==

 Jet Propulsion Laboratory

 Planetary Data System

 PDS Toolbox

 TAB2LAB

 The PDS Table to Label Generator

1. Introduction
 2. Building TAB2LAB

 3. Running TAB2LAB

 4. Getting Help
 5. Using TAB2LAB - Examples
 6. How TAB2LAB Works

 6.1 The Description File
 6.2 The Skeleton Label
 6.3 Naming Output Labels
 6.4 Special Cases
 6.5 Limitations
 7. Command Reference
 7.1 -b (Label Base Name)

 7.2 -c (Label Base Column)

 7.3 -d (Description File)

 7.4 -f (Data Files)

 7.5 -p (Enable Prompting)

 7.6 -r (Enable Record Formatting)
 7.7 -s (Skeleton File Name)

 7.8 -t (Enable Blank Trimming)

 7.9 -u (Display Usage)

==

1. Introduction

 The PDS Table to Label Generator (TAB2LAB) is a tool which will

 help you to generate a set of Object Description Language (ODL)

 labels, assuming that the entire set of labels is identical

 except for the values of the keywords, and that you have an ASCII

 table containing the values which vary from label to label. It

 is very common, for instance, to have a volume index table which

 contains all the values which vary from label to label on a data

 volume, and yet all the labels basically look the same.

 TAB2LAB requires three inputs:

 o An ASCII table containing data values to be inserted

 into the labels being generated.

 o A label file for the ASCII table, called the table

 description file, which describes the rows and columns in

 the table of data, using a standard PDS TABLE description.

 o A "skeleton" label which will act as a model for all

 the product labels to be generated.

 Given these inputs, TAB2LAB can generate one label for each row

 of data in the ASCII table. You may generate one label file at a

 time or a large number of files all at once.

 This tool has a simple command line interface that will operate

 on any ASCII terminal.

 For general release information, see the "RELEASE_NOTES" file.

 For an overview of how PDS tools handle PDS labels and SFDU

 labels, see the "pds_labels.doc" file.

 When you are designing and producing PDS labels, you should

 always refer to two other documents: the PDS Data Preparation

 Workbook, and the Planetary Science Data Dictionary. These will

 provide you with PDS definitions and information about label

 design.

 This utility has been tested on:

 A Sun SPARCstation running Sun OS 4.1 and Sun C compiler

 A VAX 11/780 running VMS 5.2 and VAX C Compiler

 An IBM AT running MS-DOS 5.0 and Borland C(++) Version 2.0

 The Table to Label Generator was originally developed at the

 University of Colorado, by personnel associated with the

 Atmospheres Node of the PDS.

2. Building TAB2LAB

 The typical toolbox delivery looks like this:

 [top-level directory]

 |

 +-- README (or README.TXT in VMS deliveries)

 |

 +-- Makefile (or MAKEFILE.COM in VMS deliveries)

 |

 +-- [bin]

 |

 +-- [doc]

 |

 +-- [lib]

 |

 +-- [source]

 If your set-up looks like this, then follow these steps:

 SunOS VMS

 1. cd to the directory set default to the directory

 containing Makefile containing makefile.com

 2. Type: make Type: @makefile

 That's it. The "bin" subdirectory should contain "tab2lab.exe",

 the "lib" subdirectory should contain "lablib.olb" and

 "odlc.olb".

3. Running TAB2LAB

 Running TAB2LAB on a UNIX system is simplicity itself:

 bin/tab2lab -s <skeleton> -d <table-desc> -np

 This instructs the program to use file <skeleton> as the

 skeleton, (prototype) for the labels to be generated,

 <table-desc> as the file describing the ASCII table of data from

 which label values will be extracted, and not to prompt (-np) for

 additional options.

 On VMS systems, you will first have to define a foreign command:

 tab2lab :== "$disk:[directory]tab2lab.exe"

 where "disk" and "directory" define the full path of the "bin"

 directory, then type

 tab2lab -s <skeleton> -d <table-desc> -np

 On Unix systems, if you use a wildcard in a file name, you may

 have to enclose it in double quotation marks.

