Planetary Data System

Label Library Light (L3)

User's Guide
Draft

January 20, 2006
Version 1.0
[image: image2.wmf]
[image: image1.png]Planetary Data System

National Aeronautics and Space Administration

Jet Propulsion Laboratory

Pasadena, California

JPL D-xxxxx

CHANGE LOG

	Revision
	Date
	Description
	Author

	Version 1.0
	January 19, 2006
	Ported document from a plain text format to a word document. Originally written by S. Hughes and D. Bernath in 1995.

	M. Cayanan

TABLE OF CONTENTS

11.0
INTRODUCTION

11.1
Available Platforms

11.2
Definitions

31.3
Function Index

52.0
Scope

53.0
Label Library Design

53.1
Function Prototypes

53.1.1
Label Access Function Prototypes

53.1.1.1
Parsing Function Prototypes

53.1.1.1.1
OdlParseLabelFile

63.1.1.1.2
OdlExpandLabelFile

63.1.1.1.3
OdlParseLabelString

73.1.1.2
Object Description Function Prototypes

73.1.1.2.1
OdlFindObjDesc

73.1.1.2.2
OdlGetLabelVersion

83.1.1.2.3
OdlGetObjDescClassName

83.1.1.2.4
OdlGetObjDescChildCount

83.1.1.2.5
OdlGetObjDescLevel

93.1.1.2.6
OdlFindObjDescParent

93.1.1.3
Keyword Function Prototypes

93.1.1.3.1
OdlFindKwd

103.1.1.3.2
OdlNextKwd

103.1.1.3.3
OdlGetFirstKwd

103.1.1.3.4
OdlGetNextKwd

113.1.1.3.5
OdlGetKwdValue

113.1.1.3.6
OdlGetKwdValueType

113.1.1.3.7
OdlGetKwdUnit

123.1.1.3.8
OdlGetKwdName

123.1.1.4
OdlFreeTree

123.1.2
Label Modify/Write Function Prototypes

133.1.2.1
OdlCutObjDesc

133.1.2.2
OdlPasteObjDesc

133.1.2.3
OdlPasteObjDescBefore

143.1.2.4
OdlPasteObjDescAfter

143.1.2.5
OdlCopyObjDesc

143.1.2.6
OdlNewObjDesc

153.1.2.7
OdlAdjustObjDescLevel

153.1.2.8
OdlCutKwd

153.1.2.9
OdlPasteKwd

163.1.2.10
OdlPasteKwdBefore

163.1.2.11
OdlPasteKwdAfter

173.1.2.12
OdlCopyKwd

173.1.2.13
OdlNewKwd

173.1.2.14
OdlFreeAllKwds

183.1.2.15
OdlFreeKwd

183.1.2.16
OdlGetFileName

203.1.2.17
OdlPrintHierarchy

203.1.2.18
OdlPrintLabel

213.2
Label Access Function Parameters and Values

243.3
Return and Error Status (TBD First Quarter 95)

253.4
Label Library Design - Notes

25APPENDIX A
Simple Label Parse and Display Program

29APPENDIX B

30APPENDIX C

1.0 INTRODUCTION
This users's guide describes the Beta Version of the PDS Label Library Light (L3). It describes a set of library routines that allow the access and manipulation of PDS object

descriptions in ODL labels. This implementation was based on requirements [2] extrapolated from the original ODL label library and new requirements gathered from the PDS discipline nodes.

This introduction continues with a section on available platforms, definitions, and the list of functions that are described in this document. Section two of this document includes a brief discussion of the scope of the proposed library. Section three describes the implementation and includes four sub-sections: the C function prototypes, function parameter descriptions, error and return status codes, and design notes. Appendix A includes an example of a simple program and library function calls. Appendix B list

differences that exist between the design document and the actual implementation. Appendix C includes the definitions of the OBJDESC and KEYWORD "C" structures used to build the ODL parse tree.

1.1 Available Platforms
 The label library light (L3) code has been successfully tested on the following platforms:

SUN SPARC10 SUNOS_4.1.3 K&R C Compiler

GNU C Compiler (ansi option)

 The label library light (L3) code has been ported to the following platforms. Testing is continuing:
 Macintosh

 IBM PC

 DEC VAX VMS

 DEC ALPHA

1.2 Definitions

The label library parses and allows manipulation of ODL labels. The following example ODL label and definitions will help in the understanding the subsequent library functions.

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 1000

 FILE_RECORDS = 814

 /* Image Object */

 OBJECT = IMAGE

 LINES = 800

 LINE_SAMPLES = 800

 SAMPLE_BITS = 8

 SAMPLE_TYPE = UNSIGNED_INTEGER

 END_OBJECT

 Figure 1. Example ODL Label

An ODL label is an ASCII file that can either be attached to or detached from the data it is describing. Figure 1 illustrates a partial attached label for a spacecraft camera image. In this label the first three statements describe the file in which the label and the data are contained. This part of the label is considered part of the "implicit" FILE object. The following six statements describe an image in the file by explicitly declaring an IMAGE object and supplying four attributes of that image. The ODL language specification can be found in the PDS Standards Reference. [5]

A ODL <statement> is expressed syntactically as <keyword>=<value> where <keyword> is the name of a data element and where <value> is a character string to be assigned to the data element. The <value> must meet semantic constraints specified in the PDS Standards Reference [5]. A value delimited by "{" and "}" represents a SET and a value

delimited by "(" and ")" represents a SEQUENCE. Both SET and SEQUENCE are classified as collections.

