
    generated. These can be found from the substrate #1C2 data.

    During the passive payload checkouts (PC) no science data was
    generated.  The target holder #C2 was to be lifted to test the
    target manipulator unit. This failed in PC1 and PC3 due to
    hardware anomaly. Due to spacecraft telemetry problem, this
    history is not available from PC2 either.

    Test images from empty COSISCOPE slot were taken in all payload
    checkouts. All the substrates were also imaged in space to be used
    later as initial reference images.

    During the active checkouts the main operational concentration was
    to heal the baddly behaving ion emitter A. During those operations
    some spectra was acquired, but without intention to generate
    really scientifically usable background spectra from the
    substrates.

    During the prelanding phase, the COSIMA instrument was
    commissioned.

    The TOF-SIMS related voltage settings were optimised and
    COSISCOPE focused using the D8 substrates.

    From 2014-08-11 onward dust collection and the TOF-SIMS
    analysis was carried out with the D0 substrates. The TOF-SIMS
    measurements were done on selected dust particles on all D0
    substrates. The particles coordinates were established manually
    from the COSISCOPE images. The substrate coordinate system applied
    for the TOF-SIMS has some extra offsets due to mechanical
    tolerances, particle heights  and ion paths being different for
    positive and negative SIMS. These offsets can only be established
    by analysing the TOF-SIMS and image data.

    As of 2014-10-23  the ion optics was not operable anymore within
    the nominal operation parameter settings and the TOF-SIMS and the
    spectra got scientifically useless.
    The TOF-SIMS data during the 2014-10-23 - 2015-03-10 period is
    more or less instrument test data. Some of the tests were done
    across particles and the data may be usable, but the spectra are
    out of the nominal parameter range, containing shadow peaks and
    instrument effects.

    While the instrument was tested with different ion optics
    parameter setups, the CF substrates were exposed first time to
    collect dust on 2014-12-12. The particle collection worked
    nominally. The C7 substrates were exposed for the first time on
    2015-02-14.

    From middle of the March 2015 a parameter setup was established,
    that recovered the TOF-SIMS part of the instrument. Searching for
    a new ion path optimum was a slow process, as there was the
    potential of permanent damage due to Indium deposition on ion
    optics. The SIMS was carried out mainly with C7 and CF.

    D1 was exposed on 2015-04-10 and CD on 2015-05-30. CD, CF and D1
    were analysed by TOF-SIMS during May 2015 and CF and D1 in the
    June 2015. In July 2015 C7 was measured again, while CD was
    exposed for particle collection and TOF-SIMS up to October.
    D2 was exposed on 2015-10-11.


  Parameters
  ==========

    The primary measured parameter is the time of flight mass spectrum
    of a grain, ion events collected for 131072 time bins, each
    1.953125 ns in length. For data selection purposes, three
    individual time windows can be selected for each generated
    spectrum. In addition or instead, a peak list separating the
    organic and inorganic peaks can be generated. For quantitive
    analysis and gain optimisation, instead of individual time bins,
    a sum of events in three time windows can be collected. These are
    called scans in the COSIMA system.

    Grains in the substrate are searched from the COSISCOPE images.
    Although COSISCOPE can generate the grains list on board, most
    of the grain analysis is done manually on ground from the images.

  Processing
  ==========

    The spectrum time of flight ion data is mass calibrated with the
    same procedure as is used in space for the peak data. The
    calibration should be used only as rude starting point and for
    scienctific analysis each calibration must be checked.

    The housekeeping data covering the data aqcuisition period is
    calibrated to physical units and statistically analyzed were
    applicable to support the evaluation of the data quality.

  Data
  ====

    COSIMA generates the following PDS products

    history
    -------

      The substrate history product contains information about
      substrate storage and expose periods, cleaning and heating
      actions, COSISCOPE camera images and grains lists and any
      spectra taken. The history starts from the moment substrates
      were installed in the COSIMA flight instrument.