4. Getting Help

 If you need information that is not available in this User's

 Guide or need to obtain any of the other documents referenced

 here, you may contact the PDS Operator at the PDS Central Node in

 one of the following ways:

 o The PDS Help Line: (818) 306-6130

 o NSI/DECNET (SPAN): JPLPDS::PDS_OPERATOR

 o Internet: pds_operator@jpl-pds.jpl.nasa.gov

5. Using TAB2LAB - Example

 Suppose you want to generate a series of labels that look like

 the skeleton below, where the values that will differ from label

 to label are those for the following keywords:

 SPACECRAFT_NAME

 MISSION_PHASE_NAME

 TARGET_NAME

 NATIVE_START_TIME

 START_TIME

 EARTH_RECEIVED_START_TIME

 INSTRUMENT_NAME

 SECTION_ID

 ^WAVEFORM_HEADER_TABLE

 Other than the values of these keywords, all the resulting labels

 need to be the same.

 --

 Skeleton Label "pwsskel.lbl"

 --

 CCSD3ZF0000100000001NJPL3IF0PDS200000001

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 1024

 FILE_RECORDS = 801

 ^WAVEFORM_HEADER_TABLE = ("XXXXXXX.XXX",1)

 /* Observation description */

 DATA_SET_ID = 'VG2-N-PWS-2-WFRM-V1.0'

 SPACECRAFT_NAME = XXXXXXXXXX

 NATIVE_START_TIME = 0.0

 EARTH_RECEIVED_START_TIME = 2000-01-01T01:00:00.00Z

 START_TIME = 2000-01-01T01:00:00.00Z

 MISSION_PHASE_NAME = XXXXXXXXXX

 TARGET_NAME = XXXXXXXXXX

 /* Instrument description */

 INSTRUMENT_NAME = XXXXXXXXXX

 SECTION_ID = XXXXXXXXXX

 /* Object descriptions */

 OBJECT = WAVEFORM_HEADER_TABLE

 BYTES = 1024

 ^STRUCTURE = "EDRHDR.FMT"

 END_OBJECT

 END

 --

 The label above can be used as the skeleton for generating the

 labels you want. To use TAB2LAB, you also need an ASCII table of

 values to be inserted into each label as it is generated.

 Finally, you must create a table description file for the table

 of data. In this case, the table description looks as follows:

 --

 Table Description Label "pwstab.lbl"

 --

 CCSD3ZF0000100000001NJPL3IF0PDS200000001

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 181

 FILE_RECORDS = 237

 ^TABLE = "PWSINDEX.TAB"

 OBJECT = TABLE

 INTERCHANGE_FORMAT = ASCII

 ROWS = 237

 ROW_BYTES = 181

 COLUMNS = 12

 OBJECT = COLUMN

 NAME = SPACECRAFT_NAME

 DATA_TYPE = CHARACTER

 START_BYTE = 2

 BYTES = 9

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = MISSION_PHASE_NAME

 DATA_TYPE = CHARACTER

 START_BYTE = 14

 BYTES = 17

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = TARGET_NAME

 DATA_TYPE = CHARACTER

 START_BYTE = 34

 BYTES = 8

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = NATIVE_START_TIME

 DATA_TYPE = REAL

 START_BYTE = 44

 BYTES = 8

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = START_TIME

 DATA_TYPE = TIME

 START_BYTE = 54

 BYTES = 20

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = EARTH_RECEIVED_START_TIME

 DATA_TYPE = TIME

 START_BYTE = 77

 BYTES = 20

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = INSTRUMENT_NAME

 DATA_TYPE = CHARACTER

 START_BYTE = 100

 BYTES = 20

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = SECTION_ID

 DATA_TYPE = CHARACTER

 START_BYTE = 123

 BYTES = 8

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = WAVEFORM_VOLUME_ID

 DATA_TYPE = CHARACTER

 START_BYTE = 134

 BYTES = 8

 END_OBJECT = COLUMN

 OBJECT = COLUMN

 NAME = WAVEFORM_HEADER_TABLE

 DATA_TYPE = CHARACTER

 START_BYTE = 145

 BYTES = 34

 END_OBJECT = COLUMN

 END_OBJECT = TABLE

 END

 --

 This description file will tell the program where to find the

 values it needs within the actual table of data located in file

 "PWSINDEX.TAB" (which is pointed to by the pointer keyword

 "^TABLE" in the description file). Note that there can actually

 be more columns in your table of data than there are fields to be

 filled in the skeleton label. This is not a problem; the extra

 fields will simply be ignored.