An ODL <keyword> is the token to the left of the equal ("=") sign in the <keyword>=<value> statement. In approved PDS labels, it is the name of a data element defined in the Planetary Science Data Dictionary (PSDD) [6]. It typically represents an attribute of an object.

An ODL <object description> consists of the set of ODL statements delimited by the "OBJECT = <class name>" and ”END_OBJECT = <class name>" statements. Once parsed, the keyword names and values are stored in a OBJDESC structure.

The <class name> of the object is the value in the "OBJECT = <class name>" statement and specifies the general classification of the object described. A list of all approved

PDS objects can be found in [5].

An ODL <object> is the instantiation of an ODL object description. Instantiation occurs within a software tool that parses ODL object descriptions (labels) and instantiates the

object with the specified attributes and a set of functions that manipulate the object.

An ODL <data object> is the instantiation of an ODL object description. A ODL data object is distinct from an ODL object (see above) since it has associated data. (e.g image)

Instantiation occurs within a software tool that parses ODL object descriptions and instantiates the object with the specified attributes, data, and a set of functions that

manipulate the object.

1.3 Function Index

The following is a list of the functions described in this document:
 3.1.1 Label Access Function Prototypes
 3.1.1.1 Parsing Function Prototypes
 3.1.1.1.1 OdlParseLabelFile
 3.1.1.1.2 OdlExpandLabelFile
 3.1.1.1.3 OdlParseLabelString
 3.1.1.2 Object Description Function Prototypes
 3.1.1.2.1 OdlFindObjDesc
 3.1.1.2.2 OdlGetLabelVersion
 3.1.1.2.3 OdlGetObjDescClassName
 3.1.1.2.4 OdlGetObjDescChildCount
 3.1.1.2.5 OdlGetObjDescLevel
 3.1.1.2.6 OdlFindObjDescParent
 3.1.1.3 Keyword Function Prototypes
 3.1.1.3.1 OdlFindKwd
 3.1.1.3.2 OdlNextKwd
 3.1.1.3.3 OdlGetFirstKwd
 3.1.1.3.4 OdlGetNextKwd
 3.1.1.3.5 OdlGetKwdValue
 3.1.1.3.6 OdlGetKwdValueType
 3.1.1.3.7 OdlGetKwdUnit
 3.1.1.3.8 OdlGetKwdName
 3.1.1.4 OdlFreeTree
 3.1.2 Label Modify/Write Prototypes
 3.1.2.1 OdlCutObjDesc

 3.1.2.2 OdlPasteObjDesc

 3.1.2.3 OdlPasteObjDescBefore

 3.1.2.4 OdlPasteObjDescAfter

 3.1.2.5 OdlCopyObjDesc

 3.1.2.6 OdlNewObjDesc

 3.1.2.7 OdlAdjustObjDescLevel

 3.1.2.8 OdlCutKwd

 3.1.2.9 OdlPasteKwd

 3.1.2.10 OdlPasteKwdBefore

 3.1.2.11 OdlPasteKwdAfter

 3.1.2.12 OdlCopyKwd

 3.1.2.13 OdlNewKwd

 3.1.2.14 OdlFreeAllKwds

 3.1.2.15 OdlFreeKwd

 3.1.2.16 OdlGetFileName

 3.1.2.17 OdlPrintHierarchy

 3.1.2.18 OdlPrintLabel

2.0 Scope

This user's guide describes a set of library routines that allow the access and manipulation of PDS object descriptions in ODL labels. For a detailed discussion of the proposed

overall PDS software architecture please see [1] and [4].

As a guideline, the functionality of the library routines is limited to that which can be generalized across all approved PDS objects. By generalizing, we are defining a library

interface that will not change as PDS objects are modified or added.

As an example of the proposed scope of the library functionality, a user can use the library to parse the ODL label for the Galileo IMAGE object included in appendix A, find the IMAGE object description in the resultant tree structure, and retrieve the value of SAMPLE_TYPE in character string format.

3.0 Label Library Design

The label library design is presented in four sections. The first section contains the actual design in the form of function prototypes. The remaining sections include function parameter descriptions, error and return status codes, and design notes.
3.1 Function Prototypes

3.1.1 Label Access Function Prototypes
3.1.1.1 Parsing Function Prototypes
3.1.1.1.1 OdlParseLabelFile
Function Prototype

 OBJDESC *OdlParseLabelFile (filespec, errfilespec, expand, nomsgs)
 char *filespec, *errfilespec;

 MASK expand;

 unsigned short nomsgs;

Description

This routine returns a pointer to an ODL tree that represents a parsed ODL label, given the name of a file that contains an ODL label in ASCII format. This routine
will optionally expand ^STRUCTURE pointers. (See section 3.4 for parameter values and descriptions.)
WARNING: This function allocates memory. It can be deallocated using

OdlFreeTree.