      The product files have the naming convention
      CS_YXX_SUBSTRATE_HISTORY.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base.

      Note that although there is an action entry in the table, the
      spectrum, image or housekeeping data may be marked as missing,
      usually due to telemetry downlink problems.

    spectrum
    --------
      The spectrum is generated by bombing the comet grains collected
      on the substrate by indium ions. The seconday ions are measured
      by time of flight mass spectrometer. The spectrometer collects
      individual ion arriving times to an array of 131072 bins, each
      1.953125 nanosecond in size. From accumulated ion data, peaks
      are detected and from the assumed mass scale and detected peak
      positions a mass is given to each time bin. This calibration
      is automatic and the user must check the scale for real use.

      The position given as X and Y does not necessarily match the
      X and Y established on the substrate image due to mechanical
      and ion path reasons and differs for the positive and negative
      data. This offset can only be solved by analysing the TOF-SIMS
      data.

      The spectrum can be divided in time to at most tree different
      subspectrums to reduce the amout of data to be transmitted.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_SP_Z.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for positive and N for
      negative ion spectrum.

    peaks
    -----
      Generated as the spectrum, but the spectrum mass scale is
      established onboard COSIMA. The list of 300 first organic and
      inorganic peaks is transmitted. For higher masses, the total of
      count hits for a mass range is given. For the definition of
      the peak separation see the EAICD document.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_PK_Z.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for positive and N for
      negative ion spectrum.

    scan
    ----
      Used for instrument calibration, gain optimisation or when
      moving over the substrate, to make a measurement matrix.
      Produces total sum of the event counts over three possible time
      windows.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_SCAN.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for positive and N for
      negative ion spectrum.

    heat
    ----
      The substrate can be heated to clean it or to analyse volatile
      dust. The product contains the heating curve.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_HEAT.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for positive and N for
      negative ion spectrum.

    clean
    ----
      The single substrate position can be cleaned by the Indium ion
      beam. The product contains the emitter tip current housekeepin
      statistics.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_SCAN.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for positive and N for
      negative ion spectrum.

      Note that so far this have never been done in with the COSIMA.

    spectrum housekeeping
    ---------------------
      There's three kind of housekeeping information.

      First, the minimum, maximum, mean and standard deviation of the
      analog data, temperatures, voltages and currents, is calculated
      for the period of the measurement.

      Second, the used time to digital converter timing for the ion
      beam chopper, bunchers and ion optics is given.

      Third, the time to digital converter temperature calibration for
      the delay line is given. The calibration is needed to adjust the
      delay line so, that the 16 bin hardware event counter gets even
      bin distribution over the sampling period.

      The product files have the naming convention of either
      CS_YXX_YYYYMMDDTHHMMSS_S_HK.TAB for spectrum,
      CS_YXX_YYYYMMDDTHHMMSS_SCHK.TAB for scan or
      CS_YXX_YYYYMMDDTHHMMSS_CLHK.TAB for cleaning, where the Y is
      either 1 for top, 2 for middle and 3 for bottom substrate.
      The XX is target holder number in the range C1 to D8, counting
      in hexadecimal number base. The YYYYMMDDTHHMMSS gives the start
      year, month, day, hour, minute and second.

    grains
    ------
      The grain list is taken by the COSISCOPE camera from the
      substrate surface. The orientation of the substrate is
      calculated from the reference dots on target holder. The
      binding box of the substrate feature is given in substrate
      coordinates, which has origo at lower left corner and is 10000
      times 10000 micrometers. The grain quality, based on the
      brightness is given as relative number from 0-255.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_GR__.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base. The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second.

      Note that there are calibration images and thus calibration
      grain lists, which can be identified from a fixed pattern,
      typically with 103 detected grains.