 Finally, you will need the actual table of data. (Only the first

 four lines are shown here, even though the table actually has 237

 rows.)

 --

 Data File "PWSINDEX.TAB"

 --

"VOYAGER_2","NEPTUNE_ENCOUNTER","NEPTUNE ",9003.13,"1989-06-08T13:35:00Z",\

"1989-06-06T14:16:57Z","PLASMA_WAVE_RECEIVER","WFRM","VG_0013 ",\

"[PWS.NEPTUNE.C0900XXX]C0900313.DAT"

"VOYAGER_2","NEPTUNE_ENCOUNTER","NEPTUNE ",9061.13,"1989-06-09T15:15:15Z",\

"1989-06-08T12:17:12Z","PLASMA_WAVE_RECEIVER","WFRM","VG_0013 ",\

"[PWS.NEPTUNE.C0906XXX]C0906113.DAT"

"VOYAGER_2","NEPTUNE_ENCOUNTER","NEPTUNE ",9092.28,"1989-06-10T16:02:45Z",\

"1989-06-09T13:18:00Z","PLASMA_WAVE_RECEIVER","WFRM","VG_0013 ",\

"[PWS.NEPTUNE.C0909XXX]C0909228.DAT"

"VOYAGER_2","NEPTUNE_ENCOUNTER","NEPTUNE ",9123.43,"1989-06-14T08:40:58Z",\

"1989-06-10T14:40:56Z","PLASMA_WAVE_RECEIVER","WFRM","VG_0013 ",\

"[PWS.NEPTUNE.C0912XXX]C0912343.DAT"

 etc...

 --

 Now you are ready to generate 237 labels, as follows. To run

 TAB2LAB in prompt mode, enter:

 tab2lab

 The program will prompt you for the names of the skeleton label,

 the table description label, and other options, as follows:

 --

 Prompts Issued by TAB2LAB

 --

 TAB2LAB - Generate PDS Labels From Table - Version 2.1

 TAB2LAB requires a correct PDS label for the table of data values

 to be inserted into the skeleton label. If this program does not work

 correctly, try verifying your data label with the PDS Table Browser.

 Enter name of file containing the skeleton label: pwsskel.lbl

 Enter name of file containing the table description label: pwstab.lbl

 Trim trailing blanks from character fields (y/n)? y

 Use file format information in label? (y/n)? n

 --

 For more information about blank trimming and file formatting,

 refer to the "Command Reference" chapter.

 The program will now list the columns it found in the table and

 show which ones it was able to map to keywords in your skeleton

 label. It will prompt you for the column which should be used

 for naming the label files to be generated. If you enter a

 column number, the program will assume that the data column

 contains a file name of the form "filename.ext." To create the

 name of the label file, TAB2LAB will strip the extension from the

 file name it finds in the data table and add extension ".lbl"

 The program will ask you which rows of the table you want to use

 to generate labels. It will then generate the labels you asked

 for.