3.1.1.1.2 OdlExpandLabelFile
 Function Prototype

 OBJDESC *OdlExpandLabelFile (objdescptr, errfilespec, expand, nomsgs)
 OBJDESC *objdescptr;

 char *errfilespec;

 MASK expand;

 unsigned short nomsgs;

 Description

This routine returns a pointer to a new ODL tree that represents a parsed ODL label, given the pointer to a ^STRUCTURE keyword in an existing ODL tree. This routine will optionally expand nested ^STRUCTURE pointers. The new ODL tree is included as a sub-tree in the existing tree. (See section 3.2 for parameter values and descriptions.)
WARNING: This function allocates memory. It can be deallocated using
OdlFreeTree.

3.1.1.1.3 OdlParseLabelString
Function Prototype

 OBJDESC *OdlParseLabelString (odlstring, errfilespec, expand, nomsgs)
 char *odlstring, *errfilespec;

 MASK expand;

 unsigned short nomsgs;

Description

This routine returns a pointer to an ODL tree that represents a parsed ODL label, given a pointer to a character string containing an ODL label in ASCII format.

This routine will optionally expand ^STRUCTURE pointers. (See section 3.2 for parameter values and descriptions.)

WARNING: This function allocates memory. It can be deallocated using OdlFreeTree.

3.1.1.2 Object Description Function Prototypes
3.1.1.2.1 OdlFindObjDesc
Function Prototype

 OBJDESC *OdlFindObjDesc (objdescptr, classname, kwdname, kwdvalue, position, scope)
 OBJDESC *objdescptr;

 char *classname, *kwdname, *kwdvalue;

 unsigned long position

 unsigned short scope;

Description

This routine returns a pointer to the first occurrence of an object description that meets the constraints supplied in classname, kwdname, kwdvalue, position, and scope. A pointer to an ODL object description must be supplied. Class name may include a wildcard '*' for generic class name searches. Keyword name and value may be used to select an object description using any attribute (e.g. NAME). Position indicates the nth occurrence of the object description that meets the constraints specified. Both position and scope are relative to the ODL object

description pointer. (See section 3.2 for parameter values and descriptions. See section 3.4 note 3 for a discussion on constraints.)

3.1.1.2.2 OdlGetLabelVersion
Function Prototypes

 char *OdlGetLabelVersion (objdescptr)
 OBJDESC *objdescptr;

Description

This routine returns a pointer to the PDS version number in character string format, given an ODL tree pointer. This value is determined from the PDS_VERSION_NUMBER keyword.

3.1.1.2.3 OdlGetObjDescClassName
Function Prototypes

 char *OdlGetObjDescClassName (objdescptr)
 OBJDESC *objdescptr;

Description

This routine returns a pointer to the object description class name in character string format, given a pointer to an object description in an ODL tree.

3.1.1.2.4 OdlGetObjDescChildCount

Function Prototypes

int OdlGetObjDescChildCount (objdescptr)

OBJDESC *objdescptr;

Description

This routine returns the number of child objects, given a pointer to the parent object in an ODL tree.

3.1.1.2.5 OdlGetObjDescLevel
Function Prototypes

 int OdlGetObjDescLevel (objdescptr)
 OBJDESC *objdescptr;

Description

This routine returns level number of the object description, given a pointer to an object description in an ODL tree. The 'root' object is at level zero (0).

3.1.1.2.6 OdlFindObjDescParent

Function Prototype

 OBJDESC *OdlFindObjDescParent (objdescptr)

 OBJDESC *objdescptr;

Description

This routine returns a pointer to the parent object description, given a pointer to a child object description in an ODL tree.

3.1.1.3 Keyword Function Prototypes
3.1.1.3.1 OdlFindKwd

Function Prototype

 KEYWORD *OdlFindKwd (objdescptr, kwdname, kwdvalue, position, scope)

OBJDESC *objdescptr;

 char *kwdname, *kwdvalue;

 unsigned long position;

 unsigned short scope;

Description

This routine returns a pointer to the first occurrence of a keyword that meets the constraints supplied in kwdname, kwdvalue, position, and scope. A pointer to an ODL object description must be supplied and may be the ROOT object description. Keyword names and values may include a wildcard '*' for generic searches. Position indicates the nth occurrence of the keyword meeting the constraints specified. Both position and scope are relative to the ODL object description pointer. (See section 3.2 for parameter values and descriptions. See section 3.4 note 3 for a discussion on constraints.)

3.1.1.3.2 OdlNextKwd
Function Prototype

 KEYWORD *OdlNextKwd (kwdptr, kwdname, kwdvalue, position, scope)

KEYWORD *kwdptr;

 char *kwdname, *kwdvalue;

 unsigned long position;

 unsigned short scope;

Description

This routine returns a pointer to the first occurrence of a keyword that meets the constraints supplied in kwdname, kwdvalue, position, and scope. A pointer to an ODL keyword must be supplied. Keyword names and values may include a wildcard '*' for generic searches. Position indicates the nth occurrence of the keyword meeting the constraints specified. NOTE: Use a position value of two

(2) to get the next occurrence. Both position and scope are relative to the ODL keyword pointer. (See section 3.2 for parameter values and descriptions. See section 3.4 note 3 for a discussion on constraints.)

3.1.1.3.3 OdlGetFirstKwd

Function Prototype

 KEYWORD *OdlGetFirstKwd (objdescptr)
 OBJDESC *objdescptr;

Description

This routine returns a pointer to the first keyword of an object description. A pointer to an ODL object description must be supplied.