      Note that consecutive grain lists may have different content
      due to variations in the mechanical positioning and
      illumination.

    image
    -----
      The image take by the COSISCOPE camera. The image has 1024*1024
      pixels resolution with 10 bit brightness information. The PDS
      product uses 16 bits for brightness storage.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_IM_Z.LBL, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base.The YYYYMMDDTHHMMSS gives the start year, month,
      day, hour, minute and second. The Z is P for right (plus) side
      and M for left (minus) side led illumination.

      The LBL file points to simlarly named FIT file, where the FIT
      refers to the FITS image standard. FITS (Flexible Image
      Transport System) format is defined in 'Astronomy and
      Astrophysics', volume 376, page 359;
      bibcode: 2001A&A...376..359

      Note that there are calibration images, which can be identified
      from a fixed squares pattern.

    COSISCOPE housekeeping
    ----------------------
      For the COSISCOPE housekeeping the operating temprature mimimum,
      maximum, mean and standard deviation is calculated for the
      operation time period. In addition, the COSISCOPE operation
      setup parameters are given. Also the subsrate orientation
      information is given and the mask used to pick up subimages.

      The product files have the naming convention
      CS_YXX_YYYYMMDDTHHMMSS_G_HK.TAB, where the Y is either 1 for
      top, 2 for middle and 3 for bottom substrate. The XX is target
      holder number in the range C1 to D8, counting in hexadecimal
      number base.The YYYYMMDDHHMMSS gives the start year, month, day,
      hour, minute and second.

  Ancillary Data
  ==============

    Other data required to interpret this data, especially if it is
    not included in the dataset (for example, laboratory calibration
    values)

  Coordinate System
  =================

    COSIMA substrates are exposed 3 at a time to the +Z side of the
    spacecraft. The dust funnel has a 13 * 20 degree field of view for
    a distinct dust particle.


                                ^
                                |  direction of
                                |    flight
                                |

                                ^ +Xcosima (down-track)
                                |
                                |
     ---              +---------|---------+
      ^               |         |         |
      |               |         |         |
      |               |         |         |
      |               |         |         |
      | 13 deg        |         x-------------> +Ycosima (cross-track)
      |               |     +Zcosima      |
      |               |                   |
      |               |                   |
      V               |                   |
     ---              +-------------------+

                      |       20 deg      |      Boresight (+Z axis)
                      |<----------------->|       is into the page
                      |                   |


    The distance from the funnel inlet to the exposed
    (10+1+10+10)mm*10mm substrates is 162 mm. The dimensions of the
    funnel inlet are 58mm*40mm.

                                 -------------
                -----------------            ^
    ------------                            20
    5                                        v
    <------------------ 162 ----------------->
    5                                        ^
    ------------                            20
                -----------------            v
                                 -------------


                                 -------------
                -----------------            ^
    ------------                            29
    16                                       v
    <------------------ 162 ----------------->
    16                                       ^
    ------------                            29
                -----------------            v
                                 -------------


    No S/C geometry is calculated for the data.

    The substrates have a coordinate system, defined in micrometers
    from 0-10000 in X and Y direction, starting from the lower left
    corner. There's a second coordinate system, named  XM substrate
    in the FITS-file, which tries to compensate on the mechanical and
    ion path difference from the COSISCOPE to the TOF-SIMS analysis
    position.

    The spectrum position given as X and Y does not necessarily match
    the X and Y established as  XM substrate  coordinates. This offset
    is different for positive and negative spectra and can only be
    solved by analysing the TOF-SIMS data.

  Software
  ========

All the data can be used by PDS tools or any ASCII reading software.