 --

 Prompts Issued by TAB2LAB

 --

 Information on Table Columns

Col # Column Name Strt Len Itms Off Type Target Object/Group

 1 SPACECRAFT_NAME 2 9 1 0 3 SKELETON_LABEL

 2 MISSION_PHASE_NAME 14 17 1 0 3 SKELETON_LABEL

 3 TARGET_NAME 34 8 1 0 3 SKELETON_LABEL

 4 NATIVE_START_TIME 44 8 1 0 2 SKELETON_LABEL

 5 START_TIME 54 20 1 0 7 SKELETON_LABEL

 6 EARTH_RECEIVED_START_TIME 77 20 1 0 7 SKELETON_LABEL

 7 INSTRUMENT_NAME 100 20 1 0 3 SKELETON_LABEL

 8 SECTION_ID 123 8 1 0 3 SKELETON_LABEL

 9 WAVEFORM_VOLUME_ID 134 8 1 0 0 *NONE*

 10 WAVEFORM_HEADER_TABLE 145 34 1 0 4 SKELETON_LABEL

 Enter number of column containing label file base name (default is 0): 10

 Enter number of first row to be processed [1..237]: 1

 Enter number of last row to be processed [1..237]: 237

 >>> Writing row 1 to label [PWS.NEPTUNE.C0900XXX]C0900313.lbl

 >>> Writing row 2 to label [PWS.NEPTUNE.C0906XXX]C0906113.lbl

 >>> Writing row 3 to label [PWS.NEPTUNE.C0909XXX]C0909228.lbl

 >>> Writing row 4 to label [PWS.NEPTUNE.C0912XXX]C0912343.lbl

 (etc...)

 --

 In this case, the string in column 10 of the table was used to

 create the label file names, and all 237 labels were generated.

 Once the labels are generated, the program will ask you which

 rows of the table you want to process next. If you enter 0 or

 your local end-of-file character at the "Enter number of first

 row . . ." prompt, the program will exit.

 The output files (e.g., "[PWS.NEPTUNE.C0906XXX]C0906113.lbl,"

 generated from the second row of the table) will look as follows:

 --

 Output File "[PWS.NEPTUNE.C0906XXX]C0906113.lbl"

 --

 CCSD3ZF0000100000001NJPL3IF0PDS200000001

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 1024

 FILE_RECORDS = 801

 ^WAVEFORM_HEADER_TABLE = ("[PWS.NEPTUNE.C0906XXX]C0906113.DAT", 1)

 /* Observation description */

 DATA_SET_ID = 'VG2-N-PWS-2-WFRM-V1.0'

 SPACECRAFT_NAME = VOYAGER_2

 NATIVE_START_TIME = 9061.13

 EARTH_RECEIVED_START_TIME = 1989-06-08T12:17:12.00Z

 START_TIME = 1989-06-09T15:15:15.00Z

 MISSION_PHASE_NAME = NEPTUNE_ENCOUNTER

 TARGET_NAME = NEPTUNE

 /* Instrument description */

 INSTRUMENT_NAME = PLASMA_WAVE_RECEIVER

 SECTION_ID = WFRM

 /* Object descriptions */

 OBJECT = WAVEFORM_HEADER_TABLE

 BYTES = 1024

 ^STRUCTURE = "EDRHDR.FMT"

 END_OBJECT = WAVEFORM_HEADER_TABLE

 END

 --

6. How TAB2LAB Works

 In order to use TAB2LAB, you must define your table or data file

 using an ODL label and a PDS standard TABLE object, in addition

 to creating a skeleton label which will serve as a model for the

 labels you want to generate. The complete PDS labelling standard

 cannot be described here, but this chapter provides some hints

 for creating your description file and skeleton label. More

 information about PDS labels and PDS standard objects can be

 found in the PDS Data Preparation Workbook and the Planetary

 Science Data Dictionary.

6.1 The Description File

 The table description file used by TAB2LAB uses a PDS standard

 TABLE object to describe the data file from which label values

 are to be extracted. A "table" is a set of data values that are

 organized into rows and columns. TAB2LAB creates one output

 label from each row of data in a table.

 It is critical that the description file be correct. If the byte

 locations and counts in the description file are wrong, the

 values placed into the labels being generated will be wrong. The

 Label Generators have no ability to detect errors of this type.

 If you wish to validate the description file, you should use the

 PDS Table Browser.

 A PDS TABLE object begins with an OBJECT = TABLE statement and

 ends with an END_OBJECT = TABLE statement. In addition, a ^TABLE

 = "filename" statement is also included at the top of the

 description file, to indicate the name of the file that actually

 contains the tabular data.