3.1.1.3.4 OdlGetNextKwd

Function Prototype

 KEYWORD *OdlGetNextKwd (kwdptr)
 KEYWORD *kwdptr;

Description

This routine returns a pointer to the next keyword of an object description. A pointer to an ODL keyword must be supplied.

3.1.1.3.5 OdlGetKwdValue

Function Prototypes

 char *OdlGetKwdValue (kwdptr)
 KEYWORD *kwdptr;

Description

This routine returns a pointer to the value in character string format, given a pointer to a keyword in an ODL tree. The value pointed to is the character string to the right of the equal sign whether the string represents a scalar, set, or sequence.

3.1.1.3.6 OdlGetKwdValueType

Function Prototypes

 unsigned short OdlGetKwdValueType (kwdptr)
 KEYWORD *kwdptr;

Description

This routine returns a value indicating the type of the keyword value, given a pointer to a keyword in an ODL tree. Value types are listed in section 3.2.

3.1.1.3.7 OdlGetKwdUnit

Function Prototypes

 char *OdlGetKwdUnit (kwdptr)
 KEYWORD *kwdptr;

Description

This routine returns a pointer to the units explicitly supplied with the keyword value, given a pointer to a keyword in an ODL tree. (Note: units in ODL statements are optional and delimited by '<>'.)

WARNING: This function allocates memory for the return value that must be freed.

3.1.1.3.8 OdlGetKwdName

Function Prototypes

 char *OdlGetKwdName (kwdptr)
 KEYWORD *kwdptr;

Description

This routine returns a pointer to the name of the keyword in character string format, given a pointer to a keyword in an ODL tree.

3.1.1.4 OdlFreeTree
Function Prototype

 OBJDESC *OdlFreeTree (objdescptr)
 OBJDESC *objdescptr;

Description

This routine frees the memory allocated for storage of the ODL tree pointed to by the ODL tree pointer.

3.1.2 Label Modify/Write Function Prototypes

3.1.2.5 OdlCutObjDesc

Function Prototype

 OBJDESC *OdlCutObjDesc (object)
 OBJDESC *object;

Description

This routine cuts an ODL object structure out of an ODL tree and returns a pointer to it. All references to it in the tree are removed, and all references to the original

tree within the object are removed.

3.1.2.6 OdlPasteObjDesc
Function Prototype

 OBJDESC *OdlPasteObjDesc (new_object, parent_object)
 OBJDESC *new_object;

 OBJDESC *parent_object;

Description

This routine adds an object to a tree as the last child of the parent_object.

3.1.2.7 OdlPasteObjDescBefore

Function Prototype

 OBJDESC *OdlPasteObjDescBefore (new_object, old_object)
 OBJDESC *new_object;

 OBJDESC *old_object;

Description

This routine adds an object to a tree as the left sibling of the old_object.

3.1.2.8 OdlPasteObjDescAfter

Function Prototype

 OBJDESC *OdlPasteObjDescAfter (new_object, old_object)
 OBJDESC *new_object;

 OBJDESC *old_object;

Description

This routine adds an object to a tree as the right sibling of the old_object.

3.1.2.9 OdlCopyObjDesc

Function Prototype

 OBJDESC *OdlCopyObjDesc (object)
 OBJDESC *object;

Description

This routine makes a copy of an object and returns a pointer to the copy. All fields are duplicated except for references to the original tree, which are removed.

3.1.2.10 OdlNewObjDesc

Function Prototype

OBJDESC *OdlNewObjDesc (object_class, pre_comment, line_comment, post_comment, end_comment, file_name, is_a_group, line_number)

char *object_class;

 char *pre_comment;

 char *line_comment;

 char *post_comment;

 char *end_comment;

 char *file_name;

 short is_a_group;

 long line_number;

Description

This routine creates a new object structure and initializes its fields with the values passed in.

3.1.2.11 OdlAdjustObjDescLevel

Function Prototype

 void OdlAdjustObjDescLevel (object)
 OBJDESC *object;

Description

This routine changes the nesting level of an object and all of its subobjects so they fit in with their place in the overall ODL tree. This is particularly useful when objects are cut from one tree and pasted into another tree, perhaps higher or lower in the nesting hierarchy then they were in the original tree.

3.1.2.12 OdlCutKwd

Function Prototype

 KEYWORD *OdlCutKwd (keyword)
 KEYWORD *keyword;

Description

This routine removes a keyword from an object and returns a pointer to it. All references to the object within the keyword are removed, and all references to the keyword within the object are removed.

3.1.2.13 OdlPasteKwd

Function Prototype

 KEYWORD *OdlPasteKwd (keyword, object)
 KEYWORD *keyword;

 OBJDESC *object;

Description

 This routine adds a keyword to the end of an object's keyword list.

3.1.2.14 OdlPasteKwdBefore
Function Prototype

 KEYWORD *OdlPasteKwdBefore (new_keyword, old_keyword)
 KEYWORD *new_keyword;

 KEYWORD *old_keyword;

Description

 This routine adds a keyword to an object as the left sibling of the old_keyword.

3.1.2.15 OdlPasteKwdAfter

Function Prototype

 KEYWORD *OdlPasteKwdAfter (new_keyword, old_keyword)
 KEYWORD *new_keyword;

 KEYWORD *old_keyword;

Description

 This routine adds a keyword to an object as the right sibling of the old_keyword.