  Media/Format
  ============

    The data is delivered as PDS standard compliant electronic files.
DATA_SET_RELEASE_DATE 2016-04-21T00:00:00.000Z
START_TIME 2002-05-29T12:00:00.000Z
STOP_TIME 2015-10-20T11:59:59.000Z
MISSION_NAME INTERNATIONAL ROSETTA MISSION
MISSION_START_DATE 1995-03-01T12:00:00.000Z
MISSION_STOP_DATE N/A (ongoing)
TARGET_NAME CALIBRATION
67P/CHURYUMOV-GERASIMENKO 1 (1969 R1)
TARGET_TYPE CALIBRATION
COMET
INSTRUMENT_HOST_ID RO
INSTRUMENT_NAME COMETARY SECONDARY ION MASS ANALYZER
INSTRUMENT_ID COSIMA
INSTRUMENT_TYPE MASS SPECTROMETER
NODE_NAME Small Bodies
ARCHIVE_STATUS SAFED
CONFIDENCE_LEVEL_NOTE
Confidence Level Overview
  =========================

    The data have been automatically processed from raw data. Care
    should be taken in spectrum analysis, the housekeeping values for
    operating voltages should be checked for possible anomalies. Some
    of the operations during the calibration were really outside of
    normal instrument operation.

    The mass scale of the specra is automatically calculated on board
    COSIMA and is not valid for scientific analysis.

    The spectrum measurement XY position on the substrate has an
    offset due to ion path and mechanical position inaccuracy. It's
    also different for positive and negative spectra.

  Review
  ======

    The dataset review is available from the RO-EST-RP-3461, ROSETTA
    Science Archive 1st Delivery Review Report for Orbiter instruments
    (15 March 2007). This covers the dataset v1.0, where there was no
    spectrum mass scale.

  Data Coverage and Quality
  =========================

    The data covers the COSIMA flight model operations from the flight
    substrate delivery 2002-05-29 to the end of the escort phase 3
    2015-10-20.

    The production of the substrates is not part of the substrate
    history.

    Regardless of the several anomalies in the instrument operations
    during the calibration period, the substrate histories are
    complete.

  Limitations
  ===========

    Housekeeping data outside spectral measurements and COSISCOPE
    operations is not delivered. This would include indium ion emitter
    history and target manipulator operations. Though vital to the
    instrument operations, they are not needed in the scientific
    interpretation of the COSIMA data.
CITATION_DESCRIPTION Hilchenbach, M., ROSETTA-ORBITER COMET COSIMA 3 V4.0, RO-C-COSIMA-3-V4.0, ESA Planetary Science Archive (PSA), NASA Planetary Data System (PDS), 2016
ABSTRACT_TEXT The Rosetta COSIMA data contains the operational history of the 72 dust collecting substrates from the installation inside the instrument. This dataset contains data from 2002-05-29 up to 2015-10-20. The operations are either expose, storage, spectra, peaks, scans, heating, imaging or grain lists. The data is grouped by the substrate and time. Up to the 2014-08 the aim of the data has been the instrument health and operational functionality, not statistically significant substrate background spectra. From 2014-08 onward the D0 substrate set was used to collect dust collected in the vicinity of 67P/CHURYUMOV GERASIMENKO 1 (1969 R1) and dust analysis with TOF-SIMS. From 2014-10-23 onward due to an instrument failure, the SIMS data became scientifically unusable. While other SIMS parameter sets were tested, substrates CF were exposed from mid 2015-12 and C7 from mid 2015-02. End of March 2015 SIMS became operational again. D1 and CD were exposed and SIMS was done with CD, CF and D1. In June TOF-SIMS was done with CF and D1. In July C7 was measured again, while CD was used for expose and TOF-SIMS up to October. D2 was exposed in September. This data set supersedes all previous COSIMA datasets, like RO-C-COSIMA-3-V1.0, RO-C-COSIMA-3-V2.0, RO-C-COSIMA-3-V3.0, RO-CAL-COSIMA-2-V1.0 and RO-CAL-COSIMA-3-V3.0 Also, in the above previous versions, the values of the temperature in the HK data where given in Celsius although Kelvin was written in the description of the table in the FMT file
PRODUCER_FULL_NAME JOHAN SILEN
SEARCH/ACCESS DATA
  • SBN Comet Website