 The TABLE object must include the following keywords:

 o COLUMNS, which is the number of COLUMN objects nested

 inside the TABLE object.

 o ROWS, which is the number of times the data records are

 repeated (or 1, in the case of FILE2LAB).

 o ROW_BYTES, which is the number of bytes in an each data

 record, or row, including all quotes, blanks, commas, line

 feeds, carriage returns, etc. For FILE2LAB, in which you

 are simply pretending that your data file is a table with

 one long row, just set ROW_BYTES large enough to include

 the last data field you are extracting from the data file.

 o INTERCHANGE_FORMAT, which must have value ASCII.

 The TABLE object contains COLUMN objects. A COLUMN object begins

 with an OBJECT = COLUMN statement and ends with END_OBJECT =

 COLUMN. If you are creating a description file that will be used

 only by these tools, then all the bytes in the row do not have to

 be accounted for by COLUMNs, and some data fields may be

 described by two COLUMN objects with different names, in order to

 use them more than once.

 A COLUMN must contain the following keywords:

 o NAME, which is used to identify the column and match it

 to a keyword in the skeleton label. This is the most

 important aspect of the description file. Every time

 TAB2LAB or FILE2LAB encounters a COLUMN object in the

 description file, it attempts to match the NAME to a

 keyword in the skeleton label.

 o START_BYTE, which indicates the starting byte of the

 data field within each row of the table.

 o BYTES, which indicates the maximum length of the data

 field.

 o DATA_TYPE, which is included in each COLUMN because PDS

 standards require it even though the keyword is not used

 by TAB2LAB or FILE2LAB. Give it the value INTEGER, REAL,

 UNSIGNED_INTEGER, TIME, DATE, or CHARACTER.

 The START_BYTE of each COLUMN should be the start byte of the

 data field, not the location of any quotation mark or delimiter

 preceding it. Thus, in our TAB2LAB example in the previous

 chapter, the first COLUMN object in the table description file

 has a START_BYTE of 2. The BYTES keyword should be the total

 length of the data field, not including any quotation marks or

 delimiters between fields.

 PDS ASCII tables are usually delimited by commas, and character

 fields are quoted. However, TAB2LAB does not require these

 things. You can use a non-delimited table. However, the columns

 must be regular in format. The following table, for instance,

 cannot be used, because the columns are not regular:

 --

 Improper Table Format for TAB2LAB

 --

 76, Jupiter, 1979, Voyager 2, Red<LF>

 92, Saturn, 1980, Voyager 2, Red<LF>

 8, Saturn, 1980, Voyager 2, Blue<LF>

 140, Neptune, 1989, Voyager 2, Green<LF>

 --

To be useable, the table must look as follows:

 --

 Proper Table Format for TAB2LAB

 --

 76 , Jupiter, 1979, Voyager 2, Red <LF>

 92 , Saturn , 1980, Voyager 2, Red <LF>

 8 , Saturn , 1980, Voyager 2, Blue <LF>

 140, Neptune, 1989, Voyager 2, Green<LF>

 --

 You will also notice the following lines at the top of our

 example description files:

 --

 Additional PDS Keywords

 --

 CCSD3ZF0000100000001NJPL3IF0PDS200000001

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 17280

 FILE_RECORDS = 1

 --

 These keywords are required by the PDS labelling standards. If

 you are not going to use your description file for any purpose

 other than label generation, you can leave these lines out. If

 you intend use the file on a data volume that must conform to PDS

 standards, then you should refer to the documents listed in the

 introduction to this chapter for more information regarding the

 keywords above. The Label Generators, however, do not require

 them.

6.2 The Skeleton Label

 The skeleton label can contain any keywords and objects you need

 to describe the data products you are labelling. If you don't

 know how to design a PDS label for your data products, you should

 contact the PDS for help. The Label Generators will not design

 your labels for you; they will only generate them once you have

 created the skeleton.

 Whenever a keyword in the skeleton matches the NAME of a COLUMN

 object in the description file, then that keyword's value is

 marked for replacement in the skeleton label. The Label

 Generators will extract the data described by the COLUMN object

 from the table or data file, assign the extracted value to the

 associated keyword in the skeleton, and write the new output

 label.