3.1.2.16 OdlCopyKwd
Function Prototype

 KEYWORD *OdlCopyKwd (keyword)
 KEYWORD *keyword;

 Description

This routine makes a copy of a keyword and returns a pointer to it. All of the keyword's fields are duplicated except for references to the parent object, which are

 removed.

3.1.2.17 OdlNewKwd
Function Prototype

 KEYWORD *OdlNewKwd (keyword_name, value_text, pre_comment,
 line_comment, file_name, line_number)

Description

This routine creates a new keyword structure, initializes its fields with the values passed in, and returns a pointer to it.

3.1.2.18 OdlFreeAllKwds
Function Prototype

 KEYWORD *OdlFreeAllKwds (object)
 OBJDESC *object;

Description

This routine frees all memory used by an object's keywords. When it's finished, all references to keywords are gone from the object. The return value is always NULL.

3.1.2.19 OdlFreeKwd
Function Prototype

 KEYWORD *OdlFreeKwd (keyword)

 KEYWORD *keyword;

Description

 This routine frees the memory used by a keyword. The return value is always a pointer to the right sibling of the keyword.

3.1.2.20 OdlGetFileName

Function Prototype

 char *OdlGetFileName (keyword, start_location, start_location_type)
 KEYWORD *keyword;

 unsigned long *start_location;

 unsigned short *start_location_type;

Description

This routine extracts the file name from a "^" keyword, allocates storage for it, and returns a pointer to this new character string. It also returns information about

where the data actually begins in the file.

For example, lets say we're looking at a label in a file called test.lbl, and we want to get the file name associated the FNAME keyword. Here are the possible values this keyword might have, and what information would be returned for each possibility:

 ^FNAME = 17

 file name : test.lbl (attached)

 *start_location : 17

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = 29 <RECORD>

 file name : test.lbl (attached)

 *start_location : 29

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = 197 <RECORDS>

 file name : test.lbl (attached)

 *start_location : 197

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = 346 <BYTE>

 file name : test.lbl (attached)

 *start_location : 346

 *start_location type : ODL_BYTE_LOCATION

 ^FNAME = 2189 <BYTES>

 file name : test.lbl (detached)

 *start_location : 2189

 *start_location type : ODL_BYTE_LOCATION

 ^FNAME = "file_name.dat"

 file name : file_name.dat (detached)

 *start_location : 1

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = ("file_name.dat", 17)

 file name : file_name.dat (detached)

 *start_location : 17

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = ("file_name.dat", 29 <RECORD>)

 file name : file_name.dat (detached)

 *start_location : 29

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = ("file_name.dat", 197 <RECORDS>)

 file name : file_name.dat (detached)

 *start_location : 197

 *start_location type : ODL_RECORD_LOCATION

 ^FNAME = ("file_name.dat", 346 <BYTE>)

 file name : file_name.dat (detached)

 *start_location : 346

 *start_location type : ODL_BYTE_LOCATION

 ^FNAME = ("file_name.dat", 2189 <BYTES>)

 file name : file_name.dat (detached)

 *start_location : 2189

 *start_location type : ODL_BYTE_LOCATION

3.1.2.21 OdlPrintHierarchy

Function Prototype

 void OdlPrintHierarchy (object, message_fname, message_fptr)
 OBJDESC *object;

 char *message_fname;

 FILE *message_fptr;

Description

 This routine prints the object hierarchy to a message file.

3.1.2.22 OdlPrintLabel

Function Prototype

 void OdlPrintLabel (object, message_fname, message_fptr, root_level)
 OBJDESC *object;

 char *message_fname;

 FILE *message_fptr;

 unsigned long root_level;

Description

This routine prints the ODL tree to a message file, in ODL format, unless the global odl_suppress_messages flag is set.

3.2 Label Access Function Parameters and Values

	NULL
	NULL as a value to a parameter implies that the parameter is to be ignored. NULL is defined to have a value of zero (0).

	classname
	classname is a character string that provides the class name to be used as a constraint in a search. The object's class name is the value in the OBJECT = <class name> ODL statement. (see note 1 and note 2)

	errfilespec
	errfilespec is a character string that identifies the file into which parser

errors will be written. If the file previously exists, then the error messages are appended to the existing file. If NULL is specified, then the error messages are written to stdout.

	expand
	expand is a mask (typedef unsigned short MASK) which specifies whether or not the specified ODL files are to be expanded.

 ODL_EXPAND_STRUCTURE - expand ^STRUCTURE and ^*_STRUCTURE keywords only

ODL_EXPAND_CATALOG - expand ^CATALOG keywords only

ODL_EXPAND_STRUCTURE | ODL_EXPAND_CATALOG - expand both the ^STRUCTURE and ^CATALOG keywords
(the "|" character is the logical "or" of both values).

	filespec
	filespec is a character string that represents a file specification. File

specifications are assumed to be valid for the host system. If they are not, an error status is returned. NOTE: An exception exists for file specifications supplied for ^STRUCTURE. PDS standards do not allow directory path names to be included. The rules for finding files referenced by ^STRUCTURE are documented in the PDS standards.

	kwdname
	kwdname is a character string that provides the keyword name to be used as a constraint in a search. (see note 1 and note 2)

	kwdptr
	kwdptr is a pointer to a keyword within an ODL tree.

	kwdvalue
	kwdvalue is a character string that provides the keyword value to be used as a constraint for a search (see note 1 and note 2)

	nomsgs
	nomsgs is a flag that indicates whether or not error messages are to be written. A value of TRUE or (1) indicates that error messages will not be written even if an error message file has been specified.

	objdescptr
	objdescptr is a pointer to an object description within an ODL tree.

	odlstring
	odlstring is a character string containing ODL statements.

	position
	position indicates the nth occurrence of an entity that satisfies the specified constraints. For example, a pointer to the second occurrence of a COLUMN within a TABLE would be return from OdlFindObjDesc, given a pointer to the TABLE object, "COLUMN" as class name, and two (2) as position.
One (1) and zero (0) supplied as values for position are equivalent and indicate the first occurrence.

NOTE: In a "find next" situation, a position value of either NULL or one (1)

will return either the object description or keyword pointer passed to the routine since this would be the first entity that matches the constraints. Use a position value of two (2) to get the "next" matching entity.

	scope
	scope is an integer value that determines the context of the search. The entity being searched for dictates the interpretation of the values of scope.
object description scope - The proposed values of scope for finding object descriptions restrict the tree search relative to the current OBJDESC pointer. These values are:
 ODL_RECURSIVE_DOWN (0) - restrict to

 subobjects of the current object

 description and all their subobjects

 recursively. (Expects an object

 description pointer.)

 ODL_TO_END (1) - no restrictions. The ODL

 tree is searched exhaustively from the

 given pointer to the end of the tree.

 ODL_CHILDREN_ONLY (2) - restrict to

 subobjects of the current object

 description only. (Expects an object

 description pointer.)

 ODL_SIBLINGS_ONLY (3) - restrict to the

 siblings of the current object

 description. (Expects an object

 description pointer.)
keyword scope - The proposed values of scope for finding keywords restrict the tree search relative to the current OBJDESC pointer. These values are:
ODL_RECURSIVE_DOWN (0) - restrict to the

 keywords contained in the current object

 description and the keywords contained in

 the subobjects of the current object and

 all of their subobjects recursively.

 ODL_TO_END - (1) - No restriction. The

 ODL tree is searched exhaustively from

 the given pointer to the end of the tree.

 ODL_CHILDREN_ONLY (2) - restrict to the

 keywords contained in the current object

 or subobjects of the current object

 description.

 ODL_SIBLINGS_ONLY (3) - restrict to the

 keywords contained in the current object

 or siblings of the current object

 description.

 ODL_THIS_OBJECT (4) - restrict to the

 keywords contained in the current object

 description only.

	valuetype
	valuetype indicates the data type of a keyword's value.
 ODL_UNKNOWN 0

 ODL_INTEGER 1

 ODL_REAL 2

 ODL_SYMBOL 3

 ODL_TEXT 4

 ODL_DATE 5

 ODL_DATE_TIME 6

 ODL_SEQUENCE 7

 ODL_SET 8

3.3 Return and Error Status (TBD First Quarter 95)

L3 functions return NULL when the function fails. A global error status is currently being implemented. The following error values simply suggest what could be returned.

Note: Routines that accept ODL tree pointers assume that the pointer is valid for the function. (i.e. The OdlFindObjDesc routine assumes a pointer to an object description has been passed.)

 Function Return Status

 if SUCCESS

 <pointer to result>

 else

 <NULL>

 Error Status - (odlerrorstatus)

 00 -> Normal

 10 -> Warnings

 11 -> no match

 12 -> no next

 13 -> no parent

 20 -> Errors

 21 -> illegal file name

 22 -> file not found

 23 -> severe syntax error

 24 -> invalid objdescptr

3.4 Label Library Design - Notes

1) Class names, keyword names, and keyword values passed as parameters to label library functions will be converted to upper case before comparison. ODL keyword values embedded in double quotes are an exception.
2) Class names, keyword names, and values used as search constraints in the find routines may all contain wildcard ('*') characters. For example, the strings "*TABLE" and "IMAGE*" supplied as class names to OdlFindObjDesc would both match "IMAGE_ENGINEERING_TABLE".
3) Find routines which allow more than one constraint for matching, such as OdlFindObjDesc, will find only those objects which match all non-null constraints. For example, if OdlFindObjDesc were called with a class name of "COLUMN" and a position value of 2, it will return the second COLUMN object. All other non-COLUMN objects in the given scope would be ignored.
Any search constraint with a null value will be ignored by the routine. For example, if OdlFindObjDesc were called with a value of 2 for position and NULLs for all other constraints, a pointer to the second object in the ODL tree would be returned.
The search path is depth first. (i.e. for a single parent with children and grandchildren, the children of child one are search before child two or its children.)
In a "find next" situation, a position value of either NULL or one (1) will return either the object description or keyword pointer passed to the routine since this would be the first entity that matches the constraints. Use a position value of two (2) to get the "next" matching entity.

APPENDIX A Simple Label Parse and Display Program

CCSD3ZF0000100000001NJPL3IF0PDS200000001 = SFDU_LABEL

 /* FILE FORMAT AND LENGTH */

 ...

 OBJECT = IMAGE

 LINES = 160

 LINE_SAMPLES = 252

 SAMPLE_TYPE = UNSIGNED_INTEGER

 SAMPLE_BITS = 8

 SAMPLE_BIT_MASK = 2#11111111#

 CHECKSUM = 2636242

 END_OBJECT = IMAGE

 ...