 All keywords in your skeleton label must have values. It is not

 acceptable, for instance, to do this:

 --

 Improper Skeleton Label

 --

 OBJECT = IMAGE

 LINES =

 SAMPLES =

 SAMPLE_BITS = 8

 SAMPLE_TYPE =

 END_OBJECT = IMAGE

 --

 Instead, you must supply dummy values for all values to be

 replaced. The Label Generators do not care what values you use,

 as long as they have the correct format. It may be wise to use

 values you can recognize as dummy values:

 --

 Proper Skeleton Label

 --

 OBJECT = IMAGE

 LINES = 999

 SAMPLES = 999

 SAMPLE_BITS = 8

 SAMPLE_TYPE = XXXXXXXX

 END_OBJECT = IMAGE

 The important thing about the dummy values you use is their data

 type and format. If the data value to be inserted for LINES is

 an integer, then the dummy value should be an integer. If you

 want the value in single quotes or double quotes in the final

 output label, you should use such a value in the skeleton:

 SPACECRAFT_NAME = 'XXXXXXX'

 It is important to remember quote marks where they are needed,

 based on what type of values are to be inserted in the output

 labels. If quote marks were left out of the statement above, and

 then one of the Label Generators extracted the value "VOYAGER 2"

 from your data file and inserted it, the result would be

 SPACECRAFT_NAME = VOYAGER 2

 which is incorrect. Unquoted values must start with a letter,

 and must contain only letters, numbers, and underscores.

 Note that dummy values for dates and times are rather limited by

 the Object Description Language (ODL) standard for date/time

 values. You cannot use 0000-00-00 as a dummy date value, for

 instance, because it will be flagged as an invalid date.

6.3 Naming Output Labels

 TAB2LAB will either:

 o Name output labels automatically, given a base name

 that you have provided at the "Enter label file base name"

 prompt or using the -b command line option.

 o Name output files by taking the name from one of the

 columns in the table of data. If you provide a column

 number, either at the "Enter column number" prompt or

 using the -c command line option, the value extracted from

 the column is assumed to be a file name. The extension is

 removed and replaced with ".lbl" in order to create the

 current output file name.

 If you enter 0 at the "Enter column number" prompt, then

 TAB2LAB defaults to the previous behavior: automatic file

 naming.

 Be careful that you do not already have files which will be

 overwritten by these programs. Check your directory for files

 with extension ".lbl" which may become victims. The Label

 Generators will not warn you!

6.4 Special Cases

 o If you need to use the same data value to replace the

 value of two different keywords in your skeleton label,

 then define two COLUMN objects in your description file,

 both pointing to the same data field. Give one the NAME

 of the first keyword and one the NAME of the second.

 o If your skeleton label contains the same keyword in two

 places -- for instance, contains the keyword ROWS in two

 separate objects -- then define two COLUMN objects called

 ROWS in your description. The Label Generators will match

 the first instance of ROWS in the skeleton to the first

 COLUMN called ROWS in the description file, and so on.

 o If your skeleton label contains the same keyword in two

 places -- for instance, contains the keyword ROWS in two

 separate objects, one called LINE_PREFIX_TABLE and one

 called ENGINEERING_TABLE -- and you only want to replace

 the second one, define a COLUMN object in your description

 file as follows:

 --

 Replacing a Keyword in a Particular Object

 --

 OBJECT = COLUMN

 NAME = 'ENGINEERING_TABLE.ROWS'

 DATA_TYPE = INTEGER

 START_BYTE = 10

 BYTES = 3

 END_OBJECT = COLUMN

 --

 The Label Generators will now know which occurrence of

 ROWS you wish to replace.

 o If your data or table file contains the value

 "UNKNOWN", "N/A", or "UNK:" in a field that is supposed to

 be a date or time, the Label Generators will still

 recognize the value as a date or time and will place the

 value UNKNOWN or 'N/A' (but not 'UNK:') in the output

 label.

 o If the value of a keyword in the skeleton label is a

 set or sequence, e.g., SPACECRAFT_ID = (VG1, VG2) or

 SPACECRAFT_ID = {VG1, VG2}, and the entire value needs to

 be replaced by the Label Generator in order to create an

 output label, a COLUMN object that contains multiple items

 must be defined in the description file, as follows:

 --

 Replacing a Set or Sequence

 --

 OBJECT = COLUMN

 NAME = SPACECRAFT_ID

 DATA_TYPE = CHARACTER

 START_BYTE = 1

 BYTES = 3

 ITEMS = 2

 ITEM_OFFSET = 4

 END_OBJECT = COLUMN

 --

 This describes a field in the table which contains 2

 values, each 3 bytes long, with a space between them (thus

 the offset of 4). The actual table or data file might

 then contain something like this in its SPACECRAFT_ID

 field:

 VG1 VG2

 If there is no space between the items, ITEM_OFFSET is the

 same as BYTES.

 o Fixed length label files can be generated. See the -r

 command line option in the "Command Reference" chapter.

6.5 Limitations

 o The Label Generators will not warn you if you are

 overwriting an existing label file.

 o The Label Generators cannot process binary data files.

 o If you have two occurrences of ROWS in the same object,

 and you want to replace only the value of the second one,

 you cannot. Duplicate keywords in the same object are

 illegal under PDS standards.

 o Due to software oddities, the values "UNKNOWN" and

 "N/A" for dates and date/times can only be processed by

 temporarily storing these values as dates with years 1700

 and 2200, respectively, and then converting them back to

 "UNKNOWN" and "N/A" before the output label is written.

 Any "genuine" dates with these years will also be

 modified. A warning is displayed when these values are

 encountered.

 o If the value of a keyword in the skeleton label is a

 set or sequence and you do not provide an ITEMS field in

 the COLUMN object that maps to it, the first value in the

 set or sequence will be replaced and all other values will

 be thrown away. File pointer keywords (keywords that are

 preceded by a caret (^) are an exception to this rule, so

 that record and byte location indicators can be

 maintained.

 o In a pointer keyword whose value is both a file name

 and a location, e,g.

 ^TABLE = ("filename.dat", 2)

 you cannot replace the location value, only the filename.

 o You cannot replace partial values, i.e., change only

 the year in a date/time value in the skeleton label. The

 entire value is always replaced, with the exception for

 pointer keywords mentioned above.

 o Unquoted values and values enclosed by single quotes in

 the skeleton label will be converted to upper case in the

 output labels. If you do not want case conversion to

 occur, use double quotation marks.

 o A "Z" will be appended to local times when they are

 written to the output labels, because according to PDS

 standards, all local times are assumed to be Zulu.

7. Command Reference

7.1 -b (Label Base Name)

 Used by: TAB2LAB Default: -nb

 If you wish TAB2LAB to name your output label files

 automatically, you must provide a base name using the -b <name>

 command line option, or by entering it at the "Enter label file

 base name" prompt. TAB2LAB will then take the base name, add a

 number, and then add a ".lbl" extension to create each label file

 name. For instance, if you start the program as follows:

 tab2lab -b pws

 The label files will be named pws1.lbl, pws2.lbl, pws3.lbl, etc,

 where the number appended to the file name is the row number in

 the data table from which label values are being extracted.

 If you enter the command option -c 0 then you must provide a

 label file base name.

7.2 -c (Label Base Column)

 Used by: TAB2LAB Default: -nc

 If you want TAB2LAB to use one of the columns in your data table

 when creating output label file names, you need to use the -c

 <column> command line option, or enter the column number at the

 "Enter number of column containing label file base name" prompt.

 (For more information, see "Naming Output Files" in the previous

 chapter.)

 For instance, if the fourth column of your table contains values

 of the form:

 IMG0xxxx.dat

 Then you can specify -c 4 as a command line option, and the label

 file names will be of the form:

 IMG0xxxx.lbl

 Entering -c 0 is the same as specifying automatic file naming,

 and you will have to supply a label file base name.

7.3 -d (Description File)

 Used by: TAB2LAB and FILE2LAB Default: None

 You must specify the name of the description file for the table

 or data file(s) from which the label values are to be extracted.