 END

 {data}

#include "lablib3.h"

OBJDESC *lp;

OBJDESC *op;

KEYWORD *kp;

main ()

{

/* open / parse file - error messages to file */

 lp = OdlParseLabelFile ("mdim.lbl", "l3terr", NULL, NULL);

 if (lp == NULL)

 {

 printf ("***Parse Failed\n");

 exit (0);

 }

/* find IMAGE object */

 op = OdlFindObjDesc (lp, "IMAGE",

 NULL, NULL, 1, ODL_RECURSIVE_DOWN);

 if (op == NULL)

 {

 printf ("***Find Object Failed\n");

 exit (0);

 }

 printf ("OBJECT = %s\n", OdlGetObjDescClassName(op));

/* find first keyword */

 kp = OdlGetFirstKwd (op);

 if (kp == NULL)

 {

 printf ("***Find First Keyword Failed\n");

 exit (0);

 }

/* find remaining keywords */

 while (kp != NULL)

 {

 printf (" %s = %s\n",

 OdlGetKwdName (kp), OdlGetKwdValue (kp));

 kp = OdlGetNextKwd (kp);

 }

 OdlFreeTree (lp);

}
Examples of L3 Function Calls

 ---GALILEO IMAGE FILE LABEL - FILE_NAME = 2000R.LBL---

 CCSD3ZF0000100000001NJPL3IF0PDS200000001 = SFDU_LABEL

 RECORD_TYPE = FIXED_LENGTH

 RECORD_BYTES = 1000

 FILE_RECORDS = 814

 ^TELEMETRY_TABLE = ("2000R.IMG",3)

 ^IMAGE = ("2000R.IMG",15)

 ...

 DATA_SET_ID = "GO-A/E-SSI-2-REDR-V1.0"

 SPACECRAFT_NAME = "GALILEO ORBITER"

 INSTRUMENT_NAME = SOLID_STATE_IMAGING

 /* Time tags and observation descriptors */

 SPACECRAFT_CLOCK_START_COUNT = "01651920.00"

 IMAGE_TIME = 1992-12-09T07:13:01.011Z

 IMAGE_ID = E2W0914

 ORBIT_NUMBER = 12869

 OBSERVATION_ID = "E2WSZOOMMV01-000WDTL"

 TARGET_NAME = "EARTH"

 ...

 /* Table Object (for telemetry table) */

 OBJECT = TELEMETRY_TABLE

 INTERCHANGE_FORMAT = BINARY

 ROWS = 1

 COLUMNS = 86

 ROW_BYTES = 1800

 ^STRUCTURE = "RTLMTAB.FMT"

 END_OBJECT

 /* Image Object */

 OBJECT = IMAGE

 LINES = 800

 LINE_SAMPLES = 800

 SAMPLE_BITS = 8

 SAMPLE_TYPE = UNSIGNED_INTEGER

 ...

 END_OBJECT

 END

 ---GALILEO TABLE FORMAT FILE - ^STRUCTURE = "RTLMTAB.FMT"---

 OBJECT = COLUMN

 NAME = RECORD_ID

 DATA_TYPE = UNSIGNED_INTEGER

 START_BYTE = 1

 BYTES = 1

 DESCRIPTION = "Is always 0 for the telemetry record"

 END_OBJECT

 OBJECT = COLUMN

 NAME = FILE_NUMBER

 DATA_TYPE = UNSIGNED_INTEGER

 START_BYTE = 2

 BYTES = 1

 DESCRIPTION = "Tape file number. Not applicable for

 CD-ROMs."

 END_OBJECT

 OBJECT = COLUMN

 NAME = MISSION_NAME

 DATA_TYPE = CHARACTER

 START_BYTE = 3

 BYTES = 10

 DESCRIPTION = "Mission name, valid is GALILEO."

 END_OBJECT

 ...

 ---EXAMPLES OF FUNCTION CALLS---

 Assume:

 OBJDESC *label_ptr, *table_ptr, *column_ptr, *image_ptr;

 KEYWORD *name_ptr, *first_ptr;

 char name [31], value [11];

 unsigned short valuetype;

 1) Parse the file, expand the label, and create a new error

 message file.

 label_ptr = OdlParseLabelFile ("2000R.LBL", "error.lst",

 ODL_EXPAND_STRUCTURE, NULL);

 2) Find the TELEMETRY_TABLE object description.

 table_ptr = OdlFindObjDesc

 (label_ptr, "*TABLE", NULL, NULL, 0,

 ODL_RECURSIVE_DOWN);

 3) Find the second column (FILE_NUMBER) in the table.

 column_ptr = OdlFindObjDesc

 (table_ptr, "COLUMN", NULL, NULL, 2,

 ODL_CHILDREN_ONLY);

 4) Find the NAME keyword of the column.

 name_ptr = OdlFindKwd (column_ptr, "NAME", NULL, NULL,

 ODL_THIS_OBJECT);

 5) Get the name (i.e. FILE_NUMBER) of the column.

 strcpy (name, OdlGetKwdValue (name_ptr));

 6) Find the next column (i.e. MISSION_NAME) in the table.

 column_ptr = OdlFindObjDesc

 (column_ptr, "COLUMN", NULL, NULL, 2,

 ODL_SIBLINGS_ONLY);

 if (column_ptr != NULL)