 You may do this either using the -d <file name> command line

 option, or by entering the description file name when prompted

 for it.

7.4 -f (Data Files)

 Used by: FILE2LAB Default: None

 You must specify the file(s) from which FILE2LAB is supposed to

 extract label values when generating output labels. You may do

 this either using the -f <file name> command line option or by

 supplying the file specification when prompted for it. Wild

 cards may be used. However, on Unix systems, wildcarded values

 generally have to be enclosed in double quotation marks.

7.5 -p (Enable Prompting)

 Used by: TAB2LAB and FILE2LAB Default: -p

 In order to make the Label Generators useable in both interactive

 and batch (background) mode, the -p and -np switches can be used

 on the command line. If -p (the default) is used, then:

 o The program will prompt for missing arguments.

 o Syntax errors in the skeleton and description files

 will be reported and the user given a chance to continue

 or not continue.

 o Column/Field summaries will be displayed.

 If -np is used, then:

 o Missing required arguments will cause the program to

 stop.

 o Missing optional arguments will assume their default

 states.

 o Errors in the skeleton and description files will cause

 the program to stop.

 o Column/Field summaries will not be displayed.

 If you want the Label Generators to run in background or script

 mode without interrupting you, you must use -np. However, if you

 use -np with TAB2LAB, then all the rows in the data table will be

 used to create labels. You will not have the options of

 generating only some of the labels.

7.6 -r (Enable Record Formatting)

 Used by: TAB2LAB and FILE2LAB Default: -nr

 The Label Generators can generate output labels using several

 record formats. The default record format, used when the -nr

 command line option is specified, is a stream format consistent

 with the computing environment being used.

 If -r is used, then the values of the RECORD_TYPE and

 RECORD_BYTES keywords in the output label will be examined, and

 the output label will be formatted accordingly. Available record

 types are:

 o STREAM: Records will be written in stream format, with

 each label statement terminated by the local end-of-line

 character: line-feed, carriage-return, or the

 carriage-return/line-feed pair.

 o FIXED_LENGTH: Fixed length records will be written,

 using the value of RECORD_BYTES as the record length.

 Each label statement will be terminated with a

 carriage-return/line-feed pair, and the label statements

 will be packed into fixed length records. The whole label

 will be padded with blanks at the end, in order to fill

 out the last record.

 o VARIABLE_LENGTH: The option is available only on VMS.

 Variable length records will be written using the VMS

 variable length record format and carriage return carriage

 control.

 You can also specify this option at the "Use file format

 information in label" prompt.

7.7 -s (Skeleton File Name)

 Used by: TAB2LAB and FILE2LAB Default: None

 You must specify the skeleton label from which the output labels

 are to be created. You may do this using either the -s <file

 name> command line option, or by entering the skeleton file name

 when prompted for it.

7.8 -t (Enable Blank Trimming)

 Used by: TAB2LAB and FILE2LAB Default: -nt

 With the exception of values used for file pointers, blanks found

 in values extracted from the data file will be maintained when

 transferred to the output label. For instance, if you have the

 following table for use by TAB2LAB:

 --

 Table Containing Blanks

 --

 76 , Jupiter, 1979, Voyager 2, Red <LF>

 92 , Saturn , 1980, Voyager 2, Red <LF>

 8 , Saturn , 1980, Voyager 2, Blue <LF>

 140, Neptune, 1989, Voyager 2, Green<LF>

 --

 and the second column is to be used to provide values for the

 following keyword in the skeleton label:

 TARGET_NAME = "XXXX"

 then the result in the label generated from row 2 of this table

 will be:

 TARGET_NAME = "SATURN "

 with an extra blank in the value, unless the -t option is used,

 because the TARGET_NAME COLUMN was, by necessity, defined with

 BYTES = 7 in the table description file. You can also specify

 this option by answering "y" at the "Trim blanks from character

 fields" prompt.

7.9 -u (Display Usage)

 Used by: TAB2LAB and FILE2LAB Default: -nu

 Specifying -u on the command line will display a list of

 available command line options. All other command line options

 will be ignored, and the program will stop after the usage text

 has been displayed.