 7) Find the IMAGE object description.

 image_ptr = OdlFindObjDesc

 (label_ptr, "IMAGE", NULL, NULL, NULL,

 ODL_RECURSIVE_DOWN);

 8) Find the first attribute of IMAGE. (i.e. LINES)

 first_ptr = OdlFindKwd (image_ptr, NULL, NULL, 1,

 ODL_THIS_OBJECT);

 if (first_ptr != NULL)

 9) Get the name, value type, and value of the first keyword

 of IMAGE. (i.e. LINES, 1 (ODL_INTEGER), 800)

 strcpy (name, OdlGetKwdName (first_ptr));

 valuetype = OdlGetKwdValueType (first_ptr);

 strcpy (value, OdlGetKwdValue (first_ptr));

 10) Find the first format file anywhere in the label.

 first_ptr = OdlFindKwd (label_ptr, NULL, "*.FMT", NULL,

 ODL_RECURSIVE_DOWN);

This appendix lists differences and their rationales that exist between the design document and the actual implementation.

 1) A nomsgs flag has been added to the parse file functions

 (OdlParseLabelFile, OdlParseLabelString, and

 OdlExpandLabelFile) to indicate whether or not error

 messages are to be suppressed. This approach is less

 confusing than the approach suggested in the design.

 2) The term "keyword" when used in a function name has been

 shortened to "kwd". This saves space and is consistent

 with the use of "obj" for "object".

 3) The ODLTREE type definition has been changed to either

 OBJDESC or KEYWORD. An ODL tree resulting from parsing an

 ODL file consists of two type of nodes (structures)

 either an OBJDESC node or a KEYWORD node.

 4) The function OdlFindKwd is defined differently due to

 item 3 above. It now requires a pointer to an OBJDESC. In

 order to find the next KEYWORD, the function OdlNextKwd

 has been implemented.

This appendix contains the OBJDESC and KEYWORD structure and Symbol

definitions used by the parser to build the ODL tree.
/***/

/* Symbol definitions */

/***/

#define ODL_NOEXPAND 0

#define ODL_EXPAND_STRUCTURE 1

#define ODL_EXPAND_CATALOG 2

#define ODL_RECURSIVE_DOWN 0

#define ODL_TO_END 1

#define ODL_CHILDREN_ONLY 2

#define ODL_SIBLINGS_ONLY 3

#define ODL_THIS_OBJECT 4

#define ODL_RECORD_LOCATION 0

#define ODL_BYTE_LOCATION 1

#define ODL_UNKNOWN 0

#define ODL_INTEGER 1

#define ODL_REAL 2

#define ODL_SYMBOL 3

#define ODL_TEXT 4

#define ODL_DATE 5

#define ODL_DATE_TIME 6

#define ODL_SEQUENCE 7

#define ODL_SET 8

/***/

/* Typedefs */

/***/

typedef struct Object_Structure

{

 char *class;

 char *pre_comment; /* Comments before the OBJECT = line */

 char *line_comment; /* Comments on the OBJECT = line */

 char *post_comment; /* Comments before the END_OBJECT = line */

 char *end_comment; /* Comments on the OBJECT = line */

 char *file_name;

 char *appl1; /* free for your application */

 char *appl2; /* free for your application */

 unsigned short is_a_group;

 unsigned long level;

 unsigned long line_number;

 unsigned long child_count;

 struct Object_Structure *parent;

 struct Object_Structure *left_sibling;

 struct Object_Structure *right_sibling;

 struct Object_Structure *first_child;

 struct Object_Structure *last_child;

 struct Keyword_Structure *first_keyword;

 struct Keyword_Structure *last_keyword;

} OBJDESC;

typedef struct Keyword_Structure

{

 char *name;

 char *file_name;

 char *value;

 unsigned long size;

 char *pre_comment; /* Comments before the KEYWORD = line */

 char *line_comment; /* Comments on the KEYWORD = line */

 char *appl1; /* free for your application */

 char *appl2; /* free for your application */

 unsigned short is_a_pointer;

 unsigned short is_a_list;

 unsigned long line_number;

 struct Object_Structure *parent;

 struct Keyword_Structure *left_sibling;

 struct Keyword_Structure *right_sibling;

} KEYWORD;

==

References

[1] DeMore, M.D., "Object Access: A Discussion of Software

 Architecture", JPL Internal Document.

[2] Hughes, J.S., etal, "Planetary Data System Label Library Light

 (L3) - Requirements Document", JPL Internal Document, April

 1993.

[3] Hughes, J.S., etal, "Planetary Data System Label Library Light

 (L3) - Design Document", JPL Internal Document, October 1993.

[4] Davis, R., Monk, S., "Object Access Library - Concept,

 Requirements and Design", Pre-Alpha Release Version,

 Laboratory for Atmospheric and Space Physics, August 1994.

[5] _______, PDS Standards Reference, "JPL Internal Document", JPL

 D-7669; Part 2, Jet Propulsion Laboratory, November 1992.

[6] Cribbs, M.A., Wagner, D.A., Planetary Science Data Dictionary,

 "JPL Internal Document", JPL D-7116; Rev C, Jet Propulsion

 Laboratory, November, 1992.

NOTE: The PDS Standards Reference and Planetary Science Data Dictionary are available on the World Wide Web under the PDS Home Page.
PAGE

